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Abstract

In this study, we present an approach for rapid force field parameterization and uncer-
tainty quantification of the non-bonded interaction parameters for classical force fields.

The accuracy of most thermophysical properties, and especially vapor-liquid equilibria
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(VLE), obtained from molecular simulation depends strongly on the non-bonded inter-
actions. Traditionally, non-bonded interactions are parameterized to agree with macro-
scopic properties by performing large amounts of direct molecular simulation. Due to
the computational cost of molecular simulation, surrogate models (i.e. efficient mod-
els that approximate direct molecular simulation results) are an essential tool for high-
dimensional parameterization and uncertainty quantification of non-bonded interactions.
The present study compares two different configuration-sampling-based surrogate mod-
els, namely, Multistate Bennett Acceptance Ratio (MBAR) and Pair Correlation Function
Rescaling (PCFR). MBAR and PCFR are coupled with the Isothermal Isochoric (ITIC) ther-
modynamic integration method for estimating vapor-liquid saturation properties. We
tind that MBAR and PCFR are complementary in their roles. Specifically, PCFR is pre-
ferred when exploring distant regions of the parameter space while MBAR is better in the

local domain.

1 Introduction

Molecular simulation is an invaluable tool in many fields of science and engineering.
One of its many purposes is the efficient prediction of thermophysical properties such as
saturated liquid density (pj*"), saturated vapor density (p$**), saturated vapor pressure
(P*), enthalpy of vaporization, surface tension, viscosity, etc. The quantitative reliabil-
ity of the estimated property values depends almost entirely on the force field (i.e. the
molecular model) employed in the molecular simulation. For this reason, force field de-
velopment is an important area in molecular modeling. Since the intramolecular and
electrostatic contributions to the force field are often parameterized with ab initio results,

this study focuses on parameterizing the non-bonded (intermolecular) van der Waals in-

teractions with vapor-liquid equilibria (VLE) properties.



Recently, several groups have developed united-atom (UA) based force fields for pre-
dicting vapor-liquid equilibria. Potoff and Bernard-Brunel! demonstrated that the Mie A-
6 potential (i.e. a three parameter Lennard-Jones) provides considerable improvement at
predicting both pj** and P5* as compared to UA L] 12-6 models, such as TraPPE-UA? and
NERD.? Subsequently, Hemmen and Gross* implemented the Mie -6 potential but intro-
duced an additional fitting parameter by using anisotropic-united-atom (AUA) sites for
terminal groups (TAMie). Although the Mie A\-6 potential has shown significant promise
in providing highly accurate force fields for VLE, it should not be viewed as a panacea.
In fact, the force fields developed by Shah et al.” (TraPPE-UA2) and Errington and Pana-
giotopoulos® for ethane appear to reproduce experimental VLE data just as reliably as the
Potoff and TAMie models. Errington’s force field is a four-parameter AUA Exponential-6
model while TraPPE-UA2 is a three-parameter AUA L] 12-6 model. In general, the in-
creased accuracy of the Potoff, TAMie, Errington, and TraPPE-UA2 force fields compared
to the TraPPE-UA and NERD models has come at the cost of additional model parame-
ters.

Due to the increased accuracy and complexity (i.e. number of parameters) of modern

force fields, sophisticated high-dimensional optimization,” multi-objective Pareto front,5

and uncertainty quantification (UQ) methods !4

should play a key role in force field de-
velopment. However, these methods are not tractable when molecular simulation is per-
formed at each step of the algorithm, as this may necessitate O(10? to 10°) simulations. '
For this reason, surrogate models are essential to render these methods computationally
feasible. In this context, “surrogate model” is an umbrella term that covers all methods
that predict simulation results without requiring direct simulation using the given force
tield. The obvious benefit of a surrogate model is the reduction of computational cost.

Typical surrogate models are a few orders of magnitude faster than direct simulation.

For this reason, UQ and Pareto front studies rely heavily on surrogate models to replace



molecular simulation.?14

The first type of surrogate model is a mathematical or statistical model (sometimes
referred to as a meta-model'®'8). These require little or no understanding of the under-
lying physics or what each force field parameter means on a molecular level. Instead,
they simply interpolate and smooth the simulation output in the corresponding param-
eter space.!*1% Although meta-models are computationally cheap to evaluate, devel-
oping reliable meta-models can be an arduous task and may require large amounts of
molecular simulations. In addition, while these surrogate models are typically reliable
for interpolation, extrapolation is dubious for certain model forms.

The second type of surrogate model is an analytic equation-of-state model. Equation-
of-state models relate the force field parameters to different types of engineering equations-
of-state. The simplest equation-of-state surrogate model is likely the corresponding states
model. Typically, a corresponding states model is a correlation fit to reduced properties
(simulation output scaled by the force field parameters). Examples of this type of surro-
gate model can be found for the single-site Lennard-Jones fluid (both with tail corrections
and truncated?>??) as well as the two-site Lennard-Jones plus point quadrupole.?® More
sophisticated equation-of-state surrogate models are PC-SAFT?* and SAFT-v.>2¢ The PC-
SAFT surrogate model has been used extensively to develop the TAMie force field by
relating the Mie parameters to parameters in the PC-SAFT equation-of-state. #%/2%

In this study, we investigate a third type of surrogate model, namely, configuration-
sampling-based surrogate models. Configuration-sampling-based surrogate models rely
on atomic configurations that are sampled by simulating the reference force field(s) to
predict observables for a non-simulated force field. The primary assumption is that the
reference force field(s) has a distribution of configurations similar to the desired force
field. For this reason, the reference force field(s) plays a significant role in the accu-

racy of this class of surrogate models and must be chosen judiciously. A key advantage



in configuration-sampling-based surrogate models is that they are compatible with any
non-bonded functional form and can be used with both all-atom (AA) and coarse-grained
(UA, AUA, etc.) force fields, whereas the SAFT-y and PC-SAFT surrogate models are lim-
ited to coarse-grained models. The two configuration-sampling-based surrogate models
that we examine in this study are Multistate Bennett Acceptance Ratio (MBAR) and Pair
Correlation Function Rescaling (PCFR). While MBAR is a well-established method, PCFR
is a novel approach set forth in this study.

Section 2 discusses the methodology, starting with the force fields, the simulation con-
ditions, data analysis, and surrogate model derivation. Section 3 compares the results
for MBAR and PCFR. This comparison is made for simple systems, namely, united-atom
representations of ethane, hexafluoroethane, propane, n-butane, and n-octane, but it is
applicable to any compound and force field. Section 4 discusses recommendations and
limitations regarding the implementation of these surrogate models. Section 4 also pro-
vides an algorithm for parameterization of non-bonded potentials which is demonstrated

in Section 5. Finally, Section 6 summarizes the conclusions from this work.

2 Methods

2.1 Force Field

We emphasize that the methodology proposed in Sections 2.2-2.3 is applicable to any
force field. Specifically, the configuration-sampling-based surrogate models can be ap-
plied to united-atom (UA) or all-atom (AA) based force fields and to L] 12-6, Mie )-6,
Exp-6, or any other non-bonded functional form. In this study, however, we focus on a
specific subset of force fields, namely, UA Mie \-6. This model type was selected as it has

received significant attention in recent years for development of accurate hydrocarbon



force fields.142°-31

The Mie \-6 is a three-parameter non-bonded central potential of the form:

wreonn= (125 (2) 7 (@ - @) ®

where 1'%V is the van der Waals interaction, o is the distance (r) where v'4" = 0, —¢ is the

auvdw
T

energy of the potential at the minimum (i.e. uw™ = —eand 4

=0forr = rmin), and
A is the repulsive exponent. Note that the Mie potential reduces to the L] 12-6 potential
for A = 12. Therefore, Equation 1 can be considered a generalized Lennard-Jones where
the repulsive exponent is a parameter. Although an attractive exponent of 6 has a strong
theoretical basis, A\ = 12is a historical artifact that was chosen primarily for computational
purposes.® For the same reason (i.e. computational efficiency), a common practice is to
use integer values of A in Equation 1.

Non-bonded interactions between two different site types (i.e. cross-interactions) are

determined using Lorentz-Berthelot combining rules® for ¢ and o with an arithmetic

mean for the repulsive exponent (\) (as recommended by Potoff and Bernard-Brunel):

€ij = /€ii€jj (2)

Oii + O'jj

Oij = 9 (3)
Nis + A
)\ij - —g I7 (4)

where the ij subscript refers to cross-interactions and the subscripts i and j;j refer to

same-site interactions. Section SI.I.3 of the Supporting Information provides the TraPPE-

UA and Potoff non-bonded parameters for both same-site interactions and cross-interactions.
We use the same intramolecular potential as the TraPPE-UA and Potoff force fields,

which was in large part adopted from the well-known Optimized Potential for Liquid
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Simulations (OPLS-UA) force field.*?* Specifically, the simulations performed in this
study use fixed bond-lengths, harmonic angular potential, and Fourier series for the di-
hedral torsional interactions. To be consistent with these force fields, non-bonded in-
teractions between united-atom sites in the same molecule are only included if they are
separated by at least four neighboring sites (i.e. we exclude 1-2, 1-3, and 1-4 non-bonded
intramolecular interactions). Section SIL.L.3 of the Supporting Information provides the

equations and parameters for intramolecular interactions.

