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a b s t r a c t 

Parking availability information (or occupancy of parking facility) is highly valued by trav- 

elers, and is one of the most important inputs to many parking models. This paper pro- 

poses a model-based practical framework to predict future occupancy from historical oc- 

cupancy data alone. The framework consists of two modules: estimation of model param- 

eters, and occupancy prediction. At the core of the predictive framework, a queuing model 

is employed to describe the stochastic occupancy change of a parking facility. While the 

underlying queuing model can be any reasonable model, we demonstrate the framework 

with the well-established continuous-time Markov M \ M \ C \ C queue in this paper. The pos- 

sibility of adopting a different queuing model that can potentially incorporate the parking- 

searching process is also discussed. The parameter estimation module and the occupancy 

prediction module are both built on the underlying queuing model. To apply the estima- 

tion and prediction methods in real world, a few practical considerations are accounted 

for in the framework with methods to handle variations of arrival and departure patterns 

from day to day and within a day, including special events. The proposed framework and 

models are validated using both simulated and real data. Our San Francisco case stud- 

ies demonstrate that the parameters estimated offline can lead to accurate predictions of 

parking facility occupancy both with and without real-time update. We also performed 

extensive numerical experiments to compare the proposed framework and methods with 

several pure machine-learning methods in recent literature. It is found that our approach 

delivers equal or better performance, but requires a computation time that is orders of 

magnitude less to tune and train the model. Additionally, our approach can predict for any 

time in the future with one training process, while pure machine-learning methods have 

to train a specific model for a different prediction interval to achieve the same level of 

accuracy. 

©2018 Elsevier Ltd. All rights reserved. 

 

 

 

1. Introduction 

Searching for parking is a real struggle faced by many drivers, especially in urban areas ( IBM, 2011 ). Empirical studies

conducted in the US suggested that the average time spent searching for a curbside parking space ranged between 3.5 and

14 min ( Shoup, 2006 ), which has tremendous negative impact on a traffic network. According to Shoup (2006) , cruising for
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parking is responsible for 30% of traffic on average in downtown area. In a more recent research, Giuffrè et al. (2012) found

that cruising for parking results in a peak increase of about 25–40% of the traffic flow. Moreover, congestion caused by

cruising for parking is a waste of resources and aggravates environmental issues. Ayala et al. (2012) concluded that for a

city like Chicago, 8.37 million gallons of gasoline would be consumed and 129 thousand tons of CO 2 emitted every year due

to cruising for parking. 

The significance of the parking searching problem has led to an increasing public demand for parking information and

services recently. With the proliferation of advanced smartphones, a range of smartphone-based parking management ser-

vices began to emerge. In fact, the International Parking Institute identified the prevalence of mobile applications the #2

emerging trend in parking in 2015 ( IPI, 2015 ). Available services currently on the market include mobile payment (e.g.,

Pango 2016; ParkMobile 2016 ) and parking information provision and reservation (e.g., ParkMe Inc. 2016; Parkopedia 2016;

ParkWhiz 2016; Spothero 2016; BestParking 2016 ). In addition to parking rates and facility properties provided by almost

every parking application, ParkMe also offers real-time parking occupancy information (as a percentage) in selected markets.

On the other hand, the research communities have been studying various aspects of parking for decades. As early

as in the 1950s, Vickrey suggested time-varying parking fees to ensure the economical utilization of parking spaces

( Vickrey, 1994 ). To this day, policy and operational innovations aiming to improve social welfare is still a predominant topic

in parking research. Such innovations include pricing ( Arnott et al., 1991; Zhang and van Wee, 2011; Qian and Rajagopal,

2014; Mackowski et al., 2015; He et al., 2015 ), reservation ( Teodorovic and Lucic, 2006; Boehlé et al., 2008; Delot et al.,

2009; Caicedo et al., 2012; Liu et al., 2014; Shin and Jun, 2014; Chen et al., 2015 ), and information provision ( Waterson

et al., 2001; Thompson et al., 20 01; Caicedo, 20 09; Sun et al., 2016 ). Driven by the modeling need in these work, many

studies have specifically investigated how parking competition affects both temporal and spatial travel patterns. The former

is commonly achieved through bottleneck models ( Yang et al., 2013; Xiao et al., 2016 ) while the latter through non-atomic

games (more commonly referred to as traffic assignment) ( Bifulco, 1993; Arnott and Rowse, 1999; Anderson and de Palma,

2004; Boyles et al., 2015 ) or more general game-theoretical framework ( Ayala et al., 2011; Kokolaki et al., 2012; Guo et al.,

2013 ). In addition, agent-based simulation employing rule-based or discrete choice models ( Benenson et al., 2008; Waraich

and Axhausen, 2012 ) has also been commonly adopted. It is worth noting that although information provision, more specif-

ically the provision of parking occupancy and probability of finding a parking spot, is not as extensively studied as other

parking management strategies, it has attracted more attention recently and is being considered by some of the models as

key components, inputs, or assumptions ( Caicedo et al., 2012; Shin and Jun, 2014; Qian and Rajagopal, 2013; Guo et al., 2013;

Schlote et al., 2014; Boyles et al., 2015; Chen et al., 2015 ). Moreover, some recent empirical studies also found that parking

occupancy information is mostly valued by drivers ( Caicedo et al., 2006; van der Waerden et al., 2011 ) and such occupancy

information ( Caicedo et al., 2006 ) and related variables such as time spent searching for parking ( Ibeas et al., 2014 ) and

the availability of parking after a reasonable search time ( Chaniotakis and Pel, 2015 ) do significantly affect drivers’ parking

choices. 

In view of the significance of predictive parking occupancy information in parking searching, this paper aims to develop

a model-based practical framework for parking occupancy prediction. The framework consists of two modules: estimation

of model parameters, and occupancy prediction. At the core of the predictive framework, a queuing model is employed to

describe the stochastic occupancy change of a parking facility. While the underlying queuing model can be any reasonable

model, we demonstrate the framework with the well-established continuous-time Markov M \ M \ C \ C queue in this paper. The

parameter estimation module and the occupancy prediction module are both built on the underlying queuing model. The

possibility of adopting a different queuing model that can potentially incorporate the parking-searching process is further

discussed. To apply the estimation and prediction methods in real world, a few practical considerations are further discussed

and methods proposed to handle more complex arrival and departure variations from day to day and within a day, including

special events. 

The framework and the methods are validated using both simulated and real-world data. Our San Francisco case studies

demonstrate that the parameters estimated offline can lead to accurate predictions of parking facility occupancy both with

and without real-time occupancy. Even when the underlying model may be inaccurate due to limited data availability (such

as parking occupancy data during special event), a potential drawback of model-based approaches, the prediction module

can be easily modified to offer prediction that is more accurate. We also performed extensive numerical experiments to

compare the proposed framework and methods with several pure machine-learning methods published in recent literature.

It is found that our approach delivers equal or better performance, but requires a computation time that is orders of mag-

nitude less to tune and train the model. Additionally, our model can predict for any time in the future with one training

process while pure machine learning methods have to train a separate model for each time window of interest to achieve

accurate prediction. Moreover, by adopting a model-based approach over pure statistical and machine-learning methods, 

the framework could potentially incorporate the parking searching process (which can be reflected in the stochastic arrival

process in the queuing model) in parking occupancy prediction. This would enable investigation on network traffic effects

as a result of parking availability information provision and the subsequent possibly altered parking search behaviors using

game-theoretical approaches. 

To this end, the contributions of this paper include: 1) a model-based practical parking occupancy prediction framework

grounded in the underlying stochastic queuing process; 2) the first to validate a model-based parking occupancy prediction

framework using real data; and 3) insights on the applicability and suitability of the proposed model-based framework from

comparison with pure machine learning parking occupancy prediction methods. 
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2. Literature review on parking availability prediction 

Two approaches to parking availability prediction exist in the literature. 

