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Abstract— We study the non-stationary stochastic multi-
armed bandit (MAB) problem and propose two generic algo-
rithms, namely, Limited Memory Deterministic Sequencing of
Exploration and Exploitation (LM-DSEE) and Sliding-Window
Upper Confidence Bound# (SW-UCB#). We rigorously analyze
these algorithms in abruptly-changing and slowly-varying envi-
ronments and characterize their performance. We show that the
expected cumulative regret for these algorithms in either of the
environments is upper bounded by sublinear functions of time,
i.e., the time average of the regret asymptotically converges to
zero. We complement our analysis with numerical illustrations.

I. INTRODUCTION

Decision-making in uncertain and non-stationary envi-

ronments is one of the most fundamental problems across

scientific disciplines, including economics, social science,

neuroscience and ecology, and often requires balancing

several decision-making tradeoffs, such as speed-versus-

accuracy, robustness-versus-efficiency, and explore-versus-

exploit. The MAB problem is a prototypical example of the

explore-versus-exploit tradeoff: choosing between the most

informative and seemingly the most rewarding alternative.

In an MAB problem, a decision-maker sequentially allo-

cates a single resource by repeatedly choosing one among a

set of competing alternative arms (options). These problems

have been applied in several interesting areas such as robotic

foraging and surveillance [1]–[3], acoustic relay positioning

for underwater communication [4], and channel allocation in

communication networks [5]. In a standard MAB problem, a

stationary environment is considered, however, many appli-

cation areas are inherently non-stationary. In this paper, we

seek to address this gap and study the MAB problem in two

classes of non-stationary environments: (i) abruptly-changing

environment and (ii) slowly-varying environment.

The performance of a sequential allocation policy for the

MAB problem is characterized in terms of the expected

cumulative regret which is defined as the cumulative sum of

the difference between the maximum mean reward and the

mean reward at the arm selected by the policy at each time.

An algorithm for the MAB problem is said to be efficient if

it achieves a sublinear expected cumulative regret, i.e., the

time average of the regret asymptotically converges to zero.

Some classes of non-stationary MAB have been studied

in the literature. In [6], authors study a non-stochastic MAB

problem in which the rewards are deterministic and non-

stationary. They study a weaker notion of the regret, wherein
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the policy generated by the algorithm is compared against

the best policy within the policies that select the same

arm at each time. In a recent work [7], the algorithms

developed in [6] are adapted to handle a class of non-

stationary environments and upper bounds on the standard

notion of the regret are derived. In [8], authors study a class

of non-stationary MAB problems in which the mean rewards

at arms may switch abruptly at unknown times to unknown

values. They design an upper confidence bound (UCB) based

algorithm that relies on estimates of the mean rewards from a

recent time-window of observations. In [9], authors study the

MAB problem in a piecewise-stationary environment. They

use active detection algorithms to determine the change-

points and restart the UCB algorithm.

An application area of interest for the MAB problem is

robotic search and surveillance in which a robot is routed

to collect stochastic rewards [10], [11]. These rewards may

correspond to, for example, likelihood of an anomaly at

a spatial location, concentration of a certain type of algae

in the ocean, etc. MAB algorithms have been extended to

these problems by introducing block-allocation strategies that

seek to balance the explore-exploit tradeoff using sufficiently

small travel time [12], [13]. In [3], authors extended the

algorithm in [8] to develop block-allocation strategies for

the MAB problem with abruptly-changing reward.

While the above algorithms balance the explore-exploit

tradeoff while ensuring sufficiently small travel time, they are

reactive in the sense that they select only one arm at a time,

i.e., they only provide information about the next location

to be visited by the robot. Certain motion constraints on the

robots such as non-holonomicity may make such movements

energetically demanding. Therefore, we seek algorithms that

have a deterministic and predictable structure which can be

leveraged to design trajectories for the robot that can be

efficiently traversed even under motion constraints. Towards

this end, we focus on DSEE algorithms [14]–[16].

In this paper, we study the MAB problem in abruptly-

changing and slowly-varying environments, and develop up-

per confidence bound type and DSEE type algorithms for

these environments. Our assumptions on the environment are

similar to those in [7] and [8], but we focus on alterna-

tive algorithms which include algorithms with deterministic

structure as discussed above. In particular, we extend the

DSEE algorithm to non-stationary environments and develop

the LM-DSEE algorithm. We also extend the SW-UCB

algorithm, developed and analyzed for abruptly-changing

environments in [8], to the SW-UCB# algorithm for non-

stationary environments.

