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Abstract
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1. Introduction

In real life, there are many fluids with the charged particles which transport under the influ-
ence of the (self-)electrostatic potential. For instance, the flow in semi-conductors [29,39,47,51],
ion channels [8,23,48], plasmas [10,12,53], and so on. Then, some mathematical models were
proposed to describe and simulate the dynamics of such the fluids in light of different consider-
ations, such as, the Vlasov—Poisson—-Boltzmann model [7,36,39], the hydrodynamic model (for
example, Euler—Poisson model, Navier—Stokes—Poisson model, etc.) [5,9,29,31], the Poisson—
Nernst—Planck (PNP) model (also called drift-diffusion or electro-diffusion model) [8,29,33],
etc.

In this paper, we use an Energetic Variational Approach (EVA) to explore a new hydrodynam-
ical model in R3:

pr + div(pu) =0,
(ou); +div(pu @ u) + Vp(p)
=puAu+ (u+pu)Vdivu — Vo) — Vir(w) + € ApVe,
vy + div(vu) =div (D, Ve (v) + DyzyevVe),
wy + div(wu) = div (D, Vi (w) + Dyzwew Vo),
—eAp = zpev + zyew,

(1.1)

which could be called a generalized Poisson—Nernst—Planck—Navier—Stokes (PNP-NS) system
since it seems that the (microscopic) PNP system couples with the (macroscopic) compressible
NS system. Here, the unknown variables p, u, v(w), ¢ and p represent the fluid density, the
fluid velocity, the distribution of the negative (positive) charge, the electrostatic potential and the
pressure function, respectively. The functions ¢, ¥ are determined by the entropy density o, h
given in (2.4) in light of the relations (2.8) and (2.11). The physical parameters are the viscosity
coefficients of fluid w, u’, the dielectric constant €, the charge of one electron e, the diffusion
coefficient of negative (positive) ions D, (D,,) and the valence of negative (positive) ions z,(zy).

Now, we review the history about the Poisson—Nernst—Planck (PNP) system. The original
PNP model can be read as the following diffusion equations

. pe
v, =div [Dv <Vv + X TvV¢)i| ,

B

1.2

wy = div |:Dw (Vw + ]j:; wv¢):| s (1.2)
—€eA¢p = zpev + zyew,

with the corresponding energy dissipation law

d d 1
EE””“I = E/kBT(vlnv +wlnw) + Eq&(zvev + zwew)
kgT kgT
== D vIuU|2+D—ww|uw|2 = —A. (1.3)

The above kp, T and u,(u,,) denote the Boltzmann constant, the absolute temperature and the
effective velocity of the negative (positive) charge, respectively. Then Hsieh et al. [27] derived
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the equations (1.2); , from the energy dissipation law (1.3) by using an energetic variational
approach combined with the equations (2.12)—(2.13) and the Poisson equation (1.2)5. Such a
system (1.2) is usually used to describe the dynamics of the conductive fluid with the dilute
charged particles [17,18,39]. We could also refer to [4,21,24,35,41,43,49,59] for existence and
asymptotic behavior of solutions to (1.2). In addition, the quasi-neutral limit (i.e., € — 0) of
the PNP system has been extensively studied in [22,34,56,57] and the references therein. For
the incompressible Poisson—Nernst—Planck—Navier—Stokes system, the readers could refer to [6,
30-32,37,50,60].

In spirit of [27], we consider a general energy dissipation law stated as (2.3)—(2.4) and (2.7).
Here, we characterize the micro—macro interplay by introducing the combined total micro—macro
energy and choose more general entropy densities o (v) and 2(w). Then, we derive the above
system (1.1) by the EVA as in Section 2. Such a system could be used to describe the micro—
macro dynamics of the compressible viscous conductive fluid with the dilute charged particles.
Of course, there is another case that the charged particles are crowded (dense). Such a case can
be also found in ion channels and the electrodes of batteries [13—15]. At this time, the derived
model will be more complex, and an important phenomenon on the cross-diffusion happens, the
readers could refer to our forthcoming paper [58].

In this paper, without loss of generality, we set u =€ =e =1z =Dy, =Dy =1, u' =0 and
Zy = —1in (1.1). Then, the system (1.1) may be reduced to:

or +div(ou) =0,
(pu)r +div(pu @ u) + Vp(p) — Au— Vdivu = =Vo(v) — Vi (w) + ApV,

vy +div(vu) — Ap(v) = —div(vVe), (1.4)
wy 4+ div(wu) — Ay (w) = div(wVe),
Ap=v—w.

Here we assume that the functions p(p), ¢(v) and ¥ (w) are smooth ones such that
p'(p)>0forp>0, ¢'(v), ¥'(w)>0forv,w>0. (1.5)

Without loss of generality, we assume p’(1) = ¢’(1) = /(1) = 1. We look for the solutions
(p,u, v, w)(x,t) to the Cauchy problem for (1.4) with the initial data

(p,u, v, w)(x, 1) [1=0= (po. U0, vo, W) (x), x €R?, (1.6)
and the far-field behavior

lim (p,u,v, w)(x,1)=(1,0,1,1). (1.7)

[x|—>+
In addition, the Poisson equation (1.4)5 implies the electrical neutrality of the far-field, i.e.,

lim ¢ (x,1)=0. (1.8)

|x]—+o00
We define the perturbation by

o=p—lLu=u, V=v—-1, W=w-1, ¢ =9¢.
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Then, the Cauchy problem (1.4)—(1.8) becomes

or +div((e + Du) =0,
e+ 1) (us+u-Vu)+ p'(o+1)Vo — Au—Vdivu
— ' (VEDVV — ' (W + 1)VW + ApVo,

V, +div((V + Du) — Ap(V + 1) = —div ((V + 1)Vg), (1.9)
W, 4+ div((W + Du) — Ay (W + 1) = div (W + 1)Vg)
Ap=V —W,

(0, u, V, W) |i=0= (00, uo, Vo, Wp).

Since the perturbed system (1.9) is a new coupled hyperbolic—parabolic—elliptic equations,
the analyses for its well-posedness will be relatively complicated. Firstly, we develop a simple
approximation scheme to prove the local solution as in Section 3. Then we establish the refined a
priori estimates by making some detailed energy estimates. Thus, the global solution is obtained
by combing the local solution and the a priori estimates as well as a continuous argument. To
prove the optimal time decay rates, we do an important observation. We find that the electrostatic
potential ¢ satisfies a special equation stated as (5.12). Then some effective energy estimates
could be established as Lemmas 5.1 and 5.2. With the help of Lemmas 5.1 and 5.2, we can prove
the optimal decay rates of the solution and its derivatives of any order.

Notation In this paper, we use H*(R3), s € R to denote the usual Sobolev spaces with norm
Il gs and LP(R3),1< p < oo to denote the usual L” spaces with norm ||-||;». The symbol vt
with an integer £ > 0 stands for the usual any spatial derivatives of order £. When £ < 0 or £
is not a positive integer, V¢ stands for A¢ defined by A¢f := F~1(|€|*F f), where F is the
usual Fourier transform operator and ¥ —1 s its inverse. In particular, we use (-, -) to denote the
standard L? inner product in R3.

We then recall the homogeneous Besov spaces, cf. [3]. Let g € C§° (Rg) be such that g(&§) =1
when |§] < 1 and g(§) =0 when [§] > 2. Let g(§) :=g(§) — g(26) and g;(§) :=g(27/§) for
J € Z. Then by the construction, ZjeZ gj(&)=1if &€ #0. We define A; f := }‘—l(gj) * f,
then for s € R and 1 < p, r < 0o, we define the homogeneous Besov spaces B;‘,,,(R*%) with norm
”'”B;;.r defined by

1

Ifllgs = (erSJHAijZp);_

pP.r
JEZ

Particularly, if » = oo, then
1Ny, =sup2Y A £, -
JEZ

Throughout this paper we let C denote some positive universal constants. We will use a < b
if a < Cb. We use Cy to denote the constants depending on the initial data. For simplicity, we
write [[(A, B)llx :=lAllx + 1 Bllx and [ f := [ps f dx.

The denotation Ck(O, T; B)(k = 0) denotes the space of B-valued k-times continuously dif-
ferentiable functions on [0, T], L";o(O, T; B)(k > 0) denotes the space of B-valued k-times
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boundedly differentiable functions on [0, T'], and £,(0, T; B) denotes the space of B-valued
L2-functions on (0, T).

Our main results about the large local solution and the small global solution and the time-
decay rates are stated in the following theorems:

Theorem 1.1. Denote U (x,t) = (o,u, V, W)(x, t). Assume Uy := (00, ug, Vo, Wo) € H3 and
inf, cp3 0(x, 0) > —1. Then there exists a positive T (suitably small) such that the Cauchy prob-
lem (1.9) has a unique solution

o) €C%0, T; HHNC'(0,T; H),
(u, V,W)(1) C°0, T; H)NC'(O0, T; HY N L2(0, T HY),
which satisfies for any t € [0, T] and some v > 0,
1/2

t
o) > —1. and |U)] 5. v/||V<u,v,W><r)||§,3dr <C1 Ul s
0

where C1 > 1 is some fixed positive constant.

Theorem 1.2. Assume that Uy € H* for an integer k > 3. If the initial H3 norm 1Uoll g3 is
sufficiently small, then the Cauchy problem (1.9) admits a unique global solution (U, V)(t)
satisfying for all t > 0 and 3 < € <k,

1/2

t
U@ e + /uv@(r)niﬂ,l+||V<u,v,W)(r)||§,e+||A¢(r)||§,gdr < C Vol e -
0

(1.10)

If we additionally assume that ||V7] Vo — Wo) ||L2 is sufficiently small and Uy € Bz_io with 0 <
s < 3/2, then forallt >0,

<Co 407 for 0<e<k—1 (1.11)

12
|[vvol,..

and

L2<c0(1+z)*”5“ for 0<E<k—2. (1.12)

[vivew)

We give some remarks about our results.

Remark 1.3. We claim that the smallness of ” V=1 (Vo — Wo) || 12 could be removed by assuming
only V™(Vy — Wp) € L?. At this moment, we could prove that the decay rates (1.11) hold for
£ =0, 1. But, it is hard to obtain the higher-order decay. And such the restriction v-1 Vo—Wp) €
L? may be reasonable since it could be regarded as the restriction for the initial electric field Vg
by the equalities
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[V o —wo| ,=|v'ak) , =1V0l.2.

