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Abstract

In this study, we present an approach for rapid force field parameterization and uncer-

tainty quantification of the non-bonded interaction parameters for classical force fields.

The accuracy of most thermophysical properties, and especially vapor-liquid equilibria
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(VLE), obtained from molecular simulation depends strongly on the non-bonded inter-

actions. Traditionally, non-bonded interactions are parameterized to agree with macro-

scopic properties by performing large amounts of direct molecular simulation. Due to

the computational cost of molecular simulation, surrogate models (i.e. efficient mod-

els that approximate direct molecular simulation results) are an essential tool for high-

dimensional parameterization and uncertainty quantification of non-bonded interactions.

The present study compares two different configuration-sampling-based surrogate mod-

els, namely, Multistate Bennett Acceptance Ratio (MBAR) and Pair Correlation Function

Rescaling (PCFR). MBAR and PCFR are coupled with the Isothermal Isochoric (ITIC) ther-

modynamic integration method for estimating vapor-liquid saturation properties. We

find that MBAR and PCFR are complementary in their roles. Specifically, PCFR is pre-

ferred when exploring distant regions of the parameter space while MBAR is better in the

local domain.

1 Introduction

Molecular simulation is an invaluable tool in many fields of science and engineering.

One of its many purposes is the efficient prediction of thermophysical properties such as

saturated liquid density (ρsatl ), saturated vapor density (ρsatv ), saturated vapor pressure

(P sat
v ), enthalpy of vaporization, surface tension, viscosity, etc. The quantitative reliabil-

ity of the estimated property values depends almost entirely on the force field (i.e. the

molecular model) employed in the molecular simulation. For this reason, force field de-

velopment is an important area in molecular modeling. Since the intramolecular and

electrostatic contributions to the force field are often parameterized with ab initio results,

this study focuses on parameterizing the non-bonded (intermolecular) van der Waals in-

teractions with vapor-liquid equilibria (VLE) properties.

2



Recently, several groups have developed united-atom (UA) based force fields for pre-

dicting vapor-liquid equilibria. Potoff and Bernard-Brunel1 demonstrated that the Mie λ-

6 potential (i.e. a three parameter Lennard-Jones) provides considerable improvement at

predicting both ρsatl and P sat
v as compared to UA LJ 12-6 models, such as TraPPE-UA2 and

NERD.3 Subsequently, Hemmen and Gross4 implemented the Mie λ-6 potential but intro-

duced an additional fitting parameter by using anisotropic-united-atom (AUA) sites for

terminal groups (TAMie). Although the Mie λ-6 potential has shown significant promise

in providing highly accurate force fields for VLE, it should not be viewed as a panacea.

In fact, the force fields developed by Shah et al.5 (TraPPE-UA2) and Errington and Pana-

giotopoulos6 for ethane appear to reproduce experimental VLE data just as reliably as the

Potoff and TAMie models. Errington’s force field is a four-parameter AUA Exponential-6

model while TraPPE-UA2 is a three-parameter AUA LJ 12-6 model. In general, the in-

creased accuracy of the Potoff, TAMie, Errington, and TraPPE-UA2 force fields compared

to the TraPPE-UA and NERD models has come at the cost of additional model parame-

ters.

Due to the increased accuracy and complexity (i.e. number of parameters) of modern

force fields, sophisticated high-dimensional optimization,7 multi-objective Pareto front,8–10

and uncertainty quantification (UQ) methods11–14 should play a key role in force field de-

velopment. However, these methods are not tractable when molecular simulation is per-

formed at each step of the algorithm, as this may necessitate O(102 to 106) simulations.15

For this reason, surrogate models are essential to render these methods computationally

feasible. In this context, “surrogate model” is an umbrella term that covers all methods

that predict simulation results without requiring direct simulation using the given force

field. The obvious benefit of a surrogate model is the reduction of computational cost.

Typical surrogate models are a few orders of magnitude faster than direct simulation.

For this reason, UQ and Pareto front studies rely heavily on surrogate models to replace
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molecular simulation.8–14

The first type of surrogate model is a mathematical or statistical model (sometimes

referred to as a meta-model16–18). These require little or no understanding of the under-

lying physics or what each force field parameter means on a molecular level. Instead,

they simply interpolate and smooth the simulation output in the corresponding param-

eter space.11,14,19 Although meta-models are computationally cheap to evaluate, devel-

oping reliable meta-models can be an arduous task and may require large amounts of

molecular simulations. In addition, while these surrogate models are typically reliable

for interpolation, extrapolation is dubious for certain model forms.

The second type of surrogate model is an analytic equation-of-state model. Equation-

of-state models relate the force field parameters to different types of engineering equations-

of-state. The simplest equation-of-state surrogate model is likely the corresponding states

model. Typically, a corresponding states model is a correlation fit to reduced properties

(simulation output scaled by the force field parameters). Examples of this type of surro-

gate model can be found for the single-site Lennard-Jones fluid (both with tail corrections

and truncated20–22) as well as the two-site Lennard-Jones plus point quadrupole.23 More

sophisticated equation-of-state surrogate models are PC-SAFT24 and SAFT-γ.25,26 The PC-

SAFT surrogate model has been used extensively to develop the TAMie force field by

relating the Mie parameters to parameters in the PC-SAFT equation-of-state.4,27,28

In this study, we investigate a third type of surrogate model, namely, configuration-

sampling-based surrogate models. Configuration-sampling-based surrogate models rely

on atomic configurations that are sampled by simulating the reference force field(s) to

predict observables for a non-simulated force field. The primary assumption is that the

reference force field(s) has a distribution of configurations similar to the desired force

field. For this reason, the reference force field(s) plays a significant role in the accu-

racy of this class of surrogate models and must be chosen judiciously. A key advantage

4



in configuration-sampling-based surrogate models is that they are compatible with any

non-bonded functional form and can be used with both all-atom (AA) and coarse-grained

(UA, AUA, etc.) force fields, whereas the SAFT-γ and PC-SAFT surrogate models are lim-

ited to coarse-grained models. The two configuration-sampling-based surrogate models

that we examine in this study are Multistate Bennett Acceptance Ratio (MBAR) and Pair

Correlation Function Rescaling (PCFR). While MBAR is a well-established method, PCFR

is a novel approach set forth in this study.

Section 2 discusses the methodology, starting with the force fields, the simulation con-

ditions, data analysis, and surrogate model derivation. Section 3 compares the results

for MBAR and PCFR. This comparison is made for simple systems, namely, united-atom

representations of ethane, hexafluoroethane, propane, n-butane, and n-octane, but it is

applicable to any compound and force field. Section 4 discusses recommendations and

limitations regarding the implementation of these surrogate models. Section 4 also pro-

vides an algorithm for parameterization of non-bonded potentials which is demonstrated

in Section 5. Finally, Section 6 summarizes the conclusions from this work.

2 Methods

2.1 Force Field

We emphasize that the methodology proposed in Sections 2.2-2.3 is applicable to any

force field. Specifically, the configuration-sampling-based surrogate models can be ap-

plied to united-atom (UA) or all-atom (AA) based force fields and to LJ 12-6, Mie λ-6,

Exp-6, or any other non-bonded functional form. In this study, however, we focus on a

specific subset of force fields, namely, UA Mie λ-6. This model type was selected as it has

received significant attention in recent years for development of accurate hydrocarbon
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force fields.1,4,29–31

The Mie λ-6 is a three-parameter non-bonded central potential of the form:

uvdw(ε, σ, λ; r) =

(
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)
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where uvdw is the van der Waals interaction, σ is the distance (r) where uvdw = 0, −ε is the

energy of the potential at the minimum
(

i.e. uvdw = −ε and ∂uvdw

∂r
= 0 for r = rmin

)

, and

λ is the repulsive exponent. Note that the Mie potential reduces to the LJ 12-6 potential

for λ = 12. Therefore, Equation 1 can be considered a generalized Lennard-Jones where

the repulsive exponent is a parameter. Although an attractive exponent of 6 has a strong

theoretical basis, λ = 12 is a historical artifact that was chosen primarily for computational

purposes.32 For the same reason (i.e. computational efficiency), a common practice is to

use integer values of λ in Equation 1.

Non-bonded interactions between two different site types (i.e. cross-interactions) are

determined using Lorentz-Berthelot combining rules32 for ε and σ with an arithmetic

mean for the repulsive exponent (λ) (as recommended by Potoff and Bernard-Brunel1):

εij =
√
εiiεjj (2)

σij =
σii + σjj

2
(3)

λij =
λii + λjj

2
(4)

where the ij subscript refers to cross-interactions and the subscripts ii and jj refer to

same-site interactions. Section SI.I.3 of the Supporting Information provides the TraPPE-

UA and Potoff non-bonded parameters for both same-site interactions and cross-interactions.

We use the same intramolecular potential as the TraPPE-UA and Potoff force fields,

which was in large part adopted from the well-known Optimized Potential for Liquid
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Simulations (OPLS-UA) force field.33,34 Specifically, the simulations performed in this

study use fixed bond-lengths, harmonic angular potential, and Fourier series for the di-

hedral torsional interactions. To be consistent with these force fields, non-bonded in-

teractions between united-atom sites in the same molecule are only included if they are

separated by at least four neighboring sites (i.e. we exclude 1-2, 1-3, and 1-4 non-bonded

intramolecular interactions). Section SI.I.3 of the Supporting Information provides the

equations and parameters for intramolecular interactions.

