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1. Introduction

We study the following N -dimensional (N ≥2) general diffusion system

{
ρt + ∇ · (uρ) = 0,

μen∇ρ + μin ρ ∇K2s∗ρ = −uρ,
(1.1)

where1 0 ≤ s ≤ 1, 0 < μen ≤ ∞, −∞ < μin < ∞, u is the effective trans-

port velocity vector, and uρ is the flux that contains nonlocal term ∇K2s ∗ ρ with 

∇K2s ∗ ρ = F−1(iξ|ξ|−2sFρ(ξ)) in distributional sense, see [11, Chapter 2].

The model arises from the consideration of a continuum density distribution ρ that 

evolves in time following a velocity field u, according to the continuity equation ρt + ∇ ·
(uρ) = 0 with

∫
ρ(x, t)dx =

∫
ρ(x, t)|t=0 dx

for all t > 0. Here u is given by the following potential

u = −μen∇ ln ρ − μin∇K2s ∗ ρ,

which arises, for instance, in porous media for μin > 0 and s = 0 according to Darcy’s 

law [6] and chemotaxis for μin < 0 and s = 1 [8,16], respectively.

1.1. Energetic variational approach

In this subsection, we employ the Energetic Variational Approach (EVA) [13] for an 

isothermal closed system. Hence we can derive from the First Law and Second Law of 

Thermodynamics the following energy dissipation law:

d

dt
Etotal = −Δ, (1.2)

where Etotal represents the sum of kinetic energy and total Helmholtz free energy, and Δ

is the energy dissipation rate/entropy production. As a direct consequence of the choice 

of total energy functional, dissipation functional, and kinematic relation of the variables 

employed in the system, one can get all the physics and the assumptions correspondingly.

As a precise framework, one can use the EVA to obtain the force balance equations 

from the general dissipation law (1.2). Precisely speaking, the Least Action Principle 

(LAP) determines the Hamiltonian part, and the Maximum Dissipation Principle (MDP) 

gives the dissipative part. Formally, LAP states that work equals force multiplies dis-

tance, i.e.

1 One of the special cases of s > 1, i.e. s = 2 and N = 4 is also considered.
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δE = force × δx,

where δ is the variation in general sense and x is the position. This gives the Hamiltonian 

part of the system and the conservative force [1,2], while MDP, by Onsager [28,29], giving 

the dissipative force

δ
1

2
Δ = force × δxt,

where the factor “1
2” is consistent with the choice of quadratic form of the dissipation 

rate of energy, which in turn describes the linear response theory for long-time near 

equilibrium dynamics [19]. For instance, we first consider system (1.1) with s = 0, i.e.

ρt = ∇ · (μen∇ρ + μin ρ∇ρ). (1.3)

Let us start with the energy dissipation law with prescribed Helmholtz/free energy and 

entropy production functionals

d

dt

∫ (
μen ρ ln ρ +

1

2
μin ρ2

)
dx = −

∫
ρ|u|2dx, (1.4)

where u(x(X, t), t) = xt(X, t), x(X, t) is the flow map, X is the reference coordinate, 

and the kinematic relation is just the conservation of mass

ρt + ∇ · (ρ u) = 0. (1.5)

Let A =
∫

Ω
(w1(ρ) + w2(ρ))dx =

∫
Ω

μen ρ ln ρ + 1
2μin ρ2dx and Δ =

∫
ρ|u|2dx. By using 

the force balance law between conservative and dissipative forces, we get

δA
δx

= −ρu = −1

2

δΔ

δu
.

In fact, δA
δx = ∇

(
μenρ + 1

2μinρ2
)

since

δA =

∫

Ω

∑

j=1,2

∇
(

w′
j(ρ)ρ − wj(ρ)

)
· δx dx =

∫

Ω

∇
(

μenρ +
1

2
μinρ2

)
· δx dx.

Therefore, ∇(μenρ + 1
2μinρ2) = −ρ u, which together with (1.5) yields (1.3).

For any s ∈ (0, 1], following the similar argument of energetic variational approach, 

we also start with the energy law

d

dt

[∫
μenρ ln ρdx +

∫
1

2
μinρ(K2s ∗ ρ)dx

]
= −

∫
ρ|u|2dx. (1.6)
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According to EVA, the total energy Etotal and the dissipation Δ are

Etotal =

∫
μenρ ln ρ dx +

∫
1

2
μin ρ(K2s ∗ ρ)dx, Δ =

∫
ρ|u|2dx.

Define the action functional A of entropy and internal energy as

A =

∫

Ω

μenρ ln ρ dx +

∫

Ω

1

2
μinρK2s ∗ ρ dx. (1.7)

By making use of flow map x(X, t), taking variation of A with respect to x, taking 

variation of Δ with respect u, and using the force balance law, we get

δA
δx

= μen∇ρ + μinρ∇K2s ∗ ρ = −ρu = −1

2

δΔ

δu
. (1.8)

Finally, plugging identity (1.8) into equation (1.5) gives system (1.1).

1.2. Linearization near positive constant state

In this subsection, we aim at showing the difference between μin > 0 and μin < 0. 

The key idea is linearization of ρ of system (1.1) near some positive constant ρ̄0 such 

that ρ has positive lower and upper bounds, which guarantees the nonpositivity of the 

“right hand side of (1.6)”.

Assume that 0 ≤ s < 1
2 . By using Fourier/inverse Fourier transformation and ξ|ξ|−2s×

“delta function” = 0, one gets

∇K2s ∗ (ρ̃ + ρ̄0) = F−1
(

iξ|ξ|−2sF ρ̃(ξ)
)

= ∇K2s ∗ ρ̃ (1.9)

for any tempered distribution ρ. Linearizing system (1.1) near any constant state ρ̄0

( > 0) yields2

ρ̃t =
(

μenΔ − μinρ̄0(−Δ)1−s
)

ρ̃ + μin∇ ·
(

ρ̃∇K2s ∗ ρ̃
)

, (1.10)

where F
(
μenΔ − μinρ̄0(−Δ)1−s

)
= −μen|ξ|2 − μinρ̄0|ξ|2−2s.

From (1.10) it is clear that: if μin > 0 and μen = 0, then −μinρ̄0|ξ|2−2s gives fractional 

dissipation; else if μin, μen, s > 0, then −μen|ξ|2−μinρ̄0|ξ|2−2s gives different dissipations 

for high/low frequency; else if μin < 0 and μen > 0, then −μen|ξ|2−μinρ̄0|ξ|2−2s becomes 

positive for sufficiently small frequency which gives us no dissipation and might produce 

finite time blow-up solution.

2 Small solution to (1.10) with large positive ρ̄0 can generate large positive solution to (1.1) with infinite 
mass.
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Assume that 1
2 ≤ s < 1. In this case, it seems difficult to get (1.10) near ρ̄0 ( > 0) since 

∇K2s ∗ρ̄0 is not well-defined even in distributional sense. However, ∇ ·(∇K2s∗(ρ̃+ρ̄0)) =

ΔK2s ∗ ρ̃ for any tempered distribution ρ̃. Then system (1.1) becomes

ρ̃t =
(

μenΔ − μinρ̄0(−Δ)1−s
)

ρ̃ + μin∇ ·
(

ρ̃∇K2s ∗ (ρ̃ + ρ̄0)
)

. (1.11)

Therefore, from [31, Remark 3, p. 239], we have study system (1.11) for distribution 

modulo polynomials, which shows that homogeneous Besov space is a natural choice. 

Similar arguments are applied for μen and μin.

Assume that 1 ≤ s ≤ N
2 . In this case, we also need to study system (1.1) in distribution 

modulo polynomial sense. Therefore, it suffices to study small data Cauchy problem.

Conclusively, for 0 ≤ s < 1 we can observe the difference of μin > 0 and μin < 0 by 

doing linearization; for 1 ≤ s ≤ N
2 we are unable to show their difference since we work 

for small data problem in homogeneous Besov spaces (subset of tempered distribution 

modulo polynomials). Therefore, s = 1 is critical with respect to linearization. Moreover, 

when 0 ≤ s < 1
2 , we have ∇K2s ∗ ρ = ∇

Λ Λ1−2sρ for any Schwartz function ρ, which 

indicates that we have nonlocal property given by Riesz transforms and 1 − 2s order 

derivative; when s = 1
2 , we only have nonlocal property given by Riesz transforms; when 

1
2 < s ≤ N

2 , we have nonlocal properties given by Riesz transforms and Riesz potential 

Λ1−2s (1 − 2s < 0). As a consequence, 1
2 is critical with respect to nonlocal property, i.e. 

the bigger s is, the stronger nonlocal property we have.

1.3. Mild solution and scaling argument

In this subsection, we first introduce the definition of mild solution to system (1.1)

with initial value ρ0(x) = ρ(x, t)|t=0.

Mild solution Plugging uρ = −μen∇ρ − μinρ∇K2s ∗ ρ into (1.1) yields

ρt − μenΔρ = μin∇ · (ρ∇K2s∗ρ). (GD)

For any given ρ0, we get an equivalent integral equation

ρ(t) = eμentΔρ0 + μin

t∫

0

eμen(t−τ)Δ∇ ·
(
ρ(τ)(∇K2s∗ρ)(τ)

)
dτ. (IGD)

We call ρ a mild solution to (GD) with initial ρ0 if ρ solves (IGD) in certain function 

space.

Scaling Formally, the second term on the left hand side of (1.6) gives

∫

RN

ρ K2s∗ρ dx
Plancherel′s identity

∫

RN

|Ks∗ρ|2dx. (1.12)
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Therefore it seems quite natural to assume that3

(Ks∗ρ)(x, t) ∈ L∞(0, ∞; L2(RN )) ⊂ L2
loc(RN × R+) (1.13)

in the energy framework if − 
∫

ρ|u|2dx ≤ 0. We can check that it is true for any 0 ≤ s < 1
2

and |ρ − ρ̄0| < 1
2 ρ̄0. Indeed, integrating the left hand side of (1.7) with respect to time 

variable from 0 to t yields

0 ≤
∫

RN

|(Ks ∗ ρ)(t, x)|2dx ≤ C(μen, μin, ρ0, N), (1.14)

where C(μen, μin, ρ0, N, s) is a positive constant depending on μen, μin, N, s and ρ0. 
Meanwhile, taking scaling into consideration, we observe that (1.1) is invariant under 

the following transformation:

ρ(x, t) 	→ ρλ(x, t) = λ2sρ(λx, λ2t) for λ > 0. (1.15)

As a consequence of (1.12)–(1.15), we have two scale and translation invariant versions 
of L2-boundedness:

1

rN−2s

∫

B(x;r)

|(Ks∗ρ)(y, t)|2dy, (1.16)

1

rN+2−2s

∫

Q(x,t;r)

|(Ks∗ρ)(y, t)|2dydt. (1.17)

Denote the initial data space as the set of all tempered distributions ρ0 such that the 
convolution of Ks+1 ∗∇ρ0 and heat kernel G√

t satisfy

sup
r>0,x∈RN

1

rN+2−2s

∫

Q(x,t;r)

|(G√
t ∗Ks+1 ∗∇ρ0)(y)|2dydt < ∞. (1.18)

This space of ρ0 satisfying (1.18) is BMO−2 for s = 1, and Ḃ−2s
∞,∞ for 0 < s < 1 (see 

Definitions 1.4 and 1.6 and Lemma 2.5 below). Noticing that (1.14) and (1.16) coincide 

when s = N
2 and r = ∞. However, when s = N

2 ≥ 1, linearization argument is not 

applied. It seems difficult to prove 
∫

ρ|u|2dx ≥ 0. Thus we are unable to get estimate 

(1.14). Later on, we only focus on the mild solution since it seems difficult to apply the 

a priori energy estimate.