Remark 1.4. We claim that all the decay rates (1.11) with s = 3/2 are optimal in sense that it is
consistent with the decay of the heat kernel.

Remark 1.5. In fact, our decay rates (1.11)—(1.12) with s =3(1/p — 1/2) also follqw if we
replace Up € B, (0 <5 <3/2) by Up € L? (1 < p < 2) since the embedding L” C B, for
1 < p<2byLemmaAlS.

This paper is organized as follows. In Section 2, we use the EVA to derive the generalized
PNP-NS equations (1.1). Next, the local solution and the a priori estimates are shown in Sec-
tions 3—4, respectively. In Section 5, we mainly prove the global solution and obtain the decay
rates of solutions. We list some analytic tools in Appendix A, which are often used in this paper.

2. Derivation of models

In this section, we will derive a new hydrodynamic model by using an Energetic Variational
Approach (EVA) together with a prescribed energy dissipation law, which could be regarded as a
generalized PNP-NS system. Such the system could describe the dynamics of the compressible
conductive fluid with the dilute charged particles.

We first recall that the first and second laws of thermodynamics. In mathematics, they could
be read respectively as:

dK+1) _MJFQ

2.1
dt dt dt @D
and
dS do
T—=— , 2.2
dt dt + 2.2)

where IC, Z, W, Q, S and A is the kinetic energy, the internal energy, the work of external force,
the heat, the entropy and the entropy production, respectively.

In this paper, we assume that there is being isothermal and no external forces in the thermo-
dynamical process. Then, we combine (2.1) and (2.2) to obtain the energy dissipation law:

d
_Etotal — _A, (23)
dt

where E°'%/ = IC +7 — TS is the total energy. In our case, we could choose the total energy

E””“lzfa(v)+h(w)+§|V¢|2dx+f§|u|2+w(0)dx

microscopic macroscopic
62
=/U(v) +h(w)dx + % // G(x = y) 2oV + 2w w) (X) (2o ¥ + Zww) () dydx

+ [ Sl + e 24)
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where we have used Gauss’s law:
—eAp = zpev + zZyew. 2.5)

By solving the Poisson equation (2.5), we obtain
e
¢ = - / Gx — y) (v + zww)(y) dy, (2.6)

where the kernel G(-) = FIH is the fundamental solution of —A in R3. Next, we choose the
dissipation functional (the entropy production)

v w .
A=/D— fua — P+ — w4 gl Va4 Gt Ol divaP dy, @)

v w

where 1 and u’ satisfy the usual physical assumptions:

2
n >0, u’+§u>0.

Now, we begin to use the EVA to derive the equations of motion, as in [19,27,60]. We first
state the sketch of EVA. The first step of EVA is to define some action functionals in light of
the given total energy E?*? and dissipation A. Next, we find out the conservative force and the
dissipative force by computing the variations for the well-defined action functionals with the help
of the Least Action Principle (LAP) (or Hamilton’s principle) [1,2,19,25,28] and the Maximum

Dissipation Principle (MDP) (or Onsager’s principle) [19,28,44-46]. Finally, we could obtain the
motion equations by the total force balance. So, we first define the action functionals as

t*
2
A= /fa(v) Fh)+ 5 / G (x = ¥)(zuv + 20 w) () (20 + 2w w) (v) dydxdt,
0

t*
A :=//§|u|2—a)(p)dxdt.
0

Taking the variation of A (for any smooth v with compact support) with respect to v, by the
LAP, we obtain

t*
d d
0= — Ai(v+¢e0) = — —//a(v—l—eﬁ)dxdt
de e=0 de e=0
0
t*
d e? .
+ - - _///G(x —)’)(ZUU+Zv8v+wa)(x)(zuv+wa)(y)ddedf
de|,—o €
0
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t*
://(—a’(v)—zveqb)ﬁdxdt,
0

which implies (¥ is arbitrary),

S§A;

3A
—=—0'(v) - Zyed = Feonservative,y = UVW =—Vo(v) — zyevVo,

Sv

where
o) =0’ W) —o ). (2.8)

Taking the variation of %A (for any smooth & with compact support) with respect to u,, by the
MDP, we obtain

d IA( + ¢eit) d
= — —A(u )= —
de|,_o2 v de

1 v - 2 v ~
| — el —ul® dx = | —(u, —u)-idx,
s:OZ/Dv |uv+ ! 14| g /Dv(uv u) Has

which implies (& is arbitrary),

Gy v
Siv = D—v(uv —u)= Fdissipative,v-

By the total force balance for the negative charge, we obtain

h A6
conservative,v — —31) - 5uv = I'dissipative,v»
ie.,
vuy, = vu — DyVop(v) — DyzpevV. (2.9)

For the positive charge, we similarly have

SA; 8(3D)
F conservative,w — WV —— = = [Idissipative,w s
Sw Sy
ie.,
Wiy = wit — Dy VY (w) — DyyzpewVeo, (2.10)
where
() :=h'(w)w — h(w). 2.11)

On the other hand, we have the equations of conservation for the negative and positive charge,
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vy +div(vu,) =0, (2.12)
w; + div(wuy) =0. (2.13)
Plugging (2.9), (2.10) into (2.12), (2.13), respectively, we obtain
vy + div(vu) = div (D, Ve (v) + Dyzyev Vo) (2.14)
and
wy + div(wu) = div (D, VY (w) + Dy zyewVe) . (2.15)

For the macroscopic action functional A, we refer to [19] to obtain the macroscopic conser-
vative force

3A;

Fiacro-conservative = W = — ((pu); +div(ou @ u) + Vp(p)),

where
p(p) == (p)p — w(p).

And taking the variation of %A (for any smooth & with compact support) with respect to u, by
the MDP again, we obtain

d IA( + &)
= — —A(u+eu
de|,—o 2
d| 1
-2 —f(imv—u—gm%ﬂmw—u—smz
de 8:02 Dv Dw

+ u|Vu +eVil> 4+ (u+ p)| divu +8divﬁ|2) dx,

=fi(u,, ) (—i1) A+ (yy — 1) - (—ii) 4 Ve Vi + (o + i) divudivii dx,
D, D,
w

:f (—,u,Au — (w4 pHVdivu + DLU(M —uy) + Do

(u — uw)) -idx,

which implies (# is arbitrary),

3(3)

0 =—pAu — (u+ p)Vdivu + DLU(M —uy) + Di(u — Uy).

w

F macro-dissipative =

By the macroscopic force balance, we obtain

o
Sx  du

Frmacro-conservative = =F macro-dissipative s

ie.,
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v w
(pu); +div(pu @ u) + Vp(p) = pAu + (u + p)Vdivu + o W — 1) + = (w —u).
v w

Plugging (2.9)—(2.10) into the above equation, by the Poisson equation (2.5), we obtain

(pu); +div(pu @ u) + Vp(p) = pAu+ (u + 1 )Vdivu — Vo) — Vir(w) + € ApVé.
(2.16)

On the other hand, by the law of conservation of the macroscopic mass, we obtain
pr +div(pu) =0. (2.17)

Finally, we collect the equations (2.5) and (2.14)—(2.17) to obtain the compressible PNP-NS
equations

pr +div(pou) =0,
(ou); +div(pu @ u) + Vp(p)
=puAu+ (4 p)Vdivu — Vo) — Vi (w) + e ApVo,
vy + div(vu) = div (D, Ve (v) + DyzpevVe),
wy + div(wu) =div (D, Vi (w) + DyzywewVe),
—eAp = zpev + zyew.

(2.18)

Now, we can conclude the following proposition.

Proposition 2.1. Assume that the Least Action Principle and the Maximum Dissipation Principle.
Let the total energy be

€
E’”’“lzfa<v>+h<w>+ S1V61 + Slul + o (p) dx
and let the dissipation functional be
_ | 2, W 2 2 INT i 112
A= luy —ul”+ luw —ul”+ pw|Vul” + (u+ )| divul” dx.
D, Dy,

Then, we could derive the above PNP-NS equations (2.18) by using an Energetic Variational
Approach. Moreover, the equations (2.18) satisfies the energy dissipation law:

d
—_Etoral — _ A, (2.19)
dt

Proof. Multiplying the first four equations in (2.18) by @'(p), u, 6’ (v) + zyed, b’ (w) + zyed,
respectively, summing them up and then integrating over R3, we obtain (2.19). Given the previous
derivations in this section, we have proved that the above PNP-NS equations (2.18) follows from
the Energetic Variational Approach. O
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Remark 2.2. By solving the ODE: p(p) = o'(p)p — w(p) directly, we easily obtain

_Jplnp, if p(p)=p,

w(p) = .
oY, it p(p)=( —Dp”, y > 1
Remark 2.3. The variations ‘SESTZW =0'(v) + zyep and S%IZJW = h'(w) + zye¢ are called the

(electro)chemical potential [16] of negative and positive ions, respectively.
3. Local solution

throughout this section, we simply denote

U= u,V,W), Uy=(on,un, Vo, W), n=0,1,2...

and

8e=Jec % g, 80, = Je * go,

where J¢ is the Friedrichs’ mollifier for some € > 0, which was introduced by Friedrichs [20].
We also introduce the definitions of some function spaces:

Definition 3.1. For [ = 2, 3, we denote the function spaces

EO,T;: HY:={U:0(x,t)eC%0,T: Hync' o, T; H™),
W, V,W)(x,1) eC®0,T; H)YnC' (0, T; H'™?))

and

£0,T; HY :=(U :0(x,1) e £2,(0, T; H)Yyn £l 0, T; H'7Y),

w, V,W)(x,1) € £2.0, T; HHn £! 0, T; H'7%)).

In this section, we will establish the local solution. There are three key points. First, we need
to reformulate properly the original system. Thus, the reformulated system (3.1) is a coupled
hyperbolic—parabolic equations with some non-local terms. Next, we construct the corresponding
approximating system. To solve the approximating system, we turn to solve the linearized sys-
tem, see Subsections 3.1-3.2. Here, we refer to some energy estimates for the single hyperbolic
equation in [40], see Lemma 3.3 and Lemma 3.6. However, we need to carefully establish some
detailed energy estimates for the parabolic equations with the non-local terms, see Lemma 3.4
and Proposition 3.11. Lastly, we can prove the solution to the approximating system converges
to the solution to the Cauchy problem (1.9) ((3.1)), see Subsection 3.3. Hence, the local solution
is obtained.

