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Abstract— We study the non-stationary stochastic multi-
armed bandit (MAB) problem and propose two generic algo-
rithms, namely, Limited Memory Deterministic Sequencing of
Exploration and Exploitation (LM-DSEE) and Sliding-Window
Upper Confidence Bound# (SW-UCB#). We rigorously analyze
these algorithms in abruptly-changing and slowly-varying envi-
ronments and characterize their performance. We show that the
expected cumulative regret for these algorithms in either of the
environments is upper bounded by sublinear functions of time,
i.e., the time average of the regret asymptotically converges to
zero. We complement our analysis with numerical illustrations.

I. INTRODUCTION

Decision-making in uncertain and non-stationary envi-
ronments is one of the most fundamental problems across
scientific disciplines, including economics, social science,
neuroscience and ecology, and often requires balancing
several decision-making tradeoffs, such as speed-versus-
accuracy, robustness-versus-efficiency, and explore-versus-
exploit. The MAB problem is a prototypical example of the
explore-versus-exploit tradeoff: choosing between the most
informative and seemingly the most rewarding alternative.

In an MAB problem, a decision-maker sequentially allo-
cates a single resource by repeatedly choosing one among a
set of competing alternative arms (options). These problems
have been applied in several interesting areas such as robotic
foraging and surveillance [1]-[3], acoustic relay positioning
for underwater communication [4], and channel allocation in
communication networks [5]. In a standard MAB problem, a
stationary environment is considered, however, many appli-
cation areas are inherently non-stationary. In this paper, we
seek to address this gap and study the MAB problem in two
classes of non-stationary environments: (i) abruptly-changing
environment and (ii) slowly-varying environment.

The performance of a sequential allocation policy for the
MAB problem is characterized in terms of the expected
cumulative regret which is defined as the cumulative sum of
the difference between the maximum mean reward and the
mean reward at the arm selected by the policy at each time.
An algorithm for the MAB problem is said to be efficient if
it achieves a sublinear expected cumulative regret, i.e., the
time average of the regret asymptotically converges to zero.

Some classes of non-stationary MAB have been studied
in the literature. In [6], authors study a non-stochastic MAB
problem in which the rewards are deterministic and non-
stationary. They study a weaker notion of the regret, wherein
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the policy generated by the algorithm is compared against
the best policy within the policies that select the same
arm at each time. In a recent work [7], the algorithms
developed in [6] are adapted to handle a class of non-
stationary environments and upper bounds on the standard
notion of the regret are derived. In [8], authors study a class
of non-stationary MAB problems in which the mean rewards
at arms may switch abruptly at unknown times to unknown
values. They design an upper confidence bound (UCB) based
algorithm that relies on estimates of the mean rewards from a
recent time-window of observations. In [9], authors study the
MAB problem in a piecewise-stationary environment. They
use active detection algorithms to determine the change-
points and restart the UCB algorithm.

An application area of interest for the MAB problem is
robotic search and surveillance in which a robot is routed
to collect stochastic rewards [10], [11]. These rewards may
correspond to, for example, likelihood of an anomaly at
a spatial location, concentration of a certain type of algae
in the ocean, etc. MAB algorithms have been extended to
these problems by introducing block-allocation strategies that
seek to balance the explore-exploit tradeoff using sufficiently
small travel time [12], [13]. In [3], authors extended the
algorithm in [8] to develop block-allocation strategies for
the MAB problem with abruptly-changing reward.

While the above algorithms balance the explore-exploit
tradeoff while ensuring sufficiently small travel time, they are
reactive in the sense that they select only one arm at a time,
i.e., they only provide information about the next location
to be visited by the robot. Certain motion constraints on the
robots such as non-holonomicity may make such movements
energetically demanding. Therefore, we seek algorithms that
have a deterministic and predictable structure which can be
leveraged to design trajectories for the robot that can be
efficiently traversed even under motion constraints. Towards
this end, we focus on DSEE algorithms [14]-[16].

In this paper, we study the MAB problem in abruptly-
changing and slowly-varying environments, and develop up-
per confidence bound type and DSEE type algorithms for
these environments. Our assumptions on the environment are
similar to those in [7] and [8], but we focus on alterna-
tive algorithms which include algorithms with deterministic
structure as discussed above. In particular, we extend the
DSEE algorithm to non-stationary environments and develop
the LM-DSEE algorithm. We also extend the SW-UCB
algorithm, developed and analyzed for abruptly-changing
environments in [8], to the SW-UCB# algorithm for non-
stationary environments.