Next we recall some recent results about the Keller–Segel system/two component 

Keller–Segel system and Poisson–Nernst–Planck system. As for Keller–Segel system, 

Biler et al. [4] studied its Cauchy problem for initial data ρ0 ∈ PMN−2 with N ≥ 4 and

PMN−2 = {f ∈ S ′ |f̂ ∈ L1
loc, ‖f‖PMN−2 = ess.supξ|ξ|N−2|f̂(ξ)| < ∞},

3 It is clear that Lp(0, ∞; Lq(RN )) ⊂ L2
loc(RN × R+) for any p, q ≥ 2.
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Table 1

Some relations between energy approach and semigroup method.

Corrias et al. [8] established the global well-posedness of the ρ0 ∈ L1(RN ) ∩L
N
2 (RN ) data 

problem with only small L
N
2 (RN )-norm (N ≥ 2), and Kozono–Sugiyama [18] investigated 

both global solution for ρ0 ∈ L1(R2) and the blow-up phenomenon. Recently, Iwabuchi 

[14] proved existence of solution to the Keller–Segel system in Ḃ
N/p−2
p,∞ with N/2 < p < ∞

and p ≥ 1, and also in Ḃ−2
2 (a subspace of BMO−2, see Subsection 3.4 below).

For the two-components Keller–Segel system and the Poisson–Nernst–Planck system, 

we refer readers to [12,23,22,24,27,30,32,33] to see more information about the existence, 

uniqueness and asymptotic behaviors of the solutions. Generally speaking, scaling in-

variant space with lower regular index is bigger. Hence it is worth pointing out that 

Zhao et al. [33] proved global well-posedness of the two-components Poisson–Nernst–

Planck system in Ḃs
p,∞ with s > −3/2 and p = N/(s + 2), which is the first result that 

work for regular index below −1 of this model. Recently, Deng and Li [9] extended Zhao 

et al.’s work to critical case, established ill-posedness of the two-components Poisson–

Nernst–Planck system in Ḃ
−3/2
2N,q for N = 2 and q > 2, and showed that the regular index 

s = −3/2 is optimal.

Before ending this subsection, we give Table 1 concerned with the relations between 

energy approach and semigroup method (mild solution).
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Let us end this subsection with our main results. The initial value problem of system 

(1.1) is well-posed: in the largest scaling invariant space Ḃ−2s
∞,∞ for any 0 < s < 1, see 

Theorem 1.9 and Remark 1.10 below; in the largest scaling invariant space BMO−2s for 

s = 1, see Theorem 1.11 below; in the scaling invariant space Ḃ−2s
∞,1 for s = 0, where 

we do not know whether it is the largest or not; in the scaling invariant space Ḃ−3
4,2 for 

N = 4 and s = N
2 > 1 where integrability can not be ∞, i.e. Ḃ−2s

∞,q is a the proper 

choice.

It should be an interesting problem whether system (1.1) is globally well-posed in 

the homogeneous Sobolev space Ḣ− N
2 for arbitrary large initial data, in Besov space 

Ḃ−1−s
N/(s−1),q for 1 < s ≤ N

2 and 1 ≤ q ≤ ∞, or in Triebel–Lizorkin space Ḟ −1−s
N/(s−1),q for 

1 < s ≤ N
2 and 1 ≤ q ≤ ∞.

1.4. Notations and definitions

In this subsection, we list the notations which will be used throughout this paper as 

follows:

N space dimension and N ∈ {2, 3, 4, · · · },

R+, N, Z+ R+ = (0, ∞), N = {1, 2, 3, · · · , }, Z+ = N ∪ {0},

(Fv)(ξ) or v̂(ξ) Fourier transformation of v with respect to x,

(F−1v̂)(x) inverse Fourier transformation of v̂ with respect to ξ,

Ks(x) kernel of Riesz operator (−Δ)− s
2 ,

f (s) f (s) := Ks ∗ f for any function f and 0 < s ≤ 1,

G√
t(x) kernel of heat semigroup etΔ, i.e. (2πt)− N

2 exp{− |x|2

4t },

B(x; r) space ball centered at x ∈ RN of radius r,

Q(x, t; r) parabolic ball Q(x, t; r) =B(x; r) × (0, r2[,

[0, 1]N N -dimensional unit cube,

Ḃσ
∞,q homogeneous Besov space for σ ∈ R and q ∈ [1, ∞],

BMO bounded mean oscillation space and BMO = Ḟ 0
∞,2,

BMOσ −σth order derivative of BMO space and BMOσ = Ḟ σ
∞,2,

Ca,b,··· positive constant depending on a, b, · · · ,

A�B, A∼B A � B ⇔ A ≤ CN,s,μen,μin
B and A ∼ B ⇔ A � B � A,

S and S ′ Schwartz function space S(RN ) and tempered 

distribution space S ′(RN ),

Lq
x, Lp

t and Lr
ξ Lq

x = Lq(RN ), Lp
t = Lp(R+) and Lr

ξ = Lr(RN ),

Λ and Rj Riesz potential Λ =
√

−Δ and Riesz transform Rj =
∂j

Λ .

Next we define the homogeneous Littlewood–Paley decomposition. Assume that ψ ∈S, 

0 ≤ ψ ≤1, ψ ≡ 1 on {ξ ∈ RN / 5
6 ≤ |ξ| ≤ 4

3} and supp ψ ⊂{ξ ∈RN / 1
2 < |ξ| < 2} with

∑

k∈Z

ψ(2−kξ) ≡ 1 for any ξ ∈ R
N \{0}.
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Let Δkv = F−1ψ(2−kξ)v̂(ξ), Δ̃k = Δk−3 + · · · + Δk+3, 
̂̃
Δkv(ξ) = ψ̃(2−kξ)v̂(ξ) and

P≤kv =
∑

j≤k

Δjv = F−1
(
p(2−kξ)v̂(ξ)

)
,

where supp p ⊂ {ξ ∈ RN / |ξ| ≤ 2}. Then for any 
 ∈ {−2, −1, 0, 1, 2} we get

ΔkuP≤k−3v = Δ̃k(ΔkuP≤k−3v), ΔkuΔk−	v = P≤k+3(ΔkuΔk−	v)

and the following decomposition of product uv, i.e.

uv =
∑

k∈Z

Δ̃k(ΔkuP≤k−3v) +
∑

k∈Z

Δ̃k(P≤k−3uΔkv)

+
∑

k∈Z

∑

|	|≤2

Δ̃k(ΔkuΔk−	v) +
∑

k∈Z

∑

|	|≤2

P≤k−4(ΔkuΔk−	v)

:= Πhl
h (u, v) + Πlh

h (u, v) + Πhh
h (u, v) + Πhh

l (u, v), (Π)

where Πhl
h is high–low to high interaction (similar conventions are applied).

For any φ(x) ∈ S there exists a positive constant CN,φ such that

∑

k∈ZN

sup
x∈k+[0,1]N

|φ(x)| ≤
∑

k∈ZN

supx∈k+[0,1]N (1+|x|)N+1|φ(x)|
(1+|k|)N+1

< CN,φ.

We define the space of functions satisfying the above property by L1
sup.

Definition 1.1. For any N ∈ N ∩ [2, ∞), we define L1
sup as the space of tempered distri-

butions v such that

∥∥v
∥∥

L1
sup

=
∑

k∈ZN

sup
r>0, x

r
∈k+[0,1]N

∣∣v(x)
∣∣ < ∞. (1.19)

Remark 1.2. (1.19) yields L1
sup ⊂ L1

x. Moreover, for any t > 0, G√
t(x) ∈ L1

sup. Similarly, 

one can check that for any φ ∈ S and r > 0, we get 1
rN φ(x

r ) ∈ L1
sup.

Next we define the uniformly local space Lp
uloc.

Definition 1.3. For any N ∈ N ∩ [2, ∞) and p ∈ [1, ∞), we define Lp
uloc as the uniformly 

local space of distributions u(x, t) on RN × R+ so that

∥∥u
∥∥

Lp
uloc

= sup
x∈RN ,r>0

( 1

rN

∫

Q(x,t;r)

|u(y, t)|pdydt
) 1

p

< ∞. (1.20)

Below is an equivalent characterization of BMO−2s via Carleson measure.
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Definition 1.4. For any N ∈ N ∩ [2, ∞) and s ∈ [0, 1], we defined BMO−2s to be the 

space of all tempered distributions v such that

∥∥v
∥∥

BMO−2s = ‖w‖L2
uloc

< ∞, (1.21)

where w(x, t) := etΔ∇K2s ∗ v(x).

Remark 1.5. Recall from [17] that v ∈ BMO ⇐⇒ etΔ∇v ∈ L2
uloc. Similarly, we get 

K2s ∗ v ∈ BMO ⇐⇒ etΔ∇K2s ∗ v ∈ L2
uloc. Let h = K2s ∗ v. Then v ∈ BMO−2s ⇔ h ∈

BMO and v = (−Δ)sh. Thus any given BMO−2s function can be written as the 2s order 

derivative of a BMO function. In particular, by the boundedness of Riesz transforms in 

the homogeneous Triebel–Lizorkin spaces, BMO−2s (s = 1
2 ) coincides with the BMO−1

defined in [17].

At last, we recall the definition of Besov type spaces.

Definition 1.6. For σ ∈ R and p, q ∈ [1, ∞], we defined Ḃσ
p,q to be the space of tempered 

distributions v(x) such that

∥∥v
∥∥

Ḃσ
p,q

=
( ∑

k∈Z

2σkq‖Δkv‖q
Lp

x

) 1
q < ∞.

Similarly, for any σ ∈ R and (p, q, r) ∈ [1, ∞]3, we defined L̃r
t (Ḃσ

p,q) to be the space of 

tempered distribution u(x, t) such that

∥∥u
∥∥

L̃r
t (Ḃσ

p,q)
=

( ∑

k∈Z

2σkq‖Δku‖q
Lr

t Lp
x

) 1
q < ∞.

1.5. Main results

In this subsection, we state the results on the existence and uniqueness of the mild 

solution of the system (IGD) with initial data ρ0 belonging to: BMO−2s for s = 1; Ḃ−2s
∞,1

for s = 0; Ḃ−2s
∞,q for (s, q) ∈ (0, 1) × [1, ∞]; and Ḃ−3

4,2 for (s, N) = (2, 4).

Theorem 1.7. Let N ∈ N ∩ [2, ∞) and s = 0. Then there exists ε > 0 such that the general 

diffusion system (GD) with initial data ρ0 ∈ Ḃ0
∞,1 and ‖ρ0‖Ḃ0

∞,1
< ε has a unique global 

mild solution ρ ∈ C([0, ∞); Ḃ0
∞,1) satisfying

‖ρ‖L̃∞
t (Ḃ0

∞,1)∩L̃2
t (Ḃ1

∞,1) < 2cε.