The major contributions of this paper are threefold. First,

in Section III, we develop two novel algorithms: the LM-



DSEE and the SW-UCB# for the non-stationary MAB prob-

lem. Second, in Sections IV and V, we analyze the LM-

DSEE and the SW-UCB# algorithms for abruptly-changing

and slowly-varying environments and establish upper bounds

on the expected cumulative regret. Third, in Section VI, we

illustrate our analysis using numerical examples.

II. BACKGROUND & PROBLEM DESCRIPTION

In this section, we recall the stationary stochastic MAB

problem, and introduce the stochastic MAB problem in

abruptly-changing and slowly-varying environments.

A. The stationary stochastic MAB problem

Consider an N -armed bandit problem, i.e., an MAB

problem with N arms. The reward associated with arm

j ∈ {1, . . . , N} is a random variable with bounded support

[0, 1] and an unknown stationary mean µj ∈ [0, 1]. Let

the decision-making agent choose arm jt at time t ∈
{1, . . . , T} and receive a reward rt associated with the arm.

The decision-maker’s objective is to choose a sequence of

arms {jt}t∈{1,...,T} that maximizes the expected cumulative

reward
∑T

t=1 µjt , where T is the horizon length of the

sequential allocation process.

For an MAB problem, the expected regret at time t is de-

fined by µj∗−µjt , where µj∗ = max{µj | j ∈ {1, . . . , N}}.

The objective of the decision-maker can be equivalently

defined as minimizing the expected cumulative regret defined

by R(T ) =
∑T

t=1 E[µj∗ −µjt ] =
∑N

j=1 ∆jE[nj(T )], where

nj(T ) is the cumulative number of times a suboptimal arm

j has been chosen until time T and ∆j = µj∗ − µj is the

expected regret due to picking arm j instead of arm j∗.

B. Algorithms for the stationary stochastic MAB problem

We recall two state-of-the-art algorithms for the stationary

stochastic MAB problem relevant to this paper: (i) the UCB

algorithm, and (ii) the DSEE algorithm.

The UCB algorithm maintains a statistical estimate of the

mean rewards associated with each arm. It initializes by

selecting each arm once and subsequently selects the arm

jt at time t defined by

jt ∈ arg max
{

r̄j(t− 1) +

√

2 ln(t− 1)

nj(t− 1)

∣

∣

∣
j ∈ {1, . . . , N}

}

,

where r̄j(t−1) is the statistical mean of the rewards received

at arm j until time t. Auer [17] showed that the UCB

algorithm achieves expected cumulative regret that is within

a constant factor of the optimal.

The DSEE algorithm divides the set of natural numbers N

into interleaving epochs of exploration and exploitation [14].

In the exploration epoch, each arm is played in a round-

robin fashion, while in the exploitation epoch, only the arm

with the maximum statistical mean reward is played. For an

appropriately defined w ∈ R>0, the DSEE algorithm at time

t exploits if number of exploration steps until time t− 1 are

greater than or equal to Ndw log te, otherwise it starts a new

exploration epoch. In [14], Vakili et al. derived bounds on

the regret of the DSEE algorithm.

C. The non-stationary stochastic MAB problem

The non-stationary stochastic MAB problem is the

stochastic MAB problem in which the mean reward at each

arm is changing with time. Let the mean reward associated

with arm j at time t be µj(t) ∈ [0, 1]. The decision-maker’s

objective is to choose a sequence of arms {jt}t∈{1,...,T}

that maximizes the expected cumulative reward
∑T

t=1 µjt(t),
where T is the horizon length of the sequential allocation

process. We will characterize the performance of algorithms

for these problems using the notion of the expected cumu-

lative regret defined by

R(T ) =

T
∑

t=1

E[µj∗t
(t)− µjt(t)]

=

T
∑

t=1

µj∗t
(t)− E

[

N
∑

j=1

T
∑

t=1

1{jt=j}µj(t)
]

,

where µj∗t
(t) = maxj∈{1,...,N} µj(t), 1{�} is the indicator

function and the expectation is computed over different

realizations of jt. For brevity, in the following, we will refer

to R(T ) simply as the regret.