2.2 Isothermal Isochoric Thermodynamic Integration

In this study, isothermal isochoric (ITIC) thermodynamic integration® is used to de-

termine pj*, p5*, and P for each force field and molecule. The equations for ITIC are:

Adep pfat Z o 1 Tsat 1

— —a — Udepa — sat 5
RgTsat /0 D p’T—TIT + LIT (RgT> ‘P—Pl ( )
sat ~_ sat ex Adep + Zsat —1—-92B sat §B sat? (6)

pv ~ pl p RgTsat 1 va 2 3pv
Py & (L4 Bop™ + Bypl™') pi Ry T™ 7)

Psat

Zsat — \4 8
1 pfathTsat ( )

where A%P = A — A'® is the Helmholtz free energy departure from ideal gas for tempera-
ture (7') equal to the saturation temperature (7°*) and density (p) equal to the saturated
liquid density (p{*"), UP = U — U8 is the internal energy departure, Z:' is the saturated
liquid compressibility factor (Z), B, is the second virial coefficient, Bj is the third virial

coefficient, T™" is the isothermal temperature, and R, is the universal gas constant. (Note
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that our definitions for A% and U are slightly different than those used by Razavi,*
where the energy departures are dimensionless, but are consistent with Elliott and Lira.*)

The ITIC equations are solved iteratively to ensure self-consistency. Specifically, the
Z* value calculated in Equation 8 is then used to compute a new value of 7%* by inter-

polating the simulation results for Z along the corresponding isochore. The 7% value in

Adep
RgTsat

Adep

Equation 5 is updated and R T

is recomputed. The new values for Z** and are
then used in Equation 6 to solve for p$**. Likewise, P5*" and, subsequently, Z;*" are recal-
culated using Equations 7 and 8, respectively. This process is repeated until the value of
Z* (or alternatively 7%, p%*, or P5*") has converged to within a predefined tolerance.
The B, and Bj; values found in Equations 6-7 can be determined in several different
ways: using experimental data or correlations fit to data (i.e. REFPROP,* ThermoData

Engine (TDE), etc.), calculated with Mayer-sampling Monte Carlo,**

or obtained by
extrapolating low density simulation results.®® In this study, we utilize the B, and Bs
values from REFPRODP, primarily for simplicity. This decision was made after first vali-
dating that the ITIC pi** and P:** values for n-alkanes (calculated using REFPROP B, and
Bs) are consistent with the literature values reported using Gibbs Ensemble Monte Carlo
(GEMC) and Grand Canonical Monte Carlo (GCMC) for the TraPPE-UA and Potoff force
fields, respectively 4! (see Section SLIL3 of the Supporting Information). We also verified
that the ITIC results for n-octane do not differ significantly when using Mayer-sampling
Monte Carlo B, and Bj; values reported by Schultz and Kofke* instead of the REFPROP
B, and Bj values (see Section SIIL.3 of the Supporting Information).

ITIC requires on the order of 10 NVT (constant number of molecules, constant volume,
constant temperature) simulations along a supercritical isotherm, i.e. T'" > T, (where T.

35

is the experimental critical temperature). As recommended by Razavi,” we use a value

around 1.2 for the isotherm reduced temperature (7}" = %), ie. T ~ 1.2T.. Two or

three additional NVT simulations are performed along different isochores that intersect



the saturated liquid curve (p = pi**). Thus, each of the ITIC state points corresponds to
either a liquid or supercritical fluid. The specific state points simulated in this study are
provided in Section SLI.1 of the Supporting Information. Section SI.IL.3 of the Supporting
Information also contains an example of the ITIC data analysis.

One advantage of ITIC is that all the simulations are performed in the NVT ensemble.
In fact, although ITIC requires roughly three simulations for each saturation tempera-
ture, the total simulation time is typically comparable to the traditional VLE methods,
i.e. GEMC or GCMC. This is primarily because NVT systems converge quickly, as they
do not require expensive particle insertion/deletion or volume fluctuation moves. NVT
simulations should also foster reproducibility, as there are fewer user decisions that can
introduce error (although the choice of thermostat can be important*?). By contrast, it was
demonstrated recently that simulation practitioners struggled to generate reproducible
results in the NPT ensemble.*?

Furthermore, the NVT ensemble is amenable to both molecular dynamics (MD) and
Monte Carlo (MC) simulations. Thus, practitioners can implement ITIC with their pre-
ferred simulation software. We use GROMACS,* as it is an extremely fast, parallelized,
graphics processing unit (GPU) optimized, open-source, MD code. (Sample input (.mdp,
.top, .gro) files are provided in Section SI.I.4 of the Supporting Information.) Obtaining
VLE properties from MD simulations has some advantages. For example, MD methods
are ideal for highly branched compounds whereas traditional GEMC or GCMC methods
may struggle to reach equilibrium due to the low acceptance rate of particle insertions.*
For the same reason, GEMC and GCMC are typically limited to 77** > 0.7 or 0.6 (depend-
ing on the molecular structure and p{**) whereas ITIC can provide accurate VLE estimates
for T ~ 0.45. However, while GEMC and GCMC can be used for 7 =~ (.95, one
disadvantage of ITIC is that Equations 6-7 require higher-order virial expansion terms

(By, Bs, etc.) for 75 > 0.85.% In this study, we use ITIC to obtain pj*!, p5*, and P for



0.45 < T < 0.85.

The primary reason we employ ITIC is to calculate saturated properties (pj*', p3**, and
Psat) from U9 and Z at specified state points (p — T'). Internal energies and pressures
(compressibility factors) are intimately related to the non-bonded interactions and the
atomic configurations. Therefore, pj**, p3*, and P can be predicted for any non-bonded
interactions by combining configuration-sampling-based surrogate models for predicting
Uder and Z with the ITIC analysis, Equations 5-8. Converting U dep and Z to it psat, and
Pt is important because large amounts of evaluated experimental VLE data are available
through databases, such as the Thermodynamics Research Center (TRC) source database,

whereas experimental data for U4 and Z are scarce.

2.3 Surrogate Models

ITIC requires U%P and Z for each state point (p-T) to calculate pi*, p3*', and P5*'. Thus,
predicting pj*, p¥*, and P:*" for a given molecule and force field necessitates predicting
Udr and Z. Therefore, the aim of the surrogate models presented in this section is to
predict U%P and Z for a given state point with as little direct simulation as possible.

The configuration-sampling-based surrogate models (MBAR and PCFR) are well-suited
for the task at hand as energies and pressures are calculated directly from the coordinates
of interacting particles. In such surrogate models, we carry out a set of simulations at the
ITIC conditions using the reference force field(s), and the configurations obtained from
the reference force field(s) are used to estimate the VLE properties for a non-simulated

force field.
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2.3.1 Multistate Bennett Acceptance Ratio

Importance sampling is a commonly used statistical technique for computing aver-
ages of properties for one model by reweighting configurations sampled with another
model based on the ratio of probabilities for the two models. In chemistry and chemical
physics, importance sampling from one or a set of simulations to another set of simulation
conditions can be implemented using the MBAR algorithm. 647

With MBAR the expectation (O(¢)) for force field (¢) of any given observable (O) can

be expressed as:

(0(0)) =D O(a; 0) W (0) 9)

where x,, are configurations sampled from one or more reference force fields (0..¢), O(x,; )
is the observable value using force field 6 with configurations x,,, and W, (0) is the weight

of the n'" configuration using force field 6, calculated by using:

exp[/(8) — u(x,; 6)]

Wa(0) = — (10)
Z Nk eXp[ (eref,k) - u(mrm eref,k)]
where the reduced free energies ( £(8)) are calculated with:
N
]3(0) _ IHZ exp[ u(x,; 0)] (11)

K
Z Nk: eXP[ (eref,k) - u(a:n, eref,k)]

where K is the number of reference force fields, N = >, N; is the total number of
snapshots for all K reference force fields, N; are the total number of snapshots from
the k' reference force field, 0y is the k'™ reference (i.e. simulated) force field, and

uw(x,; 0) = BU(x,;0) is the reduced potential energy evaluated with 6 for configuration

11



x,, where [ = kBLT and kg is the Boltzmann constant.

Note that f (Oretx) is required to evaluate the denominator of Equations 10-11. The
values for f(6) are obtained by solving a system of K equations for self-consistency.
Specifically, an initial guess for f (Orer ) is used to evaluate Equation 11 with 6 = 6, to
obtain updated values of f (Orer ). This process is repeated until the values for f (Oret xc)
converge to within a desired tolerance. Although solving the MBAR system of equations
for self-consistency may require several iterations, fortunately, once this process has been
performed f(6) (for an arbitrary 6) is evaluated without further iteration.