2.2 Isothermal Isochoric Thermodynamic Integration

In this study, isothermal isochoric (ITIC) thermodynamic integration35 is used to de-

termine ρsatl , ρsatv , and P sat
v for each force field and molecule. The equations for ITIC are:

Adep

RgT sat
=

∫ ρsat
l

0

Z − 1

ρ
∂ρ|T=T IT +

∫ T sat

T IT

Udep∂

(

1

RgT

)

|ρ=ρsat
l

(5)

ρsatv ≈ ρsatl exp

(

Adep

RgT sat
+ Zsat

l − 1− 2B2ρ
sat
v − 3

2
B3ρ

sat2

v

)

(6)

P sat
v ≈ (1 + B2ρ

sat
v +B3ρ

sat2

v )ρsatv RgT
sat (7)

Zsat
l =

P sat
v

ρsatl RgT sat
(8)

where Adep ≡ A−Aig is the Helmholtz free energy departure from ideal gas for tempera-

ture (T ) equal to the saturation temperature (T sat) and density (ρ) equal to the saturated

liquid density (ρsatl ), Udep ≡ U − U ig is the internal energy departure, Zsat
l is the saturated

liquid compressibility factor (Z), B2 is the second virial coefficient, B3 is the third virial

coefficient, T IT is the isothermal temperature, and Rg is the universal gas constant. (Note
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that our definitions for Adep and Udep are slightly different than those used by Razavi,35

where the energy departures are dimensionless, but are consistent with Elliott and Lira.36)

The ITIC equations are solved iteratively to ensure self-consistency. Specifically, the

Zsat
l value calculated in Equation 8 is then used to compute a new value of T sat by inter-

polating the simulation results for Z along the corresponding isochore. The T sat value in

Equation 5 is updated and Adep

RgT sat is recomputed. The new values for Zsat
l and Adep

RgT sat are

then used in Equation 6 to solve for ρsatv . Likewise, P sat
v and, subsequently, Zsat

l are recal-

culated using Equations 7 and 8, respectively. This process is repeated until the value of

Zsat
l (or alternatively T sat, ρsatv , or P sat

v ) has converged to within a predefined tolerance.

The B2 and B3 values found in Equations 6-7 can be determined in several different

ways: using experimental data or correlations fit to data (i.e. REFPROP,37 ThermoData

Engine (TDE),38 etc.), calculated with Mayer-sampling Monte Carlo,39,40 or obtained by

extrapolating low density simulation results.35 In this study, we utilize the B2 and B3

values from REFPROP, primarily for simplicity. This decision was made after first vali-

dating that the ITIC ρsatl and P sat
v values for n-alkanes (calculated using REFPROP B2 and

B3) are consistent with the literature values reported using Gibbs Ensemble Monte Carlo

(GEMC) and Grand Canonical Monte Carlo (GCMC) for the TraPPE-UA and Potoff force

fields, respectively1,41 (see Section SI.II.3 of the Supporting Information). We also verified

that the ITIC results for n-octane do not differ significantly when using Mayer-sampling

Monte Carlo B2 and B3 values reported by Schultz and Kofke39 instead of the REFPROP

B2 and B3 values (see Section SI.II.3 of the Supporting Information).

ITIC requires on the order of 10 NVT (constant number of molecules, constant volume,

constant temperature) simulations along a supercritical isotherm, i.e. T IT > Tc (where Tc

is the experimental critical temperature). As recommended by Razavi,35 we use a value

around 1.2 for the isotherm reduced temperature (T IT
r ≡ T IT

Tc
), i.e. T IT ≈ 1.2Tc. Two or

three additional NVT simulations are performed along different isochores that intersect

8



the saturated liquid curve (ρ = ρsatl ). Thus, each of the ITIC state points corresponds to

either a liquid or supercritical fluid. The specific state points simulated in this study are

provided in Section SI.I.1 of the Supporting Information. Section SI.II.3 of the Supporting

Information also contains an example of the ITIC data analysis.

One advantage of ITIC is that all the simulations are performed in the NVT ensemble.

In fact, although ITIC requires roughly three simulations for each saturation tempera-

ture, the total simulation time is typically comparable to the traditional VLE methods,

i.e. GEMC or GCMC. This is primarily because NVT systems converge quickly, as they

do not require expensive particle insertion/deletion or volume fluctuation moves. NVT

simulations should also foster reproducibility, as there are fewer user decisions that can

introduce error (although the choice of thermostat can be important42). By contrast, it was

demonstrated recently that simulation practitioners struggled to generate reproducible

results in the NPT ensemble.43

Furthermore, the NVT ensemble is amenable to both molecular dynamics (MD) and

Monte Carlo (MC) simulations. Thus, practitioners can implement ITIC with their pre-

ferred simulation software. We use GROMACS,44 as it is an extremely fast, parallelized,

graphics processing unit (GPU) optimized, open-source, MD code. (Sample input (.mdp,

.top, .gro) files are provided in Section SI.I.4 of the Supporting Information.) Obtaining

VLE properties from MD simulations has some advantages. For example, MD methods

are ideal for highly branched compounds whereas traditional GEMC or GCMC methods

may struggle to reach equilibrium due to the low acceptance rate of particle insertions.45

For the same reason, GEMC and GCMC are typically limited to T sat
r > 0.7 or 0.6 (depend-

ing on the molecular structure and ρsatl ) whereas ITIC can provide accurate VLE estimates

for T sat
r ≈ 0.45. However, while GEMC and GCMC can be used for T sat

r ≈ 0.95, one

disadvantage of ITIC is that Equations 6-7 require higher-order virial expansion terms

(B4, B5, etc.) for T sat
r > 0.85.35 In this study, we use ITIC to obtain ρsatl , ρsatv , and P sat

v for
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0.45 < T sat
r < 0.85.

The primary reason we employ ITIC is to calculate saturated properties (ρsatl , ρsatv , and

P sat
v ) from Udep and Z at specified state points (ρ − T ). Internal energies and pressures

(compressibility factors) are intimately related to the non-bonded interactions and the

atomic configurations. Therefore, ρsatl , ρsatv , and P sat
v can be predicted for any non-bonded

interactions by combining configuration-sampling-based surrogate models for predicting

Udep and Z with the ITIC analysis, Equations 5-8. Converting Udep and Z to ρsatl , ρsatv , and

P sat
v is important because large amounts of evaluated experimental VLE data are available

through databases, such as the Thermodynamics Research Center (TRC) source database,

whereas experimental data for Udep and Z are scarce.

2.3 Surrogate Models

ITIC requires Udep and Z for each state point (ρ-T) to calculate ρsatl , ρsatv , and P sat
v . Thus,

predicting ρsatl , ρsatv , and P sat
v for a given molecule and force field necessitates predicting

Udep and Z. Therefore, the aim of the surrogate models presented in this section is to

predict Udep and Z for a given state point with as little direct simulation as possible.

The configuration-sampling-based surrogate models (MBAR and PCFR) are well-suited

for the task at hand as energies and pressures are calculated directly from the coordinates

of interacting particles. In such surrogate models, we carry out a set of simulations at the

ITIC conditions using the reference force field(s), and the configurations obtained from

the reference force field(s) are used to estimate the VLE properties for a non-simulated

force field.
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2.3.1 Multistate Bennett Acceptance Ratio

Importance sampling is a commonly used statistical technique for computing aver-

ages of properties for one model by reweighting configurations sampled with another

model based on the ratio of probabilities for the two models. In chemistry and chemical

physics, importance sampling from one or a set of simulations to another set of simulation

conditions can be implemented using the MBAR algorithm.46,47

With MBAR the expectation 〈O(θ)〉 for force field (θ) of any given observable (O) can

be expressed as:

〈O(θ)〉 =
N
∑

n=1

O(xn; θ)Wn(θ) (9)

where xn are configurations sampled from one or more reference force fields (θref), O(xn; θ)

is the observable value using force field θ with configurations xn, and Wn(θ) is the weight

of the nth configuration using force field θ, calculated by using:

Wn(θ) =
exp[f̂(θ)− u(xn; θ)]

K
∑

k=1

Nk exp[f̂(θref,k)− u(xn; θref,k)]

(10)

where the reduced free energies (f̂(θ)) are calculated with:

f̂(θ) = − ln
N
∑

n=1

exp[−u(xn; θ)]
K
∑

k=1

Nk exp[f̂(θref,k)− u(xn; θref,k)]

(11)

where K is the number of reference force fields, N =
∑

k Nk is the total number of

snapshots for all K reference force fields, Nk are the total number of snapshots from

the kth reference force field, θref,k is the kth reference (i.e. simulated) force field, and

u(xn; θ) = βU(xn; θ) is the reduced potential energy evaluated with θ for configuration
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xn where β = 1
kBT

and kB is the Boltzmann constant.

Note that f̂(θref,k) is required to evaluate the denominator of Equations 10-11. The

values for f̂(θref,k) are obtained by solving a system of K equations for self-consistency.

Specifically, an initial guess for f̂(θref,k) is used to evaluate Equation 11 with θ = θref,k to

obtain updated values of f̂(θref,k). This process is repeated until the values for f̂(θref,k)

converge to within a desired tolerance. Although solving the MBAR system of equations

for self-consistency may require several iterations, fortunately, once this process has been

performed f̂(θ) (for an arbitrary θ) is evaluated without further iteration.

For the specific case of predicting Udep and Z for a non-sampled force field, expressed

by the set of force field parameters θ, the MBAR-based estimators for the departure inter-

nal energy and compressibility can be written as:

〈Udep(θ)〉 =
N
∑

n=1

Udep(xn; θ)Wn(θ) (12)

〈Z(θ)〉 =
N
∑

n=1

Z(xn; θ)Wn(θ) (13)

where the energies and forces are computed using force field θ for each configuration (xn)

to determine Udep(xn; θ) and Z(xn; θ) (from the virial pressure32), respectively, while the

weights (Wn(θ)) are again calculated using Equations 10-11.

