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1. Introduction

We study the following N-dimensional (N >2) general diffusion system
V. =0,
pt + V- (up) )
/Lenvp+ﬂm vaQQ*p = —up,

where! 0 < s < 1, 0 < fen < 00, —00 < fin < 00, u is the effective trans-
port velocity vector, and up is the flux that contains nonlocal term V Ky, x p with
VKo x p=FL(i]¢| 725 Fp(€)) in distributional sense, see [11, Chapter 2].

The model arises from the consideration of a continuum density distribution p that
evolves in time following a velocity field u, according to the continuity equation p; + V -
(up) = 0 with

/p(m,t)dx = /p(m,t)|t:0 dx
for all t > 0. Here u is given by the following potential
U= —penVInp — puin VKo * p,

which arises, for instance, in porous media for u;, > 0 and s = 0 according to Darcy’s
law [6] and chemotaxis for p;, < 0 and s =1 [8,16], respectively.

1.1. Energetic variational approach

In this subsection, we employ the Energetic Variational Approach (EVA) [13] for an
isothermal closed system. Hence we can derive from the First Law and Second Law of
Thermodynamics the following energy dissipation law:

d 1 total
%E =—A, (1.2)
where E*°* represents the sum of kinetic energy and total Helmholtz free energy, and A
is the energy dissipation rate/entropy production. As a direct consequence of the choice
of total energy functional, dissipation functional, and kinematic relation of the variables
employed in the system, one can get all the physics and the assumptions correspondingly.

As a precise framework, one can use the EVA to obtain the force balance equations
from the general dissipation law (1.2). Precisely speaking, the Least Action Principle
(LAP) determines the Hamiltonian part, and the Maximum Dissipation Principle (MDP)
gives the dissipative part. Formally, LAP states that work equals force multiplies dis-
tance, i.e.

1 One of the special cases of s > 1, i.e. s = 2 and N = 4 is also considered.
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0F = force x dz,

where 0 is the variation in general sense and x is the position. This gives the Hamiltonian
part of the system and the conservative force [1,2], while MDP, by Onsager [28,29], giving
the dissipative force

1
6§A = force X dxy,

wly
2

where the factor is consistent with the choice of quadratic form of the dissipation

rate of energy, which in turn describes the linear response theory for long-time near
equilibrium dynamics [19]. For instance, we first consider system (1.1) with s =0, i.e.

pt =V - (len Vo =+ lin pVp). (1.3)

Let us start with the energy dissipation law with prescribed Helmholtz/free energy and
entropy production functionals

d 1
G [ (menomp s Sy Yo = = [ pluas, (1.4)

where u(z(X,t),t) = z:(X,t), (X,t) is the flow map, X is the reference coordinate,
and the kinematic relation is just the conservation of mass

pt+V-(pu)=0. (1.5)

Let A= [,,(wi(p) + wa(p))dz = [, pren pInp + Fpin p?dz and A = [ plu|*dz. By using
the force balance law between conservative and dissipative forces, we get

JA 15A

o VT T

In fact, 24 = V(uenp + %,ume) since

5A:/
Q

Therefore, V(fenp + %tinp?) = —pu, which together with (1.5) yields (1.3).
For any s € (0, 1], following the similar argument of energetic variational approach,

Z V(“’}(P)p - wj(P)) Oz dr = /V<uenp+ %ﬂinPQ) - oz dz.

Jj=12 Q

we also start with the energy law

d 1
% [/uenplnpdx +/§Mmp<K2s *p)dw] = —/plul2d$- (1.6)
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According to EVA, the total energy E*°** and the dissipation A are

1
Ftotal _ /uenplnpdl‘+/§ﬂin p(Kas % p)dz, A= /p\u|2daj.

Define the action functional A of entropy and internal energy as

1
/§,umpK28>kpd:c. (1.7)
Q

A= /uenplnpder
Q
By making use of flow map x(X,t), taking variation of 4 with respect to x, taking
variation of A with respect u, and using the force balance law, we get

oA 15A
e PenVp + pinpVEKas x p=—pu = 3% (1.8)

Finally, plugging identity (1.8) into equation (1.5) gives system (1.1).
1.2. Linearization near positive constant state

In this subsection, we aim at showing the difference between p;, > 0 and p;, < 0.
The key idea is linearization of p of system (1.1) near some positive constant py such
that p has positive lower and upper bounds, which guarantees the nonpositivity of the
“right hand side of (1.6)".

Assume that 0 < s < %. By using Fourier /inverse Fourier transformation and £|¢|~2* x
“delta function” = 0, one gets

Vo (5+ po) = F ' (i€lél > Fp(6)) = VK« (1.9)

for any tempered distribution p. Linearizing system (1.1) near any constant state po
(> 0) yields”

pr = (/LenA - #inﬁo(*A)lﬂ)ﬁ + pinV - (ﬁVKzs * P~>7 (1.10)

where ]:(MenA - Minﬁ0<_A>1_s) = _Men|§|2 - :U/in/j0|£|2_28'

From (1.10) it is clear that: if ju;,, > 0 and pie, = 0, then —p;,,p0|€|? =2 gives fractional
dissipation; else if jti, flen, 8§ > 0, then —jie, [€]? — pinpo|€]*>~2° gives different dissipations
for high/low frequencys; else if j1;, < 0 and pre, > 0, then — i, |€|? — f1in po|€|> 72 becomes
positive for sufficiently small frequency which gives us no dissipation and might produce
finite time blow-up solution.

2 Small solution to (1.10) with large positive pg can generate large positive solution to (1.1) with infinite
mass.
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Assume that + < s < 1. In this case, it seems difficult to get (1.10) near po (> 0) since
V Kss % pg is not well-defined even in distributional sense. However, V- (V Kas*(5+po)) =
AKy, x p for any tempered distribution p. Then system (1.1) becomes

pr = (Ben = inBo(=8)"*) 5+ pin¥V - (FV Ky # (5 + 0))- (1.11)

Therefore, from [31, Remark 3, p. 239], we have study system (1.11) for distribution
modulo polynomials, which shows that homogeneous Besov space is a natural choice.
Similar arguments are applied for pe, and ;.

Assume that 1 < s < % In this case, we also need to study system (1.1) in distribution
modulo polynomial sense. Therefore, it suffices to study small data Cauchy problem.

Conclusively, for 0 < s < 1 we can observe the difference of p;, > 0 and p, < 0 by
doing linearization; for 1 < s < % we are unable to show their difference since we work
for small data problem in homogeneous Besov spaces (subset of tempered distribution
modulo polynomials). Therefore, s = 1 is critical with respect to linearization. Moreover,
when 0 < s < 1, we have VKy, x p = YA'™2% for any Schwartz function p, which
indicates that we have nonlocal property given by Riesz transforms and 1 — 2s order

derivative; when s = 1, we only have nonlocal property given by Riesz transforms; when

2

% <5< %, we have nonlocal properties given by Riesz transforms and Riesz potential

A'=2% (1 —2s < 0). As a consequence, % is critical with respect to nonlocal property, i.e.
the bigger s is, the stronger nonlocal property we have.

1.8. Mild solution and scaling argument

In this subsection, we first introduce the definition of mild solution to system (1.1)
with initial value po(x) = p(z,t)|i=0-

Mild solution Plugging up = —fienVp — pinpV Kas * p into (1.1) yields

For any given pg, we get an equivalent integral equation

t

p(t) = e po + pin, / eten=IAY - (p(1)(V Ko p) (1)) dr. (IGD)
0

We call p a mild solution to (GD) with initial pg if p solves (IGD) in certain function
space.

Scaling Formally, the second term on the left hand side of (1.6) gives

Plancherel’s identity 9
p Kosxpdx |Ks#p|“du. (1.12)

RN RN
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Therefore it seems quite natural to assume that?