For the specific case of predicting U and Z for a non-sampled force field, expressed
by the set of force field parameters ¢, the MBAR-based estimators for the departure inter-

nal energy and compressibility can be written as:

(UP(0)) = > UP(@y; 0) W, (6) (12)
(Z(0)) = Z(wn; )W, (0) (13)

where the energies and forces are computed using force field 6 for each configuration (z,,)
to determine U%P(x,,;0) and Z(z,;0) (from the virial pressure), respectively, while the
weights (W,,(0)) are again calculated using Equations 10-11.

The performance of MBAR depends strongly on good phase space overlap, meaning
that the configurations sampled by the reference force field(s) must represent a significant
portion of the “true” configurations that the non-simulated force field would sample.*
If the configurational overlap is small, the MBAR estimates are often dominated by a
few configurations, which are likely not representative of the ensemble that would be

generated by direct simulation of force field 0. The amount of overlap can be quantified

12



by the number of effective samples (Neg),* using Kish’s formula:

>, Wa)?

Neg =
S SN TF

(14)

which reduces to Neg = (3, W;2)~! when the weights are normalized. This has the prop-
erty that when the weights are equal, N.gs = N, when all but one weight is negligible,
Neg = 1, and behaves appropriately for intermediate cases. In the case of poor overlap
(Neg =~ 1), the predicted values of MBAR will demonstrate a strong bias and the uncer-
tainties will likely be underestimated by the MBAR covariance matrix.

We discuss two methods for overcoming poor phase space overlap, namely, pair cor-
relation function rescaling (PCFR) and configuration mapping. Configuration mapping
is an attempt to predict how the probabilities of each configuration would change when
changing from the reference force field (6,cf) to the non-simulated force field (¢). The
clearest example of this is the theory of corresponding states. For the single-site Lennard-
Jones fluid, the NVT simulation results of 6, can be exactly weighted to predict the sim-
ulation properties for a different value of o at a new volume, V' = ‘/;-ef%, where V.. is

the initial volume sampled using 6,.;. This is because the energies (and thus the Boltz-

g

3
Oref

3

mann weights) will be exactly the same if we simply scale all of the coordinates by
Therefore, we can reuse (at least for that volume) all of the configurations to calculate new
properties.

If there is more than one length scale, however, the same corresponding states tactics
do not work. A general formalism for creating new, more suitable overlap from the old
configurations is to use configuration mapping.°'*? This approach can drastically increase
the efficiency of calculating properties using configurations sampled from similar models
as in the case of similar rigid water models or dipolar molecule lengths.>® One important

key, of course, is finding a simple transformation rule. The coordinate transformation free

13



energy equations are true for any transformation, but will only be useful if they increase
the overlap between the non-sampled and reference configurations.

In the case of rigid water models and dipolar molecules, a linear transformation be-
tween shapes which preserves the center of mass has been shown to work very well.”!
In the case of small molecule hydrocarbons, however, the simplest transformation would
be one which scales the centers of mass while keeping the intramolecular distances the
same. This, however, gives properties of the new model at a new volume, which is not
useful if we are performing canonical simulations. It is not immediately clear if there is a
simple remapping between simulations with different o at the same volume, but it seems
unlikely, since the configurations must shift radial distributions in an inherently coupled
way. We defer the development of a more general mapping formalism to a future study.
We instead propose an alternative method, namely, PCFR. In essence, PCFR is an approx-
imate way to map the coordinates for constant volume. We derive PCFR in the following

section.

2.3.2 Pair Correlation Function Rescaling

PCFR is a method to predict U%P and Z (the two necessary quantities for ITIC) for
a non-simulated force field. Similar to MBAR, PCFR makes use of the configurations
sampled from direct simulation of a reference force field (f,¢) to predict these properties
without direct simulation of a modified force field (¢). To derive the PCFR equations, we
tirst assume that 6,.; and ¢ have the same intramolecular and Coulombic potentials. The
departure internal energy and compressibility factors for a non-simulated force field can

then be expressed as:

(UIP(0)) = (U (Brer)) + U™ (0) = U™ (Bres) (15)
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<Z(‘9)> = <Z(0ref)> + ZVdW(Q) - ZVdW<0ref> (16)

where (...) denotes an ensemble average and U'"" and Z'%" are the van der Waals (i.e.
the non-bonded, non-Coulombic) contributions to U and Z, respectively. Subsequently,
for pair-wise additive central potentials we obtain the energy and compressibility equa-
tions that relate the pair correlation function (PCF) to U¥" and Z¥4" for a polyatomic

molecule:3?
Ne—1 Ng

0 (0) = 2oy 30 Y [t 6:m)a 05 o, )
=1 7>t
Ns—1 Ns vdw
ZVdWQ - " _ v N A 160 ” 38 y 18
) 3T ; ;/0 oryj 9ii ,7"])7"” Tij (18)

where p is the number density (units of molecules per volume), Ny is the number of
sites in a molecule, uj" (6; ;) is the van der Waals potential (units of kelvin, i.e. energy
divided by the Boltzmann constant) between sites i and j with force field ¢, and g;;(0; ;)
is the site-site radial distribution function (or “pair correlation function”) between sites
i and j obtained with 6. Substitution of Equations 17 and 18 into Equations 15 and 16,

respectively, and combining the two integrals for U4V and ZVI¥ gives:

(UP(9)) = (U (Brer))

+ 27T,0R Z Z/ de 9 rlj gz](e rl_]) u;/]dw(eref;rij)gij(eref;rij)] 7n7;2ja7aij (19)

=1 j>t

(Z(0)) = (Z(0ret))
Ns—1 Ng [ v (0, sz) OuY™ (Orer; i)

27Tp Z Z/ 9ij (0 737) — — o

i=1 5>t

Gij (Oref; Tij) r?jarij (20)
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Equations 19 and 20 are exact. Unfortunately, while g;;(6..f; ;) is obtained from direct
simulation of 6,.¢, the PCF for the non-simulated force field (g;;(0; r;;)) is unknown a priori.
PCFR attempts to estimate g;;(; ;) and, thereby, predict the properties U9P and Z for
different non-bonded interactions.

There are a number of possible approximations that could be made. The approach we

recommend (and use in Section 3) is to perform a density expansion for the PCF:
9 (0;7,0,T) = 9o (057, T) + pgr,i;(0; v, T) + pgo,i (07, T) + ... (21)
where the zeroth order term (g) is known analytically to be:
90 (0;735) = exp (_T)> (22)

By substituting Equation 21 into Equations 17-18 and separating the integration by each

term of g;;, we can express U'*™ and ZV" as a virial expansion:

U o) =) o (23)
h=0

AMOED PV o (24)
h=0

where Uy and Z}%" are obtained, in principle, by integrating Equations 17-18 after sub-
stituting gy, ;; for g;;. By assuming that the higher order (h > 0) contributions to U4
and Z'% for 6 and 6, are equal (or at least negligibly different) U () and Z(f) can be

16



estimated using;:

(UP(9)) ~ (U (0rer))

+27p R, Z Z/ [u;/jdw(e;rij)g(),ij(e;rz‘j) - U;’jdw(eref;Tij)go,ij(gref;ﬁjﬂ ri0r; (25
0

i=1 j>i

<Z(9>> ~ <Z(0ref)>

2m | Quyd™ (0; 75 Uy (O 735
- Pzz/ [ ] <AA _J)go,z‘j(H;Tij)— 7 e ])go,z‘j((gref;w) ri0ri; (26)
- *Jo

87“Z-j

The primary advantage of this assumption is that, because g ;;(6;7;;) is calculated with
Equation 22, the integrals in Equations 25-26 can be evaluated without performing any
additional simulations. However, the PCFR results presented in Section 3 suggest that
Equations 25-26 adequately approximate U? but not Z, i.e. Uy () = U™ (0,cf) while
Z3(0) 5t ZYW (Oer) for h > 0 when 6 % 0,1

PCEFR is orders of magnitude faster than MBAR since PCFR only requires a numerical
integration of Equations 25-26 while MBAR requires energy and force “rerun” calcula-
tions. Although “rerun” calculations are typically orders of magnitude faster than direct
simulation, MBAR may still be too costly if an optimization or uncertainty quantification
(UQ) method requires on the order of 10* to 10° MBAR evaluations. However, the com-
putational cost of MBAR is approximately the same as PCFR when basis functions are
implemented.*® Basis functions can be constructed if a linear relationship exists between
the non-bonded parameters and the non-bonded energies and forces. For example, basis
functions are amenable to Mie \-6 potentials because the energies are linearly dependent
on r~* and r~¢ while the forces are linearly dependent on r(-*~1 and r~7 (see Section

SLIV in the Supporting Information). By contrast, basis functions are not compatible with
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the Exponential-6 function due to the non-linearity of the exponential term.