So, we first rewrite (1.9) as
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or+u-Vo+(o+ divu =0,
1

T o+l o+l

Vi—¢'(V+ DAV =g2,

W, — ' (W + DAW = g3,

1

9

U Au

Vdivu =g
(3.1)

U li=0= U,
where
/
1 P+l v -1
N v T Vo + VAT (V-W
8 o+1 2T ot ( )
w "V +1 (W41
W gatwowy - VA Dy WA Doy
o+1 o+1 o+1
¢ i=—divu —V+W+¢"(V+1D|VV]>—div(Vu)
—V(V-=W)=VV.VAT (V —W),
g i=—divu =W+ V +y"(W+ DIVW|* - div(Wu)

+W(V—W)+ VW -VA T (V —W).

In the following, we will solve (3.1) by constructing approximating solutions. So, we need to
study the approximate system corresponding to (3.1):

ath +up—1-Von + (anl + 1)divu, =0,
1 1
Au, —
on—1+1 on—-1+1 .
Vi — @ (Va1 + DAV, = g2 '

n—1°
I Wn — ' Wy + DAW, =g _|,
Uy li=o=Up, U1 =Up, n=2,3,4,....

Oty —

Vdivu, = gi_l,

Here the nonlinear functions:

/
1 pon-1+1) Vi—1 —1

c=—uy_1-Vup_y — ——Vo,_ —— VA Vi1 — Wi—
8n—1 Un—1 Up—1 on 1+ 1 On 1+Qn7]+1 (V-1 n—1)
W, — "Vu1 +1 "Wyt +1

_ #VA_I (Va1 = Wu_1) — MVan _ MVW,,A,
On—1 +1 On—1 +1 On—1 +1
gy = —divin 1 — Voot + War1 + ¢ Vet + DIV * = div(Vio1un—1)

~ Vot (Ve = W) = VYV - VAT (Vi = W),
32_1 i=—divuy 1 =Wy 1+ Ve + 1aﬁ//(‘/vn—l + 1)|V‘/Vn—l|2 —div(Wy—1up—1)
+ Waet (Vi = Woe1) + VW1 - VAT (Vg = W)
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To solve the approximate system (3.2), we linearize (3.1) at (5, @, v, w) to obtain the lin-
earized system:

LY ,(0.u) =0+ -Vo+(n+ Ddivu= f,

1 1
L}?(u) =u; — ——Au — —Vdivuzgl,
n+1 n+1 (3.3)

LEV):=V,— ¢/ (1 + 1AV = g7,
LI(W):=W, — ¢/ (0 + DAW = g3

Here we could regard the functions n, @ = (wl , w2, w3)T 2
and g as known.
Next, we begin to establish the energy estimates for the linearized equations (3.3) so that we

can easily solve the linearized equations in Subsection 3.2.

0, W, f, gt =(g' g%, g7, ¢

3.1. Energy estimates for linearized equations
In this subsection, we also consider the single linear equation
Ly(@):=0+w-Vo=], (X0

where f:= f — (n + 1)divu is looked as a known function. Throughout this subsection, we
denote for some 7 > 0,

E= sup [[(n,, 0, 0))gs.
0<I<T

We first show some estimates for the commutators of the operators L, Lgyw, L,17, L%, Lg} s
V™ (m > 1) and mollifiers J., which will be used later.

Lemma 3.2. Assume that for some T > 0 and some constant ¥,

(n, @, 0, w)(t) € L0, T; H?), n(t) > x > —1,
U(t) € £0,T; H' forl =2 or 3.

Then we have forallt € [0, T]and 0 <m <[ — 1,

19" Ly (0) = Loy (V"0)l 2 < CE | Vol g
[V7L) (.10 = L) o (V70 9"0)

L S CE|V(o, u)llgm,

H VLY ) — LY (v | < CE I Vullgn, 3.5

L2
[V L3V) = LV V) (2 S CE IV VI ggn

[ V"L W) = L (V" W) (n SCEVWlign

and as € — 0,
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e ¥ Ly (@) — Loy (Je % Q)”H"Hrl — 0,

[Je s L3(V) = L3 (Je % V) |y — O,
[ Je % L3 (W) — L (Je x W) | 1y — 0.

Jer L9 (o) — LY o (Je % 0, Je # ”)HHm+1 0,

Jex L) — L) (Je » u)H 0 (3.6)

If we assume that U(t) € £, T; H?) and (', @', ', W) (¢) € LY(0, T; H?) with ' (t) > x >
—1, then we have

0 W —
HL(';,w(Q’ W) = Ly (0 M)HH2 S Coz?lg)T e, llpgs [0 =n's & =]
1 1 !
HL'?(”) N Ln’(”)HHl S Coz?ng iz [ = ”Hz’

3.7
[L200) = L2 1 <€ sup Vil 5= 7] 2
0T

[L50W) = L5y <€ sup IW i [ =]

0<r<

Proof. We can refer to Lemma 3.1 in [40, p. 74] by noting that the functions ¢, are
smooth. O

Now, we show the energy estimates for the linearized equations.
Lemma 3.3. Let [ = 1, 2 or 3. Assume that for some T > 0,
w (1) e L2(0,T; HY), f(t) e £ 0, T; HY.

Ifo(t) € llgo(O, T: HHN ll(])o(O, T; H'=) solves Eq. (3.4), then for any t € [0, T,

t

lo@ i < eF | ool + / o~CE
0

f(r)H AT (3.8)

Proof. We can refer to Lemma 3.2 in [40, p. 77]. O

Lemma 3.4. Let [ =2 or 3. Assume that for some T > 0 and some constant ¥,
(n, 0, B)(1) € L,(0, T3 H),
n( = x> -1,
(8!, 8% 8)() € L2,0.T: H'™Y).

If (u, V, W)(t) € £LO,(0, T; HYNLL (0, T; H'72) solves Egs. (3.3),—(3.3)4, then (u, V, W)(t) €
L0, T; H”l) and there exists a constant v > 0 such that for any t € [0, T],
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t
G, VWY 125 + v/ IV, V, @I, dr
0

1
2 2
< eCUTEN i (uo, Vo, Wo)l12, + C_/ ” (&' 8 gS)(T)HLZ ar

3.9)
0
and for 1 <k <,

t

Hvk(u, v, W)(I)Hiz +v/ HV“‘(u, v, W)(r)Hiz dr
0

t
< 190 o W0l 1+ € [ [ o)
0

2
dt (3.10)
Hk-1

Proof. Multiplying Egs. (3.3),—(3.3)4 by u, V, W, respectively, summing them up and integrat-
ing over R3, by the integration by parts and Cauchy’s inequality, we obtain for any & > 0,

d 2 2 ) /o~ 2 o~ 5

Sl v, W)||L2+<m,|vm + | divul >+<¢ G+1),|VV] >+<w (i + 1), [VW] )
1 .

=<mVn,Vu~u+d1vuu>+<g],u>+<g2, V>+(g3,W>

— (0" B+ V5, VVV) = (" (@ + 1)V, VWW)

<CIVO, B0 VG, Vo W2 16 VW2 + | 61 6% 8|

ARSI
2 2 2 ;2 .3
eIV Vo WIZ, +Coll+ ED @, VoW, +C 6" 6% 8|

2
L2’

Taking the above ¢ sufficiently small, by (1.5), we obtain for some v > 0,

d
T VoW +v IV @, Vo W)IZ, < OO+ B @, Vo W)IE: +C [ (6 8% ¢

2
L2

we have

By Gronwall’s inequality, the estimate (3.9) follows from the above inequality.
Next, we will prove the estimates (3.10) for 1 < k < [. Applying Je* to Egs. (3.3),—(3.3)y4,

Ly(ue) =gl +Hf, Hf:=L}(uc)— Je* L) (u),
L3(Ve) = g2+ Mf, Mf:=L}(Ve) = Je x L3(V), (3.11)
L3(Wo)=g>+Nf, Nf:=L3(Wo)— Jex L3 (W).

Multiplying Eqgs. (3.11);—(3.11)3 by —Aue, —AV,, —AW¢, respectively, summing them up and
integrating over R3, by Cauchy’s inequality, we obtain for any & > 0,
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—(Lhwo, duc) = L2V, AVe) = (LLWo), AW,
= — (gl + HE. Auc) = (g2 + M, AVe) — (g2 + Nf. AW,

<l Awe, Ve, WolI2 + Ce (”(gi,gi )

2 2
RS (RT3 BN
For the left-hand side of the above inequality, we have for some vg > 0,
—(Lhwo, duc) = (L2, AVe) = (LE W), AW,
<3 ! A ! Vdi A >
=—{0ue — ——Au — ——Vdivu, Au
the ]7+1 € n+1 € €
— (0 Ve — @' @+ DAV, AVe) — (0, We — /(0 + DAWe, AW,)

1d 2 1 2 ' 2
:EEHV(ME,VG,WG)IIH-I— m,lAuel +<<p (v+1),|AVe|>

1
+ <1/f/(ﬁ) + 1)7 |AWE|2> + <deiV“€, AM€>

1d 1 .
P EE IV (ue, Ve, We)”iz +vo [|A(ue, Ve, Ws)"iz + <ﬁVdIV”6’ Au6>' (3.13)

By the integration by parts and Cauchy’s inequality, the last term can be estimated by

1 1 1
<deiqu, Au€> > <m divue, Vn - Au6> — <m divue, Vn - Vdivu€>

> —¢||Aucll}, — CoE |Vucl7, (3.14)

for any ¢ > 0. Plugging (3.13)—(3.14) into (3.12), we obtain for some v > 0,

L\ e, Ve, W2 Ve, v, wo
TV e, Ve, W22 +0 | V2w, Ve Wo |

2 2
< CE?|V(ue, Ve, W2, + C (” (ge.82.8D)| , + || (A, M, Nf)||Lz> . (3.15)

By Gronwall’s inequality, we obtain

t
2
IV (ue, Ve, Ws)(t)”%} + 11/ H Vz(ue» Ve, WG)(T)HLZ dt
0

<eCE ( [V @o.c. Voo Wo.0)| 2

t
e (”(gé,gf,gfxr)\

2
ot ||(Hf’Mf,Nf)(r)Hiz) dr>. (3.16)
0
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As e — 0, by (3.6) of Lemma 3.2, we obtain

1
IV, V, WO, +vf |V v, W)(r)”i2 dr
0

2
dr |. (3.17)
L2

t
2
<P 190 Yo Wl + € [ [ 616 20|
0

Thus, we prove (3.10) for k = 1. Applying V to Egs. (3.11), we obtain
L,17(Vu€)=Vg€1 + VHf +H5, Hf:= L}7(w€) —VL,IJ(uE),
L2(VV) =VgZ+VM{ + M5, M5 :=L3(VV.) — VLi(Ve), (3.18)
L3 (VWe)=Vg2+VN{+ N5, N5:=L (VW) — VLI (W,).