The performance of MBAR depends strongly on good phase space overlap, meaning

that the configurations sampled by the reference force field(s) must represent a significant

portion of the “true” configurations that the non-simulated force field would sample.48

If the configurational overlap is small, the MBAR estimates are often dominated by a

few configurations, which are likely not representative of the ensemble that would be

generated by direct simulation of force field θ. The amount of overlap can be quantified

12



by the number of effective samples (Neff),
49 using Kish’s formula:

Neff =
(
∑

n Wn)
2

∑

n W
2
n

(14)

which reduces to Neff = (
∑

n W
2
n)

−1 when the weights are normalized. This has the prop-

erty that when the weights are equal, Neff = N , when all but one weight is negligible,

Neff ≈ 1, and behaves appropriately for intermediate cases. In the case of poor overlap

(Neff ≈ 1), the predicted values of MBAR will demonstrate a strong bias and the uncer-

tainties will likely be underestimated by the MBAR covariance matrix.

We discuss two methods for overcoming poor phase space overlap, namely, pair cor-

relation function rescaling (PCFR) and configuration mapping. Configuration mapping

is an attempt to predict how the probabilities of each configuration would change when

changing from the reference force field (θref) to the non-simulated force field (θ). The

clearest example of this is the theory of corresponding states.50 For the single-site Lennard-

Jones fluid, the NVT simulation results of θref can be exactly weighted to predict the sim-

ulation properties for a different value of σ at a new volume, V = Vref
σ3

σ3
ref

, where Vref is

the initial volume sampled using θref . This is because the energies (and thus the Boltz-

mann weights) will be exactly the same if we simply scale all of the coordinates by σ3

σ3
ref

.

Therefore, we can reuse (at least for that volume) all of the configurations to calculate new

properties.

If there is more than one length scale, however, the same corresponding states tactics

do not work. A general formalism for creating new, more suitable overlap from the old

configurations is to use configuration mapping.51,52 This approach can drastically increase

the efficiency of calculating properties using configurations sampled from similar models

as in the case of similar rigid water models or dipolar molecule lengths.51 One important

key, of course, is finding a simple transformation rule. The coordinate transformation free
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energy equations are true for any transformation, but will only be useful if they increase

the overlap between the non-sampled and reference configurations.

In the case of rigid water models and dipolar molecules, a linear transformation be-

tween shapes which preserves the center of mass has been shown to work very well.51

In the case of small molecule hydrocarbons, however, the simplest transformation would

be one which scales the centers of mass while keeping the intramolecular distances the

same. This, however, gives properties of the new model at a new volume, which is not

useful if we are performing canonical simulations. It is not immediately clear if there is a

simple remapping between simulations with different σ at the same volume, but it seems

unlikely, since the configurations must shift radial distributions in an inherently coupled

way. We defer the development of a more general mapping formalism to a future study.

We instead propose an alternative method, namely, PCFR. In essence, PCFR is an approx-

imate way to map the coordinates for constant volume. We derive PCFR in the following

section.

2.3.2 Pair Correlation Function Rescaling

PCFR is a method to predict Udep and Z (the two necessary quantities for ITIC) for

a non-simulated force field. Similar to MBAR, PCFR makes use of the configurations

sampled from direct simulation of a reference force field (θref) to predict these properties

without direct simulation of a modified force field (θ). To derive the PCFR equations, we

first assume that θref and θ have the same intramolecular and Coulombic potentials. The

departure internal energy and compressibility factors for a non-simulated force field can

then be expressed as:

〈Udep(θ)〉 = 〈Udep(θref)〉+ Uvdw(θ)− Uvdw(θref) (15)
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〈Z(θ)〉 = 〈Z(θref)〉+ Zvdw(θ)− Zvdw(θref) (16)

where 〈...〉 denotes an ensemble average and Uvdw and Zvdw are the van der Waals (i.e.

the non-bonded, non-Coulombic) contributions to U and Z, respectively. Subsequently,

for pair-wise additive central potentials we obtain the energy and compressibility equa-

tions that relate the pair correlation function (PCF) to Uvdw and Zvdw for a polyatomic

molecule:32

Uvdw(θ) = 2πρRg

NS−1
∑

i=1

NS
∑

j>i

∫

∞

0

uvdw
ij (θ; rij)gij(θ; rij)r

2
ij∂rij (17)

Zvdw(θ) = −2πρ

3T

NS−1
∑

i=1

NS
∑

j>i

∫

∞

0

∂uvdw
ij (θ; rij)

∂rij
gij(θ; rij)r

3
ij∂rij (18)

where ρ is the number density (units of molecules per volume), NS is the number of

sites in a molecule, uvdw
ij (θ; rij) is the van der Waals potential (units of kelvin, i.e. energy

divided by the Boltzmann constant) between sites i and j with force field θ, and gij(θ; rij)

is the site-site radial distribution function (or “pair correlation function”) between sites

i and j obtained with θ. Substitution of Equations 17 and 18 into Equations 15 and 16,

respectively, and combining the two integrals for Uvdw and Zvdw gives:

〈Udep(θ)〉 = 〈Udep(θref)〉

+ 2πρRg

NS−1
∑

i=1

NS
∑

j>i

∫

∞

0

[

uvdw
ij (θ; rij)gij(θ; rij)− uvdw

ij (θref ; rij)gij(θref ; rij)
]

r2ij∂rij (19)

〈Z(θ)〉 = 〈Z(θref)〉

− 2πρ

3T

NS−1
∑

i=1

NS
∑

j>i

∫

∞

0

[

∂uvdw
ij (θ; rij)

∂rij
gij(θ; rij)−

∂uvdw
ij (θref ; rij)

∂rij
gij(θref ; rij)

]

r3ij∂rij (20)
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Equations 19 and 20 are exact. Unfortunately, while gij(θref ; rij) is obtained from direct

simulation of θref , the PCF for the non-simulated force field (gij(θ; rij)) is unknown a priori.

PCFR attempts to estimate gij(θ; rij) and, thereby, predict the properties Udep and Z for

different non-bonded interactions.

There are a number of possible approximations that could be made. The approach we

recommend (and use in Section 3) is to perform a density expansion for the PCF:

gij(θ; r, ρ, T ) = g0,ij(θ; r, T ) + ρg1,ij(θ; r, T ) + ρ2g2,ij(θ; r, T ) + ... (21)

where the zeroth order term (g0) is known analytically to be:

g0,ij(θ; rij) ≡ exp

(−uij(θ; rij)

T

)

(22)

By substituting Equation 21 into Equations 17-18 and separating the integration by each

term of gij , we can express Uvdw and Zvdw as a virial expansion:

Uvdw(θ) =
∞
∑

h=0

ρhUvdw
h (23)

Zvdw(θ) =
∞
∑

h=0

ρhZvdw
h (24)

where Uvdw
h and Zvdw

h are obtained, in principle, by integrating Equations 17-18 after sub-

stituting gh,ij for gij . By assuming that the higher order (h > 0) contributions to Uvdw

and Zvdw for θ and θref are equal (or at least negligibly different) Udep(θ) and Z(θ) can be
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estimated using:

〈Udep(θ)〉 ≈ 〈Udep(θref)〉

+ 2πρRg

NS−1
∑

i=1

NS
∑

j>i

∫

∞

0

[

uvdw
ij (θ; rij)g0,ij(θ; rij)− uvdw

ij (θref ; rij)g0,ij(θref ; rij)
]

r2ij∂rij (25)

〈Z(θ)〉 ≈ 〈Z(θref)〉

− 2πρ

3T

NS−1
∑

i=1

NS
∑

j>i

∫

∞

0

[

∂uvdw
ij (θ; rij)

∂rij
g0,ij(θ; rij)−

∂uvdw
ij (θref ; rij)

∂rij
g0,ij(θref ; rij)

]

r3ij∂rij (26)

The primary advantage of this assumption is that, because g0,ij(θ; rij) is calculated with

Equation 22, the integrals in Equations 25-26 can be evaluated without performing any

additional simulations. However, the PCFR results presented in Section 3 suggest that

Equations 25-26 adequately approximate Udep but not Z, i.e. Uvdw
h (θ) ≈ Uvdw

h (θref) while

Zvdw
h (θ) 6≈ Zvdw

h (θref) for h > 0 when θ 6≈ θref .

PCFR is orders of magnitude faster than MBAR since PCFR only requires a numerical

integration of Equations 25-26 while MBAR requires energy and force “rerun” calcula-

tions. Although “rerun” calculations are typically orders of magnitude faster than direct

simulation, MBAR may still be too costly if an optimization or uncertainty quantification

(UQ) method requires on the order of 104 to 106 MBAR evaluations. However, the com-

putational cost of MBAR is approximately the same as PCFR when basis functions are

implemented.48 Basis functions can be constructed if a linear relationship exists between

the non-bonded parameters and the non-bonded energies and forces. For example, basis

functions are amenable to Mie λ-6 potentials because the energies are linearly dependent

on r−λ and r−6 while the forces are linearly dependent on r(−λ−1) and r−7 (see Section

SI.IV in the Supporting Information). By contrast, basis functions are not compatible with
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the Exponential-6 function due to the non-linearity of the exponential term.