Alternative PCFR approaches that we investigated, but found less reliable than Equa-
tions 25-26, are included in the Appendix. One such method is the “constant PCF” ap-
proach. “Constant PCF” assumes that the pair correlation function for the reference force
tield is equal to the PCF for the non-simulated force field. As demonstrated in the Ap-
pendix, this is mathematically identical to assuming the weights of each configuration
are equal in Equations 12-13. Therefore, a comparison between PCFR and MBAR with
“constant PCF” (or “equal weights”) quantifies the improvement due to rescaling and
reweighting configurations, respectively. For this reason, we include the “constant PCF”
results in Section 3 to provide a common basis for MBAR and the recommended PCFR
approach (Equations 25-26). Furthermore, “constant PCF” can provide valuable insight

due to its conceptual and mathematical simplicity.

3 Results

In this section we compare MBAR and PCFR (Equations 25-26) based on their abil-
ity to predict the thermodynamic properties UP, Z, i@, and P:*. First, we compare the
predicted U°P and Z values with direct molecular simulation results. Subsequently, we
combine ITIC with MBAR and PCEFR and the predicted values for p{* and P:*" are com-
pared with direct molecular simulation results.

The systems considered are the united-atom representations of ethane (CoHs), hex-
afluoroethane (C;Fg), propane (C3Hs), n-butane (C4H,(), and n-octane (CsH;s). A detailed
comparison of the surrogate models is only presented for ethane. In the case of ethane,
we perform two types of test for MBAR and PCFR.

For the first test, the non-simulated force field uses the same non-bonded function

(i.e. the L] 12-6) as the reference force field. We refer to this test as the “constant model”
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test. For the second test, the non-simulated force field uses a different non-bonded func-
tion (i.e. the Mie A\-6 or Exp-6) than the reference force field. We refer to this test as the
“perturbed model” test. Since this study focuses on the Mie M-6 potential, the “perturbed
model” test corresponds to varying the value of . For both tests, we compare how well
MBAR performs with only a single reference and with multiple references.

The discussion for hexafluoroethane and the longer n-alkanes in Section 3.2 is limited
but complements the ethane discussion in Section 3.1. Specifically, Section 3.2 compares
how well MBAR and PCFR predict the Potoff A-6 potential when the TraPPE-UA L] 12-6
potential is used as a single reference force field. Hexafluoroethane is included since it
provides an example for the “perturbed model” test where A >> 12. The longer n-alkanes

are included to demonstrate that the results are not specific to two-site molecules.

3.1 Ethane

In this section, we compare the accuracy of MBAR and PCFR when predicting U9°P,
Z, pi*, and P2 for ethane. First, in Section 3.1.1 we investigate how well these surro-
gate models predict the quantities of interest when there is only a single reference force
tield, namely, the TraPPE-UA L] 12-6 model. Section 3.1.1 allows for a fair comparison
between PCFR and MBAR since PCFR is not compatible with multiple references. More
importantly, our initial goal is to determine if the optimal force field parameters can be
obtained by performing direct simulations with only a single reference force field. This
would enable rapid reparameterization of the non-bonded interactions for any existing
force field without performing additional molecular simulations. Unfortunately, the re-
sults in section 3.1.1 demonstrate that this ideal scenario is not obtainable. For this reason,
in Section 3.1.2 we investigate the improvement that is possible for MBAR when using
multiple references. Then, in Section 3.1.3 we demonstrate how well MBAR and PCFR

perform when used in connection with ITIC.
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3.1.1 Single Reference

Figure 1 presents the results from the “constant model” single reference test. Specif-
ically, we use the TraPPE-UA L] 12-6 model for ethane as our reference force field from
which we sample configurations. We predict the departure internal energy (U%P) and
compressibility factor (Z) for a wide range of CH; L] parameters (88 < ¢/K< 108, 0.365 <
o/nm< 0.385) using the various configuration-sampling-based surrogate models (MBAR,
PCFR, and “constant PCF”). Note that the reference ¢, o, and A are at the center of the in-
vestigated parameter space, i.e. € = 98 K, 0y = 0.375 nm, and A\, = 12. Figure 1
Panels a)-b) and c)-d) compare the direct simulation results for the departure internal en-
ergy (U = U — U'¢) and compressibility factor (Z), respectively, with those predicted
from the various surrogate models. Figure 1 includes parity plots as well as embedded
deviation plots. Panels a) and c¢) compare each surrogate model while Panels b) and d)
present the results only for MBAR.

Note that the MBAR and PCFR deviations are smaller than the “constant PCF” devi-
ations. This shows the improvement due to reweighting (MBAR) or “rescaling” (PCFR)
the reference configurations. Panel a) demonstrates that PCFR is superior to MBAR for
estimating U%?, while Panel c) shows that neither method is particularly robust for es-
timating Z. However, Panels b) and d) demonstrate that with a sufficient number of
effective samples (N.r) the MBAR estimates for U%P and Z are typically reliable. For ex-
ample, note that in Panels a) and c) the MBAR estimates follow the parity line very closely
for larger values of N.g. This makes intuitive sense because N is intimately related to
the degree of “overlap”, i.e. the probability that configurations sampled by the reference
force field would be sampled by the non-simulated force field. To quantify this observa-
tion, the insets in Panels b) and d) suggest that for Neg > 50 (or logio(Neg) > 1.7) the
percent deviation in U and the deviation in Z are less than 1 % and 0.3, respectively.

Figure 2 presents the “perturbed model” single reference test results for ethane. Fig-
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Figure 1: PCFR performs well for U%P but not for Z while MBAR accurately predicts
both properties when Nz > 50 for “constant model” test of ethane. The parity plots com-
pare direct simulation values with those predicted using a constant PCF (equal weights),
MBAR, and PCER for A\, = A = 12. Panels a) and b) correspond to departure internal
energy (U%°P) while Panels ¢) and d) correspond to compressibility factor (Z). Deviation
plots are embedded, where percent deviation and deviation are plotted for U%? and Z, re-
spectively. Panels b) and d) focus on the MBAR results where the color map corresponds
to the number of effective samples (on a log;, scale).

ure 2 is analogous to Figure 1, where Figures 1 and 2 present the “constant model” (i.e.
Aret = A) and “perturbed model” (i.e. A.of # A = 16) test results, respectively. In both tests
we use the TraPPE-UA L] 12-6 model as our reference force field from which we sample
configurations. For the “perturbed model” test, the parameter space over which the com-

parison is performed is shifted to higher values of € (108 < ¢/K< 128) since Potoff and
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Bernard-Brunel! demonstrated that for ethane the optimal ecy, increases with increasing
Ach;- (Note that the Potoff CH;3 parameter set of € = 121.25 K, 0 = 0.3783 nm, and A\ = 16
is near the center of the investigated parameter space.) We again compare the surrogate
model estimates of U%P and Z with those obtained by performing direct simulations with

each Mie 16-6 parameter set.
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Figure 2: Similar to the “constant model” results presented in Figure 1, PCFR accurately
predicts U but not Z for the “perturbed model” test of ethane. MBAR performs poorly
because very few state points have Noz > 50 for A # A = 16. The panels and symbols
are the same as Figure 1.

Panel a) of Figure 2 demonstrates that, similar to the L] 12-6 results, the PCFR method
is superior to MBAR at predicting U, while Panel c) shows that neither PCFR or MBAR

is particularly accurate at predicting Z. Panels b) and d) help explain the poor perfor-
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mance of MBAR. Note that the maximum number of effective samples for this entire
parameter space is less than 100, while for most systems Nz < 50. This poor “overlap”
causes a single (slightly more favorable) configuration to have a weight equal to one while
all other configurations have a weight of zero. When N4 = 1 typically even the non-zero
weight configuration is still very unfavorable.

The “constant PCF” results in Figure 2 Panels a) and c) provide further insight into
why MBAR performs poorly when A,s # A = 16. Note the strong positive bias relative to
the parity line for U%? and Z “constant PCF” and MBAR. This is because the “softer” L]
12-6 potential samples close-range configurations that result in extremely high energies
and forces when recomputed with the “harder” Mie 16-6 potential. Therefore, MBAR
reweighting cannot produce accurate estimates because few (if any) of the reference con-
figurations represent a reasonable state that would be sampled from the Mie 16-6 po-
tential. By contrast, PCFR rescales these close-range interactions to avoid unreasonable
energies and forces. This is an important advantage of PCFR when At % A.

The data depicted in Figure 3 help quantify over what range of the ¢, o, and A pa-
rameter space MBAR is reliable (i.e. N,z > 50) when using a single reference parameter
set. The different color contours correspond to the “constant model” (A = 12) and the
“perturbed model” (A = 13 to 18) tests. The contours in Figure 3 represent the average
number of effective samples (N.g), i.e. the mean N.g for the 19 different ITIC state points.
Multiple contours are included for A = 12 while only a single contour is provided for
A = 13 to 18 for visual clarity.

