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A B S T R A C T

Unique technical challenges and their solutions for implementing semi-numerical Hartree-Fock exchange on
the Phil Processor are discussed, especially concerning the single- instruction-multiple-data type of process-
ing and small cache size. Benchmark calculations on a series of buckyball molecules with various Gaussian
basis sets on a Phi processor and a six-core CPU show that the Phi processor provides as much as 12 times
of speedup with large basis sets compared with the conventional four-center electron repulsion integration ap-
proach performed on the CPU. The accuracy of the semi-numerical scheme is also evaluated and found to be
comparable to that of the resolution-of-identity approach.

© 2018.

1. Introduction

The density functional theory (DFT) is the most widely applied
quantum mechanical methods for chemical and material studies. One
way to make DFT computation more productive is to take the ad-
vantage of new computer technologies, such as the General-Purpose
Graphics Processing Units (GPGPU) and the Intel Many Integrated
Core (MIC) architecture. The GPGPU extends the use of the graphics
processing unit to perform general purpose computation such as sci-
entific calculations. Compared with a traditional CPU, a GPGPU card
possesses more processing cores and overall has much higher theoret-
ical peak floating point operations per second (FLOPS). On the other
hand the Intel MIC technology is a redesign of the previous gener-
ation of Celeron and Pentium cores and condenses these cores onto
one processor. Although the MIC architecture has far fewer cores than
the GPGPU (currently about 60–70 cores per processor), it introduces
the Vector Processing Units (VPU) to each core, which can execute 8
double-precision floating point operations per CPU instruction cycle
[1,2]. With the VPU working as a multiplier the MIC processor is ca-
pable of providing similar computing capacity as that of the GPGPU
card.

In comparison to the significant development effort made on
GPGPU from quantum chemistry software community [3–6], less de-
velopment efforts have been reported for the Phi processor in compu-
tational quantum chemistry, perhaps because it came about more re-
cently than the GPGPU. Leang et al. [7] studied the efficiency of ma-
trix operations on the first generation of the Phi processor “Knight
Corner” (KNC) and showed that KNC can yield up to three times
speedup compared with the host CPU. Apra et al. employed the KNC
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for CCSD(T) calculation [8], and the implementation also achieved
2–3 times speedup. On the other hand, Reid etc. [9] modified CP2K
Program for the KNC and made performance comparison with a dual
Xeon CPU(16 cores) system for energy calculations, and found that
the code ran about 5.43 times slower on the KNC than on the
CPU-only system, even though the theoretical FLOPS count for the
dual CPUs is about 0.8 teraFLOPS versus 1 teraFLOPs for the KNC
processor. The second generation of Phi processor “Knight Landing”
(KNL) supports the direct compilation and execution of the software
on the processor. Such an attempt on the quantum chemistry software
LSDalton showed [10] that it is still several times slower on the KNL
than a dual Xeon CPU system. The difficulty was mostly attributed to
the inefficient use of VPUs, which are the SIMD (Single instruction,
multiple data) processing units in the Phi processor [1,2,11]. For effec-
tively utilizing the Phi processor one usually need to rewrite software
significantly so that it can be efficiently executed on an SIMD archi-
tecture.

In a practical DFT calculation, the computation of Hartree-Fock
(HF) exchange is the most time-consuming component, especially
due to the development of various techniques for the computation of
Coulomb and the numerical integration of exchange-correlation func-
tionals [12–14]. We have recently published the implementation of a
semi-numerical integration scheme for computing the HF exchange
energy and matrix with self-consistent field(SCF) for conventional
CPUs [15]. The scheme is similar to the COS-X algorithm [16,17] and
pseudo-spectral scheme [18,19]. In this work we describe the imple-
mentation of the scheme on the MIC architecture. We showed that the
semi-numerical scheme is more efficient for large basis sets and large
molecules due to quadratic scaling with respect the basis set size. Fur-
thermore, it requires fewer temporary variables therefore fit better the
Phi Processor that has much smaller cache size than a standard CPU.
The semi-numerical HF exchange is also an essential ingredient for
the emerging local hybrid functionals [17,20–24].

https://doi.org/10.1016/j.cplett.2018.05.026
0009-2614/ © 2018.



UN
CO

RR
EC

TE
D
PR

OO
F

2 Chemical Physics Letters xxx (2018) xxx-xxx

2. The semi-numerical algorithm for HF exchange

The semi-numerical algorithm to calculate the HF exchange ma-
trix has been discussed in detail in our previous paper [15]. We briefly
summarize it here.