One approach starts with establishing some underlying model for the parking process; and parking availability prediction

relies on the estimation of model parameters. The underlying model usually explicitly considers the stochastic arrival and

departure processes of a parking facility. The arrival process is commonly assumed Poisson. As for the departure process, it is

often assumed the parking duration follows negative exponential distribution ( Millard-Ball et al., 2014; Portilla et al., 2009 )

or discretized Gamma distribution ( Caicedo et al., 2012 ). Caliskan et al. (2007) adopts the classic continuous-time birth-and-

death queueing model with Poisson arrival and exponential inter-departure time. In their simulation work, they assumed

that the departure rate is given, and employed a maximum likelihood approach to estimate the arrival rate from simulated

occupancy data. They further predicted future occupancy with the estimated arrival rate and the given departure rate with

an autoregressive Gaussian process. Similarly, Lu et al. (2009) estimates the probability that a parking facility is completely

full using the same model but assumes that advanced technologies are in place to provide data on arrival and departure

rates directly. Boyles et al. (2015) incorporates the same continuous-time Markov model to specify the probabilistic parking

availability in their network equilibrium analysis. Caicedo et al. (2012) proposed a centralized system for parking request

allocation that has parking availability forecast as one of its components. The system computes future parking availability

forecast based on requests allocation and simulated parking durations from discretized Gamma distribution. Existing studies

in this category are mainly theoretical, and have at best validated their models using simulation. In addition, most of the

aforementioned studies are not able to estimate parameters for the arrival and departure processes simultaneously, and

require additional assumptions for prediction. 

Another approach, instead of modeling the underlying parking process, applies statistical and machine learning meth-

ods to predict future occupancy directly from the observed data. These methods include simple regression ( McGuiness and

McNeil, 1991; Burns and Faurot, 1992 ), database system ( Dunning 2006 ), chaotic time series analysis ( Liu et al., 2010 ), mul-

tivariate spatiotemporal regression ( Rajabioun and Ioannou, 2015 ), neural network ( Vlahogianni et al., 2016; Ji et al., 2015;

Ziat et al., 2016; Tiedemann et al., 2015 ), and clustering ( Tiedemann et al., 2015; Tamrazian et al., 2015 ). One drawback of

these models is the extensive tuning of the model structure. For example, in neural network approaches, model structure

parameters include the number of input nodes, the number of input layers/hidden nodes, learning rate and momentum.

Extensive tuning is required to determine these parameters before the actual learning of weights of each input and hidden

node can take place. Moreover, while these methods are able to provide accurate prediction for a given time window and

can be very useful in implementations of parking information systems, their value in exploring innovative parking policies

and operational strategies is limited. This is because such statistical and machine learning algorithms are isolated from other

aspects of the transportation system; and they are not set up to account for changes in human behaviors and traffic flow in

the entire network, which are ultimately reflected in the stochastic arrival and departure processes. 

The predictive framework and methods developed in our work fall into the first approach, where the underlying stochas-

tic parking process is explicitly modeled. Different from previous work in this category, we have validated our approaches

using both simulated and real data. Moreover, our approach is also able to estimate at the same time both arrival and

departure rates based on historical occupancy data alone. While our predictive framework also employs regression tech-

niques under certain conditions, the governing equation (model structure) is derived from the analytical properties of the

underlying Markov queueing model and does not require tuning. 

3. Prediction framework 

The prediction framework consists of a parameter estimation module and an occupancy prediction module. At the core

of the predictive framework, a queuing model is employed to describe the stochastic occupancy change of a parking fa-

cility. While the underlying queuing model can be any reasonable model, we demonstrate the framework with the well-

established continuous-time Markov M \ M \ C \ C queue in this paper. Mathematical properties of the M \ M \ C \ C model, such

as the time-dependent expectation, together with its asymptote, and the time-dependent variance of the parking facility

occupancy are derived analytically under specific conditions. Applying the underlying queuing model, two approaches are

developed to estimate the arrival and departure rates from historical occupancy data. The first approach makes use of the

analytical properties of the occupancy probability distribution and employs curve-fitting techniques; and is suitable when

the parking facility is under-saturated. When the parking facility is over-saturated, the second approach applies maximum

likelihood or least squares estimation directly. To apply any of the two base estimation methods in real world, a few prac-

tical considerations are further discussed and methods proposed to handle arrival and departure patterns that are more

complex. For example, due to day-to-day variations in the arrival and departure patterns, data clustering should be applied

first to arrange historical daily occupancy time series into groups. When analyzing time-series data of occupancy within a

24-h timeframe, the time points that may mark a change in the underlying arrival and departure rates need to be identi-

fied; and an iterative process is proposed in this paper for this purpose. A simple prediction method based on the analytical

properties of the occupancy probability distribution can be applied for normal parking traffic. On the other hand, a modified

prediction method is proposed to offer more accuracy during special events, for which data availability might be limited

and the underlying parking searching process (and thus the arrival and departure patterns) is not well understood. The pre-
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diction module can be engaged both with and without real-time update, and does not require additional data other than

observed occupancy at the beginning of the day or in real time. 

3.1. Stochastic queueing model for parking process 

In this section, we first provide a brief introduction of a widely used ( Caliskan et al., 2007 ; Lu et al., 2009 ; Boyles, 2015 )

continuous-time Markov model (M/M/C/C queueing model) for the stochastic parking process of a single parking facility.

Time-dependent analytical properties of the model are then derived. 

It is worth mentioning that the underlying queuing model can be any reasonable model. One possible alternative is to

consider a discrete-time model where both the arrival and departure are described by a binomial process. This could poten-

tially allow us to incorporate the parking-searching process by treating the probability that an approaching vehicle would

select a given parking facility as a function of traffic and parking facility characteristics (and possibly driver characteristics).

The discrete model could also potentially be more computationally efficient. Please see Appendix B for more discussions. 

3.1.1. M/M/C/C queueing model 

The state of the queue corresponds to the occupancy of a parking facility, defined as the number of vehicles currently

parking in it. Note that parking occupancy is a discrete random variable. Denote the time-dependent probability distribution

of the parking occupancy as O ( t ), a row vector whose elements represent the probabilities of each occupancy value, from 0

to the capacity C of the parking facility. O ( t ) is the product of initial occupancy O (0) and the Markov transition-probability

matrix P ( t ). 

Both arrival and departure are assumed to follow Poisson process. The arrival rate of the parking facility is denoted as

λ, and the parking time of each parked vehicle follows a negative exponential distribution with a mean value of 1/ μunits
of time. If the current occupancy is n , then the current departure rate of the entire parking lot is n μ. As described above,
the parking process is in fact a birth-and-death process ( Ross, 2014 ), more specifically a Poisson queuing process with finite

servers (equal to the capacity of the parking facility C) and zero buffer size. For fixed λand μ, it is well established that
the Kolmogorov’s backward equations can be used to solve for the transition probability matrix P ( t ) ( Ross, 2014 ). 

3.1.2. Model properties 

This section further investigates the time-dependent model properties, such as expectation, variance, and asymptote, 

before applying them for parking occupancy prediction. 