(Koxp)(2,t) € L®(0,00; L*(RY)) € L (RN x R,) (1.13)

loc

in the energy framework if — [ plu|?>dz < 0. We can check that it is true for any 0 < s < %
and |p — po| < 3po. Indeed, integrating the left hand side of (1.7) with respect to time

variable from 0 to ¢ yields
0< / (K % p)(t, @) |*dx < Cptens thin, po, N), (1.14)
RN

where C(en, tin, po, N, 8) is a positive constant depending on fien, ftin, N, s and po.
Meanwhile, taking scaling into consideration, we observe that (1.1) is invariant under

the following transformation:

plx,t) = pa(x,t) = N2 p(Ax, \2t) for A > 0. (1.15)

As a consequence of (1.12)—(1.15), we have two scale and translation invariant versions
of L?-boundedness:

1
FN—25 / |(Ksxp)(y. t)*dy, (1.16)
B(a;r)
1
Ni22s |(Ksxp)(y, t)[*dydt. (1.17)
Q(z,t;r)

Denote the initial data space as the set of all tempered distributions py such that the
convolution of K11 *Vpg and heat kernel G satisfy

g‘upRN NI (G * K g1 Vo) (y)|*dydt < oc. (1.18)
r>0,x€
Q(z,t;r)

This space of pg satisfying (1.18) is BMO~2 for s = 1, and B;fgo for 0 < s <1 (see
Definitions 1.4 and 1.6 and Lemma 2.5 below). Noticing that (1.14) and (1.16) coincide
when s = % and r = oco. However, when s = % > 1, linearization argument is not
applied. It seems difficult to prove [ p|u|*dz > 0. Thus we are unable to get estimate
(1.14). Later on, we only focus on the mild solution since it seems difficult to apply the
a priori energy estimate.

Next we recall some recent results about the Keller—Segel system/two component
Keller—Segel system and Poisson—Nernst—Planck system. As for Keller—Segel system,

Biler et al. [4] studied its Cauchy problem for initial data pg € PMY 2 with N > 4 and

PMN 2= {f € 8'|f € Lige, I flppan— = esssupe &N 2| f(€)] < oo},

3 Tt is clear that LP(0, c0; LY(R™)) C L?

loc

(RN x Ry) for any p,q > 2.
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Table 1
Some relations between energy approach and semigroup method.

Energy Approach Semigroup Method
One of the most important term One of the most important part of the bilinear interaction
in Energy formis [ |[Ks* p|2dx | term is VKys % p
VKZs * (P + 1)
= VKys * pand
AKys* (p +1)
1 25
0<s< 2 = AKys * pin
Initial data distributional
space is sense
R—2s
Beo,q fgr L VKzs % (P + 1)
scaling distribution
it P Y Lo, modulo
0<s< g:t:al 5‘26 P zSs<1 invariant polynomial sense;
T 2 |spaceis | defined ﬂKZS *(p+1)
H-s;not | for any VKysxp |~ AI,{B *pn
scaling | Schwartz iswell | distributional
invariant | function defined | SePS©
p for any
Initial data | Schwartz
space is function
s=1 |BMO*and |p
is scaling
invariant
VKZS * (P + 1)
Initial data =VKys *p and
space is AKysx(p+ 1)
.. . B3~ = AK,s*pin
Initial | Ks *pis vl = distribution
N data go:'wee‘lil 1<s<7 |forany modulo
s=— space is efin > 1andis i
2 H2, for anling polynomial sense.
scaling p=e* invariant
invariant

Corrias et al. [8] established the global well-posedness of the py € LY(RVN)NL = (RY) data
problem with only small L (RN )-norm (N > 2), and Kozono-Sugiyama [18] investigated
both global solution for py € L'(R?) and the blow-up phenomenon. Recently, Iwabuchi
[14] proved existence of solution to the Keller—Segel system in BNég 2 with N /2<p< o0
and p > 1, and also in By ? (a subspace of BMO~2, see Subsection 3.4 below).

For the two-components Keller—Segel system and the Poisson—Nernst—Planck system,
we refer readers to [12,23,22,24,27,30,32,33] to see more information about the existence,
uniqueness and asymptotic behaviors of the solutions. Generally speaking, scaling in-
variant space with lower regular index is bigger. Hence it is worth pointing out that
Zhao et al. [33] proved global well-posedness of the two-components Poisson—Nernst—
Planck system in B;,oo with s > —3/2 and p = N/(s + 2), which is the first result that
work for regular index below —1 of this model. Recently, Deng and Li [9] extended Zhao
et al.’s work to critical case, established ill-posedness of the two-components Poisson—
Nernst—Planck system in Bz_ J\?}/ q2 for N = 2 and ¢ > 2, and showed that the regular index
s = —3/2 is optimal.

Before ending this subsection, we give Table 1 concerned with the relations between
energy approach and semigroup method (mild solution).
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Let us end this subsection with our main results. The initial value problem of system
(1.1) is well-posed: in the largest scaling invariant space BZ2% for any 0 < s < 1, see
Theorem 1.9 and Remark 1.10 below; in the largest scaling invariant space BMO~2¢ for
s = 1, see Theorem 1.11 below; in the scaling invariant space B 25 for s = 0, where
we do not know whether it is the largest or not; in the scaling 1nvar1ant space B4,2 for
N =4 and s = % > 1 where integrability can not be oo, i.e. Bo_o%g is a the proper
choice.

It should be an interesting problem whether system (1.1) is globally well-posed in
the homogeneous Sobolev space H ~% for arbitrary large initial data, in Besov space
BX,}(; 1) for 1 <s< % and 1 < g < o0, or in Triebel-Lizorkin space FN/l(‘S 1. for
1<s§—and1§q§oo.

1.4. Notations and definitions

In this subsection, we list the notations which will be used throughout this paper as

follows:
N space dimension and N € {2,3,4,---},
R+7N,Z+ R+:(0,OO)7 N:{1,2,3,"'7}, Z+:NU{0},

Fourier transformation of v with respect to x,

(F1o)(x) inverse Fourier transformation of ¢ with respect to &,
Kq(x) kernel of Riesz operator (—A)~z,

e ) = K,  f for any function f and 0 < s < 1,

G () kernel of heat semigroup e, i.e. (27t)~2 exp{—'ﬁ—‘:},
B(x;r) space ball centered at x € RY of radius r,

Q(z,t;r) parabolic ball Q(z,t;7) = B(x;7) x (0,7?[,

[0, 1]V N-dimensional unit cube,

Bgo,q homogeneous Besov space for 0 € R and ¢ € [1, o0],
BMO bounded mean oscillation space and BMO = F2, 2
BMO° —oth order derivative of BM O space and BMO® = E 2
Cap,- positive constant depending on a, b, -

ASB, A~B ASB& A< CnsppnpinB andAwB@ASBgA,
S and & Schwartz function space S(R”) and tempered

LY, L} and L
A and R;

distribution space S’(RY),
L1 = LI(RY), L} = LP(R,) and Lf = L"(RY),
3

Riesz potential A =+/—A and Riesz transform R;= .

Next we define the homogeneous Littlewood—Paley decomposition. Assume that ¢ €S,
0§¢§1,¢Elon{§6RN/%§|£\§%}andsupp¢C{§€RN/%<|§|<2}With

k{ =1 for any £ € RV\{0}.