The major contributions of this paper are threefold. First,
in Section III, we develop two novel algorithms: the LM-



DSEE and the SW-UCB# for the non-stationary MAB prob-
lem. Second, in Sections IV and V, we analyze the LM-
DSEE and the SW-UCB# algorithms for abruptly-changing
and slowly-varying environments and establish upper bounds
on the expected cumulative regret. Third, in Section VI, we
illustrate our analysis using numerical examples.

II. BACKGROUND & PROBLEM DESCRIPTION

In this section, we recall the stationary stochastic MAB
problem, and introduce the stochastic MAB problem in
abruptly-changing and slowly-varying environments.

A. The stationary stochastic MAB problem

Consider an N-armed bandit problem, i.e., an MAB
problem with N arms. The reward associated with arm
j€{l,...,N} is a random variable with bounded support
[0,1] and an unknown stationary mean p; € [0,1]. Let
the decision-making agent choose arm j; at time t €
{1,...,T} and receive a reward r, associated with the arm.
The decision-maker’s objective is to choose a sequence of
arms {j; }¢c1,..., 7y that maximizes the expected cumulative
reward Zthl j,» where T is the horizon length of the
sequential allocation process.

For an MAB problem, the expected regret at time ¢ is de-
fined by pj+ —pj,, where pj« = max{y; | j € {1,...,N}}.
The objective of the decision-maker can be equivalently
defined as minimizing the expected cumulative regret defined
by R(T) = i, Elpje — p3,] = Y00y AjE[n;(T)], where
n;(T) is the cumulative number of times a suboptimal arm
j has been chosen until time 7" and A; = i~ — p  is the
expected regret due to picking arm j instead of arm j*.

B. Algorithms for the stationary stochastic MAB problem

We recall two state-of-the-art algorithms for the stationary
stochastic MAB problem relevant to this paper: (i) the UCB
algorithm, and (ii) the DSEE algorithm.

The UCB algorithm maintains a statistical estimate of the
mean rewards associated with each arm. It initializes by
selecting each arm once and subsequently selects the arm
J: at time t defined by

2ln(t—1)‘je{1,,,.,N}}7

Jt € arg max{fj(t -1+ m

where 7;(t—1) is the statistical mean of the rewards received
at arm j until time ¢. Auer [17] showed that the UCB
algorithm achieves expected cumulative regret that is within
a constant factor of the optimal.

The DSEE algorithm divides the set of natural numbers N
into interleaving epochs of exploration and exploitation [14].
In the exploration epoch, each arm is played in a round-
robin fashion, while in the exploitation epoch, only the arm
with the maximum statistical mean reward is played. For an
appropriately defined w € R+, the DSEE algorithm at time
t exploits if number of exploration steps until time ¢t — 1 are
greater than or equal to N[w logt], otherwise it starts a new
exploration epoch. In [14], Vakili et al. derived bounds on
the regret of the DSEE algorithm.

C. The non-stationary stochastic MAB problem

The non-stationary stochastic MAB problem is the
stochastic MAB problem in which the mean reward at each
arm is changing with time. Let the mean reward associated
with arm 7 at time ¢ be p;(¢) € [0,1]. The decision-maker’s
objective is to choose a sequence of arms {j:}icq1,.. .1}
that maximizes the expected cumulative reward Zthl i, (1),
where 7' is the horizon length of the sequential allocation
process. We will characterize the performance of algorithms
for these problems using the notion of the expected cumu-
lative regret defined by

R(T) =Y Elu;z (t) — 5, (t)]
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where i (t) = max;eqr,.. Ny ij(t), 11,y is the indicator
function and the expectation is computed over different
realizations of j;. For brevity, in the following, we will refer
to R(T) simply as the regret.

In this paper, we study the above MAB problem for two
classes of non-stationary environments:
Abruptly-changing environment: In an abruptly-changing
environment, the mean rewards from arms switch to un-
known values at unknown time-instants. We refer to these
time-instants as breakpoints. We assume that the number of
breakpoints until time 7" is Y7 € O(T"), where v € [0,1)
and is known a priori.
Slowly-varying environment: In a slowly-varying environ-
ment, the change in the mean reward at each arm between
any two subsequent time-instants is small and is upper
bounded by er € O(T~"), where xk € R+( and is known a
priori. Here, lower values of « correspond to higher changes
in the mean reward at subsequent time-instants. We refer to
er as the non-stationarity parameter.