Figure 3 demonstrates that N.s (and, thus, the “overlap” between force fields) de-
pends strongly on ¢ and the repulsive exponent (\) with much less dependence on .
Specifically, the average Neg is greater than 50 for o = 0, = 0.375 nm, A = A\ = 12, and
88 < ¢/K< 113, covering a range of £15 % €,.¢. By contrast, Neg > 50 for € = e, = 98K,
A = At = 12, and 0.3675 < o/nm< 0.3725, a range of only £0.7 % o,¢. In addition, the
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Figure 3: Average number of effective samples depends strongly on ¢ and A for ethane.
Specifically, large differences in o from the reference lead to N.s < 50 while the entire
A = 15 to 18 parameter space has Nog < 50. Contours represent the average N for
A = 12 to 18. A single reference parameter set was used (TraPPE-UA, i.e. A\f = 12).

Neg > 50 region for A = 13,14 is smaller than for A = 12 and is shifted to ¢ < o, and
€ < €. This is especially troubling, since several studies have demonstrated that with
increasing \ the optimal ¢ increases significantly and the optimal o rarely decreases. %3
Therefore, the Noz > 50 regions for A\ = 13, 14 are not particularly useful as they do not
overlap with the expected optimal € and o. Even more concerning, N.g < 50 for the entire
joint € and o parameter space for A = 15 to 18. For example, Nz ~ 1 for the Potoff model
(e =121.25 K, 0 = 0.3783 nm, A = 16). These results suggest that the TraPPE-UA L] 12-6
configurations cannot be reweighted to optimize € and o for A > 12.

These observations make some intuitive sense as the configurations sampled from
o = 0.375 nm should be significantly different than those sampled from ¢ >> 0.375 nm or
o < 0.375 nm. Likewise, larger values of A have a steeper, more repulsive barrier which

increases the “effective hard-sphere diameter” and significantly reduces the probability

of close-range interactions. These results are convincing evidence that MBAR requires
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more than a single reference for large changes in o (greater than 0.0025 nm) and when

A F# Apef-

3.1.2 Multiple References

MBAR is intrinsically designed for multiple reference force fields, which is one of its
primary advantages. With additional (and judiciously chosen) references, the reliability
of MBAR estimates improves dramatically, as demonstrated in the following discussion.
By contrast, PCFR has no obvious way to combine the prediction of multiple references
in a meaningful manner. We attempted to incorporate multiple references into PCFR
by performing a weighted average of independent PCFR estimates where the weights
depend on the difference between ¢ and o,.;. However, we did not find this approach
to be beneficial. Therefore, we do not discuss PCFR in this section and focus solely on
MBAR.

The results presented in Section 3.1.1 demonstrate that MBAR is limited in how far it
can extrapolate in parameter space. As discussed previously, MBAR does not provide ac-
curate U%P and Z estimates when N,z < 50, which is typically the case when o and/or A
are significantly different from the s and \,er. One obvious solution to increase Nes and,
thereby, improve MBAR is to sample additional configurations from multiple references.
These references should be chosen to cover a wide range of parameter space while using
as few as possible to limit the increase in the computational cost of additional molecular
simulations.

Figure 4 presents the results when multiple reference force fields are utilized with
MBAR. Specifically, we performed direct simulations for nine equally spaced values of
o from 0.365-0.385 nm for the “constant model” A = 12 with ¢ = 98 K. The spacing
corresponds to one reference o every 0.0025 nm since we observed that Nz > 50 when

0 = 0yer = 0.0025 nm (recall Figure 1). For the “perturbed model” A = 16 test, we use two
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different e values of 98 and 118 K. We use the same range of o as the “constant model” test
for €, = 98 K to provide a fair comparison between the two tests for multiple references.
For €, = 118 K (the center value of the Mie 16-6 parameter space), we modify the o
range slightly by including three additional larger o,.s values (0.3875, 0.3900, and 0.3925
nm). Recall that in Figure 3 the maximum N for A = 16 was observed when o < oy.
Thus, the expanded o, range with €, = 118 K results help elucidate whether MBAR
can adequately predict the Mie 16-6 parameter space if the L] 12-6 references are chosen
judiciously. Panels a) and d), b) and e), and c) and f) provide the results for the “constant
model”, “perturbed model” with €, = 98 K, and “perturbed model” with €, = 118 K,
respectively.

For the “constant model” test (Panels a) and d)), due to the increased number of refer-
ences most of the L] 12-6 parameter sets have good overlap and, thus, N.s > 50. However,
it should be noted that there are a few exceptions where N4 < 50 in Panels a) and d). In
each case, these correspond to high density, saturated liquids with ¢ = 0.385 nm and
e > 107 K. By comparing Figure 4 Panels a) and d) with Figure 1 Panels b) and d), respec-

tively, additional o,; values significantly improve the MBAR “constant model” results.
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Figure 4: Multiple o, values significantly improve the “constant model” (i.e. A\jef = A =
12) results for ethane (see Panels a) and d)). The “perturbed model” (i.e. Aer # A = 16)
results are only moderately improved when ¢,; = 98 K (see Panels b) and e)) while ¢,.s =
118 K provides substantial improvement (see Panels c) and f)), although large deviations
still exist at several state points where Nz < 50. Panels a)-c) and d)-f) correspond to U4°P
and Z, respectively. The parity plots, embedded deviation plots, and color map are the

same as Figure 1 Panels b) and d).
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By contrast, MBAR still performs quite poorly for the “perturbed model” (Mie 16-6)
potential despite the increased number of references (see Figure 4 Panels b), c), ) and f)).
In Panels b) and e) this is somewhat expected since €,.; = 98 K, while the non-simulated e
values range from 108-128 K. As seen in Panels c) and f), one way to improve the perfor-
mance of MBAR for the perturbed model is to use €, = 118 K. However, notice that Neg
in Panels c) and f) are still much less than those for the constant model results (Panels a)
and d)). Therefore, sampling directly from A, = 16 with multiple s (and a reasonable
value of ¢,) is the only way to ensure that Nes > 50. In Section 4 we propose how PCFR

can be used to assist in choosing €,.f and o,.f for a given .

3.1.3 Vapor-Liquid Equilibria

The comparison between MBAR and PCFR in Sections 3.1.1-3.1.2 has focused on U9
and Z. However, for the purpose of force field optimization, the properties of interest
are most likely pi* and P (U9°P could also be of interest as a substitute for enthalpy of
vaporization and/or heat capacity). For this reason, in this section we compare how well
MBAR and PCFR predict saturation properties when used in conjunction with ITIC.

Figure 5 plots the root-mean-square (RMS) with respect to REFPROP values for the
“constant model” test. Panels a) and b) plot the RMS for pj** and logyo (P:*), respectively.
Pt and Pt are computed with ITIC using the U%P and Z values obtained from either
direct simulation or the surrogate models. Both the single and multiple reference results
are included for MBAR. For visual clarity, only the first two contours are included for the
single reference (0,ef = O1vappr) results of MBAR and PCER.

The primary conclusion from Figure 5 is that the “MBAR with multiple references”
RMS contours for pi** and logyo (P:*") are nearly identical to those obtained from direct
simulation. By contrast, “MBAR with a single reference” shows good agreement for RMS

sat

pi* and logi (P:*") for only a small range of o values. PCFR has the wrong shape for
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Figure 5: MBAR with multiple references predicts ethane pi* and P:* more accurately
than PCFR and MBAR with a single reference for A\, = A = 12. Contours of the root-
mean-square (RMS) relative to REFPROP values are plotted for each method and com-
pared with direct simulation. Panels a)-b) show RMS for pj** and logo (P5*), respectively.
Note that the “single reference” is at the center of the plot, i.e. ¢ = 98 K, o = 0.375 nm.
Direct simulations were performed on a 21x21 grid equally spaced between 88-108 K and
0.365-0.385 nm.

the RMS i contours while the RMS log, (P:*") contours for PCFR are in satisfactory
agreement. The incorrect shape of the RMS pj** contours for PCFR is especially concerning
for Bayesian and other UQ methods that depend on having the correct local behavior near
the optimum.