> w(2

keZ
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Let Ago = F1(2RE)0(6), Ay = Ap_s + -+ + Apys, Apo(€) = $(2-F€)3(€) and

P<kU—ZA v=F Y p27*¢)0(9)),

j<k
where suppp C {¢& € RV / |¢| < 2}. Then for any £ € {—2,-1,0,1,2} we get
AguP<p_3v = Ek(AkuPSk,gv), Apulp_ov = P<jys(Agulp_ev)
and the following decomposition of product uwv, i.e.

uv = Z &k(AkuPSk_gv) + Z Ek(ng_guAkU)
keZ keZ

+ Z Z Ek(AkuAk_gU) + Z Z ng_4(AkuAk_g’U)

kEZ |6|<2 kEZ |£]<2

= I3 (u, v) + I (u, ) + T3 (u, 0) + TP (u, ), (I1)

where HZZ is high—low to high interaction (similar conventions are applied).
For any ¢(z) € S there exists a positive constant C 4 such that

| < Z Sup,ex 10,1~ (1 |2) ¥ o ()]

sup (AT RN < Chn,p-

kezZN $€k+[071]N kezZN
We define the space of functions satisfying the above property by L

Definition 1.1. For any N € NN [2,00), we define L}, as the space of tempered distri-

sup
butions v such that

[l =D sw Jo(a)| <o (1.19)

TP ez m>0, £ek+[0,1]Y

Remark 1.2. (1.19) yields L},
one can check that for any ¢ € S and r > 0, we get =y (%) € L}

sup*

C Lj,. Moreover, for any t >0, G 4(z) € L},,. Similarly,

Next we define the uniformly local space L?, .

Definition 1.3. For any N € NN [2,00) and p € [1,00), we define L?

wloc 38 the uniformly

local space of distributions u(x,t) on RN x R, so that

ol = s (s [ It pa)’ <o (120

uloe RN >0
Q(z,t;r)

Below is an equivalent characterization of BMO~2° via Carleson measure.
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Definition 1.4. For any N € NN [2,00) and s € [0, 1], we defined BMO~2* to be the
space of all tempered distributions v such that

= [[wllgz,, < oo, (1.21)

uloc

1ol paro-2-

where w(z,t) := e!AV Ky, * v(z).

Remark 1.5. Recall from [17] that v € BMO <= e'“Vuv € L2, .. Similarly, we get

uloc*
Koy *v€ BMO <= e'®V Koy, xv € L2, . Let h = Koy *v. Then v € BMO™ & h €
BMO and v = (—A)*h. Thus any given BMO~2* function can be written as the 2s order
derivative of a BMO function. In particular, by the boundedness of Riesz transforms in
the homogeneous Triebel-Lizorkin spaces, BMO~2% (s = 1) coincides with the BMO~!

2
defined in [17].
At last, we recall the definition of Besov type spaces.

Definition 1.6. For o € R and p, g € [1, 00], we defined Bqu to be the space of tempered
distributions v(x) such that

1
loll g, = (D27 lIAkv]f,) ¢ < co.
keZ

Similarly, for any o € R and (p,q,7) € [1,00]3, we defined E{(Bg)q) to be the space of
tempered distribution w(z,t) such that

1
1<

I

8

_ ok
B = (22 Ak
keZ

q
Lng)
1.5. Main results

In this subsection, we state the results on the existence and uniqueness of the mild
solution of the system (IGD) with initial data pg belonging to: BMO~2¢ for s = 1; Bo_ff
for s = 0; B2 for (s,q) € (0,1) x [L,00]; and B3 for (s,N) = (2,4).

Theorem 1.7. Let N € NN[2,00) and s = 0. Then there exists € > 0 such that the general
diffusion system (GD) with initial data py € B, ; and || po| 50  <¢ has a unique global
mild solution p € C([0,00); Bgol) satisfying

1Pl z5e (Bo. ynEzcsr ) < 2¢2-

Remark 1.8. Recall from Definition 1.6 and [10, Lemma 5|, it is easy to check that
32071 C BUC, where BUC is the space of bounded uniformly continuous function. Thus
time continuity of the heat semigroup follows immediately.
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Theorem 1.9. Let d € NN [2,00) and (s,q) € (0,1) x [1,00]. Then there exists € > 0 so
that the general diffusion system (GD) with initial data pg € Bo_o%; and [|po|| z=2: < € has
a unique global mild solution p satisfying that for any 1 < q < oo, p € C([0, 00); BO_OQ,;)
and

WPl 32z i) < 2655

Jorq=o00, pe Cw([O,OO);BgO?S) and
10l 5o (225 )iz (B2 22) < 2¢85

where Cyy, ([0, 00); BO_OQSO) denotes the space of all BO_OZSO valued weakly continuous func-
tions p(t) defined fort € [0, 00).

Remark 1.10. For N > 2 and s = %, we can prove the following results:

i) there exists ¢ > 0 so that (GD) with pg € BMO~! and ||po||garo-1 < € has a unique
global mild solution p satisfying

uloc

1 1
supt?[lpllzz +suptd [Rypllie + ollzz,, + [Ripllsz,, < 2es;
t>0 t>0

i1) there exists ¢ > 0 so that (GD) with pg € Bo_ol,oo and [[po|| =1 _ < e has a unique

solution p € C ([0, 00); B;ol,oo)a ||p||fgo(3;{x)ng(3gom) < 2ce;
191) in general, for any s € [0, 1], we have (see Lemma 2.1 below)

PVK23 *p = ATS,I(pa p) + VTS,2(/); p) +V- Ts,3<p7 p)

Theorem 1.11. Let N € NN [2,00) and s = 1. Then there exists € > 0 such that (GD)
with initial data po € BMO™2 and ||po||gypro-2 < € has a unique global mild solution p
satisfying

Supt% HVKQ * pHLoo + ||VK2 * p||L2 < 2ce.
t>0 z uloc

Next we consider one special case for s > 1 in 4-dimensional space.

Theorem 1.12. Let N = 4 and s = 2. There exists € > 0 such that (GD) with pg € BZ;’
and ||P0||B;§ < € has a unique global mild solution p satisfying

”pHZ’z”(B;S’)an(B;g) < 2ce.

Remark 1.13. Theorem 1.12 is only one of the endpoint cases for N >3 and 1 < s < %

It seems that our arguments can not be extended to the general case, especially in B4 ~*

10



C. Deng, C. Liu / Journal of Functional Analysis 272 (2017) 4030—4062 4041

for1 < s < %, 4 < %7 1 < g. It is worth mentioning that it is difficult to get the
a priori estimate by using (1.6) since [, |Ks * p|dz is not well-defined for functions and
Jga plul?dz is necessarily nonnegative.

Plan of the paper. In Section 2, we do some preliminary arguments. In Section 3, we
give the proof of our main results.

2. Preliminaries

From now on, we assume that 0 < s < 1. Notice that the following bilinear operator

t
= ftin / eten (=AY . (pV Ko, % p) (T)dT (On)
0
is the solution to the following equation with 0 initial data, i.e.

{ Pt — tenDp = p1inV - (pV Ko % p), 21)

pli=o = 0.

In order to estimate B(p, p), the key point is to take advantage of the potential can-
cellation property of pV Ko * p.

2.1. Bilinear pseudodifferential calculus

In this subsection, we study pV Ko, * p via Fourier analysis tools, i.e.

PV Ky p = / / 04(£,C) FEPO)™ € dce, (2.2)
RN RN
where
05(€,¢) = en (iC|€* + 4€|¢*) €] 72| ¢| 2. (2.3)

To deal with (2.2), we recall some related works on bilinear/multilinear pseudodiffer-
ential calculus, see [3,20,25,26] and references therein. Recall that the bilinear operator

/ / m(&, O F (OGO €O dcde (2.4)

RN RN

is defined in [26] for any f,g € S.
An interesting example of a similar flavor in nonlinear PDEs is given by Kato—Ponce
[15]. Iff,gESandA“ ()= f()witha>0,then
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IA*(F ey S WA Fliezllglioe + 1Al e lA%gll Ly (2.5)

for any 1 < p,q < 00, 1 < r < oo and } = % + %. Recently, Bourgain-Li [5] extended
(2.5) to endpoint case, i.e. 1 =p =¢q =00 and a > 0.