III. ALGORITHMS FOR NON-STATIONARY STOCHASTIC
MAB PROBLEM

In this section, we present two algorithms for the non-
stationary stochastic MAB problem: the Limited-Memory
DSEE (LM-DSEE) algorithm and the Sliding-Window
UCB# (SW-UCB#) algorithm. These algorithms are generic
and require some parameters to be tuned based on environ-
ment characteristics.

A. The LM-DSEE algorithm

The LM-DSEE algorithm comprises interleaving epochs
of exploration and exploitation. In the k-th exploration epoch,
each arm is sampled L(k) = [vIn(k”lb)| number of times.
In the k-th exploitation epoch, the arm with the highest
sample mean in the k-th exploration epoch is sampled
[akPl] — NL(k) times. Here, parameters p,7,a,b and [
are tuned based on the environment characteristics (see
Algorithm 1 for details). In the following, we will set a and
b to unity for the purposes of analysis. Parameters a and b



Algorithm 1: The LM-DSEE Algorithm

Algorithm 2: The SW-UCB# Algorithm

For abruptly-changing environment

Imput :v€[0,1),Anin€ (0,1), T € N,a € Ryq,b € (0,1];
Set :72A22 ,lE{%HInlbL...,-i—oo},and

l‘;,in
p= 14+v°
For slowly-varying environment

Input : k€ Ryg, Kmax € (O,%),T@N,aeR>0, be (0,1];
Set : R < min{k, Kmax}, p — ﬁ,

L€ {215 mib],...,+oo}, and y = 2(k?1) 3
Output : sequence of arm selection;

% Initialization:
1 Set batch index k <— 1 and ¢ + 1;
2 while t < T do
% Exploration
3 for j € {1,...,N} do
Pick arm j, L(k) < [v1In(k”lb)] times ;
collect rewards {f; (B)Yieq1,...Lk)}

compute sample mean F;pCh(lc) — ﬁ ZZI’:(I? f;'.(k);

% Exploitation

4 Select the best arm ijCh = argmax;e(1,.. N} Fijh(k:) ;
5 Pick arm jZPCh, [akPl] — NL(k) times ;

6 Update batch index k < k + 1 and ¢ < ¢ + [akPl]

do not influence the order of regret bounds derived below,
but they can be tuned to enhance the transient performance.

The LM-DSEE algorithm is similar in spirit to the DSEE
algorithms [14], [15], wherein the length of exploitation
epoch increases exponentially with the epoch number and all
the data collected in the previous exploration epochs is used
to estimate the mean rewards. However, in a non-stationary
environment, using all the rewards from the previous ex-
ploration epochs may lead to a heavily biased estimate of
the mean rewards. Furthermore, an exponentially increasing
exploitation epoch length may lead to excessive exploitation
based on an outdated estimate of the mean rewards. To
address these issues, we modify the DSEE algorithm by
using only the rewards from the current exploration epoch
to estimate the mean rewards, and we increase the length of
exploitation epoch using a power law.

B. The SW-UCB# algorithm

The SW-UCB# algorithm is an adaptation of the SW-
UCB algorithm proposed and studied in [8]. The SW-UCB#
algorithm, at time ¢, maintains an estimate of the mean
reward 7;(t,«) at each arm j, using only the rewards
collected within a sliding-window of observations. Let the
width of the sliding-window at time ¢ € {1,...,T} be
7(t,a) = min{[At*],¢}, where parameters o € (0,1]
and A € R>gU{+o0} are tuned based on environment
characteristics. Let n;(t, o) = ZZ:FT(L&)H 1¢;,—;} be the
number of times arm j has been selected in the time-window

For abruptly-changing environment
Inmput  :v€[0,1), Apin € (0,1), A\ER50 & T EN;
1

Set :a:%"

For slowly-varying environment

Input tKERSp, ANERS g & T EN;
Set : a:min{l,%
Output  : sequence of arm selection;

% Initialization:
while ¢ < T do

—

2 ifte{1,...,N} then
| Pick arm j; = ¢t;

3 else
| Pick arm j; defined in (1) ;

at time ¢, then

t

_ 1
S, 2

s=t—7(t,a)+1

75 (8)1gj,=41-

Based on the above estimate, the SW-UCB algorithm at
each time selects the arm

jt = arg maX{?](t—l,a)—ch(t—l,oz) |]6 {laaN}}7
(1)

Qt)Int “phe details of the algorithm

where ¢;(t,a) = )
are presented in Algorithm 2.