Let N t denote the occupancy at time t . Assume that during a period [ t, t + h ] where N t < C always holds; i.e., the parking

facility is under-saturated. Then: 

E ( N t+ h | N t ) = N t + ( λ−N t μ) h 

We have proved that (see Appendix A ): 

E t = e 
−μt E 0 −

λ
μ
+ 
λ
μ

(1) 

It is evident from Eq. (1) that when the facility is under-saturated, the occupancy expectation will converge to λ/ μafter
a sufficiently long time. Furthermore, Eq. (1) will degenerate to λt when departure rate is 0. In addition to the expected
occupancy, the variance of N t can also be written as a simple function of λ, μ, t , if the parking facility is under-saturated
(See Appendix A for detailed derivation): 

V t = e 
−2 μt ( V 0 −E 0 ) + e 

−μt E 0 −
λ
μ
+ 
λ
μ

(2) 

Eqs. (1) and (2) provide the basis for our parking occupancy prediction framework when the parking facility is under-

saturated. First, curve-fitting techniques can be employed offline to estimate the parameters from time-series historical oc-

cupancy data. When multiple time series are available (for example, time-series occupancy data during peak hour from

multiple days), the historical time-dependent mean and variance of the occupancy can be calculated to serve as the obser-

vation. Either the expectation or the variance equation would allow us to estimate both the arrival and the departure rate at

the same time without additional assumptions or data requirements. Next, if current occupancy is available, expected future

occupancy can be predicted from Eq. (1) with the estimated arrival and departure rates. It should be pointed out that when

the facility is over-saturated, Eqs. (1) and (2) no longer hold. In this case, parameter estimation is much more difficult. We

propose to adopt maximum likelihood or least squares estimation in conjecture with the Markov model directly to estimate

the parameters. The two estimation approaches are discussed in the next section. 

3.2. Estimating model parameters from time-series data 

In this section, two methods are proposed for two different situations to estimate the parameters in the Markov models

described in Section 3.1 . 
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1. Regression parameter estimation: 

This method is applicable to the case where the capacity of a parking facility is not exceeded, i.e., the facility is under-

saturated. Parameters for both the arrival and departure processes can be efficiently estimated at the same time

with historical / time-series data of occupancy alone. Compared to pure statistical or machine learning methods, the

governing regression equation in our approach is derived from analytical properties of the Markov models, and does

not require additional tuning of the model structure (e.g., number of input nodes, number of hidden nodes, etc. in

neural network approaches). 

2. Direct maximum likelihood or least squares parameter estimation: 

This method can be used more generally, even when the parking facility is over-saturated. However, it is more com-

putationally demanding. When available historical data is limited, it is recommended to fix one of the arrival and

departure rates in order to obtain an accurate estimate. This is similar to the requirement in most previous studies

( Caliskan et al., 2007; Caicedo et al., 2012; Portilla et al., 2009 ). 

Numerical experiments with simulated data are first performed to demonstrate the two methods above. Case studies

with real data are presented in Section 5 . 

3.2.1. Parameter estimation methods 

3.2.1.1. Regression with derived expectation or variation equation . Suppose a parking facility is under-saturated, i.e., no ar-

riving vehicle is rejected because the facility is full, and the arrival and departure parameters are constant during a time

window [ t s ,t e ], where t s is the starting time and t e the ending time. Note that in practice, the observed occupancy is com-

monly in time series form. Suppose t e = t s + m t and let ̄n t s + i t denote the mean of the observed occupancy at time point

t = t s + i t , ∀ i = 0, 1, 2, …m over multiple days. Applying Eq. (1) , a constrained regression problem can be formulated to
estimate ( λ, μ). The objective is to minimize the square of the difference between predicted and observed mean occupancy
values Mi n λ,p 

m 
i =1 
( y ( i ) −n̄ t s + i t ) 

2 , where y (i ) = e −μi t ( ̄n t s −
λ
μ) + 

λ
μ, ∀ i = 1 , 2 , . . . m . This forces the fitted curve to always

pass through the first data point ( t s , n̄ t s ) in the time window, and eliminates error propagation when multiple time win-
dows are being considered. The constraints assure the values of λand μare realistic, within the physically possible ranges
of entrance and exit rates. 

3.2.1.2. Maximum likelihood or least squares estimation with Markov model . When the parking facility is over-saturated,

Eqs. (1) and (2) no longer hold and the regression method is no longer applicable. In this case, we propose to adopt

appropriate optimization techniques directly to seek a pair of ( λ, μ) for the proposed Markov model that maximizes the
likelihood of observed occupancy values or minimizes the sum of error squared between observed and predicted occupancy

distributions. 

Suppose historical occupancy data at t 1 , t 2 ( t 1 < t 2 ) from M days are available. Denoted the observed occupancy values at

t 1 over M days as n 
1 
1 , n 

2 
1 , . . . n 

k 
1 , .., n 

M 
1 and those att 2 as n 

1 
2 , n 

2 
2 , . . . n 

k 
2 , .., n 

M 
2 . From these observations, the historical occupancy

distributions can be calculated as O 1 = ( f 1 (0) , f 1 (1) , . . . f 1 (C) ) / 
 M 
k =1 n 

k 
1 and O 2 = ( f 2 (0) , f 2 (1) , . . . f 2 (C) ) / 

 M 
k =1 n 

k 
2 , where

f t ( i ) is the frequency of occupancy value i being observed at time t . Using O 1 as the starting point, and employing the pro-

posed Markov model O ( t ) = O (0) •P ( t ) with any given pair of ( λ, μ), we can calculate the predicted occupancy distribution
at t 2 , denoted as ̃ O 2 . The maximum likelihood estimation seeks a pair of ( λ, μ) that maximizes the term 

 C 
i =0 

 ̃O 2 (i ) f 2 (i ) , the
likelihood of the actual observations at time t 2 under the predicted occupancy distribution ̃ O 2 . The least squares estimation,

on the other hand, seeks a pair of ( λ, μ) that minimizes the term 
 C 
i =0 ( O 2 (i ) −  ̃O 2 (i ) ) 2 . 

It is worth noting the time-dependent occupancy distribution from the continuous-time model is difficult to evaluate in

general. It involves evaluation of a matrix exponential operator e X := 
 ∞ 
k =0 X 

k /k ! ( Coddington and Levinson, 1955 ), which is

non-trivial and does not have a closed-form expression when the arrival or departure rate varies with time. Other reasonable

queuing models can also be adopted in the framework. Appendix B discusses one of such alternatives, a discrete-time model,

which could potentially be more computationally efficient. 

3.2.2. Numerical examples 

To demonstrate the occupancy prediction framework, simulation experiments are performed. Simulated arrivals and de-

partures are generated based on the parking model, and the resulting occupancy values are treated as the observed his-

torical data. Note that since the process used to generate the random data is identical to the one used in the estimation

approaches, the numerical examples in this subsection do not necessarily validate the proposed models for real-world ap-

plication. Rather, the simulated numerical examples explore the applicability of the two parameter estimation methods in

under- and over-saturated conditions. The appropriateness of the proposed methods in real-world applications is demon-

strated in Section 5 . 

In the simulation, the capacity of the parking facility C is set to 20. The simulation duration is 50 time intervals. The

average arrival rate λis 1 vehicle per time interval, and the departure rate μis set to 0.05 (equivalent to an average
parking time of 20 time intervals). The starting occupancy distribution has non-zero probabilities for occupancy values 2
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Fig. 1. Occupancy distribution over time from simulated data. 

Fig. 2. Occupancy expectation over time from simulated data. 

Fig. 3. Curve fitting for t ∈ [1, 20] . 

 

 

 

 

 

–6 as 0.1, 0.3, 0.3, 0.2, and 0.1, respectively. From simulated arrivals and departures over 10 0 simulation runs, the dis-

tribution of occupancy ( Fig. 1 ) and the expectation of occupancy ( Fig. 2 ) over time are computed to serve as historical

data. 

3.2.2.1. Under-saturated facility. From Fig. 1 , it can be seen that the occupancy rarely reaches capacity when t ≤20. There-

fore, we can apply the regression method for the period [1, 20]. Fig. 3 shows the fitted expectation curve. The fitted param-

eters ( λ, μ) = (1.0175, 0.0521) from 20 data points are very close to the simulation input. It is worth mentioning that gate
constraints are not explicitly enforced in this simulated experiment. 
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Fig. 4. Curve fitting for t ∈ [1, 5] . 