In this paper, we study the above MAB problem for two

classes of non-stationary environments:

Abruptly-changing environment: In an abruptly-changing

environment, the mean rewards from arms switch to un-

known values at unknown time-instants. We refer to these

time-instants as breakpoints. We assume that the number of

breakpoints until time T is ΥT ∈ O(T ν), where ν ∈ [0, 1)
and is known a priori.

Slowly-varying environment: In a slowly-varying environ-

ment, the change in the mean reward at each arm between

any two subsequent time-instants is small and is upper

bounded by εT ∈ O(T−κ), where κ ∈ R>0 and is known a

priori. Here, lower values of κ correspond to higher changes

in the mean reward at subsequent time-instants. We refer to

εT as the non-stationarity parameter.

III. ALGORITHMS FOR NON-STATIONARY STOCHASTIC

MAB PROBLEM

In this section, we present two algorithms for the non-

stationary stochastic MAB problem: the Limited-Memory

DSEE (LM-DSEE) algorithm and the Sliding-Window

UCB# (SW-UCB#) algorithm. These algorithms are generic

and require some parameters to be tuned based on environ-

ment characteristics.

A. The LM-DSEE algorithm

The LM-DSEE algorithm comprises interleaving epochs

of exploration and exploitation. In the k-th exploration epoch,

each arm is sampled L(k) = dγ ln(kρlb)e number of times.

In the k-th exploitation epoch, the arm with the highest

sample mean in the k-th exploration epoch is sampled

dakρle − NL(k) times. Here, parameters ρ, γ, a, b and l
are tuned based on the environment characteristics (see

Algorithm 1 for details). In the following, we will set a and

b to unity for the purposes of analysis. Parameters a and b



Algorithm 1: The LM-DSEE Algorithm

For abruptly-changing environment
Input : ν ∈ [0, 1),∆min∈ (0, 1), T ∈ N, a ∈ R>0, b ∈ (0, 1];

Set : γ ≥ 2
∆2

min

, l ∈ {N
a
dγ ln lbe, . . . ,+∞}, and

ρ = 1−ν
1+ν

;

For slowly-varying environment
Input : κ ∈ R>0, κmax ∈ (0, 4

3
),T ∈ N, a ∈ R>0, b ∈ (0, 1];

Set : κ̃← min{κ, κmax}, ρ←
3κ̃

4−3κ̃
,

l ∈ {N
a
dl

2
3 ln lbe, . . . ,+∞}, and γ = 2(kρl)

2
3 ;

Output : sequence of arm selection;

% Initialization:

1 Set batch index k ← 1 and t← 1;

2 while t ≤ T do

% Exploration

3 for j ∈ {1, . . . , N} do

Pick arm j, L(k)← dγ ln(kρlb)e times ;

collect rewards {r̂ij(k)}i∈{1,...,L(k)} ;

compute sample mean r̄
epch
j (k)← 1

L(k)

∑L(k)
i=1 r̂ij(k);

% Exploitation

4 Select the best arm j
epch

k
= argmaxj∈{1,...,N} r̄

epch
j (k) ;

5 Pick arm j
epch

k
, dakρle −NL(k) times ;

6 Update batch index k ← k + 1 and t← t+ dakρle

do not influence the order of regret bounds derived below,

but they can be tuned to enhance the transient performance.

The LM-DSEE algorithm is similar in spirit to the DSEE

algorithms [14], [15], wherein the length of exploitation

epoch increases exponentially with the epoch number and all

the data collected in the previous exploration epochs is used

to estimate the mean rewards. However, in a non-stationary

environment, using all the rewards from the previous ex-

ploration epochs may lead to a heavily biased estimate of

the mean rewards. Furthermore, an exponentially increasing

exploitation epoch length may lead to excessive exploitation

based on an outdated estimate of the mean rewards. To

address these issues, we modify the DSEE algorithm by

using only the rewards from the current exploration epoch

to estimate the mean rewards, and we increase the length of

exploitation epoch using a power law.