Roughly speaking, if f oscillates more rapidly than g, then g is essentially constant
with respect to f, and so A%(fg) behaves like (A f)g. Similarly, one expects A*(fg) to
be like f(A%g) if g oscillates more rapidly than f. This is why there are two terms on
the right hand side of (2.5). It is worth mentioning that (2.5) is not true for a < 0 due
to the counterexample

(f,g) = (cosnpxy,cos(ng — 1)x1) for large ng,

witha= -2, r=p=¢g=ocand N > 2.

Recall the definition of m(&,¢) in (2.4), if we additionally assume that m(&, () €
L=®(RY x RY) is bounded, smooth away from {¢ = 0} U {¢ = 0} and satisfies the
Marcinkiewicz—Mikhlin—Hérmander type condition

|02 m(&, Q)| S (2.6)

-
€| ]1e]

for sufficiently many multi-indices* o, 8 € Zf , then Muscalu, Pipher, Tao and Thiele
established the following theorem, see THEOREM 1.3 of [26].

Theorem 1.3. The bilinear operator T, defined in (2.4) maps LP* x LP2 +— LP boundedly
as long as 1< p1, p2 < 00,0 < p< oo andpil—i—p%:%.

We can slightly generalize the above Theorem 1.3. Define
ma b(fa / /ma b 5 C (C) iz (§4€) d(dg
RN RN

where a,b > 0. Additionally, if mg(&,¢) € L®°(RY x RY) is smooth away from the
subspace {£ = 0} U {¢ = 0} and satisfies

1
[l eFlet|¢]o+A]

|08 07 ma (6. Q)| S
for sufficiently many multi-indices « and 5. For 1 < p < oo and o < 0, define
£8 = {ve S'®Y)/ [A%]|1 < o0},

then by direct application of THEOREM 1.3 we have the following results:

Y a=(a1, - ,an)and || = a1 +---an-.
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Theorem 1.3'. The bilinear operator T, , maps Epl X CPQb — L? boundedly as long as
0<a, b<oo, 1< pg,py <00, 0<p<oocmd —&———%.

Recall the definition of the bilinear symbol o4(&, () defined in (2.2), we observe that
0s(&,¢) is symmetric and away from {£ = 0} U {¢ = 0},

1 1
€zl T Jeflal[czs =1 IAl

020204(¢,0)] <

However, in the endpoint case, i.e. p; = po = p = co, THEOREM 1.3’ does not apply.
Therefore, we might need to make full use of the symmetric and the cancellation prop-
erties of the bilinear multiplier o4(&, ¢). Precisely speaking, we will split pV Ka, * p into
three pieces, i.e.

pVKQS *p = ATS,I(p7 ,0) + VTS,Q(pu p) + V : Ts,B(P7 p)v (27)

where all T ;(p, p) (j =1,2,3) can be well controlled.

It is worth mentioning that the identity (2.7) plays a crucial role in the study of the
mild solution of (IGD).

In the following lemma we shall give the detail proof of identity (2.7).

Lemma 2.1. Let Al p(¢) = 2 "2 %E)5(€), AY_,p(C) = €2 "Cap(26-RC)5(C). Then
for any 0 < s <1 we get

PV Kasx p= AT 1(p, p) + VTs2(p,p) +V -Ts3(p, p), (2.8)

where

Tsa(psp) = — / / > Paka(VEarae x Alp AYyop)riy (1, v)dpdy

ENpN KEZL=0,1,2

/ Z Z Ay (VKZS s« Al Ko * AZMp)r}Q(u, v)dudy
BNEN KEZE=0,1,2

//Z Z Ak (Ko % Al p VKo, x AV p)ry (1, v)dpdy
BNEN KEZE=0,1,2
— Ky + 11 (p, Vs * p) — Ko # 1 (p, VKo  p),

Ts2(p, p Z Z P a(App Kas % Apyip),
kEZ £=0,1,2

Tos(psp) = / / > > Pk a(VVEa g Alp MY yp)r7y (1, v)dpdy.
BNpN KEZ =012

In particular, for s =0, we get Ts 1(p, p) =Ts 3(p, p) =0 and Ts o :%pQ, ie.
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pVp= V(%pQ); (2.9)

for s =1, we get Ts1(p,p) = 0, Ts2(p, p) = §|VEz % p[* and Ty 3(p, p) = ~VEz % p®
VKQ * P, i.e.

1
pVKs*p=—V-(VKyxp®VKs*p) + v(§|w<2 * p|?). (2.10)

Proof. Applying decomposition (II) to pV Ko, * p yields

pV Kag % p =TT (p, VKaq % p) + T} (p, VKo  p)
+ 113" (p, VE s % p) + T} (p, VK2 * p). (2.11)

It suffices to rewrite 1M (p, VKo  p) + 1M (p, VK2, * p) since

Hzl(pv VK * p) = —AKs * HZZ(P, V Ky, * P), (2 12)
1M (p, VKo,  p) = —AKy  II (p, VKo, * p).

For the sake of simplicity, we shall denote pi(-) = p(27%-), po(:) = p(), ¥u(-) =

g (27 )
Y27, o(-) = 0(), Yr() = Yr—s(-) + - Yrys(-) and () = P_s(-) +- - - h3(-), respec-
tively.
Since V commutes with Ay, i.e. Ay VKo x p = VKog x Agp, we have

2
" (p, Vs % p) + T (p, VKo % p) = Y Y App Ay VEas % p

keZ =2
= Z (App VEas % Apyop + Apyop VEag  Agp)

keZ
+ Z (App VKo * Apy1p+ Dpy1p VEag x Agp)

kez

1

+ Z 3 (Akp VKas * App + VKo * Agp Akﬂ)

keZ

:=Ha(p, p) + Hi(p; p) + Holp, p)- (2.13)

With no loss of generality, we only need to estimate Ha(p, p). It is easy to check that

Ha(p,

:CN

p)
; 2s 2s )
RNRN

- CN//Z'(C|€28+§|CQS)]91€4(5—1—() U (E)hrg2(C)

N ix-(§+0) g¢d

RNRN
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// HCIE2 +EICP)r (6 +Q) e (€)dnral€)

SED i (§+¢) g¢d
|§|23|<—|2s p(g)p(C)e g C

RNRN

= 7‘[21([)7 p) + Hoo (p, p). (2.14)
Consider the symbol of Ha1(p, p), i.e.

i(ClE** + €I¢1**) Pe—a(E+ O (&) Yrr2(C)
|€12[¢ 12 '

Notice that mj (&, () :2(1_23)km*(2%, 2%) where

(2.15)

i(ClE** + €l¢1*) p-a(€ +Q)¥(E)¢2(C)
[€122[¢]2

and suppm* C {(£,¢) e RN xRN/ 271 < [¢] < 2,2 < [¢| < 23, [¢+(] < 273},
Let h,n €S be such that h = 1 on suppy with supph C{¢/ % <|¢] <§} and n =1
on suppt, with suppn C {¢/ %22 < |¢] < %22}. Then

m*(§,¢) =

i(C1E1% + €I¢**) p-a(§+ Q)P (E) Y2 ()R (€)n(C)
[€1%[¢ 2 ’

¢leg®s +§|<|2 (e S N =a
and >emyeyzs Ezetces .+ jeres - Moreover,

m*(§,¢) = (2.16)

i(|C** —€**)h(€)n(C)
€[2=1¢1?