Remark 1.8. Recall from Definition 1.6 and [10, Lemma 5], it is easy to check that 

Ḃ0
∞,1 ⊂BUC, where BUC is the space of bounded uniformly continuous function. Thus 

time continuity of the heat semigroup follows immediately.
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Theorem 1.9. Let d ∈ N ∩ [2, ∞) and (s, q) ∈ (0, 1) × [1, ∞]. Then there exists ε > 0 so 

that the general diffusion system (GD) with initial data ρ0 ∈ Ḃ−2s
∞,q and ‖ρ0‖Ḃ−2s

∞,q
< ε has 

a unique global mild solution ρ satisfying that for any 1 ≤ q < ∞, ρ ∈ C([0, ∞); Ḃ−2s
∞,q)

and

‖ρ‖L̃∞
t (Ḃ−2s

∞,q)∩L̃2
t (Ḃ1−2s

∞,q ) < 2cε;

for q = ∞, ρ ∈ Cw([0, ∞); Ḃ−2s
∞,q) and

‖ρ‖L∞
t (Ḃ−2s

∞,∞)∩L̃2
t (Ḃ1−2s

∞,∞) < 2cε,

where Cw([0, ∞); Ḃ−2s
∞,∞) denotes the space of all Ḃ−2s

∞,∞ valued weakly continuous func-

tions ρ(t) defined for t ∈ [0, ∞).

Remark 1.10. For N ≥ 2 and s = 1
2 , we can prove the following results:

i) there exists ε > 0 so that (GD) with ρ0 ∈ BMO−1 and ‖ρ0‖BMO−1 < ε has a unique 

global mild solution ρ satisfying

sup
t>0

t
1
2 ‖ρ‖L∞

x
+ sup

t>0
t

1
2 ‖Rjρ‖L∞

x
+ ‖ρ‖L2

uloc
+ ‖Rjρ‖L2

uloc
< 2cε;

ii) there exists ε > 0 so that (GD) with ρ0 ∈ Ḃ−1
∞,∞ and ‖ρ0‖Ḃ−1

∞,∞
< ε has a unique 

solution ρ ∈Cw([0, ∞); Ḃ−1
∞,∞), ‖ρ‖L̃∞

t (Ḃ−1
∞,∞)∩L̃2

t (Ḃ0
∞,∞) < 2cε;

iii) in general, for any s ∈ [0, 1], we have (see Lemma 2.1 below)

ρ∇K2s ∗ ρ = ΔTs,1(ρ, ρ) + ∇Ts,2(ρ, ρ) + ∇ · Ts,3(ρ, ρ).

Theorem 1.11. Let N ∈ N ∩ [2, ∞) and s = 1. Then there exists ε > 0 such that (GD)

with initial data ρ0 ∈ BMO−2 and ‖ρ0‖BMO−2 < ε has a unique global mild solution ρ

satisfying

sup
t>0

t
1
2

∥∥∇K2 ∗ ρ
∥∥

L∞
x

+
∥∥∇K2 ∗ ρ

∥∥
L2

uloc

< 2cε.

Next we consider one special case for s > 1 in 4-dimensional space.

Theorem 1.12. Let N = 4 and s = 2. There exists ε > 0 such that (GD) with ρ0 ∈ Ḃ−3
4,2

and ‖ρ0‖Ḃ−3
4,2

< ε has a unique global mild solution ρ satisfying

‖ρ‖L̃∞
t (Ḃ−3

4,2)∩L̃2
t (Ḃ−2

4,2) ≤ 2cε.

Remark 1.13. Theorem 1.12 is only one of the endpoint cases for N ≥ 3 and 1 < s ≤ N
2 . 

It seems that our arguments can not be extended to the general case, especially in Ḃ−1−s
N

s−1 ,q
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for 1 < s ≤ N
2 , 4 < N

s−1 , 1 ≤ q. It is worth mentioning that it is difficult to get the 

a priori estimate by using (1.6) since 
∫
R4 |K2 ∗ ρ|dx is not well-defined for functions and ∫

R4 ρ|u|2dx is necessarily nonnegative.

Plan of the paper. In Section 2, we do some preliminary arguments. In Section 3, we 

give the proof of our main results.

2. Preliminaries

From now on, we assume that 0 ≤ s ≤ 1. Notice that the following bilinear operator

B(ρ, ρ) = μin

t∫

0

eμen(t−τ)Δ∇ ·
(
ρ∇K2s ∗ ρ

)
(τ)dτ (Ob)

is the solution to the following equation with 0 initial data, i.e.

{
ρt − μenΔρ = μin∇ ·

(
ρ∇K2s ∗ ρ

)
,

ρ|t=0 = 0.
(2.1)

In order to estimate B(ρ, ρ), the key point is to take advantage of the potential can-

cellation property of ρ∇K2s ∗ ρ.

2.1. Bilinear pseudodifferential calculus

In this subsection, we study ρ∇K2s ∗ ρ via Fourier analysis tools, i.e.

ρ∇K2s ∗ ρ =

∫

RN

∫

RN

σs(ξ, ζ) ρ̂(ξ)ρ̂(ζ)eix·(ξ+ζ)dζdξ, (2.2)

where

σs(ξ, ζ) = cN (iζ|ξ|2s+ iξ|ζ|2s)|ξ|−2s|ζ|−2s. (2.3)

To deal with (2.2), we recall some related works on bilinear/multilinear pseudodiffer-

ential calculus, see [3,20,25,26] and references therein. Recall that the bilinear operator

Tm(f, g)(x) =

∫

RN

∫

RN

m(ξ, ζ)f̂(ξ)ĝ(ζ)eix·(ξ+ζ)dζdξ (2.4)

is defined in [26] for any f, g ∈ S.

An interesting example of a similar flavor in nonlinear PDEs is given by Kato–Ponce 

[15]. If f, g ∈ S and Λ̂af(·) = | · |af̂(·) with a > 0, then
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‖Λa(fg)‖Lr
x
� ‖Λaf‖Lp

x
‖g‖Lq

x
+ ‖f‖Lp

x
‖Λag‖Lq

x
(2.5)

for any 1 < p, q ≤ ∞, 1 < r < ∞ and 1
r = 1

p + 1
q . Recently, Bourgain–Li [5] extended 

(2.5) to endpoint case, i.e. r = p = q = ∞ and a > 0.

Roughly speaking, if f oscillates more rapidly than g, then g is essentially constant 

with respect to f , and so Λa(fg) behaves like (Λaf)g. Similarly, one expects Λa(fg) to 

be like f(Λag) if g oscillates more rapidly than f . This is why there are two terms on 

the right hand side of (2.5). It is worth mentioning that (2.5) is not true for a < 0 due 

to the counterexample

(f, g) = (cos n0x1, cos(n0 − 1)x1) for large n0,

with a = −2, r = p = q = ∞ and N ≥ 2.

Recall the definition of m(ξ, ζ) in (2.4), if we additionally assume that m(ξ, ζ) ∈
L∞(RN × RN ) is bounded, smooth away from {ξ = 0} ∪ {ζ = 0} and satisfies the 

Marcinkiewicz–Mikhlin–Hörmander type condition

∣∣∂α
ξ ∂β

ζ m(ξ, ζ)
∣∣ � 1

|ξ||α||ζ||β| (2.6)

for sufficiently many multi-indices4 α, β ∈ ZN
+ , then Muscalu, Pipher, Tao and Thiele 

established the following theorem, see Theorem 1.3 of [26].

Theorem 1.3. The bilinear operator Tm defined in (2.4) maps Lp1
x × Lp2

x 	→ Lp
x boundedly 

as long as 1 < p1, p2 ≤ ∞, 0 < p < ∞ and 1
p1

+ 1
p2

= 1
p .

We can slightly generalize the above Theorem 1.3. Define

Tma,b
(f, g)(x) =

∫

RN

∫

RN

ma,b(ξ, ζ)f̂(ξ)ĝ(ζ)eix·(ξ+ζ)dζdξ,

where a, b ≥ 0. Additionally, if ma,b(ξ, ζ) ∈ L∞(RN × RN ) is smooth away from the 

subspace {ξ = 0} ∪ {ζ = 0} and satisfies

∣∣∂α
ξ ∂β

ζ ma,b(ξ, ζ)
∣∣ � 1

|ξ|a+|α||ζ|b+|β|

for sufficiently many multi-indices α and β. For 1 < p < ∞ and σ ≤ 0, define

L̇p
σ :=

{
v ∈ S ′(RN ) / ‖Λσv‖Lp

x
< ∞

}
,

then by direct application of Theorem 1.3 we have the following results:

4 α = (α1, · · · , αN ) and |α| = α1 + · · · αN .
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Theorem 1.3′. The bilinear operator Tma,b
maps L̇p1

−a × L̇p2

−b 	→ Lp
x boundedly as long as 

0 ≤ a, b < ∞, 1 < p1, p2 <∞, 0 < p < ∞ and 1
p1

+ 1
p2

= 1
p .

Recall the definition of the bilinear symbol σs(ξ, ζ) defined in (2.2), we observe that 

σs(ξ, ζ) is symmetric and away from {ξ = 0} ∪ {ζ = 0},

∣∣∂α
ξ ∂β

ζ σs(ξ, ζ)
∣∣ � 1

|ξ|2s−1+|α||ζ||β| +
1

|ξ||α||ζ|2s−1+|β| .

However, in the endpoint case, i.e. p1 = p2 = p = ∞, Theorem 1.3′ does not apply. 

Therefore, we might need to make full use of the symmetric and the cancellation prop-

erties of the bilinear multiplier σs(ξ, ζ). Precisely speaking, we will split ρ∇K2s ∗ ρ into 

three pieces, i.e.

ρ∇K2s ∗ ρ = ΔTs,1(ρ, ρ) + ∇Ts,2(ρ, ρ) + ∇ · Ts,3(ρ, ρ), (2.7)

where all Ts,j(ρ, ρ) (j = 1, 2, 3) can be well controlled.

It is worth mentioning that the identity (2.7) plays a crucial role in the study of the 

mild solution of (IGD).

In the following lemma we shall give the detail proof of identity (2.7).

Lemma 2.1. Let Δ̂μ
kρ(ξ) = eiμ·2−kξψ(2−kξ)ρ̂(ξ), Δ̂ν

k−	ρ(ζ) = eiν·2−kζψ(2	−kζ)ρ̂(ζ). Then 

for any 0 ≤ s ≤ 1 we get

ρ∇K2s ∗ ρ = ΔTs,1(ρ, ρ) + ∇Ts,2(ρ, ρ) + ∇ · Ts,3(ρ, ρ), (2.8)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ts,1(ρ, ρ) = −
∫

RN

∫

RN

∑

k∈Z

∑

	=0,1,2

P≤k−4

(
∇K2+2s ∗ Δμ

kρ Δν
k+	ρ

)
r1

	1(μ, ν)dμdν

−
∫

RN

∫

RN

∑

k∈Z

∑

	=0,1,2

Δ̃k

(
∇K2s ∗ Δμ

kρ K2 ∗ Δν
k+	ρ

)
r1

	2(μ, ν)dμdν

−
∫

RN

∫

RN

∑

k∈Z

∑

	=0,1,2

Δ̃k

(
K2 ∗ Δμ

kρ ∇K2s ∗ Δν
k+	ρ

)
r2

	2(μ, ν)dμdν

−K2 ∗ Πhl
h (ρ, ∇K2s ∗ ρ) − K2 ∗ Πlh

h (ρ, ∇K2s ∗ ρ),

Ts,2(ρ, ρ) =
∑

k∈Z

∑

	=0,1,2

P≤k−4(Δkρ K2s ∗ Δk+	ρ),

Ts,3(ρ, ρ) =

∫

RN

∫

RN

∑

k∈Z

∑

	=0,1,2

P≤k−4

(
∇∇K2+2s ∗ Δμ

kρ Δν
k+	ρ

)
r2

	1(μ, ν)dμdν.