In contrast to the SW-UCB algorithm [8], the SW-UCB#
algorithm employs a time-varying width of the sliding-
window. The tuning of the fixed window width in [8] requires
a priori knowledge of the time horizon 7" which is no longer
needed for the SW-UCB# algorithm.

IV. ANALYSIS OF THE LM-DSEE ALGORITHM

In this section, we analyze the performance of the LM-
DSEE algorithm (Algorithm 1) in abruptly-changing and
slowly-varying environments. Here, we only present the
sketch of the proofs. For detailed proofs, see [18].

A. LM-DSEE in the abruptly-changing environment

Before we analyze the LM-DSEE algorithm in the
abruptly-changing environment, we introduce the following
notation. Let

A, = max{ag; (6) — () [ £ € {1,...,T}},
Apax =max{A; | j€{1,...,N}},
and Ay = min{p;-(t) — p;(t) |
te{l,....,T}Hje{l,....,N}\ {4/ }}.

Theorem 1 (LM-DSEE in abruptly-changing environment):

For the abruptly-changing environment with the number of
breakpoints Y € O(T"), v € [0,1) and the LM-DSEE
algorithm, the expected cumulative regret

RWMDSEE(TY ¢ O(T 5" InT).



Proof: Let K be the index of the epoch containing
the time-instant 7', then the length of each epoch is at most
[K*I]. Since breakpoints are located in at most Y1 epochs,
we can upper bound the regret from epochs containing
breakpoints by Ry < V[ Kl Amax-

In the epochs containing no breakpoint, let R, and R;
denote, respectively, the regret from exploration and exploita-
tion epochs. Note that in such epochs the mean reward from
each arm does not change. Then, the regret in exploration
epochs R, satisfies,

K N
R, < ZZ yIn(R*D)]A; < K[vyIn(K°1)] > A;.
k=1 j=1 j=1

In exploitation epochs, regret is incurred if the best arm is
not selected, and consequently R; satisfies

Ri < Z Z [[kpl] _NL(k)]]P)(]ZpCh - .7 7& j:o—break(k))Aj7
k=1j=1
2)

where 5 .. (k) is the best arm and j$*" is selected arm
in the k-th exploitation epoch. It follows from the Chernoft-
Hoeffding inequality [19, Theorem 1] that P(j*" = j #
g oreak (k) < 2(kP1)~!. Substituting it into (2) we have
R; <2K Z 1 Aj;. Furthermore, it can be seen that K €

o 1+p) Therefore, it follows that

RLM*DSEE(T) — Rb 4 Re 4 Ri

< YrKPlApax + K ([ ln(K”lﬂ +2)) A
Thus, the regret R®MPSEE(T) € O(T"2" InT), and this
establishes the theorem. [ ]

B. LM-DSEE in the slowly-varying environment

Theorem 2 (LM-DSEE in slowly-varying environment):
For the slowly-varying environment with the non-stationarity
parameter ey = O(T %), k € Ry, and the LM-DSEE
algorithm, the expected cumulative regret

RUM-DSEE(T) ¢ O(T'5+55 InT),

3

where p = 2%=, kK = min{x, Kmax }» and Amax € (0, 4)
Proof: Slmllar to the proof of Theorem 1, we divide
the regret into . and R;, the regret in the exploration epoch
and the exploitation epoch, respectively. It follows that
N K

Re <> ) [vIn(k")]A

j=1k=1
215 N
S[ K +1)37+ 1 In(K*1) +K}
%p+1( ! Z:
Also, for the regret in the exploitation epoch, we have
RoEYS YRGS () el0). O)
j=1 k=1 t€epoch k

In the context of slowly-varying environment, when the
best arm switches, there may exist a period around the
switching instant during which the difference in the mean

rewards between the best arm and the next-best arm is
extremely small. To handle such a situation, we define

) ={7 e{l,. ... N} | s () = p(t) < o},

where we set o = (kP1)"3 + 2p and ¢ = epkPl, which is
the maximum change in the mean reward at any arm in the
k-th epoch. Then, it follows that

PP = #37) = PGP = j # 575 € J(1))
F PGP =G # GG ¢ J(b).
Substituting it into (3), we obtain