Fig. 5. Curving fitting for t ∈ [40, 50] . 

 

 

 

 

 

 

 

 

 

 

 

In real application, arrival and departure parameters may not remain constant for an extended period, which means that

there might only be a limited number of data points for curve fitting. To see how the regression method performs when

there are fewer data points, an expectation curve is fitted with the first 5 data points only ( Fig. 4 ). The estimation result is

( λ, μ) = (1.0322, 0.0533), still quite close to the simulation inputs. This indicates that regression method could work well
even with fewer data points. 

We also performed estimation using the variation curve Eq. (2) and obtained very similar results. 

3.2.2.2. Over-saturated facility. In this simulation experiment, there is a high probability that the parking facility is fully

occupied as t increases ( Fig. 1 ). In this case, the expectation curve Eq. (1) no longer holds. If the regression method is

applied nonetheless, the results would be inaccurate. The estimated ( λ, μ) = (2.7833, 0.1645) using data from t ∈ [40, 50]
( Fig. 5 ) is quite different from the simulation input. 

Instead, direct maximum likelihood and least squares estimation is implemented with a compass search algorithm

( Kolda et al., 2003 ) to seek the best feasible pair of ( λ, μ). Both λand μcan be estimated simultaneously rather accu-
rately, if the observation data set is large (for example, with 10,0 0 0 time series). However, when the size of historical data

is limited (such as in our case with 10 0 time series), the direct optimization may converge to a local optimal depending on
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Table 1 

Simulation-based optimization estimation results for t ∈ [40, 50] . 

Fixed departure rate μ= 0.05 Fix arrival rate λ= 1 
Estimate λ Estimate μ

Starting point Maximum likelihood Least square Starting point Maximum likelihood Least square 

0 0.9974 0.9973 0 0.0486 0.0494 

0.1 0.9973 0.9973 0.2 0.0493 0.0500 

0.2 0.9973 0.9973 0.1 0.0488 0.0488 

0.5 0.9974 0.9973 0.067 0.0500 0.0500 

1 0.9974 0.9973 0.05 0.0500 0.0500 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the starting point of the compass search. In this case, it is ideal if one parameter can be fixed based on prior knowledge.

For example, with gated parking facilities, the arrival rate can be obtained from gate readings. Table 1 reports the estima-

tion results from simulation-based optimization with various starting values and different objectives, when one of the two

parameters is fixed. It can be seen the estimated values are quite accurate, regardless of the starting point. 

3.3. Parameter estimation in real-world applications 

Before applying the regression method, we need to identify the days from all available data when drivers have similar

activity patterns that will result in similar arrival rate and parking time. With those groups defined, a parking facility is

considered to experience the same arrival and departure rate at the same time of day for any day in a given group. On the

other hand, it is important to determine the time of day when λand μchange. Clustering techniques can be employed for
the former; and an iterative approach can be adopted for the latter. 

3.3.1. Day-to-day patterns 

To avoid over complicating and dividing historical data into too many groups, we propose to only consider two to three

groups of days, using between-group linkage ( Murtagh, 1983 ) hierarchical cluster method in SPSS ( IBM, 2016 ). Possible

classifications include “workdays” versus “holidays”, or “regular workdays” versus “high demand days” versus “holidays”. 

Between-group linkage hierarchical cluster is a common clustering method. Each sample is initially treated as a sepa-

rate group. The gaps between every pair of groups are calculated and the two closest groups are combined into one. The

gaps between groups are defined as the average distance between each pair of data points in different groups; and the

distance between data points is defined as the Euclid distance. This process is repeated until the desired number of groups

is achieved. 

3.3.2. Within-day patterns 

We define the time of day when λand μchange as breaking points. Apparently, ( λ, μ) must change at local maximum
or local minimum of the historical mean occupancy curve. These breaking points divide the total analysis period into mul-

tiple periods within which the historical expectation curve is monotone. For a period where the historical mean occupancy

decreases, it is obvious that μ> 0; and the least square estimation from 3.2.1 should be applied for parameter estimation.
When historical mean occupancy monotonically increases ( μmay or may not be zero), both the original exponential and
degenerated linear formulations can be used to fit the data and the one with better performance chosen. Furthermore, since

parameters normally do not remain constant for an extended period in real world, we let m represent the largest number

of time intervals that ( λ, μ) could remain constant, and start our regression with a time window of at most m data points.
If the resulting R 2 is sufficiently large (greater than a pre-defined value), move to the next period. Otherwise, reduce the

length of the period by one time interval at a time until R 2 meets the criteria. A flowchart of the process is shown in Fig. 6 .

3.4. Occupancy prediction in real-world applications 

Once the time-dependent arrival and departure rate and are estimated, they can be applied to predict future occupancy

using Eq. (1) . The prediction module can be engaged both with and without real-time updates, and does not require addi-

tional data other than observed occupancy at the beginning of the day or in real time. Additionally, it would be beneficial

to monitor the prediction error in real-time, although not required, in order to make any adjustments to capture abnormal

parking demand caused by special events or other unforeseen reasons that may not be reflected otherwise in the historical

data set. 

3.4.1. Prediction with and without real-time updates 

The model-based prediction method proposed allows occupancy prediction for any time in the future both with and

without real-time data. 

Without any real-time occupancy data, prediction of the next time interval can be performed repeatedly based on the

output from previous occupancy prediction. For example, a 24-h prediction without real-time data predicts the occupancy
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Fig. 6. Iterative estimation framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for the entire day based on the observed occupancy at the beginning of the day. It is certainly limited in handling abnormal

arrival and departure patterns, but has its use in planning and other transportation analysis. 

We can also update the prediction based on real-time data as they become available. The prediction interval therefore

could be significantly shorter, bounded only by the data collection interval. Note that this does not mean that the only

prediction available to users is from the previous time interval. Rather, predicted parking occupancy is available whenever

a user queries the information, be it at the beginning of the trip or anytime during the trip. The real-time updates allow

travelers to check for changes in occupancy prediction shortly before they arrive at their destination for a more accurate

estimate. 

3.4.2. Recurrent over-saturation and special event 

As described in Section 3.2.1 , if a parking facility is recurrently over-saturated, a direct maximum likelihood or least

squares estimation can be adopted. However, if a parking facility is only occasionally oversaturated, possibly due to special

event, then the direct estimation methods would not be applicable. This is because the near- or over-saturation is not caused

by recurring arrival and departure patterns, and there would not be sufficient historical data to support the direct estimation.

There are multiple possible approaches to handle special event occupancy prediction, depending on data availability. 

If rich historical special event data (days, times, durations, and types, etc.) is available, it is possible to apply clustering

methods to divide the historical data into groups and learn the arrival rate and departure probability for each group. It is

worth noting that care should be taken in accounting for the normal background parking demand during special events.

For prediction, if information regarding the special event of question is known in advance, then one or more groups that

have similar attributes could be selected to carry out feature-weighted average method ( Tamrazian et al., 2015 ) and alike.

Otherwise, multiple prediction threads based on different groups could be performed simultaneously, and their prediction

errors monitored in real-time. The weight of each group can then be updated over time as a function of the prediction

errors. 

If information on historical special event is insufficient, i.e., the underlying parking searching and queueing processes are

not well-understood, reasonable predictions can still be achieved by refining the estimates based on real-time prediction

error. When the actual occupancy becomes greater than the predicted value by a pre-defined threshold, it indicates that

the historical arrival and departure rates are not able to capture the parking demand pattern of the moment, and that

the ingress of a special event may be in process. The real-time prediction errors could serve as a simple piece-wise linear

approximation to the additional special event arrivals. The occupancy prediction can be slightly modified by adding this

component to the value predicted from the historical arrival and departure patterns. Note that in this approach, we do not

need to know whether a special event is present or not, nor its time and duration. 