The HF exchange matrix is derived through the derivative of the
HF exchange energy with respect to the spin-resolved density matrix

:

where φ represents a general Gaussian basis function, μ,ν, λ and η are
basis function indexes. σ denotes the spin of a Molecular orbital, ei-
ther α or β. is the abbreviation of four-center ERI. The con-
ventional way is to evaluate this four-center ERI analytically and then
form the HF exchange matrix. But the HF exchange matrix can also
be calculated through the following semi-numerical scheme:

where is the value of a basis function at a given grid point r.
is the numerical weight of the grid point. is defined as the

kernel of the semi-numerical HF exchange matrix. In this scheme the
numerical integration is performed with the standard DFT atom-cen-
tered grid scheme [25–27].

To calculate the kernel we need to first combine the spin-re-
solved density matrix with basis set value through a BLAS (Ba-
sic Linear Algebra Subprograms) level 3 matrix-matrix multiplication:

The kernel of can then be expressed as:

where is the two-center electrostatic potential (ESP) integral:

In our implementation the code for the ESP integral was generated
with an integral code generator program we published earlier called
CPPINTS [28]. It is based on a combination of the Obara-Saika(OS)
[29,30] and Head-Gordon-Pople(HGP) [31] algorithms, and applies a
greedy search algorithm to produce the minimal number of temporary
variables.

The rate-determining step in the above scheme is to calculate the
ESP integral at each grid point and involves all the effectively nonzero
basis function pairs. In practice a basis function is usually a lin-
ear combination of primitive Gaussian functions, and thus the ESP

integral calculation also involves a loop over the contraction for each
pair of Gaussian basis functions. The total cost of ESP integrals then
can be approximately estimated as
(“bf” stands for “basis function”). Therefore our implementation ef-
fort concentrates on transferring the ESP integral calculation from the
normal CPU platform to the Phi processor.

3. Implementation on the Phi processor

Our first try with the Phi processor is to compile the aforemen-
tioned implementation of the semi-numerical scheme with the Intel
compiler that has the automated optimization feature for the Intel MIC
architecture. The test of the resulting binary on the Phi processor KN-
L7250 is two times slower than running on one six-core E5-1650
CPU, significantly underperforms with respect to the potential of the
Phi processor. Clearly, the program needs to be rewritten for a better
usage of the Phi processor. In this section we will discuss the special
features of the Phi processor, and our experience on the implementa-
tion for it.

For achieving successful implementation on the Phi processor
there are two key factors involved. Firstly the computation algorithms
need to be effectively vectorized into SIMD operations. Secondly, the
algorithms need to be designed and implemented carefully to comply
with the small cache structure in the many-core architecture of the Phi
processor.

The processing unit in each core of a Phi processor is divided into
two parts, a redesigned Pentium/Atom core and two VPUs in one core
in KNL processor. A VPU is a SIMD processing unit [1], and able to
process 8 double precision floating point number simultaneously. As
a comparison the floating-point unit (FPU) in a CPU can only handle
one double precision floating point number per each instruction cy-
cle. The standard instruction set for the VPU on the KNL processor
is the avx-512 instruction set. Modern compilers like Intel compilers
contain the so-called automatic vectorization function that can com-
pile the code into this instruction set. However this function does not
always work well, because the requirement for a successful vectoriza-
tion is very strict. For example, an effective vectorization requires the
data structure be aligned in unit of the cache line (64 bytes for the Phi
processor) and the loop have no backward loop-carried dependencies
and be countable [32]. As a consequence, a quantum chemistry pro-
gram running well on a CPU may still need to be efficiently vectorized
to fit the SIMD structure of the Phi processor.

As discussed in the above algorithm section the calculation of ESP
integrals is the most time-consuming part. Therefore it is imperative
to rewrite the ESP integral code so that to vectorize the code into ef-
ficient SIMD operations for the Phi processor. The first modification
for the adaptation to the SIMD vectorization is to change the code loop
structure. For the normal CPU the calculation for the above algorithm
is generally performed in the following three steps (for details regard-
ing the VRR and HRR please refer to the general review [33]):

For an efficient SIMD vectorization the loop should provide
enough and countable cycles for the vectorization. We found that it is

(1)

(2)

(3)

(4)

(5)

loop over grid points:
loop over Gaussian primitive pairs:
perform vertical recurrence relations(VRR);
end loop
perform horizontal recurrence relations (HRR) to compute
the raw ESP integrals;
digest the raw ESP integrals to produce final result;
end loop
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more advantageous to put the loop of grip points inside the loop over
primitive pairs as illustrated below:

This makes the most inner loop is efficiently vectorized.
The second modification for SIMD vectorization is to form aligned

struct for integral calculation with VRR. For example, the piece of
code below is part of the innermost loop for computing the ESP inte-
gral for a shell pair on the CPU:

As one can see, all the operations are scalar operations and fit the
FPU well for a CPU. As suggested by Ref. [34], we reorganized the
above codes into aligned struct. For the above example piece of code,
we can arrange the variables into two C style structs:

and

The C structs are aligned to the 64-bit cache line of the Phi proces-
sor to make the data access as efficient as possible. The above sample
code then can be trivially rewritten using the structs.

The second important factor for an effective implementation on the
Phi processor is the cache size. Compared with the traditional CPU
architecture, the Phi processor has much smaller L1/L2 cache and
register. The L1 data cache size for the Phi processor is 32KB per
each core, and the L2 cache size per each core is 512KB. The two
caches are shared by 2–4 threads. In comparison, the total cache size
of a recent generation of Xeon CPU is about 2MB per core. Here
the semi-numerical scheme has a distinct advantage over the analyti-
cal four-center ERI approach. An ESP integral in the semi-numerical
scheme is of two-center, and uses far fewer temporary variables for in-
tegral calculation than a traditional four-center ERI scheme. Thus it is
a better fit for the Phi processor.

Still it is important to utilize the data prefetching pragma to max-
imize the cache hits on the Phi processor for effectively loading the
data from main memory to cache. A simple example below shows how
it can be used for assigning values to an array:

the syntax “p:1:16” means to prefetch the content of array p into
the L2 cache for the next 16 cycles, and “p:0:6” means to prefetch the
content of p array into L1 cache for the next 6 cycles. Because the
cache size in the Phi processor is significantly smaller than the normal
CPU, the automatic prefetching data operations by compilers on the
Phi processor is designed to be much less aggressive than the CPU [1].
Thus maximizing the use of cache is left to the programmer. Our expe-
rience shows that applying the prefetch pragma effectively can boost
the performance of the whole implementation by 2–3 times.

We have applied the above techniques to all of the ESP integrals of
various shell pair combinations up to (F,F) shell pairs. For the ESP in-
tegrals calculation we choose to use the HGP algorithm for implemen-
tation, however the above discussions can be applied to the other algo-
rithms such as MD scheme [35] or the RYS scheme [36–38]. Here for
this implementation each ESP integral file corresponds to a shell pair
combination, and each file has multiple places where the data reorga-
nization is needed for the computation of the fundamental integrals.
Furthermore each integral file also has multiple loops that require data
prefetching. The efficiency of such a change for the Phi processor is
demonstrated in Section 5.

4. Accuracy assessment for the semi-numerical HF exchange
algorithm

To assess the accuracy of the semi-numerical implementation on
the Phi processor, we performed a benchmark calculation over a se-
ries of fullerene molecules including C60, C100, C180 and C240;
all in the buckyball form. The basis sets chosen for the test include
Pople Basis set 6-31G∗∗ and 6-311G(2df), and Dunning Basis set
cc-pvdz and cc-pvtz. The implementation of the above semi-numeri-
cal scheme is based on the standard atom-centered grid scheme, which

loop over Gaussian primitive pairs:
loop over grid points:
perform vertical recurrence relations(VRR);
end loop
end loop
loop over grid points:
perform horizontal recurrence relations(HRR) to compute
the raw ESP integrals;
digest the raw ESP integrals to produce final result;
end loop

double I_ESP_Px_S_M1_vrr=PAX∗I_ESP_S_S_M1_vrr-
PRX∗I_ESP_S_S_M2_vrr;
double I_ESP_Py_S_M1_vrr=PAY∗I_ESP_S_S_M1_vrr-
PRY∗I_ESP_S_S_M2_vrr;
double I_ESP_Pz_S_M1_vrr=PAZ∗I_ESP_S_S_M1_vrr-
PRZ∗I_ESP_S_S_M2_vrr;
double I_ESP_Px_S_vrr=PAX∗I_ESP_S_S_vrr-
PRX∗I_ESP_S_S_M1_vrr;
double I_ESP_Py_S_vrr=PAY∗I_ESP_SvS_vrr-
PRY∗I_ESP_S_S_M1_vrr;
double I_ESP_Pz_S_vrr=PAZ∗I_ESP_S_S_vrr-
PRZ∗I_ESP_S_S_M1_vrr;