ZZZZ PP = j,j ¢ J(6)A; +o].
j=1 k=1 teepoch k

Denote x5 as the set of time indices at which the arm j is
sampled in the k-th exploration epoch. Define

ME) 2 —— 3 ).

|X.77k| tEX,k

Then, it can be shown that p;x(t) — p;(t) > o, for all
t € epoch k, implies M;x (k) — M;(k) > o — 2. It follows
from Chernoff-Hoeffding inequality [19, Theorem 1] that
P(jP" = 4,5 ¢ J(t)) < 2(kl)~! and consequently,

N K
R; < [2(kP1) 1A + (kP1) ™5 + 20] [[K°1] — NL(K)]
j=1k=1
Ni3 2 a ONer
< K+1)3 T L oKy A K+ 1)1,
7%p+1( +1)3°t ¢ jz::l]—l— 1—|—2p( +1)

Using the fact that K € O(Tﬁ), we have R; €
342 342

O(T535) and R, € O(T3 InT). Thus, R“-DSEE(T) ¢
3+2

o 5555 In T'), and this concludes the proof. [ |

V. ANALYSIS OF THE SW-UCB# ALGORITHM

In this section, we analyze the performance of the SW-
UCB# algorithm (Algorithm 2) in abruptly-changing and
slowly-varying environments. Here, we only present the
sketch of the proofs. For detailed proofs, see [18].

A. SW-UCB# in the abruptly-changing environment

Theorem 3 (SW-UCB# in abruptly-changing environment):
For the abruptly-changing environment with the number of
breakpoints Y7 = O(T"), v € [0,1) and the SW-UCB#
algorithm, the expected cumulative regret

RSWUCBH(T) ¢ O(T " InT).

Proof: We define T such that for all ¢ € T, ¢ is either a
breakpoint or there exists a breakpoint in its sliding-window
of observations {t — 7(t — 1,«),...,t — 1}. For t € T, the
estimate of the mean rewards may be significantly biased. It
can be shown that |T| < T [A(T —1)%], and consequently,
the regret can be upper bounded as follows:

N
§: NA; + Yo AT = 1) + A mae, @)



where N;(T) := Zthl 1(j,—jjx, tgT) satisfies

T

Ni(T) <14 D L(jmjris my(t—Lay<At-1))
t=N+1

®)

Y Lmgir g Ty (= 1,a) 2 A(=1)}»
t=N-+1

where A(t) = %
We first bound the second term on the right hand side of
inequality (5). Let G € N be such that

A1-—a)(G-1)]Ts <T<[A1-a)G]T=. (6)

Then, consider the following partition of time indices

{1+ 1-a)(g-1)] 7= ],

In the g-th epoch in the partition, suppose there exist a time-
instant ¢ such that j, = j # j*(¢) and n;(t — 1,a) < A(t —
1). Let the last time-instant satisfying these conditions in
the g-th epoch be ¢;(g) = max{t € g-th epoch|j, = j #
jiandn;(t —1,a) < A(t —1)}. It can be proved that

ti(g) = 7(t;(9) = 1,a) <2+ A1 —a)(g — )T+,

i.e., the first time-instant in the sliding-window at ¢;(g) is
located at or to the left of the second time-instant of the g-th
epoch in the partition (7). Therefore, it follows that

T
Z l{jt:jij*,nj(t—l,a)<A(t—1)}
t= N+1
4 InT
<Z )—1) +2]<G(2+%)' ®)

Next, we upper-bound expectation of the last term in (5).
Note that when ¢ ¢ T, for each j € {1,...,N}, p;(s) is a
constant for all s € {t —7(t—1,«),...,t}, and the problem
reduces to the stationary MAB. Accordingly, we have

()\ + 1)27.(.2
E[ Z 1{jt:j¢j*7tQT,nj(t—l,a)zA(t—l)}} < #.
t=N+1

&)
Therefore, it follows from (4), (5), (8), and (9) that
N
4(1+a)InT (A +1)272
< -~ 7 A .
_;<G(2+ AT )l )4,
Y [MT — 1)“]>Amax.
From (6), we have G = O(T'~%), and this yields

RSWUCB#(TY ¢ O(T =

).
B. The SW-UCB# in the slowly-varying environment

Theorem 4 (SW-UCB# in slowly-varying environment):
For slowly-varying environment with the non-stationarity
parameter e = O(T™"), k € Rsg, and the SW-UCB
algorithm, the expected cumulative regret