Here we can apply the inequality (3.15) to V(u¢, Ve, W) in (3.18) to prove (3.10) for k =2. In

fact, for k =2, we deduce from (3.15) and (3.18) that for some v > 0,

2

d 2 2 3
_”V (e, Ve, We) +VHV (e, Ve, We)
dt L2

L2

<CE2HV2(M v.owal’
X € € € L2

+C (HV(gé, g2.8)

2
o+ I s N+ s s v - )

< CE2 Hvz(uea Ve, We)

2 1 2 3 2 € € N

LC HV(ge,gé,ge) L+ vaEr ME D
+ CE* ||V (ue, Ve, WOl

where we have used the estimate

| (HS, M5, NS |25 < CE2 | Vue, Ve, W),

by (3.5) of Lemma 3.2. By Gronwall’s inequality, we obtain

t

[l f [ o] a
0

1
2 2
<€t (H Ve Voo Wo|, + CE [ 190, Ve Wo I, de
0

t
2 2
+c/ (Hv(gi,gf,gi)(r)”L2+ ||V(Hf,Mf,Nf)(r)||Lz> dr)_
0
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Thus, by (3.6) of Lemma 3.2 and (3.17), as € — 0, we obtain

t
HVz(u, v, W)(I)Hiz —I—v[ HV3(u, v, W)(t)H; dt
0

t
< CEZeCEzt/ IV @, vV, W)(@)|3, de
0

t

5 2 2
+ 8 | | V20, o, Wo)HL2 +C/ HV(gl,gz,g3)(r)‘L2 dr
0
7 2
2
<P 9o v Wl + € [ | ], dr ). (3.19)
0

Thus, we prove (3.10) with k = 2. Similar to the case for kK = 2, we can prove (3.10) with k = 3.
Hence, the proof of Lemma 3.4 is completed. O

Now, we can use Lemmas 3.3 and 3.4 to obtain the energy estimates for the solution U (¢).
Lemma 3.5. Let [ =2 or 3. Assume that for some T > 0 and some constant ¥,

(m, @, 0, w)(t) € L0, T; H?),
n) = x > —1,

f()eL£30,T; HY,

(g'. g% 8 (1) € L300, T H'TH.

IfU(t) € £(0,T; H') solves the system (3.3), then (u,V,W)(t) € L2(0, T; H'*'Y and there
exists a constant v > 0 such that for any t € [0, T'],

; 172
WOl v [ 196 v W@ dr
0
' ' 1/2
2 2
<eC<1+E>’(||Uo||Hz+/||f<r)||H, ar+(c [ @], a )
0 0

Proof. By the estimates (3.8)—(3.10) in Lemmas 3.3 and 3.4, we obtain

t
2 ~
U@ < C0HE ‘(llaollm +/ Hf(”HH, dr
0
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1/2

t
2
o Yo ol + € [ | ar
0

t
2
< eCUFE) ’(ngoum + / If (D)l dt
0

¢ 1/2
5 2
+C(1+ By 2eCUEN (g, Vo, Wo)llZ, + / [¢' @) e
0
¢ 1/2
1 2 3 2
o Vo ol + € [ [ ar
0
172

t t
2 2
<eC<I+E>’<||Uo||Hz+/||f<r)||Hz art (e [ 2erm], ar )
0 0

where we have used that

1/2

t t t
7], ar< [1r@i de+cas o | [ivu, ar
0 0 0

and
C(l +E)tl/2eC(1+E2)[ g C(l +E)2t+eC(1+E2)t < eC(l-‘rE)zt.

By (3.9)—(3.10), we obtain
1 t
2
o [19 6 v W@ dr <€ ol 4 c [ |6 o], o
0 0

The proof of Lemma 3.5 is completed. O
3.2. Solving the linearized equations

We assume that for some 7' > 0 and some constant y,

(n, @, 0, w)(t) € CO0, T: H?),
n = x>-1,
f()eC%0,T; H3),

(g'. 82,83 (1) eC%0,T; H).

Next, we will solve the Cauchy problem for the linearized equations (3.3):
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L%o,u):=0;+w -Vo+ (n+ ) divu = f,
| 1 1 , |
L (u):=u— ——Au— ——Vdivu=g,
n+1 n+1

L2(V):=V, — ¢ (1 + DAV = g2,
L3(W): =W, — ¢/ (0 + 1AW = g3,
U |;=0=Up.

(3.20)

We first solve the following Cauchy problem

(3.21)
0 l1=0= 00,

{L(Q) =0+ Vo=,
where @ and f = f — (n + 1) divu are regarded as known.

Lemma 3.6. Let [ = 1 or 2. Assume that for some T > 0,

w(t) € CY0, T; H3),
f@)eco,T; HY.

If oo € H!, then the Cauchy problem (3.21) has a unique solution
omyec®o,T; Hynclo, T; H)

such that for any t € [0, T],

t

lo@ i < 5 | ool + f o—CE
0

7 (r)H Lt (3.22)

Proof. By referring to Proposition 4.1 in [40, p. 83], we omit the details. O
Next, we solve the Cauchy problem of (3.20),—(3.20)y4.
Lemma 3.7. Let [ =2 or 3. Assume that for some T > 0 and some constant ¥,

(1,0, w)(t) € CO0, T; H?),
n@) = x > —1,
(', 8% g5 ec’o,T; H ).

If (uo, Vo, Wp) € H'!, then the Cauchy problem of (3.20),—(3.20)4 has a unique solution
u, V.W)(t) eC®0.T; H)nC'(0, T; H'~?)

such that for any t € [0, T],
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t
G, VoW1, + v/ IV, V, W@, d
0

t
2 2
<€ o vo ol + € [ e oo, ar | 623
0

where v > 0 is some constant.

Proof. For the existence and uniqueness of solutions, we could refer to Theorem 2.5.1 in [11,
p. 108]. Then we can use Lemma 3.4 to obtain the energy estimates (3.23). O

Now, we can obtain the solution to the Cauchy problem (3.20) by using Lemmas 3.6 and 3.7.

Proposition 3.8. Assume that for some T > 0 and some constant ¥,

(n, @, b, w)(r) €C%0,T; H),
nwzx>-1,
f@)eC%0.T; H?),

(g', 8% ¢) (1) eC’0,T; H').

If Uy € H?, then the Cauchy problem (3.20) has a unique solution
Ut) € £0,T; H?) (3.24)
such that
@, V. W)(t) € £2(0, T HY) (3.25)

and forany t €0, T],

; 1/2
IOy, |v / IV, V. W)(@)3,, dt
0
¢ 1/2
2 2
<8 ol + (¢ [ |6 2ol ar | | 629
0

where v > 0 is some constant.

Proof. We consider the solution (g, ¢, Ve, We)(¢) with any € > 0 to the system
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L%0e, ue) = f,
L'(ue) =g/,
L2(Ve) = g2,
L3(We) = g3,

(3.27)

with the initial data
Oc lt=0= 00, (e, Ve, We) |r=0= (10,e, Vo,e. Wo,e).
Since (g!, g2, g2)(t) € C°(0, T; H?) and (ug.c, Vo.c, Wo.c) € H?, by Lemma 3.7, we obtain
(e, Ve, W) (1) €C0, T; HNC' (0, T; H')
and
—(n+ Ddivue () € C%0, T; H?).
Thus, by Lemma 3.6, we obtain
0c(1) €C%0,T; HHNC' 0, T; H).

Consider the difference of solutions for any ¢, ¢’ > 0. By Lemma 3.5, we obtain for any 7 €
[0, T1,

(0 — Qe the —Uer, Ve — Ver, We — We’)(t)”[-lz s
12

t
V/ V(e —ue, Ve = Ver, We — We’)(l')”ilz dt
0

C(1+E)?
< CUTE) '(H (o,e — o', Vo.e — Vo.ers Wo,e — Wo.e) | 2

1/2

t
2
e flal-slg g -], dar )»0, (3.28)
0

as €, ¢/ — 0. Thus, we obtain the solution U (¢) to the Cauchy problem (3.20) as the limit € — 0,
which satisfies (3.24). The estimate (3.26) follows from Lemma 3.5. Then the estimate (3.26)
gives the uniqueness and (3.25). The proof of Proposition 3.8 is completed. O

Lastly, we prove the existence of the solution in £(0, T; H 3} for some T > 0 of the Cauchy
problem (3.20).
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Proposition 3.9. Assume that for some T > 0 and some constant ¥,

(n, @, 0, w)(t) €CY0,T; H?),
n) =z x>-1,
£=0, (g', g% g3 eC0, T; H?).