Alternative PCFR approaches that we investigated, but found less reliable than Equa-

tions 25-26, are included in the Appendix. One such method is the “constant PCF” ap-

proach. “Constant PCF” assumes that the pair correlation function for the reference force

field is equal to the PCF for the non-simulated force field. As demonstrated in the Ap-

pendix, this is mathematically identical to assuming the weights of each configuration

are equal in Equations 12-13. Therefore, a comparison between PCFR and MBAR with

“constant PCF” (or “equal weights”) quantifies the improvement due to rescaling and

reweighting configurations, respectively. For this reason, we include the “constant PCF”

results in Section 3 to provide a common basis for MBAR and the recommended PCFR

approach (Equations 25-26). Furthermore, “constant PCF” can provide valuable insight

due to its conceptual and mathematical simplicity.

3 Results

In this section we compare MBAR and PCFR (Equations 25-26) based on their abil-

ity to predict the thermodynamic properties Udep, Z, ρsatl , and P sat
v . First, we compare the

predicted Udep and Z values with direct molecular simulation results. Subsequently, we

combine ITIC with MBAR and PCFR and the predicted values for ρsatl and P sat
v are com-

pared with direct molecular simulation results.

The systems considered are the united-atom representations of ethane (C2H6), hex-

afluoroethane (C2F6), propane (C3H8), n-butane (C4H10), and n-octane (C8H18). A detailed

comparison of the surrogate models is only presented for ethane. In the case of ethane,

we perform two types of test for MBAR and PCFR.

For the first test, the non-simulated force field uses the same non-bonded function

(i.e. the LJ 12-6) as the reference force field. We refer to this test as the “constant model”
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test. For the second test, the non-simulated force field uses a different non-bonded func-

tion (i.e. the Mie λ-6 or Exp-6) than the reference force field. We refer to this test as the

“perturbed model” test. Since this study focuses on the Mie λ-6 potential, the “perturbed

model” test corresponds to varying the value of λ. For both tests, we compare how well

MBAR performs with only a single reference and with multiple references.

The discussion for hexafluoroethane and the longer n-alkanes in Section 3.2 is limited

but complements the ethane discussion in Section 3.1. Specifically, Section 3.2 compares

how well MBAR and PCFR predict the Potoff λ-6 potential when the TraPPE-UA LJ 12-6

potential is used as a single reference force field. Hexafluoroethane is included since it

provides an example for the “perturbed model” test where λ � 12. The longer n-alkanes

are included to demonstrate that the results are not specific to two-site molecules.

3.1 Ethane

In this section, we compare the accuracy of MBAR and PCFR when predicting Udep,

Z, ρsatl , and P sat
v for ethane. First, in Section 3.1.1 we investigate how well these surro-

gate models predict the quantities of interest when there is only a single reference force

field, namely, the TraPPE-UA LJ 12-6 model. Section 3.1.1 allows for a fair comparison

between PCFR and MBAR since PCFR is not compatible with multiple references. More

importantly, our initial goal is to determine if the optimal force field parameters can be

obtained by performing direct simulations with only a single reference force field. This

would enable rapid reparameterization of the non-bonded interactions for any existing

force field without performing additional molecular simulations. Unfortunately, the re-

sults in section 3.1.1 demonstrate that this ideal scenario is not obtainable. For this reason,

in Section 3.1.2 we investigate the improvement that is possible for MBAR when using

multiple references. Then, in Section 3.1.3 we demonstrate how well MBAR and PCFR

perform when used in connection with ITIC.
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3.1.1 Single Reference

Figure 1 presents the results from the “constant model” single reference test. Specif-

ically, we use the TraPPE-UA LJ 12-6 model for ethane as our reference force field from

which we sample configurations. We predict the departure internal energy (Udep) and

compressibility factor (Z) for a wide range of CH3 LJ parameters (88 < ε/K< 108, 0.365 <

σ/nm< 0.385) using the various configuration-sampling-based surrogate models (MBAR,

PCFR, and “constant PCF”). Note that the reference ε, σ, and λ are at the center of the in-

vestigated parameter space, i.e. εref = 98 K, σref = 0.375 nm, and λref = 12. Figure 1

Panels a)-b) and c)-d) compare the direct simulation results for the departure internal en-

ergy (Udep ≡ U − U ig) and compressibility factor (Z), respectively, with those predicted

from the various surrogate models. Figure 1 includes parity plots as well as embedded

deviation plots. Panels a) and c) compare each surrogate model while Panels b) and d)

present the results only for MBAR.

Note that the MBAR and PCFR deviations are smaller than the “constant PCF” devi-

ations. This shows the improvement due to reweighting (MBAR) or “rescaling” (PCFR)

the reference configurations. Panel a) demonstrates that PCFR is superior to MBAR for

estimating Udep, while Panel c) shows that neither method is particularly robust for es-

timating Z. However, Panels b) and d) demonstrate that with a sufficient number of

effective samples (Neff) the MBAR estimates for Udep and Z are typically reliable. For ex-

ample, note that in Panels a) and c) the MBAR estimates follow the parity line very closely

for larger values of Neff . This makes intuitive sense because Neff is intimately related to

the degree of “overlap”, i.e. the probability that configurations sampled by the reference

force field would be sampled by the non-simulated force field. To quantify this observa-

tion, the insets in Panels b) and d) suggest that for Neff > 50 (or log10(Neff) > 1.7) the

percent deviation in Udep and the deviation in Z are less than 1 % and 0.3, respectively.

Figure 2 presents the “perturbed model” single reference test results for ethane. Fig-
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mance of MBAR. Note that the maximum number of effective samples for this entire

parameter space is less than 100, while for most systems Neff � 50. This poor “overlap”

causes a single (slightly more favorable) configuration to have a weight equal to one while

all other configurations have a weight of zero. When Neff ≈ 1 typically even the non-zero

weight configuration is still very unfavorable.

The “constant PCF” results in Figure 2 Panels a) and c) provide further insight into

why MBAR performs poorly when λref 6= λ = 16. Note the strong positive bias relative to

the parity line for Udep and Z “constant PCF” and MBAR. This is because the “softer” LJ

12-6 potential samples close-range configurations that result in extremely high energies

and forces when recomputed with the “harder” Mie 16-6 potential. Therefore, MBAR

reweighting cannot produce accurate estimates because few (if any) of the reference con-

figurations represent a reasonable state that would be sampled from the Mie 16-6 po-

tential. By contrast, PCFR rescales these close-range interactions to avoid unreasonable

energies and forces. This is an important advantage of PCFR when λref 6≈ λ.

The data depicted in Figure 3 help quantify over what range of the ε, σ, and λ pa-

rameter space MBAR is reliable (i.e. Neff > 50) when using a single reference parameter

set. The different color contours correspond to the “constant model” (λ = 12) and the

“perturbed model” (λ = 13 to 18) tests. The contours in Figure 3 represent the average

number of effective samples (N̄eff), i.e. the mean Neff for the 19 different ITIC state points.

Multiple contours are included for λ = 12 while only a single contour is provided for

λ = 13 to 18 for visual clarity.

Figure 3 demonstrates that Neff (and, thus, the “overlap” between force fields) de-

pends strongly on σ and the repulsive exponent (λ) with much less dependence on ε.

Specifically, the average Neff is greater than 50 for σ = σref = 0.375 nm, λ = λref = 12, and

88 < ε/K< 113, covering a range of ±15 % εref . By contrast, N̄eff > 50 for ε = εref = 98 K,

λ = λref = 12, and 0.3675 < σ/nm< 0.3725, a range of only ±0.7 % σref . In addition, the
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more than a single reference for large changes in σ (greater than 0.0025 nm) and when

λ 6= λref .

3.1.2 Multiple References

MBAR is intrinsically designed for multiple reference force fields, which is one of its

primary advantages. With additional (and judiciously chosen) references, the reliability

of MBAR estimates improves dramatically, as demonstrated in the following discussion.

By contrast, PCFR has no obvious way to combine the prediction of multiple references

in a meaningful manner. We attempted to incorporate multiple references into PCFR

by performing a weighted average of independent PCFR estimates where the weights

depend on the difference between σ and σref . However, we did not find this approach

to be beneficial. Therefore, we do not discuss PCFR in this section and focus solely on

MBAR.

The results presented in Section 3.1.1 demonstrate that MBAR is limited in how far it

can extrapolate in parameter space. As discussed previously, MBAR does not provide ac-

curate Udep and Z estimates when Neff � 50, which is typically the case when σ and/or λ

are significantly different from the σref and λref . One obvious solution to increase Neff and,

thereby, improve MBAR is to sample additional configurations from multiple references.

These references should be chosen to cover a wide range of parameter space while using

as few as possible to limit the increase in the computational cost of additional molecular

simulations.

Figure 4 presents the results when multiple reference force fields are utilized with

MBAR. Specifically, we performed direct simulations for nine equally spaced values of

σ from 0.365-0.385 nm for the “constant model” λ = 12 with ε = 98 K. The spacing

corresponds to one reference σ every 0.0025 nm since we observed that Neff > 50 when

σ = σref ± 0.0025 nm (recall Figure 1). For the “perturbed model” λ = 16 test, we use two

25



different ε values of 98 and 118 K. We use the same range of σ as the “constant model” test

for εref = 98 K to provide a fair comparison between the two tests for multiple references.

For εref = 118 K (the center value of the Mie 16-6 parameter space), we modify the σ

range slightly by including three additional larger σref values (0.3875, 0.3900, and 0.3925

nm). Recall that in Figure 3 the maximum Neff for λ = 16 was observed when σ < σref .