typedef struct {
double I_ESP_S_S_M1_vrr;
double I_ESP_S_S_M2_vrr;
double I_ESP_S_S_vrr;
double I_ESP_Px_S_M1_vrr;
double I_ESP_Py_S_M1_vrr;
double I_ESP_Pz_S_M1_vrr;
double I_ESP_Px_S_vrr;
double I_ESP_Py_S_vrr;
double I_ESP_Pz_S_vrr;
} __attribute__((aligned(64))) ESPIntsVRR_P_P;

typedef struct {
double PAX;
double PAY;
double PAZ;
double PRX;
double PRY;
double PRZ;
} __attribute__((aligned(64))) ESPIntsVRR_VAR;

for (int i=0; i<N; i++) {
#pragma prefetch p:1:16
#pragma prefetch p:0:6
for (int j=0; j<2∗N; j++) {
p[i∗2∗N+j] = −1;
}
}
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employs the Euler-Maclaurin formula [26,39] for the radial part, and
Lebedev grids [27] for the angular part. Three different sets of pruned
grid were used. One is the SG-1 grid [39] with each carbon atom hav-
ing about 3000 points. The other two are the “standard” and “fine”
grids from the PQS program [40]. The standard grid employs approx-
imately 5000 points for each Carbon atom, and the fine grid about
9000.

The errors of the semi-numerical scheme are calculated using the
standard analytical four-center ERI method as the reference. All the
HF SCF calculations employ the core Hamiltonian as the initial guess,
which derives the initial density matrix through the diagonalization of
the one-electron Hamiltonian matrix. The reference HF exchange ma-
trix was computed with an integral threshold of 1.0×10 - 10. For the
calculations with the semi-numerical scheme, both thresholds for the
significant basis function pair and the ESP integral are set to 10 - 12.

Tables 1–3 list the errors of the semi-numerical scheme for the
computation of the HF exchange matrix and the total HF energy in
root-mean-square deviation (RMSD), maximum absolute deviation
(MAD) and total energy difference per atom. As one can see the
RMSD for the HF exchange matrix is at the level of 1.0×10 - 6, which
is two orders of magnitude smaller than that of MAD. The accuracy
for the HF exchange matrix improves as the grid becomes finer. But
the fineness of the grid does not appear to affect the accuracy of the

Table 1
Root-mean-square deviations of the matrix elements for the semi-numerical HF ex-
change with different levels of grid.

Basis set Molecule SG-1 Standard Fine

6-31G∗∗ c60 1.04E−05 3.31E−06 1.72E−06
c100 6.12E−06 1.87E−06 1.26E−06
c180 4.89E−06 3.75E−06 3.45E−06
c240 4.11E−06 3.13E−06 2.93E−06

6-311G(2df) c60 1.23E−05 4.04E−06 2.06E−06
c100 7.18E−06 1.99E−06 9.82E−07
c180 5.05E−06 2.98E−06 2.47E−06
c240 4.40E−06 2.50E−06 2.20E−06

cc-pvdz c60 1.31E−05 4.29E−06 2.20E−06
c100 7.37E−06 2.08E−06 1.20E−06
c180 5.63E−06 3.87E−06 3.39E−06
c240 4.85E−06 3.31E−06 3.00E−06

cc-pvtz c60 1.43E−05 4.70E−06 2.50E−06
c100 8.27E−06 2.29E−06 1.21E−06
c180 5.77E−06 2.83E−06 2.00E−06
c240 5.21E−06 2.61E−06 2.07E−06

Table 2
Maximum absolute deviations of the matrix elements for the semi-numerical HF ex-
change with different levels of grid.

Basis set Molecule SG-1 Standard Fine

6-31G∗∗ c60 2.74E−04 8.75E−05 5.44E−05
c100 2.74E−04 6.95E−05 3.06E−05
c180 2.60E−04 1.54E−04 1.02E−04
c240 2.33E−04 1.26E−04 9.36E−05

6-311G(2df) c60 3.95E−04 1.40E−04 9.59E−05
c100 5.11E−04 1.12E−04 3.36E−05
c180 3.46E−04 1.52E−04 1.02E−04
c240 3.55E−04 1.34E−04 9.35E−05

cc-pvdz c60 2.91E−04 9.14E−05 6.20E−05
c100 2.76E−04 6.30E−05 2.33E−05
c180 2.53E−04 1.48E−04 9.11E−05
c240 2.43E−04 1.32E−04 8.88E−05

cc-pvtz c60 4.60E−04 1.36E−04 1.02E−04
c100 5.37E−04 1.15E−04 5.46E−05
c180 5.54E−04 1.50E−04 9.36E−05
c240 4.37E−04 1.73E−04 9.80E−05

Table 3
Total energy differences per atom for the semi-numerical HF exchange in micro-Hartree
with different levels of grid.