If Uy € H?, then the Cauchy problem (3.20) has a unique solution
U(t) e £0,T; H) (3.29)
such that
W, V. W)(t) € £2(0, T H*) (3.30)

and forany t € [0, T],
1/2

t
U@ ps v/IIV(u, V. W) ()3 dt
0

172

t
2 2
< CHB g+ [ € / [ et @] ar| . (3.31)
0

where v > 0 is some constant.
Proof. Applying V to (3.20), we obtain
L°(Vo,Vu) = —(Vo)T - Vo — Vpdivu := f,

L' (Vu) = Au- (V)T — Vdivu - (V)T + Vgl =gV,

1
S+ 1)2 (n+ 1)
LA(VV)=¢" (3 + )AVVi + Vg2 :=g?,
L3(VW) =v" (0 + DAWV® + Vg3 := g%,
VU |,—o= VU € H?.

(3.32)

Then, we could combine an iteration method and Proposition 3.8 to solve the Cauchy problem
(3.32)in £(0, T; H?). Denote

U™ (1) == ([Vol™, [Vu]™, [VvV]™ [VW]") () form =0,1,2, ....
Noting

1£' | 2 SCENV(0. W)l g2

v 2 3 1,2 ,3 2
[ g% e <[V et +CE |V vow|
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we can solve the Cauchy problem (3.32) by the iteration process:
Ut == v,

and U™ (t), m =1, 2,3, ..., is the solution, belonging to Y0, T: H2), of the problem

3
LO([VQ]W), [Vu](’”)) — _(Vw.)T . [VQ](mfl) —Vn Z([Mxi](mil))s

i=1
1 3
L' ([Vu]™) = T <div([w](m_l)) +V Z([ux,-]""‘”)) (VT +vg!,
n i=1
LA((VV1™) =" (@ + D)V diviVV]™ D + vg?,
L*((VW]™) = " (@ + DV div[VW]" D 4+ vg3,
U™ |i=o= V.

(3.33)

Next, we estimate the approximation {{/™ (¢)}. First, we have

leeo|, <ivuor?
I 0l g2

and

t
2 2
Ut o), <ecE ”(nvvoni,z + [ CE 190wl dr
0

t

+ c/ (HV(gl,gz, S+ B[V, WO)H;) dr)
0

t

. 2

<ec(H-E ) ||VU0||§_12+C/ HV(gl,gz,g3)(T)”Hl dr |.
0

Form =1,2,3, ..., we consider the difference system

LO([Ve] ™D — [Vo]™ ., [Vu] ™D — [Vu]™) = Gy,
LY((Vu] "D — [Vu] ™) = G,

LA[VV]™D [V [vw]oemtD — [vw]m) =G,
L3VVID [V [ W]t — [vw]m) =G,

where
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Gy :==(Ve)" - ([Vel™ — [Vel" ") =¥ ij([n 10— [ D),

1 . . - " m—
G == (dw (11 = (vu =) +VZ([uxi]( ) uy ] ”)) (v,

i=1
Gy :==¢"(0+ D)Vidiv ([VV](’") - [VV]<"'—1>) ’
G =" (i + 1) Vb div ([VW](’”) _ [VW](m*U) ,

By Lemma 3.5, we obtain

t

2 2
H (um+l _um)(t) H R g eC(l+E2)t f CE2 ” (um _Z/{m_l)(‘[])H , df],
H H

0
t T] 5
gec(l-i-Ez)[/CEZeC(l-i-Ez)Tl fCEZ H(Z/{m_l _um—Z)(rz)HHz ded'L'],
0 0

E2 m 2 . 2

CU+E)T 2 1 2 3

<<1+E2> e vl + ¢ [ v e ], ar
0

— 0, m — oo,
which implies that there exists
VU(t) = lim U™ () eC%0, T; H?),
m—0oQ

which is the unique solution to the Cauchy problem (3.32). Thus, we obtain the solution
U()e&,T; H3) to the Cauchy problem (3.20). Then, by Lemma 3.5, we can obtain (3.30),
the energy estimate (3.31) and the uniqueness of the solution. This completes the proof of Propo-
sition3.9. O

3.3. Local solution for the nonlinear equations

In this subsection, we will prove that the Cauchy problem (3.1) ((1.9)) admits a unique so-
lution in £(0, T'; H>) for some T > 0 such that o > —1. By (3.3), we can simply denote the
approximate equations (3.2) as

Lgn 1sUn— I(Qn’ l/ln) ZO’

Qn l(un)—gn 10

Ly, (V=g (3.34)
Ly, (W)=g} |
Uy =Uy, U, li=0=Up, n=2,3,4,...,
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which satisfies

inf go(x) > —1.
xeR3

Define

Eo = Uplly3 < o0,
x = (infoo(x) — 1)/2 > —1.

Next, we will estimate the approximate sequence {U,(1)}2 ;.
Lemma 3.10. If T is suitably small, then we have for all n > 1
Un(t) € £, T HY),

such that for any t € [0, T],

1/2

t
U g5+ v/||V<un,vn,wn><r>||§13dr < C1E
0

and

on() 2 x> -1,

where v > 0 and C| > 1 are two fixed constants.

93

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

Proof. We will prove this lemma by using an induction. First, it is trivial for n = 1 by (3.36).
Assume (3.37)—(3.39) follow for U (t), k =2, 3, ...,n — 1. Then by Proposition 3.9, we have

U, (t) € £, T; H?)

and
1/2

t
WUl v/ 1V Gt Vi, W) (D112 dT
0

t
i 2
< SO [y 43 + / [t s @], ar

0

t

172
2
< (CU+ED ’(I|U0||H3 + (/C(Eo) 1Un-1(D)35 df) )

0
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/ 1/2
< CUFTED | OBy + /C(Eo)Egdr < Ci1Ey (C; > 1), (3.40)

0

provided that ¢ € [0, T1] for some small 7; > 0. By Eq. (3.34); and (3.40), we have that the
sequence {d;0,, ()} is uniformly bounded, which implies that the sequence {g,(¢)} is equicontin-
uous with respect to ¢. Then, there exists a small 7> > 0 such that for all n > 1,

on(t) > x > —1foranyt € [0, T2].

Fix T = min{Ty, T»}. Hence, (3.37)—(3.39) follow for any n = 1,2,3,.... The proof of
Lemma 3.10 is completed. O

Now, we could show the local solution to the Cauchy problem (1.9).

Proposition 3.11. Assume Uy € H> and inf o(x, 0) > —1. Then there exists a positive T (suitably
small) such that the Cauchy problem (1.9) has a unique solution

T; H?
Ut)e&0.T; HY), \ (341)
(u, V,W)(t) € L2(0,T; H"),
which satisfies for any t € [0, T] and some v > 0,
o(r) = (infoo(x) — 1)/2 > —1,
172
(3.42)

t
IU @ g3 » V/ IV @, V, W)(@)|3; dt < CillUoliys
0

where C1 > 1 is some fixed constant.

Proof. First, we could show a convergence of the approximate sequence {U,(#)} constructed
in Lemma 3.10. Subtracting the equations (3.34) with n =m > 2 from that forn =m 4 1, we
obtain

0 0 0
Lo im (Om+1 — Oms Um+1 — Up) = Ly ims (Om, um) — Lo im (Om um),

Lém WUms1 —Um) = Li’m—l (Um) — Lém (um) + <g,£1 — grln_1> ,
2 2 2 2 2 (343)
LY, Vst = Vi) = L3, Vo) = L3, (Vi) + (82 = 821

m

L3y, W = W) = L3y, (W) = Ly, W) + (83— 831 )

with the initial data

(Um+1 —Un) l1=0=0, m=2,3,4,.... (3.44)
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Next, we will use Lemma 3.5 to estimate the solution (U, +1 — Uy, ) (2) to (3.43)—(3.44). For some
fixed m > 2, by (3.7) of Lemma 3.2 and Lemma 3.10, we obtain for some 7 > 0,

Un(1) € LL,0,T; H3), gu(t) = x > —1,

Lgm,um (Om» m) — Lgm—l»um—l (Om>um) € ﬁgo((), T, H2)a

Ly () =Ly (un), Ly, (Vi) =Ly, (Vi) Ly, (W) = L3y, (W) € L0, T3 HY,
8 = Em—t1 8m ~ &m_1+8m — 8m—1 € L3O T HY),

(Un+1 = Un)(1) € £0, T; H).

In addition, we easily estimate

e —anro 8t —ghrogh —gaD)|,, SCEDNWUn = Un-Dllgz. (349

So, by Lemma 3.5, (3.7) of Lemma 3.2 and (3.45), we have
t
2
[(Ums1 = Un) O[3, < eCTTETC(E) / |(Un — Un-D)(@)l3,, dTi,  (3.46)
0
which implies

t
2
U1 = Un) OBy < COEPT () [ 10U = U)o

0
1 Tm—3
2 _
< (CUTEDT C(Eg)ym=2 f / / 1(Us — Un) (tn-2)I22 dTm -2
0 0 0

Tm-3

r T
2 _
< (eCUTET C(Ep)ym—! / / / Tn—2d T2
00 0

_ (eC(1+EO)2TC(Eo)T)m_1
b (m — 1)!

—0, m— o0.

Hence, {U,(¢)} with n > 1 is a Cauchy sequence in CY%0, T: H?) and then there exists U (¢) €
CY%0, T; H?) such that

U, (t) — U (1) strongly in C°(0, T; H?), n — oo. (3.47)
By Lemma 3.10, there exists a subsequence {n'} C {n} such that

YV, V, W) (t) = V(u, V, W)(t) weakly in £2(0, T; H>), n’ — occ.
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By Lemma 3.10 again, we have that for any fixed ¢ € [0, T], there exists a subsequence {n"'} C
{n'} such that

U, (1) — U(r) weakly in H?, n” — oo.

So far, we have proved that the Cauchy problem (3.1) has a solution U(t) € £(0, T; H>) such
that

ot) = x> -1

Next, we will show that such a solution U(t) belongs to £(0, T} H?). Since U(t) €
C0(0, T; H?) by (3.47), we have Uc(r) € C°(0, T; H*®). Applying Je* to Egs. (3.1);—(3.1)4,
we obtain

Ly (0c,ue) = R, RY:= Ly, (0c,ue) = Jex Ly, (0, 1),
Lywe) =gl + Rl Rl:=Lyue) = Jex Ly,

Ly (Vo =g>+R2, R>:=L3(Ve)—Jex L3(V),

L3, (Wo=g>+ R, RI:=L3,(Wo)—JexL3,(W),

Ue l1=0=Up,e.