Thus, the expanded σref range with εref = 118 K results help elucidate whether MBAR

can adequately predict the Mie 16-6 parameter space if the LJ 12-6 references are chosen

judiciously. Panels a) and d), b) and e), and c) and f) provide the results for the “constant

model”, “perturbed model” with εref = 98 K, and “perturbed model” with εref = 118 K,

respectively.

For the “constant model” test (Panels a) and d)), due to the increased number of refer-

ences most of the LJ 12-6 parameter sets have good overlap and, thus, Neff > 50. However,

it should be noted that there are a few exceptions where Neff < 50 in Panels a) and d). In

each case, these correspond to high density, saturated liquids with σ = 0.385 nm and

ε > 107 K. By comparing Figure 4 Panels a) and d) with Figure 1 Panels b) and d), respec-

tively, additional σref values significantly improve the MBAR “constant model” results.
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By contrast, MBAR still performs quite poorly for the “perturbed model” (Mie 16-6)

potential despite the increased number of references (see Figure 4 Panels b), c), e) and f)).

In Panels b) and e) this is somewhat expected since εref = 98 K, while the non-simulated ε

values range from 108-128 K. As seen in Panels c) and f), one way to improve the perfor-

mance of MBAR for the perturbed model is to use εref = 118 K. However, notice that Neff

in Panels c) and f) are still much less than those for the constant model results (Panels a)

and d)). Therefore, sampling directly from λref = 16 with multiple σref (and a reasonable

value of εref) is the only way to ensure that Neff > 50. In Section 4 we propose how PCFR

can be used to assist in choosing εref and σref for a given λref .

3.1.3 Vapor-Liquid Equilibria

The comparison between MBAR and PCFR in Sections 3.1.1-3.1.2 has focused on Udep

and Z. However, for the purpose of force field optimization, the properties of interest

are most likely ρsatl and P sat
v (Udep could also be of interest as a substitute for enthalpy of

vaporization and/or heat capacity). For this reason, in this section we compare how well

MBAR and PCFR predict saturation properties when used in conjunction with ITIC.

Figure 5 plots the root-mean-square (RMS) with respect to REFPROP values for the

“constant model” test. Panels a) and b) plot the RMS for ρsatl and log10 (P
sat
v ), respectively.

ρsatl and P sat
v are computed with ITIC using the Udep and Z values obtained from either

direct simulation or the surrogate models. Both the single and multiple reference results

are included for MBAR. For visual clarity, only the first two contours are included for the

single reference (θref = θTraPPE) results of MBAR and PCFR.

The primary conclusion from Figure 5 is that the “MBAR with multiple references”

RMS contours for ρsatl and log10 (P
sat
v ) are nearly identical to those obtained from direct

simulation. By contrast, “MBAR with a single reference” shows good agreement for RMS

ρsatl and log10 (P
sat
v ) for only a small range of σ values. PCFR has the wrong shape for
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value of 98 K. Unfortunately, the optimal εref value for a different λref is not known a priori.

For these reasons, regardless of what values are used for εref and σref , sampling multiple LJ

12-6 references is not a recommended approach for predicting ρsatl and P sat
v when λ 6= λref .

Although the reliability of MBAR is greatly diminished when λ 6= λref , the perfor-

mance of PCFR is similar for both the “perturbed model” and the “constant model” tests.

For example, the PCFR RMS contours in Figure 6 are very similar to the PCFR RMS con-

tours in Figure 5. Specifically, although the ρsatl RMS contours have an incorrect trend

with respect to ε and σ, the log10 (P
sat
v ) RMS contours are in close agreement with direct

simulation, especially when σ ≈ σref . Furthermore, the PCFR contours are smooth (i.e.

not noisy) with respect to ε and σ. This suggests that PCFR can be a useful tool for param-

eterizing different Mie λ-6 potentials from a single LJ 12-6 reference. In fact, one of our

key recommendations provided in Section 4 is that the RMS of log10 (P
sat
v ) (or, alterna-

tively, Udep) predicted by PCFR be used as an initial objective function when perturbing

the value of λ.

The poor prediction of ρsatl for the “perturbed model” is expected since ITIC ρsatl de-

pends primarily on the isochore Z values (see discussion in Section 2.2). Thus, neither

“MBAR single reference” or “PCFR single reference” provide reliable ρsatl contours be-

cause neither method accurately predicts Z for the “perturbed model” and single refer-

ence test (see Figure 2, Panels c)-d)). The large fluctuations in the “MBAR multiple refer-

ences” contours are likely the result of the inherent randomness in Z when Neff ≈ 1 (see

Figure 4 Panel f)). The near-saturation, isochore state points that directly impact T sat are

more likely to have Neff ≈ 1 because Neff decreases with increasing density and decreasing

temperature.

Elucidating the reason why “MBAR multiple references” and “PCFR single reference”

provide reasonable estimates of P sat
v for the “perturbed model” is more complicated, be-

cause ITIC P sat
v depends strongly on both Z and Udep. This is due to the exponential
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relationship between Adep and P sat
v (see Equations 6-7) where Adep is computed from the

isotherm Z and isochore Udep values (see Equation 5). In addition, the isochore Z values

can have a significant impact on P sat
v through T sat in Equations 5-7. However, because

“PCFR single reference” does not provide accurate estimates of Z, the accuracy of P sat
v

appears to depend primarily on the reliability of Udep (see Figure 2 Panels a) and b)).

Since “MBAR multiple references” predicts Udep to within 1-2 %, the noise in the corre-

sponding log10 (P
sat
v ) contours can likely be attributed to large (random) deviations for Z

at certain state points (see Figure 4 Panels c) and f)). By contrast, the smooth “PCFR single

reference” log10 (P
sat
v ) contours suggest that the “PCFR single reference” deviations in Z

are more systematic (i.e. less random) than those from “MBAR multiple references.”

3.2 Additional Compounds

In this section we perform the “perturbed model” and single reference test for ad-

ditional compounds. Specifically, we verify that MBAR struggles to predict Udep, while

PCFR can provide reasonable estimates of Udep when λ > λref . The Z results are not

included because we have already concluded that neither MBAR or PCFR is capable of

predicting Z in this case. The “perturbed model” test is performed by sampling from the

TraPPE-UA LJ 12-6 model (θref = θTraPPE) while the non-simulated force field is the Potoff

Mie λ-6 model (θ = θPotoff).

The reason to emphasize the “perturbed model” results is because a plethora of LJ

12-6 parameters exist in the literature. Improved force field accuracy likely necessitates a

systematic conversion of these two-parameter LJ models to a model with additional pa-

rameters (i.e. the three-parameter Mie λ-6, Exp-6, extended Lennard-Jones,35 etc.). There

are at least two primary reasons to focus on the single reference test. First, the number of

direct simulations is minimized by using a single reference. Second, our goal is to verify

the reliability of PCFR, which is designed only for a single reference.
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The additional compounds considered in this section are hexafluoroethane, propane,

n-butane, and n-octane. Hexafluoroethane (C2F6) provides an extreme test case where

the perturbed repulsive barrier is significantly different from the LJ 12-6. Specifically, the

Potoff model utilizes a Mie 36-6 potential for CF3 sites. The n-alkanes provide insight

into how the surrogate models scale with additional sites (note that λ = 16 for the Potoff

CH3, CH2, and cross-interactions). The parameters for each force field and the simula-

tion conditions for each compound are provided in Sections SI.I.1-SI.I.3 of the Supporting

Information.

Figure 7 Panels a) and b) provide parity plots of Udep for hexafluoroethane and the

n-alkanes, respectively. MBAR and PCFR estimates are compared with direct simulation

results. Panel a) also includes “constant PCF” for comparison. Percent deviation plots are

included as insets for PCFR in Panel a) and for MBAR and PCFR in Panel b).

Panel a) demonstrates that MBAR (and “constant PCF”) are completely inadequate

for providing reasonable estimates of Udep for hexafluoroethane. There are two primary

reasons for the poor performance of MBAR. First, the ε value for Potoff (155.75 K) is

nearly twice that of TraPPE-UA (87 K). The second, and more important, reason is the

extreme difference in λ. The LJ 12-6 potential is much softer than the Mie 36-6 potential.

Therefore, none of the configurations sampled with TraPPE-UA represents a reasonable

configuration for the Potoff model. This is manifested by the fact that Neff ≈ 1 for every

state point (not depicted). By contrast, PCFR provides relatively accurate estimates of

Udep for hexafluoroethane. As discussed in Section 3.1.1, this is because PCFR effectively

“rescales” the configurations to avoid infeasible energies and forces.

Panel b) demonstrates that the MBAR single reference and “perturbed model” results

observed for ethane are similar to those for larger n-alkanes. Specifically, the MBAR de-

viations from direct simulation are significantly positive for each compound. By contrast,

the PCFR percent deviations increase in magnitude with increasing chain-length. There
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are located at a terminal position) would be more sensitive to the non-bonded interac-

tions than the PCF for a CH2 site with several neighboring sites. Therefore, PCFR should

primarily be utilized for smaller compounds and/or when non-bonded parameters are

modified for fewer site-types.

4 Recommendations and Limitations

MBAR provides accurate estimates of Udep and Z (and, thereby, ρsatl and P sat
v ) when

there is sufficient configurational overlap between the reference force field(s) and the non-

simulated force field. We recommend using the number of effective samples (Neff) to

quantify the overlap. Specifically, we recommend that MBAR be utilized if Neff > 50.

Multiple reference parameter sets are necessary to ensure that Neff > 50 over a large

region of parameter space.