B. The SW-UCB# algorithm

The SW-UCB# algorithm is an adaptation of the SW-

UCB algorithm proposed and studied in [8]. The SW-UCB#

algorithm, at time t, maintains an estimate of the mean

reward r̄j(t, α) at each arm j, using only the rewards

collected within a sliding-window of observations. Let the

width of the sliding-window at time t ∈ {1, . . . , T} be

τ(t, α) = min{dλtαe, t}, where parameters α ∈ (0, 1]
and λ ∈ R≥0 ∪{+∞} are tuned based on environment

characteristics. Let nj(t, α) =
∑t

s=t−τ(t,α)+1 1{js=j} be the

number of times arm j has been selected in the time-window

Algorithm 2: The SW-UCB# Algorithm

For abruptly-changing environment
Input : ν ∈ [0, 1), ∆min ∈ (0, 1), λ ∈ R>0 & T ∈ N;

Set : α = 1−ν
2

For slowly-varying environment
Input : κ ∈ R>0, λ ∈ R>0 & T ∈ N;

Set : α = min{1, 3κ
4
}

Output : sequence of arm selection;

% Initialization:

1 while t ≤ T do

2 if t ∈ {1, . . . , N} then

Pick arm jt = t;

3 else
Pick arm jt defined in (1) ;

at time t, then

rj(t, α) =
1

nj(t, α)

t
∑

s=t−τ(t,α)+1

rj(s)1{js=j}.

Based on the above estimate, the SW-UCB algorithm at

each time selects the arm

jt = arg max{rj(t− 1, α) + cj(t− 1, α) | j ∈ {1, . . . , N}},
(1)

where cj(t, α) =
√

(1+α) ln t
nj(t,α)

. The details of the algorithm

are presented in Algorithm 2.

In contrast to the SW-UCB algorithm [8], the SW-UCB#

algorithm employs a time-varying width of the sliding-

window. The tuning of the fixed window width in [8] requires

a priori knowledge of the time horizon T which is no longer

needed for the SW-UCB# algorithm.

IV. ANALYSIS OF THE LM-DSEE ALGORITHM

In this section, we analyze the performance of the LM-

DSEE algorithm (Algorithm 1) in abruptly-changing and

slowly-varying environments. Here, we only present the

sketch of the proofs. For detailed proofs, see [18].

A. LM-DSEE in the abruptly-changing environment

Before we analyze the LM-DSEE algorithm in the

abruptly-changing environment, we introduce the following

notation. Let

∆j = max{µj∗t
(t)− µj(t) | t ∈ {1, . . . , T}},

∆max = max{∆j | j ∈ {1, . . . , N}},

and ∆min = min{µj∗t
(t)− µj(t) |

t ∈ {1, . . . , T}, j ∈ {1, . . . , N} \ {j∗t }}.

Theorem 1 (LM-DSEE in abruptly-changing environment):

For the abruptly-changing environment with the number of

breakpoints ΥT ∈ O(T ν), ν ∈ [0, 1) and the LM-DSEE

algorithm, the expected cumulative regret

RLM-DSEE(T ) ∈ O(T
1+ν
2 lnT ).



Proof: Let K be the index of the epoch containing

the time-instant T , then the length of each epoch is at most

dKρle. Since breakpoints are located in at most ΥT epochs,

we can upper bound the regret from epochs containing

breakpoints by Rb ≤ ΥT dK
ρle∆max.

In the epochs containing no breakpoint, let Re and Ri

denote, respectively, the regret from exploration and exploita-

tion epochs. Note that in such epochs the mean reward from

each arm does not change. Then, the regret in exploration

epochs Re satisfies,

Re ≤

K
∑

k=1

N
∑

j=1

dγ ln(kρl)e∆j ≤ Kdγ ln(Kρl)e

N
∑

j=1

∆j .

In exploitation epochs, regret is incurred if the best arm is

not selected, and consequently Ri satisfies

Ri ≤

K
∑

k=1

N
∑

j=1

[

dkρle−NL(k)
]

P(jepch

k = j 6= j∗no-break(k))∆j ,

(2)

where j∗no-break(k) is the best arm and jepch

k is selected arm

in the k-th exploitation epoch. It follows from the Chernoff-

Hoeffding inequality [19, Theorem 1] that P(jepch

k = j 6=
j∗no-break(k)) ≤ 2(kρl)−1. Substituting it into (2), we have

Ri ≤ 2K
∑N

j=1 ∆j . Furthermore, it can be seen that K ∈

O(T
1

1+ρ ). Therefore, it follows that

RLM-DSEE(T ) = Rb +Re +Ri

≤ ΥTK
ρl∆max +K(dγ ln(Kρl)e+ 2)

∑

N
j=1∆j .

Thus, the regret RLM-DSEE(T ) ∈ O(T
1+ν
2 lnT ), and this

establishes the theorem.