By Lemma 3.2 and Lemma 3.5, we can estimate the difference for any €, ¢’ > 0,

T
2
sup ||<U6—Ue/>(t)||Hs<ec<1+E>T(||(Uo,e—Uo,e/>||H3+ [ | ro,,ax
0<I<T g H-

T 1/2

3
2 2
1 1,2 2 .3 3 i i
o G R ROl R o (TR AT )
0 i=1

By (3.6) of Lemma 3.2 and the property of mollifier, we have as ¢, ¢/ — 0,

sup |[[(Ue —Ue) ()]l g3 — 0.
0<I<T

Hence, the solution sequence {U(¢)} has a limit U (t) € £(0, T, H3) ase — 0.
__ Finally, we prove that the solution U (7) is unique. We assume that there is another solution
U(t):=(o,u, V, W)(t) satisfying (3.41)—(3.42). Recalling (3.47), we have

Up (1) — U (1) strongly in C°(0, T; H?), n — oo. (3.48)

For such a sequence {U,(t)} and U (1), we consider
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LY (@0 — 8ty — i) =LY 1 (@,0) — L, . (8, i0),

Ly Gy =) = LY@ — L} @ + (g3~ 8').

L3, 0a =N = 13D - 13, (D + (61 - 82).

Ly, Wo = W) = L3,(W) = L, (W) + (83 - &%)
with the initial data
(Un — U) |;=0=0.

By Lemma 3.5, (3.7) of Lemma 3.2 and (3.46), we have,

t
[ — D022 < eCOTE C(Ey) f | s — 0|2 dr
0

t
<€t ey [ ([ W =D+ 10U = Up @) dr.
0

which implies that
U, (1) — U (1) strongly in C°(0, T; H?), n — oo. (3.49)

In light of (3.48) and (3.49), we have U (t) = l7(t) forany r € [0, T'].
Hence, the proof of Proposition 3.11 is completed. O

4. A priori estimates

In this section, we will establish the a priori estimates. For this purpose, we need to derive the
detailed lower- and higher-order dissipation estimates for o, u, V, W, ¢. Since the system (1.9)
is a coupled complicated equations, there are some tricky nonlinear terms needed to be bounded
carefully, for instance, see (4.21)—(4.22). In particular, some fine interpolation estimates are used.
Unlike the pure Navier—Stokes—Poisson equations [55], we also need to deal carefully with the
terms involved with the electrostatic potential ¢. This is because that here the electrostatic po-
tential ¢ is related to the microscopic charge density V, W by the Poisson equation

Ap=V —W.
However, for Navier—Stokes—Poisson equations, the relation is
A¢ =o. 4.1)
In fact, the equation (4.1) is helpful to establish the lower-order dissipation estimates for o, cf.

[55]. But here it is impossible. This is also why we need to derive some extra estimates for
the electric field V¢ in Lemma 5.1 so that we can prove the decay rates in Subsection 5.2.
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After constructing the lower- and higher-order dissipation estimates for o, u, V, W, ¢ as in Lem-

mas 4.1-4.3, it is easy to derive the a priori estimates given by Proposition 4.4.
To derive the a priori estimates effectively, we rewrite the system (1.9) as

or +divu = —div(ou),
ur+Vo+VV+VW — Au— Vdivu = Fy,
Vi — AV +divu + A¢p = F»,

Wi — AW +divu — Agp = F3,

Ap=V —W,

(0, u, V, W) |;=0= (c0, uo, Vo, Wo).

Here the above nonlinear terms are defined by

1
Fi:=—u-Vu— fi(Au+Vdivu) — /,Vo — aVV —f4VW+?A¢V¢,
0

F>:=—div(Vu) — div(VV¢) + div ((¢'(V + 1) = DVV),
F3:= —div(Wu) +div (WV¢) +div (/' (W + 1) = DVW),

where
fo=_2 f2~=p/(9+1)—1
To+1T7TT o041 ’
f3.=<p’(V+1)_1 f4.=w’(W+1)_1
' o+1 SRl o+1

4.2)

4.3)

(4.4)

In the sequel, we will derive the a priori estimates for the solutions to the PNP-NS equations

(4.2) by assuming that for some sufficiently small 6 > 0 and any ¢ € [0, T] with T > 0,
U g3 = l1(e.u, V. W)(D)llgz <8,
which implies
120+ 1L, V+1L,W+1L3/2
and

|fil1f2
1311 f4

Clol,

|
| < Clel +IVI+ WD,

NN

by Sobolev’s inequality and Taylor’s expansion.
First, we derive the lower-order dissipation estimates for u, V, W and ¢.

Lemma 4.1. It holds that

d
UL +C IV, V, Wz, + CllAGIZ S8 1Vl -

(4.5)

(4.6)

%))

4.8)
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Proof. Multiplying the first four equations of (4.2) by o, u, V and W, respectively, summing
them up and then integrating over R3, we obtain

li||U||2 + IV, V. W12, + Idivul?, + | Ag|?
2dt L2 ) ) L2 L2 LZ
— (div(ou), 0) + (Fi,u) + (F2, V) + (F3, W). (4.9)

We now estimate the right-hand side of (4.9). By Holder’s, Sobolev’s and Cauchy’s inequalities,
the integration by parts, (4.5)—(4.7) and Lemma A.2, we can estimate some typical terms as

—{fiu, Au) =(V(fiu), Vu)

SV A2 lull oo + 11l [Vl 2) 1Vl 2 S 81V (0, )72 5 (4.10)
1
<? APV - >< 1Al 2 VPl 6 lulls SSNAPIT, (4.11)

—(HBVV ) Sl + VI W IV 2l S8IV @, V., W)lZ.5 (4.12)
—(div(VVe),V)=(VVep,VV)

SV IVelLs IVVI2 S8 (||vvniz + ||A¢||2Lz); (4.13)
(div ((¢'(V + 1) = HVV), V)= —<<p/(V T —1, |VV|2>
S V4D =1, IVVIZ, S8IVVIE,. (4.14)

Then, the other terms could be estimated as (4.10)—(4.14). Plugging all the estimates for the
right-hand side into (4.9), since § is small, we deduce (4.8). O

Next, we derive the higher-order dissipation estimates for u, V, W and ¢.

Lemma 4.2. Let k > 3. Then we have for 3 < £ <k,

Gl
dt

2 2
+C”V”1(u,v, W)H +ch‘f
L? L?

L2
2
L2) . (4.15)

Proof. Let k > 3. For 3 < £ < k, applying V¢ to the first four equations of (4.2) and then multi-
plying the resulting identities by V¢o, V¢u, V¢V and VW, respectively, summing them up and
then integrating over R3, we obtain

<8 (Hvlm,

jveo],

+Hv‘“(u VW)H +va(11qu +Hvi

2dt ‘
- <v‘ div(ou), v‘fg) 4 <v‘Fl, v‘u> + <v‘F2, V€V> 1 <V€F3, va>. (4.16)

Next, we only estimate some typical terms on the right-hand side of (4.16). Then, the remaining
terms could be estimated in the same way. First, we split the following term as
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— <v‘3 div(ou), v%) - (vf (odivu), vfg> — <v5 (- Vo), v%) =T+ D (4.17)
By the product estimates (A.11), we obtain

5 < H v (o divu)HL2 H vlo

L2

< (HV[QHU Idivall ;o + ol 1 Hvz divu‘

¢
7'l

2
Lz) . (4.18)

By the commutator estimates (A.10) and the integration by parts, we obtain

2
£ £+1
ss(Ivtell. +lvs]

h=— <[v‘, u] Vo, v‘fg> - <u .vvlo, VZQ>

< (Ivullp~ | Ve

+ H vViu
L2

|VQ||L3) H Vio

L2 2

1
| + = <divu,
Lo

2
VEQ‘ >
2

) o] vt [

2
> . (4.19)

L2

< (1vull | 7ol

<s(lvl

£+1
o[

2
241
L? + HV “

In light of (4.17)—(4.19), we obtain

2
— <v€ div(ou), v‘Q> <5 (H VZQHLZ + H vitly

2
L2> . (4.20)

By the integration by parts, the product estimates (A.11), Lemma A.2 and Young’s inequality,
we obtain

—<v’Z - Vi), v‘u> = <v“ - Vu), v”lu) < Hv“ (- Vu)‘

Ve+1u‘

L? L?

<l ¢ ] 1) [,
1 _t_ 1
1 1 1 1 Ll 1 T+ 1
< (e [ [ [l [ ) o]
2
<s|veta],: @21
L2
—<vf (/3VV) V‘u)< va (f;VV)‘ vu
b ~Y o L6/5 L6
S (sl Vv |+ 90| L 1vvie) Vi)
£+1 £+1
<le vl Vv v
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"V+1)—1
o+1 L2 o+1)|,2

V@+] L ”V‘/“L3 V[+lu

i

Sl Vil

V“lu‘

L2

V(+l \%

14
| 4]

L2 L2

+[v'e

2 WVl VYV

V@+]u‘

+Hvﬁv‘
L2

LYV

Vf+1u‘

L2
< (e V)l

1 4

= 1
HIVIE [V

ss(]vd

ef 1 e\ _[ge-1(_1 0+1
R B R

V€+lv‘

14
ot

LIV +|vie

LIV 19V |95

L2

L 1
T+ 23]
L? L?