4. Case studies 

Three case studies (two for regular workdays and one for a special event) with real occupancy data from San Francisco

are presented to validate the performance of the proposed framework. These case studies were originally done with discrete-

time model but as described above, the occupancy prediction will not be different for continuous-time model. 

It is worth mentioning that for all the 14 parking facilities we collected data for, none was ever filled during our three-

month data collection period. However, there were days where some parking facilities were very close to saturation due
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Fig. 7. Occupancy data (Civic Center Garage, San Francisco, May 18–31, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to special event. In view of this, all three case studies in this section have adopted the regression method for parameter

estimation. The prediction (both with and without real-time update) for regular workdays is straightforward. The case stud-

ies show that the proposed model-based framework performs well both with and without real-time updates for a range

of prediction time windows, where the paradigm shift from daytime to evening can be captured by the prediction with

real-time updates. The special event case study demonstrates that the framework can achieve accurate prediction even if

the underlying model may be inaccurate due to limited data availability. 

4.1. Data collection 

A Hypertext Preprocessor (PHP) script was written to retrieve the San Francisco parking garage JavaScript Object Notation

(JSON) file from Firebase’s ( Firebase, 2015 ) public data set from May 2015 to August 2015. A Cron job has been established

to execute the PHP script every two minutes to keep bandwidth use low on the Firebase servers. The script parsed the

garage name, the number of open spaces and the number of total spaces from the JSON file before writing the parsed data

and a timestamp to a Comma Separated Values (CSV) text file. The San Francisco garage parking data was retrieved with

the JSON file. No street parking data was available during our data collection period. 

4.2. Case study 1 

The purpose of this case study is to demonstrate all the components of the proposed framework. The case study is

based on two weeks’ worth of data from the Civic Center garage collected in May 2015. Fig. 7 plots the observed occupancy

every 12 min for the two weeks. The missing points in the figures are due to closure of the garage and lost connection

to the database. These points are excluded from the occupancy expectation calculation. Due to the low occupancy between

midnight and 6 a.m., we will focus on parameter estimation and occupancy prediction starting from 6 a.m.. In view of

the lack of any additional information on the maximum entering and leaving rates, we set both g 1 and g 2 to 60, i.e., it is

assumed that at most 60 vehicles on average could enter or leave the parking garage every 12 min. 

From hierarchical cluster analysis ( Fig. 8 ), the 14 days are first divided into two groups: “workday” and “holiday” . Notice

that May 25, 2015 is a weekday but is classified into the “holiday” group, because it was Memorial Day. Also, May 27

displays a significantly different occupancy pattern from other workdays, possibly caused by special events or randomness.

Therefore, we excluded May 27, 2015 and used the rest of the days in the “workday” group as our analysis data set (a total

of 8 days). 

The expectation curve of the model ( Eq. (1) ) is employed to estimate and predict “workday” group occupancy data for

the Civic Center garage. The longest time window during which ( λ, μ) remain constant is set to 1 h in this case study. If
R 2 of the regression is smaller than 0.95, the time window will be reduced by 12 min until R 2 is sufficiently large. 

Table 2 reports the estimated parameters during 13:00 and 15:36. From 13:00 to 14:00, the mean occupancy from the 8

days monotonically increases. Both exponential (shown as Exponential in Table 2 ) and linear (shown as Linear in Table 2 )
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Fig. 8. Hierarchical cluster. 

Table 2 

Part of estimated parameter table. 

Interval Starting time Historical mean occupancy Exponential Linear 

λ(# vehicles every 12 min) μ(leaving rate for every parked vehicle) λ(# vehicles every 12 min) 

1 13: 00 811.50 0 0 – – 6.8 

2 13: 12 817.3333 – – 6.8 

3 13: 24 828.8333 – – 6.8 

4 13: 36 835.0 0 0 0 – – 3 

5 13: 48 838.0 0 0 0 – – 0.167 

6 14: 00 838.1667 0 0.0133 Na 

7 14: 12 823.1667 0 0.0133 Na 

8 14: 24 814.0 0 0 0 0 0.0133 Na 

9 14: 36 802.8333 0 0.0133 Na 

10 14: 48 792.0 0 0 0 0 0.0133 Na 

11 15: 00 781.8333 0 0.0233 Na 

12 15: 12 767.50 0 0 0 0.0233 Na 

13 15: 24 755.0 0 0 0 0 0.0233 Na 

… …  … … … …

22 17:12 533.6667 54.2751 0.1883 Na 

23 17:24 488.50 0 0 54.2751 0.1883 Na 

24 17:36 457.6667 54.2751 0.1883 Na 

25 17:4 8 428.6667 54.2751 0.1883 Na 

26 18:0 0 404.8333 54.2751 0.1883 Na 

27 18:12 382.8333 80.9103 0.2723 Na 

28 18:24 362.0 0 0 0 80.9103 0.2723 Na 

29 18:36 346.0 0 0 0 70.82864 0.2384 Na 

30 18:48 336.1667 70.82864 0.2384 Na 

31 19:0 0 326.1667 70.82864 0.2384 Na 

32 19:12 318.50 0 0 0 0.0219 Na 

33 19:24 311.8333 0 0.0219 Na 

34 19:36 305.1667 0 0.0219 Na 
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Fig. 9. Prediction without update (Civic Center Garage, San Francisco, June 2, 2015). 

Fig. 10. Absolute relative prediction error with and without update (Civic Center Garage, San Francisco, June 2, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

formulations are employed; and it turns out that the Linear model, where the leaving probability is set to zero, fits the data

better. Also note that the data did not support the assumption that the arrival rate is constant between 13:0 0 and 14:0 0.

Rather, the final estimation results suggest that the arrival rate remained constant from 13:00 to 13:36, and kept decreasing

during 13:36 to 14:00. Starting from 14:00, the mean historical occupancy began to decrease, and the Exponential model

should be applied. The results show that 15:00 is a breaking point where the leaving probability almost doubled. 

With the estimated time-dependent arrival rate and leaving probability for workdays from the last two weeks of May

2015, we performed prediction every 12 min with and without real-time occupancy data (updated every 12 min). This case

study uses testing data from June 2, 2015 to validate and demonstrate the performance of the proposed framework and

methods. 

The prediction without update is based on the observed occupancy at 6:00 a.m.. The results are presented in Figs. 9 and

10 . The absolute relative error of the prediction is less than 10% from 6 a.m. to 7 p.m. From 7 p.m. to 10 p.m., however, the

occupancy is over-estimated ( Fig. 9 ), and the relative error is significant ( Fig. 10 ). A closer look at the event calendars of

venues at Civic Center revealed that June 2nd, 2015 had no event after 5 p.m. while most of the days in the historical data

set had at least one event after 7 p.m. 1 This explains the over-estimation in the evening period for June 2nd, 2015, and also

highlights the limitation of prediction without update.With real-time data, an updated prediction is produced every 12 min

in this case study. As can be seen from Fig. 10 , prediction with update is able to capture the paradigm shift from daytime

to evening, and produce estimates that are more accurate with a maximum absolute relative prediction error of less than

9% and a mean absolute relative error (MARE) of 1.486% for the entire day. 
1 http://www.sfstation.com/calendar/san- francisco/civic- center/06- 02- 2015 . 

http://www.sfstation.com/calendar/san-francisco/civic-center/06-02-2015
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Fig. 11. Modified vs. original 12-min prediction (Civic Center Garage, San Francisco, Jun 19, 2015). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Case study 2 

The purpose of this case study is to examine the performance of the proposed model-based prediction framework when

a parking facility is highly congested. Although none of the 14 parking garages was ever full during our data collection

period, the data set does have days where a parking facility was close to saturation due to special event. June 19th, 2015

stands out for the Civic Center parking garage with abnormally high parking occupancy. It reached an occupancy of over

90% in the evening. The peak occupancy is 781 out of a capacity of 843 at 10:12 p.m. This indicates that the facility could

be nearly- or even over-saturated on that day. Although the data shows that there were still some stalls available, they

were not necessarily usable due to various reasons (reserved stalls, double-parking, undesirable surroundings such as low

beams or support columns, etc.) Looking back, it is evident that the congestion was caused by the 100th celebration of San

Francisco’s City Hall on that day. 2 Since data on historical events of this scale is insufficient to perform the direct estimation

method described in Section 3.2 or the clustering method described in Section 3.4.2 , the modified prediction method as

described in Section 3.4.2 is adopted for this case study. 