The key limitations to implementing MBAR are to determine the best reference pa-

rameters and to minimize the number of references required. More reference force fields

necessitates more direct simulations. Therefore, the reference force fields should be cho-

sen judiciously such that adequate, but not excessive, sampling of the parameter space

is achieved in the region of most importance. For example, an adaptive sampling algo-

rithm can determine which additional parameters will reduce the MBAR uncertainties.48

However, this approach attempts to reduce the uncertainty in the entire parameter space

while we are only interested in the parameter space near the optimum.

Rather than sampling hundreds of εref and σref sets for λref = 12, we recommend sam-

pling a few different εref and σref sets for each value of λ. Unfortunately, the optimal εref

for a given λ is not known a priori and increases with increasing λ. For this reason, a

key recommendation from this study is that PCFR be utilized to determine the reference

parameters for MBAR when the non-bonded potential form (particularly the repulsive
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barrier, i.e. λ) is modified.

Specifically, in the case of converting from a single LJ 12-6 reference force field to a Mie

λ-6 potential, the optimal εref for different values of λ is determined by minimizing the

RMS of log10 (P
sat
v ) with σ = σref . We also found that minimizing the RMS of Udep using

PCFR could be a reliable approach, as shown in Section SI.III of the Supporting Informa-

tion. We recommend maintaining σ constant during this preliminary optimization since

the PCFR estimates for P sat
v (and Udep) are most reliable when σ ≈ σref . Subsequently,

multiple references are sampled for the desired λ using this “PCFR-optimal” εref .

Since P sat
v (and Udep) is fairly insensitive to σ (or rmin), we recommend that a constraint

be applied to σref (or rmin,ref) to reduce the number of reference parameters. For example,

the TraPPE-UA LJ 12-6 model has been well optimized to match ρsatl (which depends

strongly on σ), therefore we could constrain the reference σ (and rmin) values to be within

a certain “trust region”, say ±1 %. Alternatively, we recommend that σref ≥ 0.99×σTraPPE

and rmin,ref ≤ 1.01 × rmin,TraPPE for λ > 12 and vice versa for λ < 12. This empirical

recommendation is based on the fact that most united-atom sites follow the trend that

σPotoff > σTraPPE and rmin,Potoff < rmin,TraPPE where λPotoff > 12.

To facilitate future implementation, we recommended the following algorithm (re-

ferred to as PCFR-MBAR-ITIC) for rapid parameterization of non-bonded interactions

aimed at accurate prediction of vapor-liquid equilibria:

1. Perform molecular simulations using:

(a) NVT ensemble (either MD or MC)

(b) ITIC conditions (19 ρ–T state points: nine for isotherm, two for each of the five

isochores)

(c) Reference force field(s) (θref), initial reference is taken from literature (impor-

tant to have reasonably optimized σref)
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2. Store independent configurations or basis functions (see Section SI.IV in the Sup-

porting Information)

3. Determine additional references:

(a) σref : evenly spaced within “trust region” (reasonable range for optimal σ based

on σref)

(b) εref : minimize the RMS of log10 (P
sat
v ) (or Udep) predicted by PCFR and ITIC

4. Repeat Steps 1-2 using additional references found in Step 3

5. Optimize force field parameters:

(a) Predict Udep and Z with MBAR

(b) Calculate ρsatl , ρsatv and P sat with ITIC

(c) Define an objective function that depends on ρsatl , ρsatv , P sat, Udep and/or Z

6. Determine if additional references are needed based on Neff near optimum

7. Repeat Steps 5-6 until parameters converge to within a desired tolerance

8. Quantify uncertainty in non-bonded parameters

The computational bottleneck for configuration-sampling-based, statistical,11,14,16–19 and

equation-of-state4,20–28 surrogate models is the molecular simulation step. Specifically, the

“real time to solution” of the PCFR-MBAR-ITIC algorithm depends primarily on Step 1,

namely, the real time to perform the direct molecular simulations. The post-simulation

optimization time, i.e. the real time required to complete Steps 3 and 5, is negligible in

comparison. By performing the additional reference simulations in parallel, i.e. Step 4,

the “real time to solution” is approximately the same as the real time to perform a single
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NVT ensemble simulation, which depends on the computer hardware, simulation soft-

ware, force field complexity, cut-off distance, number of molecules, size of compound,

etc. For example, the results presented in Section 5 were obtained in approximately one

week of real time.

Note that the PC-SAFT algorithm proposed in Reference 24 determines additional ref-

erence parameter sets sequentially by iteratively finding a new proposed optimum and,

therefore, molecular simulations must be performed in serial. This is because the PC-

SAFT equation-of-state surrogate model is limited to a single reference parameter set,

similar to PCFR. Information from previous iterations is effectively lost. By contrast,

MBAR and meta-models16–18 are able to utilize information from several reference pa-

rameter sets and, thus, molecular simulations can be performed in parallel. Although

this would appear to be a significant algorithmic advantage for PCFR-MBAR-ITIC, the

PC-SAFT approach typically finds the optimal parameter set within 2 to 3 iterations of

direct simulation. Therefore, the “real time to solution” is comparable for all three sur-

rogate model classes. Furthermore, the PCFR-MBAR-ITIC algorithm relies on starting

with a reasonable reference parameter set, see Step 1c, whereas the PC-SAFT approach

demonstrates rapid convergence even with a poor initial guess.24

5 Algorithm Application

We apply the PCFR-MBAR-ITIC algorithm from Section 4 to optimize transferable

CH3 and CH2 Mie λ-6 parameters for n-alkanes. Although we do not explicitly define

an objective function, we provide contours of the RMS deviations from the REFPROP

ρsatl and log10 (P
sat
v ) values to help visualize the optimal region. We perform this analy-

sis sequentially by assuming the CH3 parameters obtained for ethane are transferable to

larger n-alkanes. The CH2 parameter analysis is performed independently for propane,
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n-butane, and n-octane to investigate the transferability of the CH2 parameters.

For Step 1, we simulate ethane using the TraPPE-UA LJ 12-6 force field as our initial

reference. Additional reference points (i.e. Step 3) are determined by minimizing the

log10 (P
sat
v ) RMS predicted by PCFR. Figure 8 depicts the results from this analysis. The

lines in Figure 8 represent the “PCFR-optimal” εCH3
values for the corresponding σCH3

and λCH3
. The points in Figure 8 are the εref,CH3

and σref,CH3
values determined in Step 3

for integer values of λref,CH3
= 13 to 18. Specifically, εref,CH3

for a given λref,CH3
corresponds

to the “PCFR-optimal” εCH3
value for σCH3

= σTraPPE,CH3
. The σref,CH3

values are evenly

spaced such that σref,CH3
≥ 0.99 × σTraPPE,CH3

and rmin,ref,CH3
≤ 1.01 × rmin,TraPPE,CH3

. The

spacing between neighboring σref,CH3
values is no more than 0.0025 nm since this is the

range over which we found MBAR to be reliable (i.e. N̄eff > 50, recall Figure 3). Note that

the “Potoff” points are included in Figure 8 for comparison with the “PCFR-optimal”

curves for λCH3
= 14, 16, and 18. “Potoff” points for λCH3

= 14, 18 are approximations

extracted from Figure 2 of Reference [1].1

The “PCFR-optimal” lines in Figure 8 follow a reasonable, smooth trend and are in

good quantitative agreement with the “Potoff” values for a given λCH3
. This suggests

that εref,CH3
and σref,CH3

obtained in Step 3 are near the optimum for the respective λCH3

values and, therefore, should adequately sample the relevant region of parameter space.

To substantiate this statement we perform Steps 4-5 for the λCH3
= 16 reference values

plotted in Figure 8. The configurations sampled from these additional references are then

reweighted using MBAR to predict Udep and Z. The ITIC equations convert the estimated

Udep and Z values to ρsatl and P sat
v . Figure 9 shows the high level of agreement of direct

simulation and MBAR RMS values relative to REFPROP for the same range of εCH3
and

σCH3
as plotted previously in Figure 6.

This process is then repeated for propane, n-butane, and n-octane to examine the

CH2 parameter space. For simplicity and visualization purposes, we only investigate
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that no additional references are needed near the optimum.

6 Conclusions

The development of accurate and reliable surrogate models is essential for rapid, high-

dimensional parameterization and uncertainty quantification of force fields. The non-

bonded potential has been the focus of this study since it is typically parameterized to

reproduce vapor-liquid equilibria data. Configuration-sampling-based surrogate mod-

els, such as Multistate Bennett Acceptance Ratio (MBAR) and Pair Correlation Function

Rescaling (PCFR) are well suited for estimating internal energies and pressures (com-

pressibility) for a non-simulated non-bonded potential. Isothermal Isochoric (ITIC) ther-

modynamic integration converts the MBAR and PCFR outputs into saturation properties

(ρsatl , ρsatv , and P sat
v ).

We performed several tests to determine the range of reliability of MBAR and PCFR

for parameterizing a Mie λ-6 potential. MBAR provides accurate estimates of Udep, Z,

ρsatl , and P sat
v when Neff > 50. Unfortunately, Neff � 50 when λ 6≈ λref and/or σ 6≈ σref .

Therefore, MBAR should primarily be used when several σref values are sampled from

λ = λref . By contrast, PCFR accurately predicts Udep and P sat
v from a single reference force

field for a wide range of λ values (and a moderate range of σ values). However, PCFR

has the wrong trend for Z and ρsatl with respect to ε and σ.