:jzmaec)(@+< oloe+o-¢~,
66+~ ¢[lgP=I¢ree

(&)n(¢)do

_i(er) g [2s |06+ —€ ke,
€12 oce + ) — €[l

h(&)n(¢)do

_|_

) 1 2s
z§|£+<|2/25\9(5+<)‘5‘ €8 1 e yn(c) oas. (2.17)

€772 (g +¢) — &[]

Define

1
2s(6(6+0)—¢[16P,
Th(E.C) = h(€)n(C) 0o,
s x/|9£+< —&[eP

2sW@+< —¢)? KF

2 =
&)= aer o —efiee

h(&)n(C) do.
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Observe that |[0(£4C) — &|~|¢| for (€,¢) € supp h x suppn. Thus 741, 73, €S(RY x RY)
and

A6 =ew [ [ 0O, (o) dpd (2.18)
RN RN
with j=1,2.
It is easy to check that ri;,r3; € S(RY x RY). Plugging (2.17)-(2.18) into (2.16)
yields

. . €I e S (€)e™ o (¢
0=y /[ 6+0) - p-a(er O S, )
i 6i £ w-C
+CNR[ R[ N e L
+i<§+<>p_4(£+c)¢(5|2]ii(<). (2.19)
Consider the symbol of Haz(p, p), i.e.
it (6,¢) = MCIEEH €I On(E+ O (€)vaea(€) (2.20)

[€12#1¢1%

Notice that m} (&, ¢) =21729Fm# (%, ) where

i(CIE1%S + €SI )k (€ + O (€)va(C)
[€[2#]¢ ]2

m*(€,¢) =

and suppm# C {(£,¢) e RN xRN/ § <[¢] <2, 2 <[¢| <8, 15 <[£+¢| <16}.
Let h,7 €S be such that h = 1 on suppy with supph C{£ eRY/ 1 <[¢| <Z} and

7 = 1 on suppy, with suppn C {¢ € RV/ %22 < |¢] < %22}. Then

(I + €I¢**) V(E+ OB (E)W2(OmEn(O)

m#(ﬁ,C) = |£|25|<|2s

(2.21)

Moreover,

i(EIC*+CIEP)RERQ) _ igle+CI? [CPREIQ) | CIE+C? [EPRE©i)
SRS €I TeHcP T ICPTIER  JeHCP?

7 2 7 2
- %m, O+ %@(e, 0. (2.22)
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Observe that [€+¢| ~ [€] ~ |¢] for (&,¢) € supp h X supp7j. Thus 7, 72, € S(RN x RN)

and

(&) =c

N//ei(“'H”'C)r%Q(u,y)dudu with j =1, 2. (2.23)

RN RN

It is easy to check that ri,, 72, € S(RY x RY). Plugging (2.22)-(2.23) into (2.21) yields

_ e it€ i
m*(€.0) = e / / E+CPI(E+O) “56|2|;f(5)6 |£T§(C)T%2(u,l/)dudv
RN RN
N W€y (£) ieiv-C
+cN/1/K+<Fw@+<>eufﬁ@)“ehﬂiﬂoraoukuma (2.24)
RNRN
By (2.15), (2.16), (2.19)-(2.21), (2.23), (2.24), m{(£,¢) = 20-29km* (&, &) and

mk#(f, ()= 2(1_23)km#(2%, 2%) as well as (2.14), we can rewrite Ha(p, p) as follows

Ha(p,p) =— //

RNRN

-/

RNRN

-/

RNRN

- Y AP<iy(VEazyas + Aflp AZHP)} ra1 (1, v)dpdy
kezZ

Z AA, (VK2 + Al p Ko * AZ+2p)] i (1, v)dpdy
ke

Z AA, (Ko x Al p VK * AZ+2p)] 725 (1, v)dpdy
ke

/]

RNRN

+Z VP<j—a(Akp Kas % Ap12p),

kEZ

where 7“%1 (M» V)a T%l (ﬂa V)v
Similarly, we have

Hipp) = | [

RNRN
RNRN

RNRN

Z V Pepa(VVE242, + AzPAZHP)}T% (w, v)dpdy
kez

(2.25)

T30 (pt, V), 135 (1, v) € S(RY x RY).

— D APy 4(VEKaiasx Alip AZHP)} 741 (1, v)dpdy
“kez

i Z AA, (VK2 % Alp K * AZHp)] 4o (1, v)dpdy
kel

i Z AAy (Ko Al p VK, * AZHp)} 2y (p, v)dpdy
kel
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" // [ZV + Peioa(VV Kz pa0 % Aflp AZ+M)]T?1 (w, v)dpdy

RNRN  KEZ
+ ) VP a(App Kog  Dyep), (2.26)
kez

where rt}l(:uv V)”rgl(u? I/)ﬂ“é(ﬂ, V)”%Q(Nﬂ V) € S(RN X RN) and £ = 07 L.
Combining (2.12), (2.25) and (2.26), we complete the whole proof. O

Remark 2.2. Recall that AL f = F~1 (2 "€(27k€) f(€)). Then we have
(AL ) (@) = (Af)(@+27Fp). (2.27)
Similarly, for any £ € NN [~2,2], from AY_,g = F~1 (2 "Cp(27F+¢)5(¢)), we have
(AY_y9)(x) = (Ap—ef ) (@+27 D). (2.28)

It is clear that in the above proof, we used both the symmetric and the cancella-
tion properties of pV Ko, * p. Similarly, it is easy to check from (2.17) that the above
decomposition also works for fVKqs % g+ gVKos * f with 0 < s < %

2.2. Smoothing effect and product estimates

In this subsection, we recall the smoothing effect of the heat equation:

Pt — MenAp =F,
(2.29)

p(x,0) =0.

Lemma 2.3. Let (0,q,7) € (—00,00) x [1,00] x [1,2] and F(z,t) € Z{(Bgo_3+%) Then

the mild solution p = fot elen(C=T)AR (2 7)dT to system (2.29) satisfies

~ g_a42 .
Li(Bes,q ")

1Pz (g, nizpery S IF
Proof. The proof is similar to [7, Lemma 2.1]. Hence we omit the details. O

Let F' = p;n V- (pV Kas%p) and (o,7) = (—2s,1) or (o,r) = (—2s,2). From Lemma 2.3

we have
1P 250 (B2 iz 8225t S Wl E2 (21204 22 22)

where T is the set of all decompositions of F', i.e. T' = {(F}, Fy)/ F = F| + F»}, and

T A T (1P gy + 12l 2y i )
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The next lemma is a key application of Lemma 2.1. In particular, based on the can-
cellation property of I (p, VKas x p) + I (p, VKo * p), we observe from (2.8) that
pV Ko, % p can be formally thought as the summation of first order derivatives of several
controllable quadratic terms of p, see e.g. (2.8).

Noticing that the additional one order derivative V ensures that 2—2s > 0 (0 < s < 1).
Hence we can prove the existence/uniqueness of the solution to (IGD).

Lemma 2.4. Let (s,q) € [0,1) x [1,00]. Then we have

|V Ko (2.30)

< 2
oy mezn S lelzes s e
Proof. Recall from (2.8) that

PV Kz p=ATs1(p, p) + VTs2(p,p) + V- Ts35(p, p)-

In order to prove (2.30), we shall apply a case by case arguments. It suffices to estimate

1oV Kzs # oy sz s m2mzy S N Tsallzz sz + VT2 +V - Tos gy szze)-

»q

Let us do some preliminary calculation. Recall that L2° is a shift-invariant Banach space.
Then for any p € RY, from (2.27)-(2.28) we have

sup || VKaq2s* Alpl o S 202K AL Lo (2.31)
HERN ”

Indeed,

~

VKoo % Allp = F1(ig|e] 7272927 €) e "y (277¢) F(€))
:= VKoo, * EZAkp.