Figure 6 plots the “perturbed model” test results, i.e. A\ = 12 while A = 16, using
the same format as the “constant model” test results in Figure 5. The references are not
depicted in Figure 6 because \,.; # A = 16. Only the “MBAR multiple references” results
are presented for €, = 118 K since €,y = 98 K with multiple o, values showed very little

improvement over a single reference when \,f = 12.
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Figure 6: MBAR with multiple references provides reasonable (although quite noisy) esti-
mates for ethane pj* and logyo (P5*") for A\,er # A = 16. Similar to the “constant model” re-
sults presented in Figure 5, PCFR produces an incorrect trend for pi** while the log;, (P*)
contours are reasonably accurate and follow the correct trend. MBAR with a single ref-
erence produces inaccurate estimates of pj** and P:*'. Contours of the root-mean-square
(RMS) relative to REFPROP values are plotted for each method and compared with direct
simulation. Panels a)-b) show RMS for pi** and logyo (P:*), respectively. The “multiple
references” are the same as Figure 4 Panels c¢) and f), namely, €, = 118 K, A\ = 12,
with 11 o,; values evenly spaced between 0.365-0.3925 nm. The “single reference” is the
TraPPE-UA force field (A = 12). The Potoff parameters are included only as a visual
reference. Direct simulations were performed on a 21x21 grid equally spaced between
108-128 K and 0.365-0.385 nm with A\ = 16.

Figure 6 demonstrates that the pi* and log;, (P:*") RMS contours for “MBAR multiple
references” are similar to those from direct simulation while the “MBAR single reference”
contours are completely unreliable for the “perturbed model” test. However, the “MBAR
multiple references” contours are extremely noisy, which would render parameterization
quite difficult. More importantly, the moderate improvement (compared to “MBAR sin-

gle reference”) was primarily achieved by using €,y = 118 K instead of the TraPPE-UA
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value of 98 K. Unfortunately, the optimal ¢,.; value for a different \,; is not known a priori.
For these reasons, regardless of what values are used for €,.f and o,.;, sampling multiple L]
12-6 references is not a recommended approach for predicting pi** and P when A # .

Although the reliability of MBAR is greatly diminished when A # A, the perfor-
mance of PCFR is similar for both the “perturbed model” and the “constant model” tests.
For example, the PCFR RMS contours in Figure 6 are very similar to the PCFR RMS con-
tours in Figure 5. Specifically, although the pj** RMS contours have an incorrect trend
with respect to € and o, the log;o (P:*") RMS contours are in close agreement with direct
simulation, especially when o ~ 0,¢. Furthermore, the PCFR contours are smooth (i.e.
not noisy) with respect to e and 0. This suggests that PCFR can be a useful tool for param-
eterizing different Mie \-6 potentials from a single L] 12-6 reference. In fact, one of our
key recommendations provided in Section 4 is that the RMS of logy, (P:*) (or, alterna-
tively, U9°P) predicted by PCFR be used as an initial objective function when perturbing
the value of \.

The poor prediction of pi** for the “perturbed model” is expected since ITIC pj** de-
pends primarily on the isochore Z values (see discussion in Section 2.2). Thus, neither
“MBAR single reference” or “PCFR single reference” provide reliable pj** contours be-
cause neither method accurately predicts Z for the “perturbed model” and single refer-
ence test (see Figure 2, Panels c)-d)). The large fluctuations in the “MBAR multiple refer-
ences” contours are likely the result of the inherent randomness in Z when Nz ~ 1 (see
Figure 4 Panel f)). The near-saturation, isochore state points that directly impact 7°*" are
more likely to have N.g ~ 1 because N4 decreases with increasing density and decreasing
temperature.

Elucidating the reason why “MBAR multiple references” and “PCFR single reference”
provide reasonable estimates of P for the “perturbed model” is more complicated, be-

cause ITIC P depends strongly on both Z and U%P. This is due to the exponential
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relationship between A%P and P5* (see Equations 6-7) where AP is computed from the
isotherm Z and isochore U4 values (see Equation 5). In addition, the isochore Z values
can have a significant impact on P through 7% in Equations 5-7. However, because
“PCER single reference” does not provide accurate estimates of Z, the accuracy of P
appears to depend primarily on the reliability of U4 (see Figure 2 Panels a) and b)).
Since “MBAR multiple references” predicts Uy, to within 1-2 %, the noise in the corre-
sponding log;, (P:**) contours can likely be attributed to large (random) deviations for Z
at certain state points (see Figure 4 Panels c) and f)). By contrast, the smooth “PCFR single
reference” logyo (P**) contours suggest that the “PCFR single reference” deviations in Z

are more systematic (i.e. less random) than those from “MBAR multiple references.”

3.2 Additional Compounds

In this section we perform the “perturbed model” and single reference test for ad-
ditional compounds. Specifically, we verify that MBAR struggles to predict U%°P, while
PCFR can provide reasonable estimates of U dep when A > \.. The Z results are not
included because we have already concluded that neither MBAR or PCFR is capable of
predicting Z in this case. The “perturbed model” test is performed by sampling from the
TraPPE-UA LJ 12-6 model (6, = O1appr) While the non-simulated force field is the Potoff
Mie -6 model (6 = Opotofr )

The reason to emphasize the “perturbed model” results is because a plethora of L]
12-6 parameters exist in the literature. Improved force field accuracy likely necessitates a
systematic conversion of these two-parameter L] models to a model with additional pa-
rameters (i.e. the three-parameter Mie -6, Exp-6, extended Lennard-Jones,® etc.). There
are at least two primary reasons to focus on the single reference test. First, the number of
direct simulations is minimized by using a single reference. Second, our goal is to verify

the reliability of PCFR, which is designed only for a single reference.
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The additional compounds considered in this section are hexafluoroethane, propane,
n-butane, and n-octane. Hexafluoroethane (CyFs) provides an extreme test case where
the perturbed repulsive barrier is significantly different from the L] 12-6. Specifically, the
Potoff model utilizes a Mie 36-6 potential for CF; sites. The n-alkanes provide insight
into how the surrogate models scale with additional sites (note that A\ = 16 for the Potoff
CH;, CHy, and cross-interactions). The parameters for each force field and the simula-
tion conditions for each compound are provided in Sections SI.I.1-SL1.3 of the Supporting
Information.

Figure 7 Panels a) and b) provide parity plots of U%P for hexafluoroethane and the
n-alkanes, respectively. MBAR and PCFR estimates are compared with direct simulation
results. Panel a) also includes “constant PCF” for comparison. Percent deviation plots are
included as insets for PCFR in Panel a) and for MBAR and PCFR in Panel b).

Panel a) demonstrates that MBAR (and “constant PCF”) are completely inadequate
for providing reasonable estimates of U for hexafluoroethane. There are two primary
reasons for the poor performance of MBAR. First, the ¢ value for Potoff (155.75 K) is
nearly twice that of TraPPE-UA (87 K). The second, and more important, reason is the
extreme difference in A. The L] 12-6 potential is much softer than the Mie 36-6 potential.
Therefore, none of the configurations sampled with TraPPE-UA represents a reasonable
configuration for the Potoff model. This is manifested by the fact that Nz ~ 1 for every
state point (not depicted). By contrast, PCFR provides relatively accurate estimates of
U for hexafluoroethane. As discussed in Section 3.1.1, this is because PCFR effectively
“rescales” the configurations to avoid infeasible energies and forces.

Panel b) demonstrates that the MBAR single reference and “perturbed model” results
observed for ethane are similar to those for larger n-alkanes. Specifically, the MBAR de-
viations from direct simulation are significantly positive for each compound. By contrast,

the PCFR percent deviations increase in magnitude with increasing chain-length. There
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Figure 7: MBAR performs poorly for large changes in A (A = 36 for hexafluoroethane)
while PCFR provides reasonable estimates of Uy, although the reliability of PCFR di-
minishes with increasing chain-length of n-alkanes. Panels a) and b) correspond to hex-
afluoroethane and n-alkanes, respectively. Panel a) compares PCFR with the “constant
PCF” and MBAR results while Panel b) only includes the MBAR and PCEFR results. The
parity plots compare direct simulation values with those predicted using the different
surrogate models. Percent deviation plots are included as insets for PCFR in Panel a) and
for MBAR and PCEFR in Panel b).

are at least two likely explanations for the poor performance of PCFR for n-octane. The
first reason is that the error for each interaction site accumulates and, therefore, the over-
all error increases with the number of sites. The second reason is that PCFR assumes that
the PCF of all site-types, regardless of molecular topology, can be scaled based on the non-

bonded interactions. However, it makes intuitive sense that the PCF for CHj sites (which
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are located at a terminal position) would be more sensitive to the non-bonded interac-
tions than the PCF for a CH, site with several neighboring sites. Therefore, PCFR should
primarily be utilized for smaller compounds and/or when non-bonded parameters are

modified for fewer site-types.

4 Recommendations and Limitations

MBAR provides accurate estimates of U%P and Z (and, thereby, pi* and P:**) when
there is sufficient configurational overlap between the reference force field(s) and the non-
simulated force field. We recommend using the number of effective samples (Negs) to
quantify the overlap. Specifically, we recommend that MBAR be utilized if Neg > 50.
Multiple reference parameter sets are necessary to ensure that N.gs > 50 over a large
region of parameter space.