We focus on a portion of the ingress window, which is from 6:48 p.m. to 10:12 p.m., where the occupancy kept increas-

ing. Since June 19th, 2015 is a Friday, data from the following three Fridays was used as our training dataset. We obtained

the estimated arrival rate and departure probability for a “normal” Friday using the same estimation procedure as in the

previous case study. The parameter estimation time interval t is 12 min, and the maximum time window during which ( λ,
μ) remain constant is also set to 12 min. Both the original and the modified prediction are performed, where the threshold
is set to 10. 

Fig. 11 shows the predicted occupancy for the two prediction methods. Without any training data from comparable spe-

cial events, the linear approximation in the modified prediction method is able to handle the extra arrival well. Comparing

to the original prediction, the modified method reduces the MARE during the study window from 5.23% to 1.74%, which is

comparable to the MARE from the normal workday scenario in Case Study 1. 

4.4. Case study 3 

The purpose of this case study is to investigate how different prediction intervals affect the prediction accuracy. The case

study is based on historical data from July 6 to July 15, 2015. The procedure is the same as in case study 1. Since data

was collected every 2 min during this period, the time interval t for parameter estimation is therefore set to 2 min. The

maximum time window during which ( λ, μ) remain constant is set to 40 min. 
Occupancy prediction for 2, 4, 6, 8, 10 and 12 min in the future is performed based on the current real-time data. As

expected, prediction error increases as the prediction interval gets longer. Fig. 12 shows the errors of the predictions made

2, 6, and 12 min earlier. The evening period is selected because the errors are insignificant during the day even for the

longest prediction interval. For predictions made 12 min ago, the absolute relative error is no more than 8% during the

evening period. The value reduces to 5% and 4% for predictions made 6 and 2 min ago, respectively. This suggests that while

a short prediction interval leads to more accurate estimates, predictions made a while ago is still effective. 
2 https://www.sfstation.com/calendar/san- francisco/06- 19- 2015 . 

https://www.sfstation.com/calendar/san-francisco/06-19-2015
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Fig. 12. Absolute relative prediction error for three different prediction intervals (Civic Center Garage, San Francisco, July 16, 2015). 

Fig. 13. Neural network structure for prediction of interval t + 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Comparison with machine learning methods 

To gain further insight into the applicability and suitability of the proposed model-based framework, this section com-

pares the performance of our framework to those from three pure machine-learning methods found in recent literature.

They include artificial neural network (ANN, Vlahogianni et al., 2016 ), wavelet neural network (WNN, Ji et al., 2015 ), and

feature-weighted average method ( Tamrazian et al., 2015 ). The former two are applicable to prediction with real-time up-

date and the last is for prediction without real-time update only. These methods are selected primarily because they require

the same data input as in our framework. 

Vlahogianni et al. (2016) and Ji et al. (2015) both proposed to predict the occupancy for time interval t + 1 using real-time

data from n past time intervals (including the current interval t ). The general structure of their models is shown in Fig. 13 .

The ANN ( Vlahogianni et al., 2016 ) employs a sigmoid function at each hidden nodes to transform the weighted sum of all

input nodes, whereas the WNN ( Ji et al., 2015 ) uses Morlet function instead. 

The number of input nodes n , number of hidden nodes m , and the learning rate and momentum have to be determined

before the actual learning of weights of each input and hidden node can take place. Vlahogianni et al. (2016) optimized the

ANN structure using genetic algorithm with 5-fold cross-validation ( Tan et al., 2005 ). This process involves partitioning the

original data randomly into five subsets of the same size. Given a neural network structure, it is evaluated five times, using

each of the five subsets as testing data and the rest as training data for the weights of each input and hidden node. The

average performance over the five evaluations of the neural network structure is used as the fitness measure in the genetic

algorithm. Ji et al. (2015) did not provide details on how the parameters relevant to model structure are determined other

than that they were selected by experiments. 

The feature-weighted average method ( Tamrazian et al., 2015 ) clusters the time series of daily occupancy into different

groups. The prediction is performed by a weighted average of the means of each group, where the weights are proportional

to the number of days with the same feature as the target day (day of week, weather etc.) in different groups, and does not

require real-time data. 

Comparisons based on the case studies described in Section 4 show that our approach significantly outperforms the

wavelet neural network and feature-weighted average methods in terms of prediction error. Artificial neural network is able
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Fig. 14. Relative error of three methods for case study 1. 

Table 3 

MARE for prediction with update for the next interval. 

Approach Case 1 Case 2 

Proposed in this paper 
(w/ Original prediction with update) 1.486% 5.23% 

(w/ Modified prediction with update) – 1.74% 

ANN 1.464% 2.81% 

WNN 2.413% –

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to achieve the same level of accuracy comparing to our approach but requires hours to tune the model structure before

training, whereas our approach only takes less than 30 s to estimate the arrival and departure parameters. 

5.1. Prediction with real-time update for the next interval 

This subsection first investigates the performances of ANN, WNN, and our model-based approach in predicting the oc-

cupancy for the next time interval, as proposed in Vlahogianni et al. (2016) and Ji et al. (2015) . We trained separate ANN

and WNN models for both case studies 1 and 2. For the ANN models, we implemented the same 5-fold cross validation

genetic algorithm used in Vlahogianni et al. (2016) to optimize the ANN structure, including the number of input nodes

(number of previous intervals), the number of hidden nodes, learning rate and momentum. Following the same setting as

in Vlahogianni et al. (2016) , 50 chromosomes and 10 0 generations are used in the genetic algorithm. Our implementation is

based on Java with Weka API ( Hall et al., 2009 ). On the other hand, since it is not clear how exactly the WNN model was

tuned in Ji et al. (2015) and no well-established package for WNN exists, we programmed a brute-force procedure in Matlab

2017a to determine the WNN structure. Once the neural network structure is determined, the weights for each input and

hidden nodes are then trained using the full historical data sets used in Sections 4.2 and 4.3 . 

Fig. 14 shows the absolute relative error from ANN, WNN, and our approach for Case Study 1. It can be observed that

our method performs considerably better than WNN (especially during the morning peak) and is comparable to ANN. It is

worth noting that the errors from all three methods spiked when the daytime to evening transition occurred. For the overall

performance, WNN leads to a MARE of 2.413%; ANN enjoys the lowest MARE of 1.464%; and our method is at 1.486% (see

Table 3 ). It is not clear whether the differences are statistically significant or not for this case study, since the number of

data points in these time series is relatively small. However, while our approach took less than 30 s to estimate the arrival

rates and departure probabilities, it took 8.5 h to tune the structure of the ANN. 