By direct calculation, we get

[F1 g Je e e R ) )] S 27 OHEIRN (1 2 p)

From Young’s inequality and the fact that L. is also a shift-invariant Banach space we
get

27(1+25)k+kN
sup HVKQS*Afc‘pHL0<> gcsyNHAkaLoo sup/ dx
nERN ® T

(14 |2k +p|)N+1
RN
<N 2 TR AL S]] (2.32)

Similarly, we have

sup [[AY_ o9l S [[Ak-edl] (2.33)
veRN ® *
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Estimate of HTSJHP . It suffices to estimate
t

(BZ3)
[| K2 1 (p, V Koy * p)HZ%(BgQES)—i—HKQ * T (p, V K * p)Hz%(BgOiES)

and

SUPHZ E Peya(VEKayas % Ajp AY o) ||L2 5220y,
WY keZ0=0,1,2

sup || Z Z Ap(VKgs + Al p Ky % AL Lp) HL2 22y
WY kez,0=0,1,2

SUPHZ Z Ap(Ka * Al pV Kog x AY,p) HL2 22
kEZ 0=0,1,2

since H’r'ZlHLl(RNX]RN) <1 for any (7,7,1) € {0,1,2} x {1,2} x {1,2}.

Recall that 11} (p, VK3, % p) = >,y &k(AkaSk_3VK28 * p). Then it is easy to
check that the Fourier transform of Ayp P<i_3VKss * p has a compact support near
|¢| ~ 2%, Therefore, from Definition 1.6 we get

152 % 1 (. VK % 0) | 20y < R (02 VE2s D)3 522

< (X224 A Vo Py spllt )

kEZ

S (272 Ak IV Ko # Perospllfrs) . (239)
kEZ

1
Recall that 7 C £, i.e. supy |ap| < (X lar|?) * for any {ak}rez € €9 and 1 < ¢ < oco.
Then we get

sup 2 ||V Ky * Pep_spllpr e S SUP2 “l Z VEKss * 8jpll e pe
kEZ G

< sup Z 9i—kg— QSJHAJpHLOOLw < ”g”LN(B(xF;) (2.35)
k€Z; "3

where in the second inequality we used Minkowski’s inequality and Bernstein’s inequality,
and in the last inequality we used Young’s inequality, i.e. (75T 09 —5 > and Yic g2 <1
Plugging (2.35) into (2.34), we get

[ K2 + I (p, VECp, P)Hzg(gg;gg S ol zz sz 1Pl £ (322 (2.36)
Similarly,
12 T3 (0,5 Koo 5 )| ey S T2 1 Pcksplli s 1 Aol e

—2sk
Sl sige sup 2 1 Par—sp | g e
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PR (2:37)

Slellzz iz
Applying (2.32) and (2.34) to VEKa o, x Al p A} ,p yields

Sup”Z Z Pei—a(VEayas + Ap Al op) ||L2(BZ 20
WY keZ0=0,1,2

= sup (32072000 3T 3 AiPaa(VEasa » A AL ep) P

JET k>j+1¢=0,1,2

Z Z Z 2(7290 =+ (1= 4g)kHA’9pHL2LwHA’VHpHLwLm)q)%

JEZ k>j+10=0,1,2

(303 2 A, (Ao,
kEZ £=0,1,2

S HP”E%‘(B&;@S)HP”Ego(B;o%g)- (2.38)
Similarly, for any p,v € RN and £ =0, 1,2 we get

l ZAk(VKzs * App Ko * AZ+£P)H£3@@—)33 Slellzz sz loll goe 5222

kez
H Z A (K * Ajp) VKo AZHPHE%(Bgﬁﬂ Slellze gz lloll zeo 222
keZ

Combining (2.36)—(2.38) and the above two estimates we get the desired estimates for
Ts,l (pv p)

Estimate of ||Ts2(p, p)HZ%(BQgS) + || Ts,3(p, p)Hii(Bi;ﬁs)' By using (2.32) and (2.34),
we observe that T 2(p, p) and T 3(p, p) can be treated in the similar way. As a conse-

quence, it suffices to estimate }|T373(p, ) Similar to (2.38), we get

Iz 2oy

SupH ZZP<[€ 4 VVK2+25 *A pAk+[p HL1 B2 25)
WY ez =0

2
=sup (D 2G9N N A Py oy (VYKo % Alp AZHP)HEL«:)%
wY ez k>j+16=0 e

1

2
S (D0 D 2T Ap] | Akserl] ) )

JEZ k>j+1 £=0

2
1
< (0 Y2 ALy, Avsan] )

k€Z £=0

S lollze sz ol gz (p1-z: -

Combining the above estimates for T 1(p, p), Ts,2(p, p) and T 3(p, p), we complete
the proof of (2.30). O



4052 C. Deng, C. Liu / Journal of Functional Analysis 272 (2017) 4030—4062

2.3. Characterization of homogeneous Besov space

The characterizations of homogeneous Besov space B3 % are as follows.

Lemma 2.5. Let (8, jien, q,p) € [0,1) x (0,00) x [1,00]%. Then we get

. ~ .92 +2
feB2 = et ™ f e LBy ")

Moreover, for any (s, tien,) € (0,1) x (0,00), we have

1
TN+2—2$
Q(z,t;r)

fe B;fgo < sup |etentA A3 F 12 dydt < oo.

r>0,z€RN

In particular, the above results still work when f is replaced by’ %
~ . _ogy2
Proof. Part 1 If etentD f € Lf(Boo%2+p ), then from Definition 1.6 we have

— 2 1
(DMt erent AL f1, )7 < oo.
kez

By direct computation we get

92-2k
22k:

Akf = ? / e_ﬂentA eﬂentAAkfdt'

2—2k

As a consequence of Bernstein’s inequality and Minkowski’s inequality we get

227219

2k
HAka[}f ,S 92k / ||Ake““"tAf||Lgfdt 5 2% ||Ak€#€"tAf||Lngo.
2—2k

Then summing up 272°%|| Ay, f| = and using Definition 1.6 yields

s g < HentA
a2y S NP s

Since 2% e—Hent?™ g uniformly bounded in LY, it is easy to check that
2k
P

. A £l ee
ok(3 QS)HGHBMAAkaLngO < 2TQT

2

e_C/U'enQZk'H P <
Ly ~ 92ks

5 Riesz transforms are bounded operators in homogeneous Besov spaces.

[Af| s

(2.39)
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Hence applying Definition 1.6 to the above inequality gives

E’ILA
L I/ e (2.40)

t ,q

Combining (2.39) and (2.40), we prove the first result of this Lemma.
Part 2 For any 0 < s < 1 and pten, > 0, in order to prove

feB, & N°f €BS, < sup

entA A—5r|2
D N / |letent 2 ATSF |2 dydt < oo,
r>0,z

Q(z,t;r)

using g € B;o‘foo & sup,gt2[lertentB gl L < oo (cf. [21]), it suffices to show

s 1
3 Henl HentA 12
ig}gtzﬂe g||Loo<oo<:> sup N / e g|“dydt < oo
Q(z,t;r)
On the one hand, it is quite straightforward that

’l"2

dydt
gyt S supts e Bl [ [

Q(z,t;r) 0 B(z;r)

< TN+2723(

~

sup 2 [[eten g pee)?.
t>0
On the other hand, it is easy to get

rentg / [ 2
t — s

ORN

N
5 2
2 ly]

" T () (ehens D ) (z —y)dyds.

l\JIZ

As a consequence, we obtain that

2
t2|etentBg(z)| < Z e " NIz / / |etensBg(z—y)|dyds

kezZN

N
0 s €k+[0,1]