{+1
)vwv

(v“lv

‘V£+lu

L? L2

2 £+1
LY

2
L2> ; (4.22)

1
Q+] 12 L?
1 1
< (vt (21— AGVS| - b Hvl—l AGV ’ Hve+1
(|7 (G5m) 1wt + | o) vt wova] ) vl
S| Vie| L 1adl 196l [V | L+ |V agve| [V
4 +1 —1 -1 +1
<8, [Vl L+ (v 20] L 1vsls + 1801 [V V8] ) [0
<s Hv@ H2 +HVHA¢ ? —+—HV€+1u ). (4.23)
~ @ L2 L2 2]’ ’

(VEdiv (@' v+ 1) = DVV). V) == (VE (@' (V + D = DVV), VY

< Hv‘ ((¢/(V+1)— 1)VV)HL2 Hv“lv’

L2

< (HVZ 'V +1)— 1)HL6 1YV + @'V + 1) = 1] HVMVHLZ) Hv“lv

L2

<s H vitly (4.24)

2
L2’

Here we shall carefully analyze the following two terms
- <v‘ div(VVe), v4v> + <v‘ div(WVe), vew> =35

We want to control S in terms of (¢ + 1)-order of V and W, that is
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~ 2
sa([viaof} 7w

2
Lz) . (4.25)

However, it cannot be done. In fact, we only could estimate

) (H VOV, W, Ad) H; n Hv“](v, W)‘

2
> . (4.26)
L2

If we additionglly assume that the initial electric filed ||[V¢ol| 2 is sufficiently small, then we
could control S like (4.25) (see Lemma 5.2).
Given the estimates (4.20)—(4.26), the right-hand side of (4.16) could be bounded by

5 va( VW A¢)”2 n Hv‘“(u % W)H2 n Hv“mp‘ ? 4.27)
Q, 3 ) L2 ) ) L2 L2 . .
Plugging (4.27) into (4.16), since § is small, we obtain (4.15). O
Next, we will derive the dissipation estimates for o.
Lemma 4.3. Let k > 3 and 3 < £ < k. Then we have for 0 <1 <€ — 1,
d | I +1 |2 I+1 2 I 2 42, |2
E<V u, VV Q)+C HV Q‘ L2 S HV WV, W)HLZ + HV A¢‘ L2 + HV u‘ L2’
(4.28)

Proof. For 0 < < ¢ — 1, applying V' to Eq. (4.2), and then multiplying the resulting identity
by VV!p, and integrating over R3, by the integration by parts, the Poisson equation (4.2)s and
the product estimates (A.11), we obtain

2
HVHIQ p <—<Vlu,,VVlQ>+CHVl“(V, W) p Vl“g‘ .
1+2 I+1 I I+1
v v [vivie] L +e|viA] L [ve] @)
By the integration by parts, Eq. (4.2); and the product estimates (A.11), we obtain
d
—<Vlut,VVlQ>=—E(Vlu,VV1Q>—<Vldivu,VZQt>
<4yl vy +C ||Vt ’ +5 | Vit ? (4.30)
Sdr ’ e L2 €l .2 :
and
I I+1 ! 142
9] 3 (7nv], [l o[, ).

Plugging (4.30)—(4.31) into (4.29), by Cauchy’s inequality, since § is small, we obtain (4.28). O

Now, we could use Lemmas 4.1-4.3 to show the a priori estimates.
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Proposition 4.4 (A priori estimates). Let T > 0 and k > 3. Assume that for some sufficiently
small § > 0,

sup [|U@®)|ly3 < 8.
1€[0,T]

Then, we have for any t € [0, T] and 3 < € <k,
! 1/2
U@ e + / Vo301 + IV, V. WY1 + 1A (@15 dT | <ElNUol e -
0
(4.32)
where ¢ is some fixed positive constant.
Proof. Letk > 3 and 3 < £ < k. Adding the estimates (4.8) of Lemma 4.1 to the estimates (4.15)

of Lemma 4.2 and using the interpolation estimates and Young’s inequality, since § is small, we
obtain

d
U +Cr (19 VoW + 18613 ) < Ca [Vl 4.33)
where we have used the equivalent relation

2
V1~ WAl + [ 9]

Summing up the estimates (4.28) of Lemma 4.3 from [ = 0 to £ — 1, we obtain

d

DY (Vu, Vo) + C3 IVl

0<i<e—1

<Gy (nwniﬂ HIVV, W3, + ||A¢||i,(_1) : (4.34)

Multiplying (4.34) by 2C»8/ C3, and then adding it to (4.33), since § > 0 is small, we deduce that
there exists a constant ¢ > 0 such that

d 2C58
i LR (vlu,vvlg>
o<i<e—1
e (VeI + 19, V. W, + 1Ag13, ) <O. (4.35)

Next, we define Sg (1) to be ¢! times the expression under the time derivative in (4.35). Observe
2

e that is, there exists a constant ¢ > 0O such that

that since § is small Eg (t) is equivalent to ||U ||

1 .
2NV <EO <ENUDIG, - (4.36)
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Then we could rewrite (4.35) as that
L bt + 1V012, 0 + IV e, V, W, + 18612, <0 (4.37)
dt 0 o He-1 s Vo H O R E .
Integrating (4.37) in time, by (4.36), we obtain (4.32). O
5. Proof of Theorems 1.1 and 1.2
In this section, we will prove the main results Theorems 1.1 and 1.2. In fact, we have proved
Theorem 1.1 about the local solution in Section 3. Then, we can make use of the local solution
and the a priori estimates to prove Theorem 1.2 about the global small solution only if we do a
continuous argument as in Subsection 5.1. To prove the decay rates in Theorem 1.2, we need to
derive more detailed energy estimates given in Lemmas 5.1 and 5.2 under the assumption that
the initial |[V~1(Vy — Wo) || ;2 is sufficiently small. Here, we find that the electrostatic potential
¢ satisfies the special equation (5.12), which allows us to derive some effective estimates for the

electric field V¢. On this premise, we can obtain the £-order differential inequality (5.19) for
0< ¢ <k—1inLemma 5.2. Roughly speaking, the inequality (5.19) looks like

d
ng (1) + D, (1) <0,
where
2
O H Vo, u,V, W, V) HHH :

Noting that the dissipation DIZ T (#) lacks the £-order of (o, u, V, W). This is why we cannot ob-
tain the exponential decay rates. Fortunately, we can remedy the dissipation Dlg 41(?) in terms of

the energy Eé‘ (#) by using the negative Besov estimate (5.29) in Lemma 5.3 and the interpolation
estimate (5.30), thatis, for 0 <€ <k —1and 0 <5 < 3/2,

4o
Dk (1) > Co (5;‘(0) e

Thus, we deduce
%Ef(t) +Co (Eé‘(t))1+ﬁ <o0.
By solving the above differential inequality, we can obtain the algebraic decay rates of the solu-
tlOrll\'lext, we first prove the local solution and global solution.
5.1. Local solution and global solution
First, Theorem 1.1 can be directly obtained by Proposition 3.11. Next, we combine Proposi-

tion 3.11 (local solution) and Proposition 4.4 (a priori estimates) to prove the global solution in
Theorem 1.2.
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Assume Uy € H* with an integer k > 3. And we set

)

. )
1Uol g3 <m1n{c—1,a}, (5.1)

where C; > 1,¢ > 0, § > 0 are given by Proposition 3.11 and Proposition 4.4. If

8
U )
Uoll g3 < C

by Proposition 3.11, the Cauchy problem (1.9) has a unique local solution
U(t) e £, Ty; H?)
with 77 > O such that for any ¢ € [0, T7]
U@ s < CrllUollgs < 8. (5.2)
By (5.2) and Proposition 4.4, we obtain for any ¢ € [0, T7] and 3 < £ <k,
IU @l e < lUoll e - (5.3)
In particular, by (5.1), we have for any ¢ € [0, T],
- 8
IUO N s < cliUollys < o (54
By (5.3) and (5.4), we have
3 8
U(Ty) e H” and [U(T) g3 < o (5.5)
1
Then, by Proposition 3.11 again, the Cauchy problem (1.9) has a unique local solution
U(t) € E(Ty,2Ty; H)
such that for any ¢ € [T, 2T1]
U s < CLllUT) s < 8. (5.0)
By (5.2), (5.6) and Proposition 4.4, we obtain for any ¢ € [0, 2T1] and 3 < £ < k,
U@ ge <cllUollge - (5.7)
By repeating the procedures (5.2)—(5.7), we could extend the local solution to the global one only
if we assume that the initial data belonging to H¥(k > 3) satisfy || Up|| 3 1s sufficiently small, as

(5.1). The energy estimates (1.10) could be obtained by Proposition 4.4. Hence, the proof of the
global solution in Theorem 1.2 is completed.
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5.2. Decay rates

To obtain the decay rates of the global solution in Theorem 1.2, we need to prove some extra
energy estimates showed in the following.

5.2.1. Energy estimates
Assume that (U, V@)(¢) is the solution to the PNP-NS equations (4.2) proved in the above.
By (1.10) with £ = 3, we know that for any # > 0 and some sufficiently small §g > O,

1/2

t
4GIIER f||vQ<r>||i,2+||V(u,v,W)(r>||i,3+||A¢(r)||i,3dr <& (5.8)
0

if the initial H> norm is sufficiently small. And then the estimates (4.6)—(4.7) also follow.

Lemma 5.1. Let 0 < I < k. If VYV = Wo) € L2, then it holds that for any t > 0 and some
constant a > 0,

2
L, dT<Co (5.9)

t
HVquS(t)Hiz +a/ HVqub(r)‘
0

and

t
2
[psso], < s fuoans
0

Vi w, v, W)(r)”i2 d. (5.10)

In particular, if || vV H(Vy — Wo) H 12 18 sufficiently small, then for any t > 0 and some sufficiently
small 8 > 0,

Vo)l 2 < 8. (5.11)
Proof. Subtracting Eq. (4.2), from Eq. (4.2)5 and using the Poisson equation (4.2);5, we obtain
Adr +2A¢p — AAPp = Fr — F3. (5.12)

For 0 < I < k, applying V' to Eq. (5.12) and then multiplying the resulting identity by —V’¢,
and integrating over R>, by the integration by parts and the Poisson equation (4.2)s, we obtain

1d
2dt
- <vl(A¢u) +VI(VV) + VI (WVe), v’v¢>

Hv’w)‘ +2Hv’v¢>H2 + Hvlm‘z
L2 L2

2
L2

+ <vl (@' (V+1) = 1HVV), vlv¢> _ <v’ (' (W +1) = VW), v’v¢>. (5.13)
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If I =0, by (5.8), (5.13), Holder’s, Sobolev’s and Cauchy’s inequalities, we obtain for some
constant o > 0,

d
o IVoIIT, +a Ve[, < CIV, V., W)|3,. (5.14)

Integrating (5.14) in time and using (5.8) and Eq. (4.2)5, we obtain
t
IV I3 + e f IVo (D)7, dr < [[Veoli7, + C85. (5.15)
0

which implies (5.9) with / =0 and (5.11) if | V™' (Vo — Wo) |, is sufficiently small. For 1 <
I <k,by (5.13), (5.15), Holder’s, Sobolev’s and Cauchy’s inequalities and the product estimates
(A.11), we obtain for any € > 0

1d

2|V

2
L2
2

Jre
L2

Taking the above & > 0 properly small, since §g is small, we deduce that there exists some
constant « > 0 such that for 1 <[ <k,

2 1 2 l
PR M R A

VI (w, v, w)