Fig. 15 plots the absolute relative prediction error from our approach (with both original and modified prediction) and

ANN for Case Study 2. The same model tuning and training processes are employed. In this case study of a high profile

special event, the training data is limited as data from comparable special events does not exist. Because of this, both our

original prediction and ANN suffered from relatively large MARE compared to that in Case Study 1, where the time interval

is also 12 min. However, with modified prediction, our approach is able to predict the occupancy more accurately with a

MARE of 1.74%, much lower than ANN and the original prediction (See Table 3 ). 

5.2. Prediction with real-time updated for multiple intervals in the future 

This section examines how our method compares with ANN when predicting for a future time point that is multiple

intervals ahead. This is of practical importance because travelers are likely to query ahead of time in addition to obtaining

updates right before arrival. In our approach, prediction can be performed for any time point in the future using the same

model with the time-dependent arrival and departure rates already estimated. For ANN, there are two ways to predict the



34 J. Xiao et al. / Transportation Research Part B 112 (2018) 19–39 

Fig. 15. Relative error of three methods for case study 2. 

Fig. 16. Neural network structure for prediction of interval t + k . 

Table 4 

MARE for different prediction intervals. 

Prediction interval (min) 2 4 6 a 8 a 10 a 12 a 

Our approach 0.489% 0.812% 1.0 61% 1.283% 1.482% 1.672% 

Repeated application of the next-interval ANN 0.486% 0.867% 1.303% 1.803% 2.378% 2.998% 

Direct ANN for 12 min in the future – – – – – 1.697% 

a The MAREs from repeated application of the next-interval model and from our approach are statistically dif- 

ferent at 99% confidence level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

occupancy for time t + k at the current time t : 1) applying the next-interval model for t + 1 (as shown in Fig. 13 ) repeatedly

for k times, using predicted values as part of the inputs; and 2) applying a direct model for t + k (see Fig. 16 ), which needs to

be trained separately beforehand. It is expected that a direct ANN model for t + k would outperform repeated application of

the next-interval ANN model. However, since k is not fixed (travelers could query for any time point in the future), training

a separate model for each possible k value could be time-consuming. 

Using data from Case Study 3, where the real-time occupancy is collected every 2 min, we compare the performance

of our method and ANN (repeated application of a next-interval model) for various prediction intervals ranging from 2 to

12 min. A direct ANN model to predict for 12 min in the future is developed separately and compared against our approach

as well. 

The resulting MAREs are shown in Table 4 . When repeatedly applying the next-interval model, the MARE from ANN

increases faster than our approach as the time point of interest gets further out in the future. While the next-interval ANN

model achieves statistically similar performance compared to our method for 2 and 4 min in the future, its MAREs become

statistically larger than those from our approach starting from the prediction for 6 min in the future. For the prediction

for12 min in the future, the MARE from repeatedly applying the next-interval ANN is almost twice that of our approach. On

the other hand, the direct ANN model specifically trained to predict for 12 min in the future is able to achieve the same

performance as our approach. 

In terms of computation time, since Case Study 3 has significantly more data than Case Study 1, it is expected that it

would take days to tune the ANN using the same genetic algorithm setting in Vlahogianni et al. (2016) (50 chromosomes

and 10 0 generations). Instead, we performed the genetic algorithm with 10 chromosomes and 10 generations, and the cor-
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Table 5 

MARE for prediction without update methods. 

Approach Case 1 Case 3 

Proposed in this paper 8.907% 6.363% 

Feature-weighted average 10.676% 7.6 80% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

responding tuning time is 1 h 37 min for the next-interval model and about the same for the direct model for 12 min in

the future. Parameter estimation in our approach took less than 2 min. 

5.3. Prediction without real-time update 

For prediction without real-time data, we compared our method with the feature-weighted average method in

Tamrazian et al. (2015) . The resulting MAREs for both case studies 1 and 3 are shown in Table 5 . Our approach leads to

considerably lower MAREs in both cases. A two-sample T-test also confirms that the differences are statistically significant. 

6. Discussion and conclusion 

This paper proposes a model-based practical framework to predict future parking occupancy from historical occupancy

data alone. Being model-based rather than purely statistical, the parameter estimation methods and parking occupancy pre-

diction in the predictive framework benefit from time-dependent analytical properties of the underlying queuing model and

are computationally efficient. In addition, several practical considerations for real world implementation are accounted for in

the framework, with methods proposed to handle variations of arrival and departure patterns from day to day and within

a day, including special events. Using both simulated and real data, we have demonstrated that the proposed framework

and methods are able to effectively estimate the arrival and departure rates offline from historical occupancy data alone,

and accurately forecast parking availability with and without real-time occupancy data. It is found that our approach de-

livers equal or better performance compared to several pure machine-learning methods from recent literature, but requires

the computation time that is orders of magnitude less to tune and train the model. Additionally, our approach can predict

for any time in the future with one training process, while machine-learning methods have to train a specific model for a

different prediction interval to achieve the same level of accuracy. 

While this study explored methods for parking occupancy prediction when a facility is congested due to abnormal park-

ing demand (such as special event), the dataset we currently have do not seem to be from facilities that are recurrently over-

saturated. We plan to collect more data from additional facilities such as on-street parking facilities that are more likely to

be recurrently over-saturated. If we are successful in obtaining such data, our future research will investigate how appropri-

ate the proposed direct estimation method (as described in Section 3.2.1 ) is for such facilities. Additionally, the model-based

methods in our framework allow us to tie in the parking availability estimation with network traffic and driver behaviors

through the arrival and departure rates. This study is the first step towards being able to incorporate the parking searching

process (reflected in the stochastic arrival process) in parking occupancy prediction, as well as to investigate network traffic

effects as a result of parking availability information provision and the subsequent possibly altered parking search behaviors

using game-theoretical approaches. 
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Appendix A. Expectation and variance of the occupancy in the continuous-time model 

Let h denote an infinitesimal amount of time, N t the current occupancy. The following transition probability equations

hold ( Ross, 2014 ): 

P ( N t+ h = N t + 1 ) = λh 

P ( N t+ h = N t −1 ) = N t μh 

P ( N t+ h = N t ) = 1 −( λ+ N t μ) h 

P ( N t+ h = i ) = 0 , ∀ i ∈ N, i  = N t , N t −1 , N t + 1 

http://dx.doi.org/10.13039/100000001
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From the equations above, we have: 

E ( N t+ h | N t ) = N t + ( λ−N t μ) h 
⇒ E t+ h := E ( N t+ h ) = E t + ( λ−E t μ) h 

When h → 0, the above equation becomes: 

E  t = λ−μE t 

The solution to the partial differential equation above is: 

E t = e 
−μt E 0 −

λ
μ
+ 
λ
μ

Similar to the derivation in Appendix B , the variance can be calculated from conditional expectation and variance. 

V ( E ( N t+ h | N t ) ) = V ( N t + λh −μh N t ) = ( 1 −μh ) 
2 
V t 

E ( V ( N t+ h | N t ) ) = E ( λh + μh N t ) = λh + μh e −μt E 0 −
λ
μ + 

λ
μ

⇒ V t+ h := V ( N t+ h ) = E ( V ( N t+ h | N t ) ) + V ( E ( N t+ h | N t ) ) = ( 1 −μh ) 
2 
V t + λh + μh e −μt E 0 −λμ + 

λ
μ

V  t = lim 
h → 0 

V t+ h −V t 
h = lim 

h → 0 

( 1 −uh ) 2 −1 
h V t + 2 λ+ μe −μt E 0 −λμ = −2 μV t + 2 λ+ μe −μt E 0 −λμ

⇒ V t = e 
−2 μt ( V 0 −E 0 ) + e −μt E 0 −

λ
μ + 

λ
μ

Appendix B. An alternative discrete-time model 

At the core of the proposed predictive framework in this manuscript, a queuing model is employed to describe the

stochastic occupancy change of a parking facility. The underlying queuing model can be any reasonable model. The main

manuscript has demonstrated the proposed framework with the well-established continuous-time Markov M \ M \ C \ C queue.