Basis set Molecule SG-1 Standard Fine

6-31G∗∗ c60 6.70 16.76 7.02
c100 48.56 29.04 28.52
c180 146.02 158.64 154.03
c240 147.85 160.69 155.85

6-311G(2df) c60 5.56 24.30 15.45
c100 45.91 17.63 15.40
c180 158.11 181.10 174.59
c240 180.56 203.25 198.20

cc-pvdz c60 5.45 15.46 6.60
c100 31.55 13.25 12.46
c180 100.34 117.23 111.81
c240 117.62 128.33 122.66

cc-pvtz c60 1.95 21.27 18.95
c100 35.81 0.69 1.42
c180 63.15 140.23 127.88
c240 153.38 187.83 167.07

energy measured as the total energy per atom. The largest errors for
the energy is between 150 and 200 μEh/atom, comparable to the error
of the Resolution-of-Identity method for the HF exchange [41]. It is
not clear why the accuracy in energy does not respond to the fineness
of the grid while the matrix does. We should note that these pruned
grids are fine-tuned for the computation of DFT exchange-correlation
energy. In our previous test [15], we observed that the error in en-
ergy with an unpruned grid set (128,302) (the radial part is 128 points
and the angular part uses 302 points per each atom) is about 5 times
smaller than the one with the SG-1 grid. More studies are needed to
understand and reduce this discrepancy.

The energy error per atom also grows as the system size become
larger, as shown in Table 3. This can be understood by the formula of
the semi-numerical scheme for the HF exchange matrix:

The error in the HF exchange matrix calculation mainly comes from
the numerical computation of the basis function pair . Be-
cause the HF exchange is a long-range interaction, the ESP originated
from the point r′ may still effectively interact with the numerical basis
function pair to produce a numerically significant contribution to the
HF exchange matrix even though the distance between the r and r′ is
large. As the molecule grows larger, it can be expected that the number
of ESP integrals grows accordingly, resulting in a multiplier effect for
the error on the HF exchange matrix calculation. On the other hand, as
the distance between r and r′ increases the first order reduced density
matrix actually decreases [42,43]. For the HF exchange energy
expressed in first order reduced density matrix form

One can see that the decrease of the makes the contribution
from the r′ become smaller, which damps the contribution from basis
function pairs at large distances. As the system becomes larger these

(6)

(7)
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two factors cancel each other out to an extent, one may expect that the
increase of the error on the energy becomes slower. Such phenomenon
can be observed in Table 3.

The damping effect of the density matrix can be more pronounced
for a stretched system. To test this effect, we performed the HF SCF
calculation on a series of alpha helix alanine peptides with a linear ter-
tiary structure. The alanine series include peptides with 35, 40 and 45
alanines, respectively, and the calculations were performed with the
SG-1 grid and Pople basis 6-311G(2df,2pd) [44]. All of the other set-
tings are the same as for the fullerene series. The total energy differ-
ence per atom is shown in Table 4. It is evident from the table that
as the system is extended sufficiently the total energy difference per
atom becomes stable. The reason is that the large end-to-end distance
results in many effectively zero elements in the distance-decaying re-
duced first order density matrix .

5. Efficiency assessment for semi-numerical scheme

The computational performance of the semi-numerical scheme for
HF exchange implemented and optimized for the Phi processor is also
benchmarked with the fullerene series. The Phi processor for the test
is a KNL7250 with 68 cores and each core is at 1.40GHz. The com-
puting time on the Phi processor is compared with the computing time
on a six-core E5-1650 CPU at 3.2GHz. The code run on the CPU
was from the earlier implementation of the semi-numerical scheme
optimized for CPUs. The reference calculations with the analytical
four-center ERIs were performed on the CPU only. Table 5 lists the
processor timing data for the formation of HF exchange matrix for one
SCF iteration. The numerical grid for the semi-numerical scheme is
SG-1. The number listed in the parenthesis next to a CPU time is the
ratio of the CPU time to the processing time on the Phi processor. All
the calculations on the CPU were with multi-threads.