In particular, for s =0, we get Ts,1(ρ, ρ) =Ts,3(ρ, ρ) =0 and Ts,2 = 1
2ρ2, i.e.
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ρ∇ρ = ∇(
1

2
ρ2); (2.9)

for s = 1, we get Ts,1(ρ, ρ) = 0, Ts,2(ρ, ρ) = 1
2 |∇K2 ∗ ρ|2 and Ts,3(ρ, ρ) = −∇K2 ∗ ρ ⊗

∇K2 ∗ ρ, i.e.

ρ∇K2 ∗ ρ = −∇ ·
(
∇K2 ∗ ρ ⊗ ∇K2 ∗ ρ

)
+ ∇

(1

2
|∇K2 ∗ ρ|2

)
. (2.10)

Proof. Applying decomposition (Π) to ρ∇K2s ∗ ρ yields

ρ∇K2s ∗ ρ =Πhl
h (ρ, ∇K2s ∗ ρ) + Πlh

h (ρ, ∇K2s ∗ ρ)

+ Πhh
h (ρ, ∇K2s ∗ ρ) + Πhh

l (ρ, ∇K2s ∗ ρ). (2.11)

It suffices to rewrite Πhh
h (ρ, ∇K2s ∗ ρ) + Πhh

l (ρ, ∇K2s ∗ ρ) since

Πhl
h (ρ, ∇K2s ∗ ρ) = −ΔK2 ∗ Πhl

h (ρ, ∇K2s ∗ ρ),

Πlh
h (ρ, ∇K2s ∗ ρ) = −ΔK2 ∗ Πlh

h (ρ, ∇K2s ∗ ρ).
(2.12)

For the sake of simplicity, we shall denote pk(·) = p(2−k·), p0(·) = p(·), ψk(·) =

ψ(2−k·), ψ0(·) = ψ(·), ψ̃k(·) = ψk−3(·) + · · · ψk+3(·) and ψ̃(·) = ψ−3(·) + · · · ψ3(·), respec-

tively.

Since ∇ commutes with Δk, i.e. Δk∇K2s ∗ ρ = ∇K2s ∗ Δkρ, we have

Πhh
h (ρ, ∇K2s ∗ ρ) + Πhh

l (ρ, ∇K2s ∗ ρ) =
∑

k∈Z

2∑

	=−2

Δkρ Δk−	∇K2s ∗ ρ

=
∑

k∈Z

(
Δkρ ∇K2s ∗ Δk+2ρ + Δk+2ρ ∇K2s ∗ Δkρ

)

+
∑

k∈Z

(
Δkρ ∇K2s ∗ Δk+1ρ + Δk+1ρ ∇K2s ∗ Δkρ

)

+
∑

k∈Z

1

2

(
Δkρ ∇K2s ∗ Δkρ + ∇K2s ∗ Δkρ Δkρ

)

:= H2(ρ, ρ) + H1(ρ, ρ) + H0(ρ, ρ). (2.13)

With no loss of generality, we only need to estimate H2(ρ, ρ). It is easy to check that

H2(ρ, ρ)

= cN

∫

RN

∫

RN

i(ζ|ξ|2s+ξ|ζ|2s)pk+3(ξ+ζ) ψk(ξ)ψk+2(ζ)

|ξ|2s|ζ|2s
ρ̂(ξ)ρ̂(ζ) eix·(ξ+ζ)dξdζ

= cN

∫

RN

∫

RN

i(ζ|ξ|2s+ξ|ζ|2s)pk−4(ξ+ζ) ψk(ξ)ψk+2(ζ)

|ξ|2s|ζ|2s
ρ̂(ξ)ρ̂(ζ) eix·(ξ+ζ)dξdζ
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+ cN

∫

RN

∫

RN

i(ζ|ξ|2s+ξ|ζ|2s)ψ̃k(ξ+ζ) ψk(ξ)ψk+2(ζ)

|ξ|2s|ζ|2s
ρ̂(ξ)ρ̂(ζ) eix·(ξ+ζ)dξdζ

:= H21(ρ, ρ) + H22(ρ, ρ). (2.14)

Consider the symbol of H21(ρ, ρ), i.e.

m∗
k(ξ, ζ) =

i(ζ|ξ|2s+ ξ|ζ|2s) pk−4(ξ+ζ)ψk(ξ)ψk+2(ζ)

|ξ|2s|ζ|2s
. (2.15)

Notice that m∗
k(ξ, ζ) =2(1−2s)km∗( ξ

2k , ζ
2k ) where

m∗(ξ, ζ) =
i(ζ|ξ|2s + ξ|ζ|2s) p−4(ξ +ζ)ψ(ξ)ψ2(ζ)

|ξ|2s|ζ|2s

and supp m∗ ⊂
{

(ξ, ζ) ∈ RN × RN / 2−1 < |ξ| < 2, 2 < |ζ| < 23, |ξ+ζ| < 2−3
}

.

Let h, η ∈S be such that h ≡ 1 on suppψ with supph ⊂{ ξ / 1
3 < |ξ| < 7

3 } and η ≡ 1

on suppψ2 with supp η ⊂ {ζ / 1
3 22 < |ζ| < 7

3 22}. Then

m∗(ξ, ζ) =
i(ζ|ξ|2s+ ξ|ζ|2s) p−4(ξ+ζ)ψ(ξ)ψ2(ζ)h(ξ)η(ζ)

|ξ|2s|ζ|2s
, (2.16)

and ζ|ξ|2s+ξ|ζ|2s

|ξ|2s|ζ|2s = ξ(|ζ|2s−|ξ|2s)
|ξ|2s|ζ|2s + ξ+ζ

|ζ|2s . Moreover,

iξ(|ζ|2s−|ξ|2s)h(ξ)η(ζ)

|ξ|2s|ζ|2s

=

1∫

0

2s iξ(ξ+ζ) ·
(
θ(ξ+ζ)−ξ

)∣∣θ(ξ+ζ)−ξ
∣∣2s

∣∣θ(ξ + ζ)− ξ
∣∣2|ξ|2s|ζ|2s

h(ξ)η(ζ)dθ

=
i(ξ+ζ) · iξ iξ

|ξ|2+2s

1∫

0

2s
∣∣θ(ξ+ζ)−ξ

∣∣2s|ξ|2
∣∣θ(ξ + ζ) − ξ

∣∣2|ζ|2s
h(ξ)η(ζ)dθ

+
iξ|ξ+ζ|2
|ξ|2+2s

1∫

0

2s
∣∣θ(ξ+ζ)−ξ

∣∣2s|ξ|2

|θ(ξ +ζ) − ξ
∣∣2|ζ|2s

h(ξ)η(ζ) θdθ. (2.17)

Define

τ1
21(ξ, ζ) =

1∫

0

2s
∣∣θ(ξ+ζ)−ξ

∣∣2s|ξ|2

|θ(ξ +ζ) − ξ
∣∣2|ζ|2s

h(ξ)η(ζ) θdθ,

τ2
21(ξ, ζ) =

1∫

0

2s
∣∣θ(ξ+ζ)−ξ

∣∣2s|ξ|2
∣∣θ(ξ + ζ) − ξ

∣∣2|ζ|2s
h(ξ)η(ζ) dθ.
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Observe that |θ(ξ+ζ) − ξ| ∼|ξ| for (ξ, ζ) ∈ supp h × supp η. Thus τ1
21, τ2

21 ∈S(RN × RN )

and

τ j
21(ξ, ζ) = cN

∫

RN

∫

RN

ei(μ·ξ+ν·ζ)rj
21(μ, ν)dμdν (2.18)

with j = 1, 2.

It is easy to check that r1
21, r2

21 ∈ S(RN × RN ). Plugging (2.17)–(2.18) into (2.16)

yields

m∗(ξ, ζ)=cN

∫

RN

∫

RN

i(ξ+ζ) · p−4(ξ+ζ)
iξiξ eiμ·ξψ(ξ)eiν·ζψ2(ζ)

|ξ|2s+2
r2

21(μ, ν)dμdν

+ cN

∫

RN

∫

RN

|ξ+ζ|2p−4(ξ+ζ)
iξeiμ·ξψ(ξ)eiν·ζψ2(ζ)

|ξ|2s+2
r1

21(μ, ν)dμdν

+ i(ξ+ζ) p−4(ξ+ζ)
ψ(ξ)ψ2(ζ)

|ζ|2s
. (2.19)

Consider the symbol of H22(ρ, ρ), i.e.

m#
k (ξ, ζ) =

i(ζ|ξ|2s+ ξ|ζ|2s) ψ̃k(ξ+ζ)ψk(ξ)ψk+2(ζ)

|ξ|2s|ζ|2s
. (2.20)

Notice that m#
k (ξ, ζ) =2(1−2s)km#( ξ

2k , ζ
2k ) where

m#(ξ, ζ) =
i(ζ|ξ|2s + ξ|ζ|2s)ψ̃k(ξ + ζ)ψ(ξ)ψ2(ζ)

|ξ|2s|ζ|2s

and supp m# ⊂
{

(ξ, ζ) ∈ RN × RN / 1
2 < |ξ| <2, 2 < |ζ| <8, 1

16 < |ξ+ζ| <16
}

.

Let h̃, ̃η ∈ S be such that h̃ ≡ 1 on suppψ with supph̃ ⊂ { ξ ∈RN / 1
3 < |ξ| < 7

3 } and 

η̃ ≡ 1 on suppψ2 with supp η̃ ⊂ {ζ ∈ RN / 1
3 22 < |ζ| < 7

3 22}. Then

m#(ξ, ζ) =
i(ζ|ξ|2s+ ξ|ζ|2s) ψ̃(ξ+ζ)ψ(ξ)ψ2(ζ)h(ξ)η(ζ)

|ξ|2s|ζ|2s
. (2.21)

Moreover,

i(ξ|ζ|2s+ζ|ξ|2s)h̃(ξ)η̃(ζ)

|ξ|2s|ζ|2s
=

iξ|ξ+ζ|2
|ξ|2s|ζ|2

|ζ|2h̃(ξ)η̃(ζ)

|ξ+ζ|2 +
iζ|ξ+ζ|2
|ζ|2s|ξ|2

|ξ|2h̃(ξ)η̃(ζ)

|ξ+ζ|2

:=
iξ|ξ+ζ|2
|ξ|2s|ζ|2 τ1

22(ξ, ζ) +
iζ|ξ+ζ|2
|ζ|2s|ξ|2 τ2

22(ξ, ζ). (2.22)
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Observe that |ξ+ζ| ∼ |ξ| ∼ |ζ| for (ξ, ζ) ∈ supp h̃ × supp η̃. Thus τ1
22, τ2

22 ∈ S(RN × RN )

and

τ j
22(ξ, ζ) = cN

∫

RN

∫

RN

ei(μ·ξ+ν·ζ)rj
22(μ, ν)dμdν with j = 1, 2. (2.23)