This appendix will further discuss an alternative discrete-time model that focuses on the occupancy at a series of discrete

time points with time interval t . 

B.1. The discrete-time model 

Instead of Poisson arrival and departure, both processes can be reasonably modeled as binomial distributions. This could

potentially allow us to incorporate the parking-searching process into our framework, and could potentially be more com-

putationally efficient. For arrivals, the probability that an approaching vehicle would select a given parking facility can be

treated as a function of traffic and parking facility characteristics (and possibly driver characteristics). This approach, how-

ever, would require traffic flow data, which was not readily available for this study. On the other hand, the number of

departure from a parking facility during t can be calculated from the number of parked vehicles and a leaving probability

p . In view of data availability, we will demonstrate a discrete model with Poisson arrival and binomial departure in this

appendix. 

The number of arrivals during t is assumed to be Poisson with average λ. The probability of k vehicles arriving during
time interval [ t , t + t ), denoted as P a ( k , λ) can be written as: 

P a ( k, λ) = P ( A ( t ) = k ) = 
λk 
k ! e 
−λ if k ∈ { 0 } ∪ N 
0 else 

(B.1) 

where A ( t ) is the number of arrival during [ t , t + t ]. Note that not all arriving vehicles are guaranteed to find a parking

spot when the parking lot becomes full. In this case, we assume these vehicles are blocked and will leave for an alternative

parking lot immediately. 

Let D ( t ) denote the number of departures during time interval [ t , t + t ); n the occupancy of the parking lot at time t;

p the leaving probability of each vehicle in the parking lot during time interval t . The probability of k vehicles leaving in

t , given occupancy n and leaving probability p can then be expressed as: 

P d ( k, n, p ) = P ( D ( t ) = k ) = 

⎧ 
⎨ 

⎩ 

n 
k 
p k ( 1 −p ) n −k if k = 0 , 1 , . . . , n 

0 else 

(B.2) 

It is worth noticing that the average parking time (in terms of t ) is equal to 1/ p . It is assumed that each vehicle’s

parking time is greater than t . Therefore, t should be set to a small enough value. In fact, when occupancy is sufficiently

large and the leaving probability sufficiently small, the binomial distribution is a close approximation to Poisson distribution.

This is also a well-known conclusion in probability theory. 
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With the above assumptions, the Markov matrix P of this alternative discrete-time model can be derived. Let P i,j denote

the transition probability from occupancy = i to j in time interval [ t, t + t ). 

P i,j = 

i  

k =0 

P d ( k, i, p ) ×P a ( k + j −i, λ) i, j = 0 , 1 , 2 . . . . . . , C −1 (B.3a)

P i,C = 1 −

C−1  

k =0 

P i,k i = 0 , 1 , 2 , . . . . . . , C (B.3b)

Note that arrival and departure as events can occur at any time and not necessarily at discrete time points. Rather, the

discrete-time model assumes that the arrival and leaving probabilities can only change at discrete time points. 

If the parking facility is under-saturated, similar results on time-dependent expectation and variance can be derived for

the discrete model: 

E m = ( 1 −p ) 
m E 0 −

λ
p 
+ 
λ
p 

(B.4)

V m = ( 1 −p ) 
2 m ( V 0 −E 0 ) + ( 1 −p ) 

m E 0 −
λ
p 
+ 
λ
p 

(B.5)

When Eq. (1) from the continuous-time model is adopted in the regression method, the resulting expectation curve

would be the same as that of the Eq. (B.4) from discrete-time model, although the estimated arrival and departure rates will

not be the same. It is trivial to prove that from the same data set, the discrete-time model will lead to a higher estimated

arrival rate and a lower estimated average parking time. But the fact that the expectation curves from the two models are

the same means that the occupancy prediction will not be different. 

B.2. Computational efficiency of transition probability matrix evaluation 

Computational efficiency becomes relevant when it is necessary to evaluate the transition probability matrix. This not

only occurs in parameter estimation when a facility is over-saturated, but also in probabilistic prediction of future occupancy

regardless of whether a facility is over- or under-saturated. In a smart parking management scenario, the former is likely

carried out by a server while the latter on the client’s end to reduce communication cost. 

In the continuous-time model, calculating the transition probability matrix involves evaluation of a matrix exponential

operator e X := 
 ∞ 
k =0 X 

k /k ! ( Coddington and Levinson, 1955 ), which is non-trivial. Moler and Van Loan (2003) provided an

extensive review of various approaches to approximating matrix exponential. The applicability of the approaches depends on

the matrix properties such as its 2-norm and eigenvalues. Different approaches also vary in reliability, stability, and accuracy.

Moler and Van Loan (2003) identified the scaling-and-squaring method a potential “best” method as it is regarded generally

applicable and has several reliable implementations. The computational complexity of the method is about O (( m + 1/3) n 3 )

floating point operations, 3 where m is an integer ranging from 1 to about 15 depending on the 2-norm of the matrix and the

desired error bound and n is the size of the square matrix. In our application of modeling parking process, n is the capacity

of the parking facility plus one. Furthermore, note that in the continuous-time Markov model, the arrival and departure

rates can also vary with time. In this case, solving for P ( t ) becomes a linear ordinary differential equation with time-varying

coefficients whose closed-form solution does not exist ( Blanes et al., 2009 ). 

For the alternative discrete-time model, the computational complexity of evaluating the transition probability matrix

from Eqs. (B.1) –(B.3) is dominated by Eq. (B.3). In Eqs. (B.1) and ( B.2 ), the exponentials only need to be calculated once;

and the factorials and binomial coefficients can be calculated iteratively. For example, to compute P a ( k , λ) k = 0, 1, 2, …C
in formula (B.1), we only need to compute e −λonce when calculating P a (0, λ). We then apply P a ( k + 1 , λ) = λk +1 P a ( k, λ) to

compute all the following probabilities iteratively. The total complexity of Eq. (1) is O ( C ) plus the computation of e −λ. Simi-

larly, the complexity ofEq. (B.2) is also O ( C ). On the other hand, it is not difficult to see that Eq. (B.3) requires O ( C 3 /3) floating

point operations. Therefore, the complexity of evaluating Eqs. (1) –(3) is O ( C 3 /3), which is lower than the O (( m + 1/3) C 3 ) from

the continuous-time model. This shows that the discrete-time model is potentially more computationally efficient than the

continuous-time model. The actual computer time needed would depend on the implementation of both approaches and

the values of model parameters. 

We performed numerical experiments on a DELL Precision T3610 workstation with 2.6 GHz CPU and 32GB RAM running

Windows 8.1 Pro to compare the actual computation time of the transition probability matrix using both models. We imple-

mented the discrete-time model in Matlab; for the continuous-time model, we adopted the Matlab built-in function expm()

implementing the scaling-and-squaring method with Padé approximation. Our experiment results show that the discrete-

time model performs better when the capacity is under 50 while the continuous-time model runs faster when the capacity
3 As defined in Moler and Van Loan (2003) , one floating-point computation “involves one floating point multiplication, one floating point addition, a few 

subscript and index calculations, and a few storage references”. 
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is higher than 70. When the values of λand p change, the computation time also changes. If the prediction is carried out
by a device at a client’s end (i.e., a typical smartphone), one possible approach to boost computational time is to reduce

the number of significant digits by aggregating parking occupancy into different bins (for example a bin could consist 10

spots). This way, the size of the transition probability matrix is also reduced by the same factor and the discrete-model can

be applied for faster computation for smaller matrices. 
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