The key limitations to implementing MBAR are to determine the best reference pa-
rameters and to minimize the number of references required. More reference force fields
necessitates more direct simulations. Therefore, the reference force fields should be cho-
sen judiciously such that adequate, but not excessive, sampling of the parameter space
is achieved in the region of most importance. For example, an adaptive sampling algo-
rithm can determine which additional parameters will reduce the MBAR uncertainties.*
However, this approach attempts to reduce the uncertainty in the entire parameter space
while we are only interested in the parameter space near the optimum.

Rather than sampling hundreds of ¢, and o, sets for A\, = 12, we recommend sam-
pling a few different ¢,.; and o, sets for each value of A. Unfortunately, the optimal e,
for a given A is not known a priori and increases with increasing A. For this reason, a
key recommendation from this study is that PCFR be utilized to determine the reference

parameters for MBAR when the non-bonded potential form (particularly the repulsive
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barrier, i.e. \) is modified.

Specifically, in the case of converting from a single L] 12-6 reference force field to a Mie
A-6 potential, the optimal €, for different values of A is determined by minimizing the
RMS of logyg (P5) with o = o,. We also found that minimizing the RMS of U using
PCFR could be a reliable approach, as shown in Section SLIII of the Supporting Informa-
tion. We recommend maintaining o constant during this preliminary optimization since
the PCFR estimates for P5* (and U%P) are most reliable when o ~ 0. Subsequently,
multiple references are sampled for the desired A using this “PCFR-optimal” €.

Since P (and U9P) is fairly insensitive to o (Or 7i), we recommend that a constraint
be applied to gyer (O rmin ref) to reduce the number of reference parameters. For example,
the TraPPE-UA L] 12-6 model has been well optimized to match pj** (which depends
strongly on o), therefore we could constrain the reference o (and 7,,,) values to be within
a certain “trust region”, say +1 %. Alternatively, we recommend that 0.t > 0.99 X oryappr
and 7minrer < 1.01 X 7min Trappr for A > 12 and vice versa for A < 12. This empirical
recommendation is based on the fact that most united-atom sites follow the trend that
TPotofi > OTraPPE ANd Tmin Potoff < T'min, TrapPE Where Apoiog > 12.

To facilitate future implementation, we recommended the following algorithm (re-
ferred to as PCFR-MBAR-ITIC) for rapid parameterization of non-bonded interactions

aimed at accurate prediction of vapor-liquid equilibria:
1. Perform molecular simulations using:

(a) NVT ensemble (either MD or MC)

(b) ITIC conditions (19 p-T state points: nine for isotherm, two for each of the five

isochores)

(c) Reference force field(s) (f.f), initial reference is taken from literature (impor-

tant to have reasonably optimized o)
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equation-of-state

. Store independent configurations or basis functions (see Section SLIV in the Sup-

porting Information)
. Determine additional references:

(@) orer: evenly spaced within “trust region” (reasonable range for optimal o based

ON Oer)

(b) €rer: minimize the RMS of logo (P5*) (or U9P) predicted by PCFR and ITIC
. Repeat Steps 1-2 using additional references found in Step 3
. Optimize force field parameters:

(a) Predict U9 and Z with MBAR
(b) Calculate pi**, p3** and P5** with ITIC

(c) Define an objective function that depends on p{*t, p3t, P52t U dep and /or Z
. Determine if additional references are needed based on N4 near optimum

. Repeat Steps 5-6 until parameters converge to within a desired tolerance

. Quantify uncertainty in non-bonded parameters

The computational bottleneck for configuration-sampling-based, statistical, !*#161 and

420-28 surrogate models is the molecular simulation step. Specifically, the

“real time to solution” of the PCFR-MBAR-ITIC algorithm depends primarily on Step 1,

namely, the real time to perform the direct molecular simulations. The post-simulation

optimization time, i.e. the real time required to complete Steps 3 and 5, is negligible in

comparison. By performing the additional reference simulations in parallel, i.e. Step 4,

the “real time to solution” is approximately the same as the real time to perform a single
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NVT ensemble simulation, which depends on the computer hardware, simulation soft-
ware, force field complexity, cut-off distance, number of molecules, size of compound,
etc. For example, the results presented in Section 5 were obtained in approximately one
week of real time.

Note that the PC-SAFT algorithm proposed in Reference 24 determines additional ref-
erence parameter sets sequentially by iteratively finding a new proposed optimum and,
therefore, molecular simulations must be performed in serial. This is because the PC-
SAFT equation-of-state surrogate model is limited to a single reference parameter set,
similar to PCFR. Information from previous iterations is effectively lost. By contrast,
MBAR and meta-models!®'® are able to utilize information from several reference pa-
rameter sets and, thus, molecular simulations can be performed in parallel. Although
this would appear to be a significant algorithmic advantage for PCFR-MBAR-ITIC, the
PC-SAFT approach typically finds the optimal parameter set within 2 to 3 iterations of
direct simulation. Therefore, the “real time to solution” is comparable for all three sur-
rogate model classes. Furthermore, the PCFR-MBAR-ITIC algorithm relies on starting
with a reasonable reference parameter set, see Step 1c, whereas the PC-SAFT approach

demonstrates rapid convergence even with a poor initial guess.?*

5 Algorithm Application

We apply the PCFR-MBAR-ITIC algorithm from Section 4 to optimize transferable
CHj; and CH, Mie \-6 parameters for n-alkanes. Although we do not explicitly define
an objective function, we provide contours of the RMS deviations from the REFPROP
P and logyo (P5*) values to help visualize the optimal region. We perform this analy-

sis sequentially by assuming the CH; parameters obtained for ethane are transferable to

larger n-alkanes. The CH, parameter analysis is performed independently for propane,
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n-butane, and n-octane to investigate the transferability of the CH, parameters.

For Step 1, we simulate ethane using the TraPPE-UA L] 12-6 force field as our initial
reference. Additional reference points (i.e. Step 3) are determined by minimizing the
logio (P**) RMS predicted by PCFR. Figure 8 depicts the results from this analysis. The
lines in Figure 8 represent the “PCFR-optimal” ecy, values for the corresponding ocp,
and Acp,. The points in Figure 8 are the ¢ cn, and oer,cn, values determined in Step 3
for integer values of \;er,cu, = 13 to 18. Specifically, €,ef,cr, for a given Aer o, corresponds
to the “PCFR-optimal” ecp, value for ocn, = 0mwappE,chs. The orercn, Values are evenly
spaced such that o,er,cr; > 0.99 X 01vaprE iy aNd Tmin rer,cts < 1.01 X Tiin, TraPPE,CH;- The
spacing between neighboring o,.,cn, values is no more than 0.0025 nm since this is the
range over which we found MBAR to be reliable (i.e. Nog > 50, recall Figure 3). Note that
the “Potoft” points are included in Figure 8 for comparison with the “PCFR-optimal”
curves for Aoy, = 14,16, and 18. “Potoff” points for A\cy, = 14, 18 are approximations
extracted from Figure 2 of Reference [1].!

The “PCFR-optimal” lines in Figure 8 follow a reasonable, smooth trend and are in
good quantitative agreement with the “Potoff” values for a given Acy,. This suggests
that €.r,cn, and oyer,cu, Obtained in Step 3 are near the optimum for the respective Acp,
values and, therefore, should adequately sample the relevant region of parameter space.
To substantiate this statement we perform Steps 4-5 for the Acy, = 16 reference values
plotted in Figure 8. The configurations sampled from these additional references are then
reweighted using MBAR to predict U%P and Z. The ITIC equations convert the estimated
Udr and Z values to pi** and P:*'. Figure 9 shows the high level of agreement of direct
simulation and MBAR RMS values relative to REFPROP for the same range of ecy, and
ocu, as plotted previously in Figure 6.

This process is then repeated for propane, n-butane, and n-octane to examine the

CH, parameter space. For simplicity and visualization purposes, we only investigate
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Figure 8: Ethane “PCFR-optimal” ¢, values for CH; follow a reasonable trend and are in
good quantitative agreement with “Potoff” points. The dashed lines are obtained by min-
imizing RMS log, (P:*) over a range of o for a given . The different symbols correspond
to the recommended e and o reference sets for the respective values of \.

Ach, = 16 and use the Potoff CHj3 parameter values, since these appear to be near op-
timal (see Figure 9). The TraPPE-UA force field is again used as the single reference for
PCFR. The PCFR-optimal €, cn, values for propane and n-butane are obtained by mini-
mizing their respective RMS of logo (P:*) with ocn, = 0vappE.ci, = 0.395 nm, Ach, = 16,
ecu, = 121.25 K, oo, = 0.3783 nm, and Aoy, = 16. Since PCFR is less reliable for larger
molecules, we use the optimal ecy, from n-butane for the €, cn, of n-octane. We simulate
eight evenly spaced o, cn, values between 0.99 X omappr.cH, and 1.01 X 7win TraPPE,CH,
with constant €,f cn,. Finally, MBAR and ITIC are implemented to predict pj* and P
over a wide range of ecy, and ocy, with Acy, = 16 and using the Potoff CH;3 parameter
values. Figure 10 compares the direct simulation and MBAR RMS values relative to REF-
PROP for the joint ecy, and ocy, parameter space. For clarity, only the propane direct
simulation results are plotted and only one contour level is included for n-butane and

n-octane.
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Figure 9: Contours of RMS deviation from REFPROP ethane values predicted by MBAR
using PCFR-optimal references are in excellent agreement with direct simulation over
a wide region of the CHj3 parameter space. Panels a) and b) plot the RMS for p{* and
logio (P5*), respectively. “References (PCFR-optimal)” are obtained as described in Step
3 for A = 16 as found in Figure 8. The Potoff CH; parameters are included only as a visual

reference. Direct simulations were performed on a 21x21 grid equally spaced between
108-128 K and 0.365-0.385 nm.