It is easy to check that r1
22, τ2

22 ∈ S(RN × RN ). Plugging (2.22)–(2.23) into (2.21) yields

m#(ξ, ζ) = cN

∫

RN

∫

RN

|ξ+ζ|2ψ̃(ξ+ζ)
iξeiμ·ξψ(ξ)

|ξ|2s

eiν·ζψ2(ζ)

|ζ|2 r1
22(μ, ν)dμdν

+cN

∫

RN

∫

RN

|ξ+ζ|2ψ̃(ξ+ζ)
eiμ·ξψ(ξ)

|ξ|2
iζeiν·ζψ2(ζ)

|ζ|2s
r2

22(μ, ν)dμdν. (2.24)

By (2.15), (2.16), (2.19)–(2.21), (2.23), (2.24), m∗
k(ξ, ζ) = 2(1−2s)km∗( ξ

2k , ζ
2k ) and 

m#
k (ξ, ζ) = 2(1−2s)km#( ξ

2k , ζ
2k ) as well as (2.14), we can rewrite H2(ρ, ρ) as follows

H2(ρ, ρ) =−
∫

RN

∫

RN

[ ∑

k∈Z

ΔP≤k−4

(
∇K2+2s ∗ Δμ

kρ Δν
k+2ρ

)]
r1

21(μ, ν)dμdν

−
∫

RN

∫

RN

[ ∑

k∈Z

ΔΔ̃k

(
∇K2s ∗ Δμ

kρ K2 ∗ Δν
k+2ρ

)]
r1

22(μ, ν)dμdν

−
∫

RN

∫

RN

[ ∑

k∈Z

ΔΔ̃k

(
K2 ∗ Δμ

kρ ∇K2s ∗ Δν
k+2ρ

)]
r2

22(μ, ν)dμdν

+

∫

RN

∫

RN

[ ∑

k∈Z

∇ · P≤k−4

(
∇∇K2+2s ∗ Δμ

kρ Δν
k+2ρ

)]
r2

21(μ, ν)dμdν

+
∑

k∈Z

∇P≤k−4(Δkρ K2s ∗ Δk+2ρ), (2.25)

where r1
21(μ, ν), r2

21(μ, ν), r1
22(μ, ν), r2

22(μ, ν) ∈ S(RN × RN ).

Similarly, we have

H	(ρ, ρ) = −
∫

RN

∫

RN

[ ∑

k∈Z

ΔP≤k−4

(
∇K2+2s ∗ Δμ

kρ Δν
k+	ρ

)]
r1

	1(μ, ν)dμdν

−
∫

RN

∫

RN

[ ∑

k∈Z

ΔΔ̃k

(
∇K2s ∗ Δμ

kρ K2 ∗ Δν
k+	ρ

)]
r1

	2(μ, ν)dμdν

−
∫

RN

∫

RN

[ ∑

k∈Z

ΔΔ̃k

(
K2 ∗ Δμ

kρ ∇K2s ∗ Δν
k+	ρ

)]
r2

	2(μ, ν)dμdν
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+

∫

RN

∫

RN

[ ∑

k∈Z

∇ · P≤k−4

(
∇∇K2+2s ∗ Δμ

kρ Δν
k+	ρ

)]
r2

	1(μ, ν)dμdν

+
∑

k∈Z

∇P≤k−4(Δkρ K2s ∗ Δk+	ρ), (2.26)

where r1
	1(μ, ν), r2

	1(μ, ν), r1
	2(μ, ν), r2

	2(μ, ν) ∈ S(RN × RN ) and 
 = 0, 1.

Combining (2.12), (2.25) and (2.26), we complete the whole proof. �

Remark 2.2. Recall that Δμ
kf = F−1

(
eiμ·2−kξψ(2−kξ)f̂(ξ)

)
. Then we have

(
Δμ

kf
)
(x) =

(
Δkf

)
(x+2−kμ). (2.27)

Similarly, for any 
 ∈ N ∩ [−2, 2], from Δν
k−	g = F−1

(
eiν·2−kζψ(2−k+	ζ)ĝ(ζ)

)
, we have

(
Δν

k−	g
)
(x) =

(
Δk−	f

)
(x+2−kν). (2.28)

It is clear that in the above proof, we used both the symmetric and the cancella-

tion properties of ρ∇K2s ∗ ρ. Similarly, it is easy to check from (2.17) that the above 

decomposition also works for f∇K2s ∗ g + g∇K2s ∗ f with 0 ≤ s ≤ N
2 .

2.2. Smoothing effect and product estimates

In this subsection, we recall the smoothing effect of the heat equation:

{
ρt − μenΔρ = F,

ρ(x, 0) = 0.
(2.29)

Lemma 2.3. Let (σ, q, r) ∈ (−∞, ∞) × [1, ∞] × [1, 2] and F (x, t) ∈ L̃r
t (Ḃ

σ−2+ 2
r∞, q ). Then 

the mild solution ρ =
∫ t

0
eμen(t−τ)ΔF (x, τ)dτ to system (2.29) satisfies

‖ρ‖L̃∞
t (Ḃσ

∞,q)∩L̃2
t (Ḃσ+1

∞,q ) � ‖F‖
L̃r

t (Ḃ
σ−2+ 2

r∞, q )
.

Proof. The proof is similar to [7, Lemma 2.1]. Hence we omit the details. �

Let F = μin∇ ·(ρ∇K2s ∗ρ) and (σ, r) = (−2s, 1) or (σ, r) = (−2s, 2). From Lemma 2.3

we have

‖ρ‖L̃∞
t (Ḃ−2s

∞,q)∩L̃2
t (Ḃ−2s+1

∞,q ) � ‖F‖L̃2
t (Ḃ−1−2s

∞,q )+L̃1
t (Ḃ−2s

∞,q)

where Γ is the set of all decompositions of F , i.e. Γ = {(F1, F2)/ F = F1 + F2}, and

∥∥F
∥∥

L̃2
t (Ḃ−1−2s

∞,q )+L̃1
t (Ḃ−2s

∞,q)
= min

(F1,F2)∈Γ

(
‖F1‖L̃2

t (Ḃ−1−2s
∞,q ) + ‖F2‖L̃1

t (Ḃ−2s
∞,q)

)
.
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The next lemma is a key application of Lemma 2.1. In particular, based on the can-

cellation property of Πhh
l (ρ, ∇K2s ∗ ρ) + Πhh

h (ρ, ∇K2s ∗ ρ), we observe from (2.8) that 

ρ∇K2s ∗ ρ can be formally thought as the summation of first order derivatives of several 

controllable quadratic terms of ρ, see e.g. (2.8).

Noticing that the additional one order derivative ∇ ensures that 2 −2s > 0 (0 ≤ s < 1). 

Hence we can prove the existence/uniqueness of the solution to (IGD).

Lemma 2.4. Let (s, q) ∈ [0, 1) × [1, ∞]. Then we have

∥∥ρ∇K2s ∗ ρ
∥∥

L̃1
t (Ḃ1−2s

∞,q )+L̃2
t (Ḃ−2s

∞,q)
�

∥∥ρ
∥∥2

L̃2
t (Ḃ1−2s

∞,q )∩L̃∞
t (Ḃ−2s

∞,q)
. (2.30)

Proof. Recall from (2.8) that

ρ∇K2s ∗ ρ = ΔTs,1(ρ, ρ) + ∇Ts,2(ρ, ρ) + ∇ · Ts,3(ρ, ρ).

In order to prove (2.30), we shall apply a case by case arguments. It suffices to estimate

∥∥ρ∇K2s ∗ ρ
∥∥

L̃1
t (Ḃ1−2s

∞,q )+L̃2
t (Ḃ−2s

∞,q)
�

∥∥Ts,1

∥∥
L̃2

t (Ḃ2−2s
∞,q )

+
∥∥∇Ts,2 + ∇ · Ts,3

∥∥
L̃1

t (Ḃ1−2s
∞,q )

.

Let us do some preliminary calculation. Recall that L∞
x is a shift-invariant Banach space. 

Then for any μ ∈ RN , from (2.27)–(2.28) we have

sup
μ∈RN

∥∥∇K2+2s ∗ Δμ
kρ

∥∥
L∞

x

� 2(−1−2s)k‖Δkf‖L∞
x

. (2.31)

Indeed,

∇K2+2s ∗ Δμ
kρ = F−1

(
iξ|ξ|−2−2sψ̃(2−kξ)eiμ·2−kξψ(2−kξ)f̂(ξ)

)

:= ∇K2+2s ∗ Δ̃μ
kΔkρ.

By direct calculation, we get

∣∣F−1
(
iξ |ξ|−2−2seiμ·2−kξψ̃(2−kξ)

)
(x)

∣∣� 2−(1+2s)k+kN
(
1+|2kx+μ|

)−N−1
.

From Young’s inequality and the fact that L1
x is also a shift-invariant Banach space we 

get

sup
μ∈RN

∥∥∇K2s ∗ Δμ
kρ

∥∥
L∞

x

≤ cs,N

∥∥Δkf
∥∥

L∞
x

sup
μ

∫

RN

2−(1+2s)k+kN

(1+|2kx+μ|)N+1
dx

≤ cs,N 2−(1+2s)k
∥∥Δkf

∥∥
L∞

x

. (2.32)

Similarly, we have

sup
ν∈RN

∥∥Δν
k−	g

∥∥
L∞

x

�
∥∥Δk−	g

∥∥
L∞

x

. (2.33)
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Estimate of 
∥∥Ts,1

∥∥
L̃2

t (Ḃ2−2s
∞,q )

. It suffices to estimate

∥∥K2 ∗ Πhl
h (ρ, ∇K2s ∗ ρ)

∥∥
L̃2

t (Ḃ2−2s
∞,q )

+
∥∥K2 ∗ Πlh

h (ρ, ∇K2s ∗ ρ)
∥∥

L̃2
t (Ḃ2−2s

∞,q )

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
μ,ν

∥∥ ∑

k∈Z

∑

	=0,1,2

P≤k−4(∇K2+2s ∗ Δμ
kρ Δν

k+	ρ)
∥∥

L̃2
t (Ḃ2−2s

∞,q )
,

sup
μ,ν

∥∥ ∑

k∈Z

∑

	=0,1,2

Δ̃k(∇K2s ∗ Δμ
kρ K2 ∗ Δν

k+	ρ)
∥∥

L̃2
t (Ḃ2−2s

∞,q )
,

sup
μ,ν

∥∥ ∑

k∈Z

∑

	=0,1,2

Δ̃k(K2 ∗ Δμ
kρ ∇K2s ∗ Δν

k+	ρ)
∥∥

L̃2
t (Ḃ2−2s

∞,q )

since ‖rj
il‖L1(RN ×RN ) � 1 for any (i, j, l) ∈ {0, 1, 2} × {1, 2} × {1, 2}.