1
< sup ( preE=n / / |eter =R g(z—y)|*dyds)

ﬁekﬂo 1IN

’l"2

1
TN+2—2S
0 B(z;r)

A 2 3
< (0 sup |eten B g(y)|*dyds) 2

r>0,z€RN

which concludes the desired estimate of the second result of this Lemma and finishes the
whole proof. O
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2.4. Continuity of the heat semigroup in various spaces

Recall that e*® is a strongly continuous semigroup in L2 (p €[1,00)) and various other
spaces. However, it is known that Schwartz space is not dense in L3° C BM O, hence eth
is not a continuous semigroup in L and BMO. Meanwhile, in the bounded uniform
continuous function space (a subspace of L), Giga proved that the heat semigroup eth
is a continuous semigroup in BUC (cf. [10]). It is easy to check that Bgo,l C BUC in
which e*® also generates a continuous semigroup. Furthermore, we can extend the proof

to homogeneous Besov spaces Bo’o%g with0 <s<land1l<g< oo

Definition 2.6. A family of bounded operators {T'(¢), 0 <t < co} on a Banach space X
is called a strongly continuous semigroup if:

(1) T(0) = I,

(2) T(t1)T'(t2) =T(t1 +t2), Vi1, 12 >0,

(3) for any z € X, x — T'(t)z is continuous.

tA

Proposition 2.7. For any (s,q) € [0,1] x [1,00), €' is a strongly continuous semigroup

P —2s
in By

Proof. It suffices to prove that for any f € B2

00,q 7

: tA _
im [le"2f — fll poz; = 0. (2.41)

Indeed, for given f € B2, we have ¢; := (3 2_28qk||Akf||qLO§)% < oc. Then for any

00,q

€ > 0, there exists N, > 0 such that

(30 ™I L)t < (3 2 IASIG) < 3 2

k>N, k>N

IN

Meanwhile, fix N, for any 0 < t < m,

N:—1 N:.—1
_9s 1 _9s 192N +6 1
(D 27N Apf—=Apfl) " < (D272 (1—e )| Apflle)
k=—oc0 k=—o00
N.—1 L -
<PV YT ML) < o2 < (2.43)
k=—o00

Combining (2.42) and (2.43) yields (2.41). O
3. Proof of the main results

In this section, we shall give a case by case analysis of the global well-posedness of
the following general diffusion system:
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Pt = penDp — pinV - (pVA~p) = 0 (3.1)
with initial data pg and 0 < s < 1 and (s, N) = (2,4).
3.1. Analysis of (3.1) with s =0

In this subsection, when s = 0, we get from (3.1) with initial data py that

Pt — fenAp — %A(/JQ) =0, pli=o = po, (GDy=o)
where, in general, p is assumed to be nonnegative.

As is stated in the introduction, scaling invariant suggests that the right space should
be L2°. Then one may ask whether (G D,—() admits a unique solution if pg is large in LZ°.
Generally speaking, it is difficult to apply semigroup method to establish well-posedness
of the large data Cauchy problem without using any a priori estimate. However, if the
system has a priori energy estimate which, in addition, satisfies scaling invariant property,
then it would be possible to combine the a priori estimate with local existence of mild
with large data to achieve the goal.

Next we recall that [ p(z,t)dx = [ po(x)dz and

/ o, )pla, )z < C(N. frem pin po) (3.2)

if i >0 and — fot J plu*dz < 0 since from (1.6) we have

/Menp(xat) In p(x,t) + u;n (p(x,t))2d$ < /ﬂenﬂo lnpO + ,u;n pgdl’

It seems impossible to apply to a priori estimates (3.2) to L$° solution. However, it is still
possible to investigate the small perturbation of (G'D.—y) near large positive constant
state, which can be thought as a special large data solution with respect to the original
problem. For example, let p =1+ p. Then we get

~ ~ Hin ~2

Pt — (Hen + pin) Ap = TA(p ).
It is clear that pey, + i can be positive, zero and negative, which affects the essential
structures, i.e. gy — (ten + fhin) AP

Conclusively, if p;, > 0, then we can linearize system (G'D,—;) near any nonnegative

constant state and establish the existence of mild solution (small perturbation); else if
tin < 0, then sufficiently small perturbation near any positive constant state less than

% also works; else if u;, < 0 and the positive constant is bigger than fii::, then we

might have finite time blow up similar to the Keller—Segel system.
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Usually, one can deal with the small perturbation near large positive constant state
problem by using the similar way of the corresponding small data Cauchy problem. Thus
we consider small initial data problem below. Let

t
Jo: prr Tolp) = ehert®pg + L2 / pen(t=m)A N\ (p?) . (3.3)
0

Next we will prove the a priori estimate of Jy(p).

Proposition 3.1. Let Jy be defined in (3.3). Assume that (fen, pin) € (0,00)% and po €
BY, 1. Then we have

2
IOz o0, iz, ) < cloollse, + e lolze o, pazzey ) B4
Additionally,
et % py — pg in BY, | ast ] 0. (3.5)

Proof. Applying Lemma 2.3 to (3.3) with F' = %A(;ﬂ), (s,q,7) = (0,1,2) we have

entA _ _ AT
1PN z5e(mo, ynzacs ) SNE* T pollpe o, nzzse ) Fenllolza sy )

Then applying Lemma 2.4 to the above estimate and applying Lemma 2.5 to

||€“6"'tAp0HZ?(BQM)OEE(B;M) yields (3.4). The time continuity of heat semigroup in

ngl, i.e. (3.5), follows from Proposition 2.7 with (s,¢) = (0,1). O

Proof of Theorem 1.7. We divide the proof into three steps. At first, Proposition 3.1
ensures that Jy maps a closed ball B(0;¢) of Z?(Bgo’l) N zf(B;Ol) with € < 1/(4een)
into itself. Hence Jy is well defined. Next, suppose p; and ps2 are two solutions of (3.6)
with the same initial data py € B(0;¢), then

1To(p1) = To(p2)llzoe 0, nizcsr ) < deenellpr = p2llpe o )iz )
where 4ccye < 1. Thus existence and uniqueness of solutions follow immediately from

contraction arguments. At last, time continuity follows from (3.5). Conclusively, we finish
the proof of Theorem 1.7. 0O

3.2. Analysis of (3.1) with0 < s <1

In this subsection, we study the following system

Pt — prenDp — pinV - (0VA™*p) =0, pli—o = po. (GDo<s<1)
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Define

t

Ts i p = Tulp) = € pg + prin / eten (DAY L (pV AT p)dr. (3.6)
0

Next we will prove the a priori estimate of Js(p).

Proposition 3.2. Let J; be as in (3.6). For any (ften, fin,q) € (0,00)? x [1,00] and
po € B2, we get

00,q7
2
1Ts O 2 (pzpynizpiszey Sclloll sz +enslolEe poznpzsiczy. G0

Additionally, for any 1 < q < oo,

etentB po — po in BO_O%; ast ] 0.
Proof. Applying Lemma 2.3 to (3.6) with F = £2V-(pVA™25p+VA~2%p) and (s, q,7) €
(0,1) x [1,00] x {1,2} we have

entA -
o e 2z iz < N 2ol i sazgpnizsicze) + IPVA™pllx
where X = Z}(B;g?) + Zf(BO_f;) Then by Lemmas 2.4 and 2.5 we get (3.7). The
time continuity of heat semigroup in B3 follows from Proposition 2.7 with (s,q) €
(0,1) x [1,00). O

Proof of Theorem 1.9. We divide the proof into three steps. At first, Proposition 3.1
ensures that Js maps a closed ball B(0;¢) of L° (B;f;) NL? (Béo_gs) with e < 1/(4dcens)
into itself. Hence J; is well defined. Next, suppose p; and ps are two solutions of (3.6)

with the same initial data py € B(0;¢), then

1Ts(p1) = Tslp2)l g (2pynzzpicze) < deenwsellor — P2l o2nzz sice:

%,q")

where 4cen s < 1. Indeed, denote p§,28) = A=?%p;. Then we have

2(p1 VP2 —p2Vps™™) = (p1+p2)Vi(p1—p2) ) + (p1—p2) V (p1+p2) .