The MBAR contours for propane in Figure 10 appear to be in excellent agreement
with direct simulation over the relevant region of parameter space. Note that the MBAR
contours in Figures 9-10 are smoother than direct simulation because MBAR effectively
includes uncorrelated replicate simulations from each reference, whereas the direct sim-
ulation contours were obtained without any replicate simulations.

The good agreement between the MBAR and direct simulation contours (and the
smoothness) near the optimum is important for quantifying parameter uncertainties in
Step 8 (although the “optimal” € and o values depend on how the objective function is

defined). Although Bayesian inference methods (such as Markov Chain Monte Carlo) are
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Figure 10: Contours of RMS deviation from REFPROP propane values predicted by
MBAR using PCFR-optimal references are in excellent agreement with direct simulation
over a wide region of the CH, parameter space. RMS contours for propane, n-butane,
and n-octane are slightly different. Panels a) and b) plot the RMS for gi** and logo (P:*),
respectively. Reference values are obtained as described in Step 3 for Acy, = 16. The CHj;
parameters are from the Potoff force field, i.e. ecy, = 121.25 K, ocn, = 0.3783 nm, and
Ach, = 16. CH3-CHj; cross-interactions are calculated using Lorentz-Berthelot combining
rules for € and ¢ and an arithmetic mean for A\. The Potoff CH, parameters are included
only as a visual reference. Direct simulations were performed on a 21x31 grid equally
spaced between 50-70 K and 0.385-0.415 nm.

beyond the scope of this article, it is worth mentioning that these UQ methods are feasible
because MBAR (with basis functions) is several orders of magnitude less expensive than
direct simulation. Also, by utilizing basis functions the computational cost to perform
a UQ analysis, and to generate Figure 10, is the same for n-octane and n-propane (see
Section SLIV in the Supporting Information).

Although not depicted here, we observe that the average number of effective samples

(Ner) > 50 for most of the parameter space investigated (Step 6). Therefore, we conclude
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that no additional references are needed near the optimum.

6 Conclusions

The development of accurate and reliable surrogate models is essential for rapid, high-
dimensional parameterization and uncertainty quantification of force fields. The non-
bonded potential has been the focus of this study since it is typically parameterized to
reproduce vapor-liquid equilibria data. Configuration-sampling-based surrogate mod-
els, such as Multistate Bennett Acceptance Ratio (MBAR) and Pair Correlation Function
Rescaling (PCFR) are well suited for estimating internal energies and pressures (com-
pressibility) for a non-simulated non-bonded potential. Isothermal Isochoric (ITIC) ther-
modynamic integration converts the MBAR and PCFR outputs into saturation properties
(™, P37, and P3™).

We performed several tests to determine the range of reliability of MBAR and PCFR
for parameterizing a Mie -6 potential. MBAR provides accurate estimates of UP, Z,
pi*t, and P when Neg > 50. Unfortunately, Nog < 50 when A % A\f and/or 0 % oyt
Therefore, MBAR should primarily be used when several o, values are sampled from
A = At By contrast, PCFR accurately predicts U9°P and P5** from a single reference force
field for a wide range of A values (and a moderate range of o values). However, PCFR
has the wrong trend for Z and pj** with respect to ¢ and o.

Therefore, MBAR and PCFR are complementary tools. PCFR is a useful exploratory
tool for proposing optimal regions of parameter space while MBAR is for final optimiza-
tion and parameter uncertainty quantification. We developed a method that utilizes
PCEFR to rapidly determine which reference parameters should be sampled to improve
the MBAR results. We demonstrated that this algorithm is a reliable and efficient means

for parameterizing a Mie \-6 potential for n-alkanes. We expect the same to be true in
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general for other potentials, such as the Exponential-6. Future studies will utilize these
surrogate models (MBAR and PCFR) to rapidly optimize accurate force fields with mean-

ingful estimates of parameter uncertainty.
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Appendix

We now provide a brief summary of some other PCFR methods to estimate g¢;;(6;r;;)
that we have investigated. First, the simplest PCFR approach is to assume that the pair
correlation functions for the two force fields are equal (referred to as “constant PCF” in

Section 3):

gz’j(e; Tz'j) = gij(eref; T’ij) (27)
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For very small differences between ¢ and 0, this assumption may be a good approxima-

tion. Applying Equation 27 to Equations 19 and 20 yields the expressions:

(UP(0)) ~ (U (bret))

+27p R, Z Z/o [u;fW(e;rij) — uzjdw(eref;mj)} Gij (Oree; 73)77,0r35 (28)

=1 j>i

oy - ors; 9ij (Bves; 745)T5;0m35 (29)

Nt s Ool(?u;’]dw(G;nj) QU™ (Bres; 45)

A connection exists between Equations 28-29 and the MBAR equations for calculating
expectation values of U%P and Z (Equations 12-13). The assumption that the pair cor-
relation functions (i.e. configurations) for the two force fields are equal (Equation 27) is
mathematically equivalent to assigning each sampled configuration an equal probability
in the MBAR equations, i.e. W,(0) = % for all x,,. With the weights equal, Equations

10-11 are no longer needed to calculate U%°P and Z as Equations 12-13 reduce to:

(U0 (0)) = = S U (@) 30)
(20) = 5 3 700 a1)

Although Equations 28-29 (“constant PCF”) and 30-31 (“equal weights”) are equivalent,
the use of pair correlation functions in Equations 28-29 significantly reduces the book-

keeping compared to MBAR when N configurations (i.e. coordinates of every interaction-
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site for each molecule) are stored. As shown in Figures 1, 2, and 7 “constant PCF” (i.e.
Equations 28-29 or 30-31) has a strong bias in U and Z.

Rather than assuming the PCFs for the two force fields are equal with respect to the ab-
solute distance, 7;;, (Equation 27) we can assume g;; is constant with respect to a reduced
distance, r;;:

95(0; 7";}) ~ Gij (Oret; Tfj) (32)
where the reduced distance (r;;) may be defined as - or ; =, for example. This is equiv-
alent to the MBAR configuration mapping example discussed in Section 2.3.1 for the
single-site L] system. The advantage of Equation 32 is that the positions of the peaks
in g;; depend strongly on ¢ (and r,;,). However, this approach is only rigorous if the
system volume is also scaled, which is not straightforward for a multi-site molecule. For
a constant volume, the location of the first peak and the peaks heights depend strongly
ono.

In addition, Equation 32 does not account for changes in the well depth (¢) or the
steepness of repulsive barrier (A for the Mie A\-6 potential). The value of e changes the
height of the first peak for g;;, while A changes the slope of the initial ascent for g;;. In
order to account for changes in A and/or ¢, we can rescale the PCF by estimating the
potential of mean force (w, or PMF) as:

wij(9§ Tij) ~ wij(eref; Tij) + [UY@W(Q; Tij) - UVdW(Qref; Tij)] (33)

ij

where w (or PMF) is defined as:
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Equation 34 is rearranged to yield:
Gij(60;7i;) = exp (%) (35)
and an estimation of the PCF is obtained by substituting Equation 33 into Equation 35:

(36)

_Au;,dw<07 Href; T )
gz‘j(9§ Tz'j) ~ gij(eref; Tz‘j) exp ( J 2

T

where Auy™ (6, Orer; 7i5) = wii™(0;755) — w™ (Orer; 7i;). Note that r;; does not need to be
a scaled distance (r;‘j), because AuledW already accounts for the difference in o (or 7yin).
Equation 36 is then substituted into Equations 19-20. In our experience, Equation 36 is
better than Equations 27 and 32, although the rescaled PCF still suffers from some defi-
ciencies. Future development of additional PCFR methods is an ongoing task.

In many instances, Equations 25-26 yield similar results to Equations 19-20 and 36.
This is not surprising, since Equation 36 can also be viewed as multiplying the PCF by
the ratio of the zeroth order radial distribution functions (go) of # and 6,.s. However, Equa-
tions 25-26 are simpler and have some computational benefits. For example, Equations

25-26 are numerically stable since they do not depend on the bin widths of the g;;(6;ef; 745)

histogram. Therefore, in this study the PCFER results are obtained using Equations 25-26.
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