Recall that Πhl
h (ρ, ∇K2s ∗ ρ) =

∑
k∈Z

Δ̃k(Δkρ P≤k−3∇K2s ∗ ρ). Then it is easy to 

check that the Fourier transform of Δkρ P≤k−3∇K2s ∗ ρ has a compact support near 

|ξ| ∼ 2k. Therefore, from Definition 1.6 we get

∥∥K2 ∗ Πhl
h (ρ, ∇K2s ∗ ρ)

∥∥
L̃2

t (Ḃ2−2s
∞,q )

�
∥∥Πhl

h (ρ, ∇K2s ∗ ρ)
∥∥

L̃2
t (Ḃ−2s

∞,q)

�
( ∑

k∈Z

2−2skq‖Δkρ ∇K2sP≤k−3ρ‖q
L2

t L∞
x

) 1
q

�
( ∑

k∈Z

2−2skq‖Δkρ
∥∥q

L2
t L∞

x

∥∥∇K2s ∗ P≤k−3ρ‖q
L∞

t L∞
x

) 1
q . (2.34)

Recall that 
q ⊂ 
∞, i.e. supk |ak| �
( ∑

k |ak|q
) 1

q for any {ak}k∈Z ∈ 
q and 1 ≤ q ≤ ∞. 

Then we get

sup
k∈Z

2−k
∥∥∇K2s ∗ P≤k−3ρ‖L∞

t L∞
x
� sup

k∈Z

2−k
∥∥ ∑

j≤k−3

∇K2s ∗ Δjρ‖L∞
t L∞

x

� sup
k∈Z

∑

j≤k−3

2j−k2−2sj
∥∥Δjρ

∥∥
L∞

t L∞
x

� ‖g‖L̃∞
t (Ḃ−2s

∞,q) (2.35)

where in the second inequality we used Minkowski’s inequality and Bernstein’s inequality, 

and in the last inequality we used Young’s inequality, i.e. 

q

q−1 ∗
q → 
∞ and 
∑

j≤−3
2−j ≤ 1.

Plugging (2.35) into (2.34), we get

∥∥K2 ∗ Πhl
h (ρ, ∇K2s ∗ ρ)

∥∥
L̃2

t (Ḃ2−2s
∞,q )

� ‖ρ‖L̃2
t (Ḃ1−2s

∞,q )‖ρ‖L̃∞
t (Ḃ−2s

∞,q). (2.36)

Similarly,

∥∥K2 ∗ Πlh
h (ρ,∇K2s ∗ ρ)

∥∥
L̃2

t (Ḃ2−2s
∞,q )

�
∥∥{2(1−4s)k‖P≤k−3ρ‖L∞

t L∞
x

‖Δkρ‖L2
tL∞

x
}k

∥∥
	q

�‖ρ‖L̃2
t (Ḃ1−2s

∞,q ) sup
k∈Z

2−2sk‖P≤k−3ρ
∥∥

L∞
t L∞

x
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�‖ρ‖L̃2
t (Ḃ1−2s

∞,q )‖ρ‖L̃∞
t (Ḃ−2s

∞,q). (2.37)

Applying (2.32) and (2.34) to ∇K2+2s ∗ Δμ
kρ Δν

k+	ρ yields

sup
μ,ν

∥∥ ∑

k∈Z

∑

	=0,1,2

P≤k−4(∇K2+2s ∗ Δμ
kρ Δν

k+	ρ)
∥∥

L̃2
t (Ḃ2−2s

∞,q )

= sup
μ,ν

( ∑

j∈Z

2(2−2s)jq
∥∥ ∑

k≥j+1

∑

	=0,1,2

ΔjP≤k−4(∇K2+2s ∗ Δμ
kρ Δν

k+	ρ)
∥∥q

L2
t L∞

x

) 1
q

�
( ∑

j∈Z

( ∑

k≥j+1

∑

	=0,1,2

2(2−2s)(j−k)+(1−4s)k
∥∥Δkρ

∥∥
L2

t L∞
x

∥∥Δk+	ρ
∥∥

L∞
t L∞

x

)q) 1
q

�
( ∑

k∈Z

∑

	=0,1,2

2(1−4s)kq
∥∥Δkρ

∥∥q

L2
t L∞

x

∥∥Δk+	ρ
∥∥q

L∞
t L∞

x

) 1
q

� ‖ρ‖L̃2
t (Ḃ1−2s

∞,q )‖ρ‖L̃∞
t (Ḃ−2s

∞,q). (2.38)

Similarly, for any μ, ν ∈ RN and 
 = 0, 1, 2 we get

∥∥ ∑

k∈Z

Δ̃k(∇K2s ∗ Δμ
kρ K2 ∗ Δν

k+	ρ)
∥∥

L̃2
t (Ḃ2−2s

∞,q )
�‖ρ‖L̃2

t (Ḃ1−2s
∞,q )‖ρ‖L̃∞

t (Ḃ−2s
∞,q)

∥∥ ∑

k∈Z

Δ̃k(K2 ∗ Δμ
kρ) ∇K2s ∗ Δν

k+	ρ
∥∥

L̃2
t (Ḃ2−2s

∞,q )
�‖ρ‖L̃2

t (Ḃ1−2s
∞,q )‖ρ‖L̃∞

t (Ḃ−2s
∞,q).

Combining (2.36)–(2.38) and the above two estimates we get the desired estimates for 

Ts,1(ρ, ρ).

Estimate of 
∥∥Ts,2(ρ, ρ)

∥∥
L̃1

t (Ḃ2−2s
∞,q )

+
∥∥Ts,3(ρ, ρ)

∥∥
L̃1

t (Ḃ2−2s
∞,q )

. By using (2.32) and (2.34), 

we observe that Ts,2(ρ, ρ) and Ts,3(ρ, ρ) can be treated in the similar way. As a conse-

quence, it suffices to estimate 
∥∥Ts,3(ρ, ρ)

∥∥
L̃1

t (Ḃ2−2s
∞,q )

. Similar to (2.38), we get

sup
μ,ν

∥∥ ∑

k∈Z

2∑

	=0

P≤k−4(∇∇K2+2s ∗ Δμ
kρ Δν

k+	ρ)
∥∥

L̃1
t (Ḃ2−2s

∞,q )

= sup
μ,ν

( ∑

j∈Z

2(2−2s)jq
∥∥ ∑

k≥j+1

2∑

	=0

ΔjP≤k−4(∇∇K2+2s ∗ Δμ
kρ Δν

k+	ρ)
∥∥q

L1
t L∞

x

) 1
q

�
( ∑

j∈Z

( ∑

k≥j+1

2∑

	=0

2(2−2s)(j−k)+(2−4s)k
∥∥Δkρ

∥∥
L2

t L∞
x

∥∥Δk+	ρ
∥∥

L2
t L∞

x

)q) 1
q

�
( ∑

k∈Z

2∑

	=0

2(2−4s)kq
∥∥Δkρ

∥∥q

L2
t L∞

x

∥∥Δk+	ρ
∥∥q

L2
t L∞

x

) 1
q

� ‖ρ‖L̃2
t (Ḃ1−2s

∞,2q)‖ρ‖L̃2
t (Ḃ1−2s

∞,2q).

Combining the above estimates for Ts,1(ρ, ρ), Ts,2(ρ, ρ) and Ts,3(ρ, ρ), we complete 

the proof of (2.30). �
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2.3. Characterization of homogeneous Besov space

The characterizations of homogeneous Besov space Ḃ−2s
∞,q are as follows.

Lemma 2.5. Let (s, μen, q, p) ∈ [0, 1) × (0, ∞) × [1, ∞]2. Then we get

f ∈ Ḃ−2s
∞,q ⇐⇒ eμentΔf ∈ L̃p

t (Ḃ
−2s+ 2

p
∞,q ).

Moreover, for any (s, μen) ∈ (0, 1) × (0, ∞), we have

f ∈ Ḃ−2s
∞,∞ ⇐⇒ sup

r>0,x∈RN

1

rN+2−2s

∫

Q(x,t;r)

|eμentΔΛ−sf |2dydt < ∞.

In particular, the above results still work when f is replaced by5 ∇
Λ f .

Proof. Part 1 If eμentΔf ∈ L̃p
t (Ḃ

−2s+ 2
p

∞,q ), then from Definition 1.6 we have

( ∑

k∈Z

2k(−2s+ 2
p

)q‖eμentΔΔkf‖q
Lp

t L∞
x

) 1
q < ∞.

By direct computation we get

Δkf =
22k

3

22−2k∫

2−2k

e−μentΔ eμentΔΔkfdt.

As a consequence of Bernstein’s inequality and Minkowski’s inequality we get

∥∥Δkf
∥∥

L∞
x

� 22k

22−2k∫

2−2k

‖ΔkeμentΔf‖L∞
x

dt � 2
2k
p ‖ΔkeμentΔf‖Lp

t L∞
x

.

Then summing up 2−2sk‖Δkf‖L∞
x

and using Definition 1.6 yields

‖f‖Ḃ−2s
∞,q

� ‖eμentΔf‖
L̃p

t (Ḃ
−2s+ 2

p
∞,q )

. (2.39)

Since 2
2k
p e−cμent22k

is uniformly bounded in Lp
t , it is easy to check that

2k( 2
p

−2s)‖eμentΔΔkf‖Lp
t L∞

x
�

‖Δkf‖L∞
x

22ks

∥∥2
2k
p e−cμen22k·∥∥

Lp
t

�
‖Δkf‖L∞

x

22ks
.

5 Riesz transforms are bounded operators in homogeneous Besov spaces.
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Hence applying Definition 1.6 to the above inequality gives

‖eμentΔf‖
L̃p

t (Ḃ
−2s+ 2

p
∞,q )

� ‖f‖Ḃ−2s
∞,q

. (2.40)

Combining (2.39) and (2.40), we prove the first result of this Lemma.

Part 2 For any 0 < s < 1 and μen > 0, in order to prove

f ∈Ḃ−2s
∞,∞ ⇔ Λ−sf ∈Ḃ−s

∞,∞ ⇔ sup
r>0,x

1

rN+2−2s

∫

Q(x,t;r)

|eμentΔΛ−sf |2dydt <∞,

using g ∈ Ḃ−s
∞,∞ ⇔ supt>0 t

s
2 ‖eμentΔg‖L∞

x
< ∞ (cf. [21]), it suffices to show

sup
t>0

t
s
2 ‖eμentΔg‖L∞

x
<∞ ⇔ sup

r>0,x

1

rN+2−2s

∫

Q(x,t;r)

|eμentΔg|2dydt <∞

On the one hand, it is quite straightforward that

∫

Q(x,t;r)

|eμentΔg|2dydt � sup
t>0

ts‖eμentΔg‖2
L∞

x

r2∫

0

∫

B(x;r)

dydt

ts

� rN+2−2s(sup
t>0

t
s
2 ‖eμentΔg‖L∞

x
)2.

On the other hand, it is easy to get

eμentΔg(x) =
2

t

t
2∫

0

∫

RN

(2πμen)− N
2

(t − s)
N
2

e− |y|2

4µen(t−s) (eμensΔg)(x−y)dyds.