Therefore, MBAR and PCFR are complementary tools. PCFR is a useful exploratory

tool for proposing optimal regions of parameter space while MBAR is for final optimiza-

tion and parameter uncertainty quantification. We developed a method that utilizes

PCFR to rapidly determine which reference parameters should be sampled to improve

the MBAR results. We demonstrated that this algorithm is a reliable and efficient means

for parameterizing a Mie λ-6 potential for n-alkanes. We expect the same to be true in
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general for other potentials, such as the Exponential-6. Future studies will utilize these

surrogate models (MBAR and PCFR) to rapidly optimize accurate force fields with mean-

ingful estimates of parameter uncertainty.
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Appendix

We now provide a brief summary of some other PCFR methods to estimate gij(θ; rij)

that we have investigated. First, the simplest PCFR approach is to assume that the pair

correlation functions for the two force fields are equal (referred to as “constant PCF” in

Section 3):

gij(θ; rij) = gij(θref ; rij) (27)
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For very small differences between θ and θref this assumption may be a good approxima-

tion. Applying Equation 27 to Equations 19 and 20 yields the expressions:

〈Udep(θ)〉 ≈ 〈Udep(θref)〉

+ 2πρRg

NS−1
∑

i=1

NS
∑

j>i

∫

∞

0

[

uvdw
ij (θ; rij)− uvdw

ij (θref ; rij)
]

gij(θref ; rij)r
2
ij∂rij (28)

〈Z(θ)〉 ≈ 〈Z(θref)〉

− 2πρ

3T

NS−1
∑

i=1

NS
∑

j>i

∫

∞

0

[

∂uvdw
ij (θ; rij)

∂rij
−

∂uvdw
ij (θref ; rij)

∂rij

]

gij(θref ; rij)r
3
ij∂rij (29)

A connection exists between Equations 28-29 and the MBAR equations for calculating

expectation values of Udep and Z (Equations 12-13). The assumption that the pair cor-

relation functions (i.e. configurations) for the two force fields are equal (Equation 27) is

mathematically equivalent to assigning each sampled configuration an equal probability

in the MBAR equations, i.e. Wn(θ) = 1
N

for all xn. With the weights equal, Equations

10-11 are no longer needed to calculate Udep and Z as Equations 12-13 reduce to:

〈Udep(θ)〉 = 1

N

N
∑

n=1

Udep(xn; θ) (30)

〈Z(θ)〉 = 1

N

N
∑

n=1

Z(xn; θ) (31)

Although Equations 28-29 (“constant PCF”) and 30-31 (“equal weights”) are equivalent,

the use of pair correlation functions in Equations 28-29 significantly reduces the book-

keeping compared to MBAR when N configurations (i.e. coordinates of every interaction-
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site for each molecule) are stored. As shown in Figures 1, 2, and 7 “constant PCF” (i.e.

Equations 28-29 or 30-31) has a strong bias in Udep and Z.

Rather than assuming the PCFs for the two force fields are equal with respect to the ab-

solute distance, rij , (Equation 27) we can assume gij is constant with respect to a reduced

distance, r∗ij :

gij(θ; r
∗

ij) ≈ gij(θref ; r
∗

ij) (32)

where the reduced distance (r∗ij) may be defined as r
σ

or r
rmin

, for example. This is equiv-

alent to the MBAR configuration mapping example discussed in Section 2.3.1 for the

single-site LJ system. The advantage of Equation 32 is that the positions of the peaks

in gij depend strongly on σ (and rmin). However, this approach is only rigorous if the

system volume is also scaled, which is not straightforward for a multi-site molecule. For

a constant volume, the location of the first peak and the peaks heights depend strongly

on σ.

In addition, Equation 32 does not account for changes in the well depth (ε) or the

steepness of repulsive barrier (λ for the Mie λ-6 potential). The value of ε changes the

height of the first peak for gij , while λ changes the slope of the initial ascent for gij . In

order to account for changes in λ and/or ε, we can rescale the PCF by estimating the

potential of mean force (w, or PMF) as:

wij(θ; rij) ≈ wij(θref ; rij) +
[

uvdw
ij (θ; rij)− uvdw

ij (θref ; rij)
]

(33)

where w (or PMF) is defined as:

wij(θ; rij) ≡
− ln(gij(θ; rij))

T
(34)
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Equation 34 is rearranged to yield:

gij(θ; rij) ≡ exp

(−wij(θ; rij)

T

)

(35)

and an estimation of the PCF is obtained by substituting Equation 33 into Equation 35:

gij(θ; rij) ≈ gij(θref ; rij) exp

(

−∆uvdw
ij (θ, θref ; rij)

T

)

(36)

where ∆uvdw
ij (θ, θref ; rij) = uvdw

ij (θ; rij) − uvdw
ij (θref ; rij). Note that rij does not need to be

a scaled distance (r∗ij), because ∆uvdw
ij already accounts for the difference in σ (or rmin).

Equation 36 is then substituted into Equations 19-20. In our experience, Equation 36 is

better than Equations 27 and 32, although the rescaled PCF still suffers from some defi-

ciencies. Future development of additional PCFR methods is an ongoing task.

In many instances, Equations 25-26 yield similar results to Equations 19-20 and 36.

This is not surprising, since Equation 36 can also be viewed as multiplying the PCF by

the ratio of the zeroth order radial distribution functions (g0) of θ and θref . However, Equa-

tions 25-26 are simpler and have some computational benefits. For example, Equations

25-26 are numerically stable since they do not depend on the bin widths of the gij(θref ; rij)

histogram. Therefore, in this study the PCFR results are obtained using Equations 25-26.

References

(1) Potoff, J. J.; Bernard-Brunel, D. A. Mie Potentials for Phase Equilibria Calculations:

Applications to Alkanes and Perfluoroalkanes. J. Phys. Chem. B 2009, 113, 14725–

14731.

(2) Martin, M. G.; Siepmann, J. I. Transferable potentials for phase equilibria. 1. United-

47



atom description of n-alkanes. J. Phys. Chem. B 1998, 102, 2569–2577.

(3) Nath, S. K.; Escobedo, F. A.; de Pablo, J. J. On the simulation of vapor-liquid equilib-

ria for alkanes. J. Chem. Phys. 1998, 108, 9905–9911.

(4) Hemmen, A.; Gross, J. Transferable Anisotropic United-Atom Force Field Based on

the Mie Potential for Phase Equilibrium Calculations: n-Alkanes and n-Olefins. J.

Phys. Chem. B 2015, 119, 11695–11707.

(5) Shah, M. S.; Siepmann, J. I.; Tsapatsis, M. Transferable potentials for phase equilibria.

Improved united-atom description of ethane and ethylene. AIChE J. 2017, 63, 5098–

5110.

(6) Errington, J. R.; Panagiotopoulos, A. Z. A new intermolecular potential model for

the n-alkane homologous series. J. Phys. Chem. B 1999, 103, 6314–6322.

(7) Rhinehart, R. R.; Su, M.; Manimegalai-Sridhar, U. Leapfrogging and synoptic

Leapfrogging: A new optimization approach. Comput. Chem. Eng. 2012, 40, 67 – 81.

(8) Stöbener, K.; Klein, P.; Reiser, S.; Horsch, M.; Kufer, K.-H.; Hasse, H. Multicriteria

optimization of molecular force fields by Pareto approach. Fluid Ph. Equilibria 2014,

373, 100 – 108.

(9) Werth, S.; Stöbener, K.; Klein, P.; Kufer, K.-H.; Horsch, M.; Hasse, H. Molecular mod-

elling and simulation of the surface tension of real quadrupolar fluids. Chem. Eng.

Sci. 2015, 121, 110 – 117, 2013 Danckwerts Special Issue on Molecular Modelling in

Chemical Engineering.

(10) Stöbener, K.; Klein, P.; Horsch, M.; Kufer, K.; Hasse, H. Parametrization of two-center

Lennard-Jones plus point-quadrupole force field models by multicriteria optimiza-

tion. Fluid Ph. Equilibria 2016, 411, 33 – 42.

48



(11) Cailliez, F.; Pernot, P. Statistical approaches to forcefield calibration and prediction

uncertainty in Molecular Simulation. J. Chem. Phys. 2011, 134, 054124.

(12) Rizzi, F.; Najm, H. N.; Debusschere, B. J.; Sargsyan, K.; Salloum, M.; Adalsteins-

son, H.; Knio, O. M. Uncertainty Quantification in MD Simulations. Part II: Bayesian

Inference of Force-Field Parameters. Multiscale Model. Sim. 2012, 10, 1460–1492.

(13) Angelikopoulos, P.; Papadimitriou, C.; Koumoutsakos, P. Bayesian uncertainty

quantification and propagation in molecular dynamics simulations: A high perfor-

mance computing framework. J. Chem. Phys. 2012, 137, 144103.

(14) Messerly, R. A.; KnottsIV, T. A.; Wilding, W. V. Uncertainty quantification and prop-

agation of errors of the Lennard-Jones 12-6 parameters for n-alkanes. J. Chem. Phys.

2017, 146, 194110.

(15) Hülsmann, M.; Vrabec, J.; Maaß, A.; Reith, D. Assessment of numerical optimization

algorithms for the development of molecular models. Comput. Phys. Commun. 2010,

181, 887 – 905.

(16) Laurent, L.; Le Riche, R.; Soulier, B.; Boucard, P.-A. An Overview of Gradient-

Enhanced Metamodels with Applications. Archives of Computational Methods in En-

gineering 2017, 24, 1–46.

(17) Hülsmann, M.; Kirschner, K. N.; Krämer, A.; Heinrich, D. D.; Krämer-Fuhrmann, O.;

Reith, D. In Foundations of Molecular Modeling and Simulation: Select Papers from

FOMMS 2015; Snurr, R. Q., Adjiman, C. S., Kofke, D. A., Eds.; Springer Singapore:

Singapore, 2016; pp 53–77.