B. LM-DSEE in the slowly-varying environment

Theorem 2 (LM-DSEE in slowly-varying environment):

For the slowly-varying environment with the non-stationarity

parameter εT = O(T−κ), κ ∈ R>0, and the LM-DSEE

algorithm, the expected cumulative regret

RLM-DSEE(T ) ∈ O(T
3+2ρ
3+3ρ lnT ),

where ρ = 3κ̃
4−3κ̃ , κ̃ = min{κ, κmax}, and κmax ∈ (0, 4

3 ).
Proof: Similar to the proof of Theorem 1, we divide

the regret into Re and Ri, the regret in the exploration epoch

and the exploitation epoch, respectively. It follows that

Re ≤

N
∑

j=1

K
∑

k=1

dγ ln(kρl)e∆j

≤
[ 2l

2
3

2
3ρ+ 1

(K + 1)
2
3
ρ+1 ln(Kρl) +K

]

N
∑

j=1

∆j .

Also, for the regret in the exploitation epoch, we have

Ri ≤

N
∑

j=1

K
∑

k=1

∑

t∈epoch k

P(jepch

k =j 6=j∗t )
(

µj∗t
(t)−µjepch

k

(t)
)

. (3)

In the context of slowly-varying environment, when the

best arm switches, there may exist a period around the

switching instant during which the difference in the mean

rewards between the best arm and the next-best arm is

extremely small. To handle such a situation, we define

J(t) = {j ∈ {1, . . . , N} | µj∗t
(t)− µj(t) ≤ σ},

where we set σ = (kρl)−
1
3 + 2% and % = εT k

ρl, which is

the maximum change in the mean reward at any arm in the

k-th epoch. Then, it follows that

P(jepch

k = j 6= j∗t ) = P(jepch

k = j 6= j∗t , j ∈ J(t))

+ P(jepch

k = j 6= j∗t , j /∈ J(t)).

Substituting it into (3), we obtain

Ri ≤

N
∑

j=1

K
∑

k=1

∑

t∈epoch k

[

P
(

jepch

k = j, j /∈ J(t)
)

∆j + σ
]

.

Denote χj,k as the set of time indices at which the arm j is

sampled in the k-th exploration epoch. Define

Mj(k) ,
1

|χj,k|

∑

t∈χj,k

µj(t).

Then, it can be shown that µj∗t
(t) − µj(t) > σ, for all

t ∈ epoch k, implies Mj∗t
(k)−Mj(k) > σ − 2%. It follows

from Chernoff-Hoeffding inequality [19, Theorem 1] that

P(jepch

k = j, j /∈ J(t)) ≤ 2(kρl)−1 and consequently,

Ri ≤

N
∑

j=1

K
∑

k=1

[

2(kρl)−1∆j + (kρl)−
1
3 + 2%

][

dkρle −NL(k)
]

≤
Nl

2
3

2
3ρ+ 1

(K + 1)
2
3
ρ+1 + 2K

N
∑

j=1

∆j+
2Nl2εT
1 + 2ρ

(K + 1)1+2ρ.

Using the fact that K ∈ O(T
1

1+ρ ), we have Ri ∈

O(T
3+2ρ
3+3ρ ) and Re ∈ O(T

3+2ρ
3+3ρ lnT ). Thus, RLM-DSEE(T ) ∈

O(T
3+2ρ
3+3ρ lnT ), and this concludes the proof.

V. ANALYSIS OF THE SW-UCB# ALGORITHM

In this section, we analyze the performance of the SW-

UCB# algorithm (Algorithm 2) in abruptly-changing and

slowly-varying environments. Here, we only present the

sketch of the proofs. For detailed proofs, see [18].

A. SW-UCB# in the abruptly-changing environment

Theorem 3 (SW-UCB# in abruptly-changing environment):

For the abruptly-changing environment with the number of

breakpoints ΥT = O(T ν), ν ∈ [0, 1) and the SW-UCB#

algorithm, the expected cumulative regret

RSW-UCB#(T ) ∈ O(T
1+ν
2 lnT ).