As a consequence, we obtain that

t
s
2 |eμentΔg(x)| �

∞∑

k∈ZN

e−|k|2 1

t
N+2−s

2

t∫

0

∫

y√
4µent

∈k+[0,1]N

|eμensΔg(x−y)|dyds

� sup
k∈ZN

( 1

t
N+2−2s

2

t∫

0

∫

y√
4µent

∈k+[0,1]N

|eμensΔg(x−y)|2dyds
) 1

2

�
(

sup
r>0,z∈RN

1

rN+2−2s

r2∫

0

∫

B(z;r)

|eμensΔg(y)|2dyds
) 1

2

which concludes the desired estimate of the second result of this Lemma and finishes the 

whole proof. �
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2.4. Continuity of the heat semigroup in various spaces

Recall that etΔ is a strongly continuous semigroup in Lp
x (p ∈ [1, ∞)) and various other 

spaces. However, it is known that Schwartz space is not dense in L∞
x ⊂BMO, hence etΔ

is not a continuous semigroup in L∞
x and BMO. Meanwhile, in the bounded uniform 

continuous function space (a subspace of L∞
x ), Giga proved that the heat semigroup etΔ

is a continuous semigroup in BUC (cf. [10]). It is easy to check that Ḃ0
∞,1 ⊂ BUC in 

which etΔ also generates a continuous semigroup. Furthermore, we can extend the proof 

to homogeneous Besov spaces Ḃ−2s
∞,q with 0 ≤ s ≤ 1 and 1 ≤ q < ∞.

Definition 2.6. A family of bounded operators {T (t), 0 ≤ t ≤ ∞} on a Banach space X

is called a strongly continuous semigroup if:

(1) T (0) = Id,

(2) T (t1)T (t2) = T (t1 + t2), ∀ t1, t2 > 0,

(3) for any x ∈ X, x 	→ T (t)x is continuous.

Proposition 2.7. For any (s, q) ∈ [0, 1] × [1, ∞), etΔ is a strongly continuous semigroup 

in Ḃ−2s
∞,q .

Proof. It suffices to prove that for any f ∈ Ḃ−2s
∞,q ,

lim
t↓0

‖etΔf − f‖Ḃ−2s
∞,q

= 0. (2.41)

Indeed, for given f ∈ Ḃ−2s
∞,q , we have cf := (

∑
2−2sqk‖Δkf‖q

L∞
x

)
1
q < ∞. Then for any 

ε > 0, there exists Nε > 0 such that

( ∑

k≥Nε

2−2sqk‖ΔketΔf‖q
L∞

x

) 1
q ≤

( ∑

k≥Nε

2−2sqk‖Δkf‖q
L∞

x

) 1
q <

ε

4
. (2.42)

Meanwhile, fix Nε, for any 0 < t < ε
22Nε+6cf

,

(Nε−1∑

k=−∞
2−2skq‖etΔΔkf −Δkf‖q

L∞
x

) 1
q ≤

(Nε−1∑

k=−∞
2−2skq(1−e−t22N+6

)q‖Δkf‖q
L∞

x

) 1
q

≤ t22N+6
( Nε−1∑

k=−∞
2−2skq‖Δkf‖q

L∞
x

) 1
q ≤ cf 22Nε+6t <

ε

2
. (2.43)

Combining (2.42) and (2.43) yields (2.41). �

3. Proof of the main results

In this section, we shall give a case by case analysis of the global well-posedness of 

the following general diffusion system:



C. Deng, C. Liu / Journal of Functional Analysis 272 (2017) 4030–4062 4055

ρt − μenΔρ − μin∇ · (ρ∇Λ−2sρ) = 0 (3.1)

with initial data ρ0 and 0 ≤ s ≤ 1 and (s, N) = (2, 4).

3.1. Analysis of (3.1) with s = 0

In this subsection, when s = 0, we get from (3.1) with initial data ρ0 that

ρt − μenΔρ − μin

2
Δ(ρ2) = 0, ρ|t=0 = ρ0, (GDs=0)

where, in general, ρ is assumed to be nonnegative.

As is stated in the introduction, scaling invariant suggests that the right space should 

be L∞
x . Then one may ask whether (GDs=0) admits a unique solution if ρ0 is large in L∞

x . 

Generally speaking, it is difficult to apply semigroup method to establish well-posedness 

of the large data Cauchy problem without using any a priori estimate. However, if the 

system has a priori energy estimate which, in addition, satisfies scaling invariant property, 

then it would be possible to combine the a priori estimate with local existence of mild 

with large data to achieve the goal.

Next we recall that 
∫

ρ(x, t)dx =
∫

ρ0(x)dx and

∫
ρ(x, t)ρ(x, t)dx ≤ C(N, μen, μin, ρ0) (3.2)

if μin > 0 and − 
∫ t

0

∫
ρ|u|2dx ≤ 0 since from (1.6) we have

∫
μenρ(x, t) ln ρ(x, t) +

μin

2
(ρ(x, t))2dx ≤

∫
μenρ0 ln ρ0 +

μin

2
ρ2

0dx.

It seems impossible to apply to a priori estimates (3.2) to L∞
x solution. However, it is still 

possible to investigate the small perturbation of (GDs=0) near large positive constant 

state, which can be thought as a special large data solution with respect to the original 

problem. For example, let ρ = 1 + ρ̃. Then we get

ρ̃t − (μen + μin)Δρ̃ =
μin

2
Δ(ρ̃2).

It is clear that μen + μin can be positive, zero and negative, which affects the essential 

structures, i.e. ρ̃t − (μen + μin)Δρ̃.

Conclusively, if μin ≥ 0, then we can linearize system (GDs=0) near any nonnegative 

constant state and establish the existence of mild solution (small perturbation); else if 

μin < 0, then sufficiently small perturbation near any positive constant state less than 
μen

−μin
also works; else if μin < 0 and the positive constant is bigger than −μen

μin
, then we 

might have finite time blow up similar to the Keller–Segel system.
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Usually, one can deal with the small perturbation near large positive constant state 

problem by using the similar way of the corresponding small data Cauchy problem. Thus 

we consider small initial data problem below. Let

J0 : ρ 	→ J0(ρ) = eμentΔρ0 +
μin

2

t∫

0

eμen(t−τ)ΔΔ(ρ2)dτ. (3.3)

Next we will prove the a priori estimate of J0(ρ).

Proposition 3.1. Let J0 be defined in (3.3). Assume that (μen, μin) ∈ (0, ∞)2 and ρ0 ∈
Ḃ0

∞,1. Then we have

∥∥J0(ρ)
∥∥

L̃∞
t (Ḃ0

∞,1)2∩L̃2
t (Ḃ1

∞,1)
≤ c ‖ρ0‖Ḃ0

∞,1
+ cN

∥∥ρ
∥∥2

L̃∞
t (Ḃ0

∞,1)∩L̃2
t (Ḃ1

∞,1)
. (3.4)

Additionally,

eμentΔρ0 → ρ0 in Ḃ0
∞,1 as t ↓ 0. (3.5)

Proof. Applying Lemma 2.3 to (3.3) with F = μin

2 Δ(ρ2), (s, q, r) = (0, 1, 2) we have

‖ρ‖L̃∞
t (Ḃ0

∞,1)∩L̃2
t (Ḃ1

∞,1) ≤‖eμentΔρ0‖L̃∞
t (Ḃ0

∞,1)∩L̃2
t (Ḃ1

∞,1)+cN ‖ρ2‖L̃2
t (Ḃ1

∞,1).

Then applying Lemma 2.4 to the above estimate and applying Lemma 2.5 to 

‖eμentΔρ0‖L̃∞
t (Ḃ0

∞,1)∩L̃2
t (Ḃ1

∞,1) yields (3.4). The time continuity of heat semigroup in 

Ḃ0
∞,1, i.e. (3.5), follows from Proposition 2.7 with (s, q) = (0, 1). �

Proof of Theorem 1.7. We divide the proof into three steps. At first, Proposition 3.1

ensures that J0 maps a closed ball B(0; ε) of L̃∞
t (Ḃ0

∞,1) ∩ L̃2
t (Ḃ1

∞,1) with ε < 1/(4ccN )

into itself. Hence J0 is well defined. Next, suppose ρ1 and ρ2 are two solutions of (3.6)

with the same initial data ρ0 ∈ B(0; ε), then

‖J0(ρ1) − J0(ρ2)‖L̃∞
t (Ḃ0

∞,1)∩L̃2
t (Ḃ1

∞,1) ≤ 4ccN ε‖ρ1 − ρ2‖L̃∞
t (Ḃ0

∞,1)∩L̃2
t (Ḃ1

∞,1)

where 4ccN ε < 1. Thus existence and uniqueness of solutions follow immediately from 

contraction arguments. At last, time continuity follows from (3.5). Conclusively, we finish 

the proof of Theorem 1.7. �

3.2. Analysis of (3.1) with 0 < s < 1

In this subsection, we study the following system

ρt − μenΔρ − μin∇ · (ρ∇Λ−2sρ) = 0, ρ|t=0 = ρ0. (GD0<s<1)
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Define

Js : ρ 	→ Js(ρ) = eμentΔρ0 + μin

t∫

0

eμen(t−τ)Δ∇ · (ρ∇Λ−2sρ)dτ. (3.6)

Next we will prove the a priori estimate of Js(ρ).

Proposition 3.2. Let Js be as in (3.6). For any (μen, μin, q) ∈ (0, ∞)2 × [1, ∞] and 

ρ0 ∈ Ḃ−2s
∞,q , we get

‖Js(ρ)‖L̃∞
t (Ḃ−2s

∞,q)∩L̃2
t (Ḃ1−2s

∞,q ) ≤c ‖ρ0‖Ḃ−2s
∞,q

+cN,s‖ρ‖2
L̃∞

t (Ḃ−2s
∞,q)∩L̃2

t (Ḃ1−2s
∞,q )

. (3.7)

Additionally, for any 1 ≤ q < ∞,

eμentΔρ0 → ρ0 in Ḃ−2s
∞,q as t ↓ 0.

Proof. Applying Lemma 2.3 to (3.6) with F = μin

2 ∇ ·(ρ∇Λ−2sρ +∇Λ−2sρ) and (s, q, r) ∈
(0, 1) × [1, ∞] × {1, 2} we have

‖ρ‖L̃∞
t (Ḃ−2s

∞,q)∩L̃2
t (Ḃ1−2s

∞,q ) ≤ ‖eμentΔρ0‖L̃∞
t (Ḃ−2s

∞,q)∩L̃2
t (Ḃ1−2s

∞,q ) + ‖ρ∇Λ−2sρ‖X

where X = L̃1
t (Ḃ1−2s

∞,q ) + L̃2
t (Ḃ−2s

∞,q). Then by Lemmas 2.4 and 2.5 we get (3.7). The 

time continuity of heat semigroup in Ḃ−2s
∞,q follows from Proposition 2.7 with (s, q) ∈

(0, 1) × [1, ∞). �

Proof of Theorem 1.9. We divide the proof into three steps. At first, Proposition 3.1

ensures that Js maps a closed ball B(0; ε) of L̃∞
t (Ḃ−2s

∞,q) ∩ L̃2
t (Ḃ1−2s

∞,q ) with ε < 1/(4ccN,s)

into itself. Hence Js is well defined. Next, suppose ρ1 and ρ2 are two solutions of (3.6)

with the same initial data ρ0 ∈ B(0; ε), then

‖Js(ρ1) − Js(ρ2)‖L̃∞
t (Ḃ−2s

∞,q)∩L̃2
t (Ḃ1−2s

∞,q ) ≤ 4ccN,sε‖ρ1 − ρ2‖L̃∞
t (Ḃ−2s

∞,q)∩L̃2
t (Ḃ1−2s

∞,q )

where 4ccN,sε < 1. Indeed, denote ρ
(2s)
j = Λ−2sρj . Then we have

2 (ρ1∇ρ
(2s)
1 −ρ2∇ρ

(2s)
2 ) = (ρ1+ρ2)∇(ρ1−ρ2)(2s) + (ρ1−ρ2)∇(ρ1+ρ2)(2s).