Judging the performance of an implementation on the Phi Proces-
sor needs a reference. Intel has provided a series of showcases for
the KNL7250 processor.1 Top performers are able to achieve
1.0–1.5 times of speedup on KNL7250 processor compared with the
36-core dual E5-2697(each core is at 2.3GHz) CPU system. We esti-
mate this CPU is about 4.3 times faster than the E5-1650 CPU used in
our test . Therefore we consider a 4–6 time speedup to

be good in our test.
As shown in Table 5 our implementation of the semi-numerical

HF exchange for the Phi processor is able to achieve approximately
3–7 times of speedup relative to the implementation for the CPU.
This indicates the success of our implementation. Additionally it ob-
tains 7–12 times of speedup in comparison with the traditional analyt-
ical integral calculation with large basis sets such as 6-311G(2df) and
cc-pvtz. For moderate double-zeta basis sets 6-31G∗∗ and cc-pvdz,
the speedup ratio is between 1.5 and 4 times. The difference on the
speedup between the different basis sets can be explained by the
semi-numerical algorithm itself, as it scales quadratic with respect
to the basis set size, in contrast to the quadruple scaling with the
four-center ERI method [15]. For a given molecule the numerical grid
is unchanged for different basis sets, therefore if the “density” of ba-
sis functions per molecular size increases, the semi-numerical scheme
becomes more efficient per grid point. As a result the semi-numeri-
cal scheme is favored for larger basis sets such as 6-311G(2df) and
cc-pvtz.

1 Please refer to the web page https://software.intel.com/en-us/xeon-phi/
x200-processor showcase section for more details.

Table 4
Total energy error per atom for the semi-numerical HF exchange calculation on alanine
peptides in micro-Hartree.

ala35 ala40 ala45

Number of atoms 353 403 453
μEh/atom 16.61 16.66 13.58

Table 5
Timing of HF exchange matrix calculation with the SG-1 grid on different platforms in
seconds.

Basis set Molecule

Basis
set
number Semi-numerical 4-center ERI

Phi CPU CPU

6-31G∗∗ c60 900 134.03 135.56 (1.01) 60.05 (0.45)
c100 1500 227.31 419.78 (1.85) 176.76 (0.78)
c180 2700 519.99 1375.07 (2.64) 552.59 (1.06)
c240 3600 611.35 2455.31 (4.02) 983.19 (1.61)

6-311G(2df) c60 1800 150.94 396.78 (2.63) 1080.45 (7.16)
c100 3000 340.36 1241.43 (3.65) 3182.73 (9.35)
c180 5400 1175.69 4141.91 (3.52) 9994.56 (8.50)
c240 7200 2120.03 7333.96 (3.46) 18044.39(8.51)

cc-pvdz c60 840 136.64 323.32 (2.37) 193.60 (1.42)
c100 1400 242.91 1015.24 (4.18) 585.88 (2.41)
c180 2520 527.54 3353.91 (6.36) 1897.24 (3.60)
c240 3360 862.89 5946.02 (6.89) 3403.45 (3.94)

cc-pvtz c60 1800 182.06 770.52 (4.23) 1874.04 (10.29)
c100 3000 476.20 2505.30 (5.26) 5794.53 (12.17)
c180 5400 1659.66 8516.49 (5.13) 18600.08(11.21)
c240 7200 2970.48 15175.24(5.11) 33220.47(11.18)

6. Conclusion

Efficient implementation of quantum chemistry methods to take
the full advantage of new computer technologies is important for the
large scale applications. In this work we extended our previous imple-
mentation of a semi-numerical method for HF exchange to the Intel
Phi processor. The utilization of VPUs on the Phi processor, which
operates in a SIMD fashion, imposes a major challenge for implemen-
tation since algorithms for the ERI naturally fits the MIMD-type. The
other major technical obstacle is the relatively small cache size. These
difficulties are overcome by organizing the data for computing vari-
ous types of fundamental integrals to be aligned with the VPU regis-
ter, and prefetching necessary data for effective use of the cache. The
accuracy and efficiency of the implementation are evaluated with the
computation of a series of buckyball molecules with basis sets of dif-
ferent sizes. The results showed that the accuracy of the semi-numer-
ical implementation is similar to that of the RI method. The computa-
tional efficiency of the implementation matches the achievements of
other types of software for the Phi processor. The advantage of the
combination of the semi-numerical algorithm with the Phi processor
can be seen through the 7–12 times of speedup relative to the com-
putation with the traditional four-center ERI method on a six-core
E5-1650 CPU with 6-311G(2df) and cc-pvtz basis sets.
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