Proof: We define T such that for all t ∈ T , t is either a

breakpoint or there exists a breakpoint in its sliding-window

of observations {t− τ(t− 1, α), . . . , t− 1}. For t ∈ T , the

estimate of the mean rewards may be significantly biased. It

can be shown that |T | ≤ ΥT dλ(T −1)αe, and consequently,

the regret can be upper bounded as follows:

R(T ) ≤

N
∑

j=1

E[Ñj(T )]∆j +ΥT [λ(T − 1)α + 1]∆max, (4)



where Ñj(T ) :=
∑T

t=1 1{jt=j 6=j∗t , t/∈T } satisfies

Ñj(T ) ≤ 1 +

T
∑

t=N+1

1{jt=j 6=j∗t ,nj(t−1,α)<A(t−1)}

+

T
∑

t=N+1

1{jt=j 6=j∗t , t/∈T , nj(t−1,α)≥A(t−1)},

(5)

where A(t) = 4(1+α) ln t
∆2

min

.

We first bound the second term on the right hand side of

inequality (5). Let G ∈ N be such that

[λ(1− α)(G− 1)]
1

1−α < T ≤ [λ(1− α)G]
1

1−α . (6)

Then, consider the following partition of time indices
{

{1+b[λ(1−α)(g−1)]
1

1−α c, . . . , b[λ(1−α)g]
1

1−α c}
}

g∈{1,...,G}
.

(7)

In the g-th epoch in the partition, suppose there exist a time-

instant t such that jt = j 6= j∗(t) and nj(t− 1, α) < A(t−
1). Let the last time-instant satisfying these conditions in

the g-th epoch be tj(g) = max{t ∈ g-th epoch|jt = j 6=
j∗t andnj(t− 1, α) < A(t− 1)}. It can be proved that

tj(g)− τ
(

tj(g)− 1, α
)

≤ 2 + bλ(1− α)(g − 1)
1

1−α c,

i.e., the first time-instant in the sliding-window at tj(g) is

located at or to the left of the second time-instant of the g-th

epoch in the partition (7). Therefore, it follows that

T
∑

t=N+1

1{jt=j 6=j∗,nj(t−1,α)<A(t−1)}

≤

G
∑

g=1

[

A(tj(g)− 1) + 2
]

≤ G
(

2 +
4(1 + α) lnT

∆2
min

)

. (8)

Next, we upper-bound expectation of the last term in (5).

Note that when t /∈ T , for each j ∈ {1, . . . , N}, µj(s) is a

constant for all s ∈ {t− τ(t−1, α), . . . , t}, and the problem

reduces to the stationary MAB. Accordingly, we have

E

[

T
∑

t=N+1

1{jt=j 6=j∗, t/∈T , nj(t−1,α)≥A(t−1)}

]

≤
(λ+ 1)2π2

3
.

(9)

Therefore, it follows from (4), (5), (8), and (9) that

R(T ) ≤
N
∑

j=1

(

G
(

2 +
4(1 + α) lnT

∆2
min

) + 1 +
(λ+ 1)2π2

3

)

∆j

+ΥT dλ(T − 1)αe
)

∆max.

From (6), we have G = O(T 1−α), and this yields

RSW-UCB#(T ) ∈ O(T
1+ν
2 lnT ).

B. The SW-UCB# in the slowly-varying environment

Theorem 4 (SW-UCB# in slowly-varying environment):

For slowly-varying environment with the non-stationarity

parameter εT = O(T−κ), κ ∈ R>0, and the SW-UCB

algorithm, the expected cumulative regret

RSW-UCB#(T ) ∈ O(T 1−α
3 lnT ),

where α = min {1, 3κ
4 }.

Proof: We start by noting that the number of times arm

j is selected when it is suboptimal satisfies

n̂j(T ) ≤ 1 +
T
∑

t=N+1

1{jt=j 6=j∗t ,nj(t−1,α)<A(t−1)}

+

T
∑

t=N+1

1{jt=j 6=j∗t ,nj(t−1,α)≥A(t−1),j /∈J(t)}

+

T
∑

t=N+1

1{jt=j 6=j∗t ,nj(t−1,α)≥A(t−1),j∈J(t)},

(10)

where σ = t−
α
3 +2dλ(t− 1)αeεT , A(t) = 4t

2α
3 (1 +α) ln t,

nj(t − 1, α) is defined in Algorithm 2, and J(t) = {j ∈
{1, . . . , N} | µj∗t

(t)− µj(t) ≤ σ}.

We first focus on the second term on the right hand side

of (10), and bound it similarly to the proof of Theorem 3:

T
∑

t=N+1

1{jt=j 6=j∗t ,nj(t−1,α)<A(t−1)}≤
G
∑

g=1

[A(tj(g)− 1) + 2]

≤
12(1 + α)

3− α
λ

2α
3−3α [(1− α)(G+ 1)]

3−α
3−3α lnT + 2G, (11)

where G is defined in (6).