(18) Hülsmann, M.; Reith, D. SpaGrOW - A Derivative-Free Optimization Scheme for

Intermolecular Force Field Parameters Based on Sparse Grid Methods. Entropy 2013,

15, 3640.

49



(19) Cailliez, F.; Bourasseau, A.; Pernot, P. Calibration of forcefields for Molecular Simu-

lation: Sequential design of computer experiments for building cost-efficient kriging

metamodels. J. Comput. Chem. 2014, 35, 130–149.

(20) Lotfi, A.; Vrabec, J.; Fischer, J. Vapour liquid equilibria of the Lennard-Jones fluid

from the NpT plus test particle method. Mol. Phys. 1992, 76, 1319–1333.

(21) Thol, M.; Rutkai, G.; Span, R.; Vrabec, J.; Lustig, R. Equation of State for the Lennard-

Jones Truncated and Shifted Model Fluid. Int. J. Thermophys. 2015, 36, 25–43.

(22) Thol, M.; Rutkai, G.; Köster, A.; Lustig, R.; Span, R.; Vrabec, J. Equation of State for

the Lennard-Jones Fluid. J. Phys. Chem. Ref. Data 2016, 45, 023101.

(23) Stoll, J.; Vrabec, J.; Hasse, H.; Fischer, J. Comprehensive study of the vapour-liquid

equilibria of the pure two-centre Lennard-Jones plus point-quadrupole fluid. Fluid

Ph. Equilibria 2001, 179, 339 – 362.

(24) van Westen, T.; Vlugt, T. J. H.; Gross, J. Determining Force Field Parameters Using a

Physically Based Equation of State. J. Phys. Chem. B 2011, 115, 7872–7880.

(25) Papaioannou, V.; Calado, F.; Lafitte, T.; Dufal, S.; Sadeqzadeh, M.; Jackson, G.; Adji-

man, C. S.; Galindo, A. Application of the SAFT-γ Mie group contribution equation

of state to fluids of relevance to the oil and gas industry. Fluid Ph. Equilibria 2016, 416,

104 – 119, Special Issue: SAFT 2015.

(26) Avendaño, C.; Lafitte, T.; Adjiman, C. S.; Galindo, A.; Müller, E. A.; Jackson, G. SAFT-

γ Force Field for the Simulation of Molecular Fluids: 2. Coarse-Grained Models of

Greenhouse Gases, Refrigerants, and Long Alkanes. J. Phys. Chem. B 2013, 117, 2717–

2733.

50



(27) Hemmen, A.; Panagiotopoulos, A. Z.; Gross, J. Grand Canonical Monte Carlo Sim-

ulations Guided by an Analytic Equation of State-Transferable Anisotropic Mie Po-

tentials for Ethers. J. Phys. Chem. B 2015, 119, 7087–7099.

(28) Weidler, D.; Gross, J. Transferable Anisotropic United-Atom Force Field Based on the

Mie Potential for Phase Equilibria: Aldehydes, Ketones, and Small Cyclic Alkanes.

Ind. Eng. Chem. Res. 2016, 55, 12123–12132.

(29) Mick, J. R.; Soroush Barhaghi, M.; Jackman, B.; Rushaidat, K.; Schwiebert, L.;

Potoff, J. J. Optimized Mie potentials for phase equilibria: Application to noble gases

and their mixtures with n-alkanes. J. Chem. Phys. 2015, 143, 114504.

(30) Mick, J. R. Force Field Development with GOMC, A Fast New Monte Carlo Molecu-

lar Simulation Code. Ph.D. thesis, Wayne State University, 2016.

(31) Hoang, H.; Delage-Santacreu, S.; Galliero, G. Simultaneous Description of Equi-

librium, Interfacial, and Transport Properties of Fluids Using a Mie Chain Coarse-

Grained Force Field. Ind. Eng. Chem. Res. 2017, 56, 9213–9226.

(32) Allen, M. P.; Tildesley, D. J. Computer simulation of liquids; Clarendon Press ; Oxford

University Press: Oxford England New York, 1987; pp xix, 385 p.

(33) Jorgensen, W. L.; Madura, J. D.; Swenson, C. J. Optimized Intermolecular Potential

Functions for Liquid Hydrocarbons. J. Am. Chem. Soc. 1984, 106, 6638–6646.

(34) Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the

OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic

Liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236.

(35) Razavi, S. M. Optimization of a Transferable Shifted Force Field for Interfaces and In-

51



homogenous Fluids using Thermodynamic Integration. M.Sc. thesis, The University

of Akron, 2016.

(36) Elliott, J. R.; Lira, C. T. Introductory Chemical Engineering Thermodynamics, Second Edi-

tion; Prentice Hall: Upper Saddle River, New Jersey, 2012.

(37) Lemmon, E. W.; Huber, M. L.; McLinden, M. O. NIST Standard Reference Database

23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version

9.1, National Institute of Standards and Technology. 2013; https://www.nist.

gov/srd/refprop.

(38) Frenkel, M.; Chirico, R. D.; Diky, V.; Yan, X.; Dong, Q.; Muzny, C. ThermoData Engine

(TDE): Software Implementation of the Dynamic Data Evaluation Concept. Journal

of Chemical Information and Modeling 2005, 45, 816–838.

(39) Schultz, A. J.; Kofke, D. A. Virial coefficients of model alkanes. J. Chem. Phys. 2010,

133, 104101.

(40) Schultz, A. J.; Barlow, N. S.; Chaudhary, V.; Kofke, D. A. Mayer Sampling Monte

Carlo calculation of virial coefficients on graphics processors. Mol. Phys. 2013, 111,

535–543.

(41) Eggimann, B.; Bai, P.; Bliss, A.; Chen, Q.; Chen, T.; Corest-Morales, A.; Feti-

sov, E.; Haldoupis, E.; Harwood, D.; Lindsey, R.; Arachchi, T.; Shah, M.;

Stern, H.; Struk, K.; Sung, J.; Sunnarborg, A.; Xue, B.; Siepmann, J. I.

T-UA No. 2 ethane. TraPPE Validation Database, University of Minnesota:

Minneaoplis, MN. http://www.chem.umn.edu/groups/siepmann/trappe/,

http://www.chem.umn.edu/groups/siepmann/trappe/ (accessed 2015 June 11).

(42) Shirts, M. R. Simple Quantitative Tests to Validate Sampling from Thermodynamic

Ensembles. J. Chem. Theory Comput. 2013, 9, 909–926.

52



(43) Schappals, M.; Mecklenfeld, A.; Kröger, L.; Botan, V.; Köster, A.; Stephan, S.; Gar-

cía, E. J.; Rutkai, G.; Raabe, G.; Klein, P.; Leonhard, K.; Glass, C. W.; Lenhard, J.;

Vrabec, J.; Hasse, H. Round Robin Study: Molecular Simulation of Thermodynamic

Properties from Models with Internal Degrees of Freedom. J. Chem. Theory Comput.

2017, 13, 4270–4280.

(44) Abraham, M.; van der Spoel, D.; Lindahl, E.; B.Hess,; the GROMACS development

team, GROMACS User Manual version 2016.3, www.gromacs.org (2017).

(45) Morales, A. D. C.; Economou, I. G.; Peters, C. J.; Siepmann, J. I. Influence of simu-

lation protocols on the efficiency of Gibbs ensemble Monte Carlo simulations. Mol.

Simul. 2013, 39, 1135–1142.

(46) Shirts, M. R.; Chodera, J. D. Statistically optimal analysis of samples from multiple

equilibrium states. J. Chem. Phys. 2008, 129, 124105.

(47) Shirts, M. R. Reweighting from the mixture distribution as a better way to describe

the Multistate Bennett Acceptance Ratio. https://arxiv.org/abs/1704.00891

(48) Naden, L. N.; Shirts, M. R. Rapid Computation of Thermodynamic Properties

Over Multidimensional Nonbonded Parameter Spaces using Adaptive Multistate

Reweighting. J. Chem. Theory Comput. 2016, 12, 1806–1823.

(49) Dybeck, E. C.; König, G.; Brooks, B. R.; Shirts, M. R. Comparison of Methods To

Reweight from Classical Molecular Simulations to QM/MM Potentials. J. Chem. The-

ory Comput. 2016, 12, 1466–1480.

(50) Streett, W. B.; Staveley, L. A. K. Calculation on a Corresponding States Basis of the

Volume Change on Mixing Simple Liquids. J. Chem. Phys. 1967, 47, 2449–2454.

53



(51) Paliwal, H.; Shirts, M. R. Multistate reweighting and configuration mapping together

accelerate the efficiency of thermodynamic calculations as a function of molecular

geometry by orders of magnitude. J. Chem. Phys. 2013, 138, 154108.

(52) Moustafa, S. G.; Schultz, A. J.; Kofke, D. A. Very fast averaging of thermal properties

of crystals by Molecular Simulation. Phys. Rev. E 2015, 92, 043303.

54


	Abstract
	Introduction
	Methods
	Force Field
	Isothermal Isochoric Thermodynamic Integration
	Surrogate Models
	Multistate Bennett Acceptance Ratio
	Pair Correlation Function Rescaling


	Results
	Ethane
	Single Reference
	Multiple References
	Vapor-Liquid Equilibria

	Additional Compounds

	Recommendations and Limitations
	Algorithm Application
	Conclusions
	Acknowledgments
	Supporting Information
	Appendix
	References