It is clear that the right hand side of the above identity is symmetric and satisfies Lem-
mas 2.1 and 2.4. Thus existence and uniqueness of solutions follow immediately from
contraction arguments. At last, time continuity follows from Proposition 3.2. Conclu-
sively, we finish the proof of Theorem 1.9. 0O
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3.8. Analysis of (3.1) with s =1

In this subsection, we first recall the following bilinear estimates, see for instance [17,
Lemmas 3.1 and 3.2, p. 28] and [21, Lemma 16.3, p. 163].

Lemma 3.3. For any N € NN [2,00), the bilinear operator B defined by
t
B(U,V) = / eHent"DAYRR; - (U @ V)dr (3.8)
0

is continuous from € x € to €, where &€ C L2, . and

UV €& < supt Ul e + supt? | V| + Ull gz, + V]2, < oo,
t>0 t>0 utoe

uloc

Remark 3.4. The above estimate also works when replacing e“ﬁ"(t’T)AVR{Rj by
e.u‘en(t_T)AA.

Recall that ApVep = V- (Vo ® Vo) — ¥ (|V¢[?). Then (3.1) is reduced to
1
pt = HenBp + p1inV - (pV 1) = 0. (3.9)

It is clear that if we denote V = V4p, then V- (pVxp) =V - (VV-V), §;V; = 0;V;
and

V- (VV-V) :V-V-(V®V)—%A(|V|2). (3.10)

Define J1 : p+— Ji(p), where
t
_ hent e (8-7) A Laqve2
Ji(p) =e po + tin | € [V-V-(V@V)—EA(|V| dr.  (3.11)
0

Next we will prove the a priori estimate of J1(p).

Proposition 3.5. Let J; be as in (3.11), (fen, ftin) € (0,00)% and pg € BMO~2. Then we
have

1
IV 570l < cllpollsaro- + e[V (3.12)

where V = V%p.
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Proof. It suffices to show [le"»*AV X po|le ~ [|[Vxpollsaro-1 ~ |lpoll aro-2, which fol-
lows from [21, Lemma 16.1, p. 160] and Definition 1.4.

Estimate of fot ehenI=DAV L[V V- (V@ V) - 1A(|V[?)]dr follows from Lemma 3.3.
Hence we finish the proof. O

Proof of Theorem 1.11. We divide the proof into three steps. At first, Proposition 3.1
ensures that J; maps a closed ball B(0;¢) of V& := {V/ VXV € £} withe < 1/(4cen)
into itself. Next, suppose p; and py are two solutions of (3.6) with the same initial data
po € B(0;¢), then

[71(p1) = Ti(p2)llv 1 e < dcenellpr — pollv 16

where 4ccy s < 1. Thus existence and uniqueness of solutions follow immediately from
contraction arguments. It is worth mentioning that the time continuity fails due to the
lack of density of S in BMO~2. Conclusively, we finish the proof of Theorem 1.11. O

3.4. Embeddings for the case s =1

In this subsection, we study several imbedding relatlons Recall that in [14], the author

proved that: if N € NN [2,00) andpz thenL - BpC>o ;if N >4 and p > 2, then

N

- o—24
PMYN72 C B, *, where

MN 2 {f/supgeRNKIN 2|f( ) < OO};

2
Bernstein’s inequalities (cf. [31]).

. . N_o
if N >2andp € [¥,o00], then BO%2 C By« . The proof is a direct consequence of

N

It remains to show that for any N > 2 and p € [1,x], BEOZZ C BMO™2
B3? € BMO™2, where

~ 1
2= Ml = Q0,2 e dl7,)* < oo}
Indeed,
lull paro-—> = €2V Ky xullg2, < eny iglgt%%”gAVfQ |

S enpllVEs xull xS enpllull, v,
B BF

P, P,

N _o N _q
since VKo is bounded from Bps to By . It remains to show that for any 1 <
N

LN 9 N9
p1 < p2 <ooand N > 2, Bjl « C Bp?o , which is also a consequence of Bernstein’s
inequalities. At last, it is easy to prove that B;Q C BMO™2 by making use of the
Hausdorff-Young’s inequality.
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3.5. Analysis of (1.1) with s =2 and N =4

In this subsection, we study the following system

pr = penp — p1in ¥V - ()VA™*p) =0, pli=o = po. (GDa=2)
Define
t
Jo: prr Jolp) = "2 po + puin / eten (AT L (pVA~ p)dr. (3.13)
0

Next we will prove the a priori estimate of Ja(p).

Proposition 3.6. Let Jo be as in (3.13) and N = 4. For any pien, ftin > 0 and pg € B;g,
we get

||j2(P)||Zgo(B;g)nZg(B;§) <c HPOHng tc ||P||Zz?o(B;g)mZ%(B;§)- (3.14)

Additionally, e"=nt*®py — pg in BZS ast 0.

Proof. Since ||e“e“mpo||Z$Q(B;g)ng(3;§) < C||PO||B;3 follows by standard argument, it
suffices to control the remained part. Following the similar arguments as in [9, Lem-
mas 2.3 and 2.4], it is a direct consequence of [7, Lemma 2.1 on smoothing effect],
B 2+k C B 3+k C B 4+k for £k = 0,1 in 4 dimensional space, and Cauchy—Schwarz
1nequahty in Zl we get

en(t—T)A —4
| [ et 8 (VA el e i

< cmin {[|pVA ™ pllza 572y 1PVA pllzy2) )

< e[ (p, VAT D) 227y + 10VAT o = I0 (0, VAT 0) 7y 53,

< el (o, VAT o) 22 379) + 1PVA™ 0 = T (0. VAT 0) 3 351,

< eI (0, VAT 0) 122 gy + A (pV A p =TI} (0, VA™*p)) [ L1 12
< e lollzzqsy3 6l oy + 1012552,

< cllellzz s lole sz + 10132 5;2)

where in the second term of the fourth inequality, (2.8) plays a key role in balanc-
ing A='. In fact, estimating A~1(pVA~4p — I} (p, VA~*p)) is equivalent to estimate
Irh(A=2p, A=2p), TIIR(A=2p, A=2p) and I} (p, A=%p). O
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Proof of Theorem 1.12. We divide the proof into three steps. At first, Proposition 3.6
ensures that J> maps a closed ball B(0;¢) of L° (B;g’) N L?(BZ%) with e < 1/(4¢?) into
itself. Hence J» is well defined. Next, suppose p; and py are two solutions of (3.13) with

the same initial data py € B(0;¢), then
| J2(p1) — j2(p2)||ig°(B;§)mZ$(B;§) < 4CQ€||P1 - P2||Egc(3;§)mZg(B;§)

where 4c%¢ < 1. Indeed, denote p§-4) = A=%p;. Then we have

2 (PlVP§4)—P2VPé4)) = (p1+p2)V(p1—p2)® + (p1—p2)V(p1+p2) ™.

It is clear that the right hand side of the above identity is symmetric and satisfies Lem-
mas 2.1 and 2.4. Thus existence and uniqueness of solutions follow immediately from
contraction arguments. At last, time continuity follows from Proposition 3.6. Conclu-
sively, we finish the proof of Theorem 1.12. O
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