It is clear that the right hand side of the above identity is symmetric and satisfies Lem-

mas 2.1 and 2.4. Thus existence and uniqueness of solutions follow immediately from 

contraction arguments. At last, time continuity follows from Proposition 3.2. Conclu-

sively, we finish the proof of Theorem 1.9. �
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3.3. Analysis of (3.1) with s = 1

In this subsection, we first recall the following bilinear estimates, see for instance [17, 

Lemmas 3.1 and 3.2, p. 28] and [21, Lemma 16.3, p. 163].

Lemma 3.3. For any N ∈ N ∩ [2, ∞), the bilinear operator B defined by

B(U, V ) =

t∫

0

eμen(t−τ)Δ∇RiRj · (U ⊗ V )dτ (3.8)

is continuous from E × E to E, where E ⊂ L2
uloc and

U, V ∈ E ⇔ sup
t>0

t
1
2 ‖U‖L∞

x
+ sup

t>0
t

1
2 ‖V ‖L∞

x
+ ‖U‖L2

uloc
+ ‖V ‖L2

uloc
< ∞.

Remark 3.4. The above estimate also works when replacing eμen(t−τ)Δ∇RiRj by 

eμen(t−τ)ΔΛ.

Recall that Δφ∇φ = ∇ · (∇φ ⊗ ∇φ) − ∇
2

(
|∇φ|2

)
. Then (3.1) is reduced to

ρt − μenΔρ + μin∇ · (ρ ∇ 1

Δ
ρ) = 0. (3.9)

It is clear that if we denote V = ∇ 1
Δ ρ, then ∇ · (ρ ∇ 1

Δ ρ) = ∇ · (V ∇ · V ), ∂iVj = ∂jVi

and

∇ · (V ∇ · V ) = ∇ · ∇ · (V ⊗ V ) − 1

2
Δ(|V |2). (3.10)

Define J1 : ρ 	→ J1(ρ), where

J1(ρ) = eμentΔρ0 + μin

t∫

0

eμen(t−τ)Δ
[
∇·∇·(V ⊗ V )− 1

2
Δ(|V |2)

]
dτ. (3.11)

Next we will prove the a priori estimate of J1(ρ).

Proposition 3.5. Let J1 be as in (3.11), (μen, μin) ∈ (0, ∞)2 and ρ0 ∈ BMO−2. Then we 

have

∥∥∇ 1

Δ
J1(ρ)

∥∥
E ≤ c ‖ρ0‖BMO−2 + cN

∥∥V
∥∥2

E (3.12)

where V = ∇ 1
Δ ρ.
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Proof. It suffices to show ‖eμentΔ∇ 1
Δ ρ0‖E ∼ ‖∇ 1

Δ ρ0‖BMO−1 ∼ ‖ρ0‖BMO−2 , which fol-

lows from [21, Lemma 16.1, p. 160] and Definition 1.4.

Estimate of 
∫ t

0
eμen(t−τ)Δ∇ 1

Δ

[
∇ · ∇ · (V ⊗ V ) − 1

2Δ(|V |2)
]
dτ follows from Lemma 3.3. 

Hence we finish the proof. �

Proof of Theorem 1.11. We divide the proof into three steps. At first, Proposition 3.1

ensures that J1 maps a closed ball B(0; ε) of ∇ 1
Δ E :=

{
V/ ∇ 1

Δ V ∈ E
}

with ε < 1/(4ccN )

into itself. Next, suppose ρ1 and ρ2 are two solutions of (3.6) with the same initial data 

ρ0 ∈ B(0; ε), then

‖J1(ρ1) − J1(ρ2)‖∇ 1
∆ E ≤ 4ccN ε‖ρ1 − ρ2‖∇ 1

∆ E

where 4ccN,sε < 1. Thus existence and uniqueness of solutions follow immediately from 

contraction arguments. It is worth mentioning that the time continuity fails due to the 

lack of density of S in BMO−2. Conclusively, we finish the proof of Theorem 1.11. �

3.4. Embeddings for the case s = 1

In this subsection, we study several imbedding relations. Recall that in [14], the author 

proved that: if N ∈ N ∩ [2, ∞) and p ≥ N
2 , then L

N
2

x ⊂ Ḃ
N
p

−2
p,∞ ; if N ≥ 4 and p ≥ 2, then 

PMN−2 ⊂ Ḃ
−2+ N

p
p,∞ , where

PMN−2 =
{

f / supξ∈RN |ξ|N−2|f̂(ξ)| < ∞
}

;

if N ≥ 2 and p ∈ [ N
2 , ∞], then Ḃ0

N
2 ,2

⊂ Ḃ
N
p

−2
p,∞ . The proof is a direct consequence of 

Bernstein’s inequalities (cf. [31]).

It remains to show that for any N ≥ 2 and p ∈ [1, ∞], Ḃ
N
p

−2
p,∞ ⊂ BMO−2 and 

B−2
2 ⊂ BMO−2, where

Ḃ−2
2 =

{
f / ‖f‖Ḃ−2

2
=

(∑
k
2−4k‖ψkf̂‖2

L1
ξ

) 1
2 < ∞

}
.

Indeed,

‖u‖BMO−2 = ‖etΔ∇K2 ∗ u‖L2
uloc

≤ cN,p sup
t>0

t
1
2 − N

2p ‖etΔ∇K2 ∗ u‖Lp
x

≤ cN,p‖∇K2 ∗ u‖
Ḃ

N
p

−1

p,∞
≤ cN,p‖u‖

Ḃ
N
p

−2

p,∞

since ∇K2∗ is bounded from Ḃ
N
p

−2
p,∞ to Ḃ

N
p

−1
p,∞ . It remains to show that for any 1 ≤

p1 < p2 ≤ ∞ and N ≥ 2, Ḃ
N
p1

−2
p1,∞ ⊂ Ḃ

N
p2

−2
p2,∞ , which is also a consequence of Bernstein’s 

inequalities. At last, it is easy to prove that B−2
2 ⊂ BMO−2 by making use of the 

Hausdorff–Young’s inequality.
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3.5. Analysis of (1.1) with s = 2 and N = 4

In this subsection, we study the following system

ρt − μenΔρ − μin∇ · (ρ∇Λ−2sρ) = 0, ρ|t=0 = ρ0. (GDs=2)

Define

J2 : ρ 	→ J2(ρ) = eμentΔρ0 + μin

t∫

0

eμen(t−τ)Δ∇ · (ρ∇Λ−4ρ)dτ. (3.13)

Next we will prove the a priori estimate of J2(ρ).

Proposition 3.6. Let J2 be as in (3.13) and N = 4. For any μen, μin > 0 and ρ0 ∈ Ḃ−3
4,2, 

we get

‖J2(ρ)‖L̃∞
t (Ḃ−3

4,2)∩L̃2
t (Ḃ−2

4,2) ≤c ‖ρ0‖Ḃ−3
4,2

+c ‖ρ‖2
L̃∞

t (Ḃ−3
4,2)∩L̃2

t (Ḃ−2
4,2)

. (3.14)

Additionally, eμentΔρ0 → ρ0 in Ḃ−3
4,2 as t ↓ 0.

Proof. Since ‖eμentΔρ0‖L̃∞
t (Ḃ−3

4,2)∩L̃2
t (Ḃ−2

4,2) ≤ c‖ρ0‖Ḃ−3
4,2

follows by standard argument, it

suffices to control the remained part. Following the similar arguments as in [9, Lem-

mas 2.3 and 2.4], it is a direct consequence of [7, Lemma 2.1 on smoothing effect], 

Ḃ−2+k
2,2 ⊂ Ḃ−3+k

4,2 ⊂ Ḃ−4+k
∞,2 for k = 0, 1 in 4 dimensional space, and Cauchy–Schwarz 

inequality in 
1, we get

‖
t∫

0

eμen(t−τ)Δ∇ · (ρ∇Λ−4ρ)dτ‖L̃∞
t (Ḃ−3

4,2)∩L̃2
t (Ḃ−2

4,2)

≤ c min
{

‖ρ∇Λ−4ρ‖L̃2
t (Ḃ−3

4,2), ‖ρ∇Λ−4ρ‖L̃1
t (Ḃ−2

4,2)

}

≤ c ‖Πhl
l (ρ, ∇Λ−4ρ)‖L̃2

t (Ḃ−3
4,2) + ‖ρ∇Λ−4ρ − Πhl

l (ρ, ∇Λ−4ρ)‖L̃1
t (Ḃ−2

4,2)

≤ c ‖Πhl
l (ρ, ∇Λ−4ρ)‖L̃2

t (Ḃ−3
4,2) + ‖ρ∇Λ−4ρ − Πhl

l (ρ, ∇Λ−4ρ)‖L̃1
t (Ḃ−1

2,2)

≤ c ‖Πhl
l (ρ, ∇Λ−4ρ)‖L̃2

t (Ḃ−3
4,2) + ‖Λ−1

(
ρ∇Λ−4ρ − Πhl

l (ρ, ∇Λ−4ρ)
)
‖L1

t L2

≤ c ‖ρ‖L̃2
t (Ḃ−2

4,2)‖ρ‖L̃∞
t (Ḃ−4

∞,2) + ‖ρ‖2
L̃2

t (Ḃ−2
4,2)

≤ c ‖ρ‖L̃2
t (Ḃ−2

4,2)‖ρ‖L̃∞
t (Ḃ−3

4,2) + ‖ρ‖2
L̃2

t (Ḃ−2
4,2)

,

where in the second term of the fourth inequality, (2.8) plays a key role in balanc-

ing Λ−1. In fact, estimating Λ−1
(
ρ∇Λ−4ρ − Πhl

l (ρ, ∇Λ−4ρ)
)

is equivalent to estimate 

Πhh
l (Λ−2ρ, Λ−2ρ), Πhh

h (Λ−2ρ, Λ−2ρ) and Πlh
h (ρ, Λ−4ρ). �
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Proof of Theorem 1.12. We divide the proof into three steps. At first, Proposition 3.6

ensures that J2 maps a closed ball B(0; ε) of L̃∞
t (Ḃ−3

4,2) ∩ L̃2
t (Ḃ−2

4,2) with ε < 1/(4c2) into 

itself. Hence J2 is well defined. Next, suppose ρ1 and ρ2 are two solutions of (3.13) with 

the same initial data ρ0 ∈ B(0; ε), then

‖J2(ρ1) − J2(ρ2)‖L̃∞
t (Ḃ−3

4,2)∩L̃2
t (Ḃ−2

4,2) ≤ 4c2ε‖ρ1 − ρ2‖L̃∞
t (Ḃ−3

4,2)∩L̃2
t (Ḃ−2

4,2)

where 4c2ε < 1. Indeed, denote ρ
(4)
j = Λ−4ρj . Then we have

2 (ρ1∇ρ
(4)
1 −ρ2∇ρ

(4)
2 ) = (ρ1+ρ2)∇(ρ1−ρ2)(4) + (ρ1−ρ2)∇(ρ1+ρ2)(4).

It is clear that the right hand side of the above identity is symmetric and satisfies Lem-

mas 2.1 and 2.4. Thus existence and uniqueness of solutions follow immediately from 

contraction arguments. At last, time continuity follows from Proposition 3.6. Conclu-

sively, we finish the proof of Theorem 1.12. �
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