We now analyze the third term in (10). Let Mj(t) =
1

nj(t,α)

∑t
s=t−dλtαe+1 µj(s)1{js=j}. Since the change in the

mean reward for any arm within time-window {t − τ(t−
1, α), . . . , t} is less than dλ(t−1)αeεT and µj∗t

(t)−µj(t) >
σ, Mj∗t

(t−1)−Mj(t−1) > t−
α
3 . Consequently, the expected

value of the third term in (10) satisfies

E

[

T
∑

t=N+1

1{jt=j 6=j∗t ,nj(t−1,α)≥A(t−1),j /∈J(t)}

]

≤
(λ+ 1)2π2

3
.

(12)

Therefore, from (10), (11), and (12), we have

R(T ) ≤

N
∑

j=1

∆j

{12(1 + α)

3− α
λ

2α
3−α [(1− α)(G+ 1)]

3−α
3−3α lnT

+ 2G+
(λ+ 1)2π2

3
+ 1

}

+

T
∑

t=1

σ.

Since G ∈ O(T 1−α), we have RSW-UCB#(T ) ∈
O(T 1−α

3 lnT ).

VI. NUMERICAL ILLUSTRATION

In this section, we present simulation results for the

SW-UCB# and LM-DSEE algorithms in both abruptly-

changing and slowly-varying environments. For all the sim-

ulations, we consider a 10-armed bandit in which the

reward at each arm is generated using Beta distribu-

tion. For the abruptly-changing environment, the break-

points are introduced at time-instants where the next el-

ement of the sequence {btνc}t∈{1,...,T} is different from

the current element. At each breakpoint, the mean re-

wards at each arm are randomly selected from the set

{0.05, 0.12, 0.19, 0.26, 0.33, 0.39, 0.46, 0.53, 0.6, 0.9}. In the



Fig. 1. The performance of the LM-DSEE algorithm in abruptly-changing
and slowly-varying environments.

Fig. 2. The performance of the SW-UCB# algorithm in abruptly-changing
and slowly-varying environments.

slowly-varying environment, the change in the mean reward

at an arm is uniformly randomly sampled from the set

[−2T−κ, 2T−κ]. For Algorithm 1, we select (a, b) equal

to (1, 0.25) and (20, 1) for abruptly-changing and slowly-

varying environments, respectively. For Algorithm 2, we

select λ = 12.3 and λ = 4.3 for abruptly-changing and

slowly-varying environments, respectively. The parameters

ν and κ that describe characteristics of non-stationarity are

varied to evaluate the performance of algorithms. Figs. 1

and 2 show that both SW-UCB# and LM-DSEE are effective

in non-stationary environments.

In can be seen in Figs. 1 and 2 that for both algorithms

in either of the environments, as expected, the ratio of the

empirical regret to the order of the regret established in

Sections IV and V is upper bounded by a constant. The

regret for the SW-UCB# is relatively smoother than the regret

for the LM-DSEE algorithm. The saw-tooth behavior of the

regret for LM-DSEE is attributed to the fixed exploration-

exploitation structure, wherein the regret certainly increases

during the exploration epochs.

While both the algorithms incur the same order of regret,

compared with LM-DSEE, SW-UCB# has a better leading

constant. This illustrates the cost of constraining the algo-

rithm to have a deterministic structure. On the other hand,

this deterministic structure can be very useful, for example,

in the context of planning trajectories for a mobile robot

performing search using an MAB framework.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We studied the stochastic MAB problem in two classes

of non-stationary environments and designed two novel al-

gorithms, LM-DSEE and SW-UCB# for these problems. We

analyzed these algorithms for abruptly-changing and slowly-

varying environments, and characterized their performance in

terms of expected cumulative regret. In particular, we showed

that these algorithms incur sublinear expected cumulative

regret, i.e., the time average of the regret asymptotically

converges to zero.

There are several possible avenues for future research. In

this paper, we focused on a single decision-maker. Extensions

of this work to multiple decision-makers is of significant in-

terest. Implementation of these algorithms for robotic search

and surveillance is an exciting direction to pursue. Finally,

extension of the methodology developed in this paper to

other classes on MAB problems such as the Markovian MAB

problem and the restless MAB problem is also of interest.
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