2 2
<o sor(|sof, e

iHvlw ? +aHv1v¢‘2 <CHV’+‘(u v.w|’ (5.16)
dt L2 2 Y 2’ ’
By (1.10) with £ =k, we have
t
/ IV @, V. W)(©) 13 d < Co. (5.17)
0
Integrating (5.16) in time and using (5.17) and Eq. (4.2)5, we obtain for 1 </ <k,
1
! 2 1 2 < |le! 2 1
Hv v¢(r)HL2 +a/ Hv W’(’)Hu dr < Hv Vo[ ,+Co. (5.18)
0

So, the estimates (5.9) with 1 <1 < k follow from (5.18). And the estimates (5.10) follow from
(5.14) and (5.16) together with Gronwall’s inequality. O

Lemma 5.2. Let k >3 and 0 < € <k — 1. If | V=1 (Vo — Wo) || .2 < b0, then there exists a func-
tional Sé‘ (t) which is equivalent to ||VZ(U, Vo) “?{k*‘»’ such that

2 2

+ vawumw <0.  (5.19)

d 2
e+ v

et

Hk—¢
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Proof. Let k > 3. For the case £ = 0, the inequality (5.19) is trivial by (4.37), (5.14) and (5.16).
We will prove (5.19) for 1 < £ < k — 1. We notice

- <vl div(V V), v’v) - (vl(vv¢), vl V)

S (Vi

1 1 I+1
L P M AL L

L2

2
1+1
A At

S+ (|20 ) (520)

where we have used ||V (1) ]2 < 66. Then, the estimate of the form as (4.25) follows. Thus, the

terms || VAV, W) ”i2 do not appear on the right-hand side of the estimates (4.15) in Lemma 4.2
withl =k, i.e.,

d k 2 k+1 2 k 2
Ll VU‘ CHV+ ,V,WH CHVA ‘
dt H L2+ (u ) L2+ ¢ L?

/ k 2 k
S Go+p (|||, + v ve|

2
). (5.21)
L2

And in the proof of Lemma 4.2, using some different interpolation estimates, we easily obtain
for1<I<k—1,

1 [+1 2 [ 2
‘v U’ +CHV+(u,V,W)H +ch A¢‘
L2 L2

2
L2

.
dt

2
< (o +6p) (HV”‘Q\ L+ v've|

2
Lz) . (5.22)

By (5.14), (5.16) and (5.21)—(5.22), since &g, 86 are small, we easily obtain for 1 </ <k —1,

d || 2 I+1 2 1o |1 N
alVwve|, wc|vriwvwm| e |vivel < eo+s [viHe],

(5.23)

and

d |l gk 2 k+1 2 kg NEAE
a [P e re|ru o] elvivel s @],

(5.24)

Summing up the estimates (5.23) from [ = £ to k — 1 and then adding it to (5.24), we obtain

2
Hk—t+1

2
<G+ [vHe| - (5.25)

2

‘VZ(U, V) HZH C <”v“1(u, v, W) H + Hv‘fw‘

7
dt Hk—t

In addition, Lemma 4.3 gives for 1 <I <k — 1,
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d | ! +1 |12 I+1 2 Ial? +2. |2
gV vvie) e [vite] L5 [Vt vom L+ [vag ]+ v
(5.26)
Summing up the estimates (5.26) from [ = £ to k — 1, we obtain
4 > (Vi vVio)+ 3| v 2
dt I Q 3 Q Hk—[—]
<I<k—1
0+1 £+1 1
<c(fvernl vl el ) e

Multiplying (5.27) by 2C2 (80 + 86)/C3, and then adding it to (5.25), since &y, 66 are small, we
deduce that there exists a constant ¢ > O such that for 1 <€ <k —1,

HV‘Z(U, v¢)H2H+w 3 <Vlu,VVlQ>

Cs e<I<h—1
b <Hvz+1 Q)

By defining 52‘ (1) to be ¢! times the expression under the time derivative in (5.28), we obtain
(5.19). O

2

£+1 ¢
ph-to1 T HV ,V, W)H T HV quHHk " ]) <0.  (5.28)

Next, we give the evolution of the negative Besov norms of U (¢).
Lemma 5.3. For s € (0, 3/2], we have

U@l < Co. (5.29)
Proof. Similar to (1.8) of Theorem 1.2 in [54], we omit the details. O

5.2.2. Proof of decay rates
In this subsection, we will prove the decay rates by using the previous estimates.
By Lemma A.6 and (5.29) of Lemma 5.3, we have for 0 < € <k — 1,

l+l+s

va <IUIE Tt v"“U wi (5.30)

<Co Hv“lU

Using (1.10) and (5.30), we obtain that for 0 < £ <k — 1,
2

+1 +1 ¢
[v el [ v+ o]

Hk—t—1 Hk—t

> Co <HV‘3(U, V) H;_JHZH . (5.31)

In view of (5.19) of Lemma 5.2 and (5.31), we obtain for 0 <€ <k — 1,
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d k k 1+Zl?
TEL0) +Co (stw) ™ <o. (5.32)
We solve this inequality directly to obtain for 0 <€ <k — 1,
EF) < Co(l 4+, (5.33)

which implies (1.11). Then, (5.10) of Lemma 5.1 and (1.11) give the higher decay (1.12) about
the electric field V. So, the proof of decay rates is completed.
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Appendix A. Some analytic tools

In this appendix, we give some useful lemmas which are often used in the previous sections.
First, we recall the Gagliardo—Nirenberg inequality of Sobolev type.

Lemma A.1. Let2 < p < ooand o, B,y > 0. Then we have

19 £ 1 S IVEF1 20 197 715 (A.D)

Here 0 < 0 < 1 (if p = oo, then we require that 0 < 0 < 1) and «o satisfy

a+3<1—1>=,3(1—9)+y9. (A.2)
2 p

Proof. We can refer to Theorem (p.125) in [42] or Lemma A.1 in [26]. O

Lemma A.2. Assume that ||o||;~ < 1 and |V~ < 1. Let g(o, V) be a smooth function of o, V
with bounded derivatives of any order, then for any integer k > 1 and 2 < p < 0o, we have

k < | wk k
|70 0], 5[v"e], +[7] 83)

Lr’
Proof. For k > 1, we have

Vk(g(Q, V))Z Z 8011 ..... ajg(Q, V)V(XIQV{XZQ_“V{X]'Q
ay+taj=k

+ Z aﬁlwnﬂmg(@ vyvhiyvhy .. vbny

/31+"'+/3m:k
+ Z N Yig(o, VIV g+ VVsgVsH Y ... V1Y
yittyr=k

=01+ 02+ 0s. (A4)
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By Holder’s and Gagliardo—Nirenberg’s inequalities, we obtain

1011y S [V¥10V*20--- V0|,
SIveie] w [Vl w - Vel w
L“l L%

L%
Sl |ve| * nelt [he| © o [vhe] *
NQLOO QLPQLOO QLI’ QLoo QLI’
j—1
Shelf=' | vre| - AS5)
Similarly, we have
1020 SIVIES'|VFV] - (A.6)

For the third term Qs3, by Holder’s, Gagliardo—Nirenberg’s and Young’s inequalities, we obtain

103llr S [ VY- VUitV ...v1Y|

SIviel w [ Vvie] w [V o [VV]
L1 L7s L7Vs+1 LV
. s Vs+1
=Yy s -5 e '3 1=y T -2
Shelg=t |Vee| |- llel =t | Voo [ v ™ vty S vt
%
X ”VkV
LP
_yitetys ypte s g Yottty Ysp1tty
< n § k Vk k V S k Vk
S linll o, IVl Vi,
< e, ML (| vF vky A7
Sle g (|Ve|,, + L) (A7)

Substituting (A.5)—(A.7) into (A.4), we deduce (A.3) since [loll;o < 1and ||V <1. O
As a byproduct of Lemma A.2, we immediately have

Corollary A.3. Assume that || 0| 1~ < 1. Let g(0) be a smooth function of o with bounded deriva-
tives of any order, then for any integer k > 1 and 2 < p < 0o, we have

[Puo], 5|,
We then recall the following commutator and product estimates:
Lemma A.4. Let [ > 1 be an integer and define the commutator
[vl : g] h=v!(gh) — gV'h. (A.9)

Then we have
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! < -1 !
” [V ,g]h”LPO S Vel ’V h”LPZ + HV gHLF3 Il zra (A-10)
In addition, we have that for 1 > 0,
1 < 1 1
”V &M S 8ler |V h”LI’z + HV gHL1’3 Wl Lrs - (A1D

In the above, pg, p1, p2, p3, pa € [1, +00] such that
1 1 1 1 1

po PL P2 D3 pa

Proof. Referring to Lemma 3.4 (p. 129) in [38], we give a complete and simple proof in the
following. We first prove (A.11). Let po, p1, p2, p3, pa € [1, +00] such that

1 1 1 1 1

po D1 P2 p3 P4

Assume £ =0, 1,...,l. We choose g1, g2 by
1 1 £ 1¢ 1 1 Y4 1¢
—=— (1) +—=, —=—(1-2)+—-.
g1 p1 l sl g p l pal

1 1 1

po 41 g2

Thus, we have

By Holder’s, Gagliardo—Nirenberg’s and Young’s inequalities, we have for [ > 0,

[
HV’ (gh)HLPO - HZv‘gvl—‘h
=0

LPo

v’—‘h‘

L41 L2
L
I

1- -7
S gl p

o
o WAl

1-¢
! l
i) (17l 1)

VthLPZ + H VlgHLm 71l ps - (A.12)

Vlg

Vlh‘

LP2

~l~

= (lglzr

Vlh‘

LP3

S gl

Note that for [/ > 1,

l
[V’, g] h=Y Vvigv' .
=1
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We can prove (A.10) in the same way as (A.12). O
We have the following L? embedding lemmas:
LemmaAS.Let 1 <p<2,and1/2+5s/3=1/p, then 0 <s <3/2 and
L Wys, S Al - (A.13)
Proof. See Lemma 4.1in [52]. O
We will give the special interpolation estimate:

Lemma A.6. Let k > 0 and s > 0, then we have

1

_— A.l14
L4145 ( )

1-6 P
2 ”f”Bi;o , where 0 =

|v/]

< ||Vk+1f‘

-

Proof. We refer to Lemma 4.2 in [52] by noting that BZ ; C Bz_ ; forp<g. O
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