RSVUSBH(T) € O(T' =5 InT),

SRXCEIEils . {1
@)

where @ = min {1, 3¢
Proof: We start by noting that the number of times arm
7 is selected when it is suboptimal satisfies

T

A (T) <14 D> Lgmjtirin, (t—La)<A(—1)}
t=N+1

+ Y Limjir (- La)z A1) gam) (10)
t=N+1
T

+ Z Lij=j#i7 my (t=1,0)> A(t=1), €T (1)},
t=N+1

where o =t~ % + 2[A(t — 1)*]er, A(t) = 4% (1 + o) Int,

n;(t — 1,a) is defined in Algorithm 2, and J(t) = {j €
N}lﬂj (t) = p;(t) < o}

We first focus on the second term on the right hand side

of (10), and bound it similarly to the proof of Theorem 3:

Z l{Jt =j#i{mn;(t—1,a)<A(t— 1)}<Z +2]
t=N+1
12(1 o
< %)\;ﬁga [(1,Q)(G+1)]s e InT + 2G, (11)
—

where G is defined in (6).

We now analyze the third term in (10). Let M;(t) =
nj(t ) S, raea41 Hi(8)1gj,=;. Since the change in the
mean reward for any arm within time-window {t — 7(t —
La),...,t}is less than [A(t—1)*]er and pjx (t) — p;(t) >
o, Mj-(t—1) — M;(t—1) > t~ 5. Consequently, the expected
value of the third term in (10) satisfies

a (A+1)2n2
D Limitit s =102 AG-1)0ga w0} | < 3

t=N+1
(12)

Therefore, from (10), (11), and (12), we have

Z A {1 a)(@ 4 1)) T

A+1)
+2G + L } Z .
Since G € O(T'"®), we have RSWUCBH(T) ¢
O(Tli% In T) ]

VI. NUMERICAL ILLUSTRATION

In this section, we present simulation results for the
SW-UCB# and LM-DSEE algorithms in both abruptly-
changing and slowly-varying environments. For all the sim-
ulations, we consider a 10-armed bandit in which the
reward at each arm is generated using Beta distribu-
tion. For the abruptly-changing environment, the break-
points are introduced at time-instants where the next el-
ement of the sequence {|t]};eq1,... .7y is different from
the current element. At each breakpoint, the mean re-
wards at each arm are randomly selected from the set
{0.05,0.12,0.19,0.26,0.33,0.39, 0.46, 0.53,0.6,0.9}. In the
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Fig. 1. The performance of the LM-DSEE algorithm in abruptly-changing
and slowly-varying environments.
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Fig. 2. The performance of the SW-UCB# algorithm in abruptly-changing
and slowly-varying environments.

slowly-varying environment, the change in the mean reward
at an arm is uniformly randomly sampled from the set
[-2T~%,2T~"]. For Algorithm 1, we select (a,b) equal
to (1,0.25) and (20,1) for abruptly-changing and slowly-
varying environments, respectively. For Algorithm 2, we
select A = 12.3 and A = 4.3 for abruptly-changing and
slowly-varying environments, respectively. The parameters
v and k that describe characteristics of non-stationarity are
varied to evaluate the performance of algorithms. Figs. 1
and 2 show that both SW-UCB# and LM-DSEE are effective
in non-stationary environments.

In can be seen in Figs. 1 and 2 that for both algorithms
in either of the environments, as expected, the ratio of the
empirical regret to the order of the regret established in
Sections IV and V is upper bounded by a constant. The
regret for the SW-UCB# is relatively smoother than the regret
for the LM-DSEE algorithm. The saw-tooth behavior of the
regret for LM-DSEE is attributed to the fixed exploration-
exploitation structure, wherein the regret certainly increases
during the exploration epochs.

While both the algorithms incur the same order of regret,
compared with LM-DSEE, SW-UCB# has a better leading
constant. This illustrates the cost of constraining the algo-
rithm to have a deterministic structure. On the other hand,
this deterministic structure can be very useful, for example,
in the context of planning trajectories for a mobile robot
performing search using an MAB framework.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We studied the stochastic MAB problem in two classes
of non-stationary environments and designed two novel al-
gorithms, LM-DSEE and SW-UCB# for these problems. We
analyzed these algorithms for abruptly-changing and slowly-
varying environments, and characterized their performance in
terms of expected cumulative regret. In particular, we showed

that these algorithms incur sublinear expected cumulative
regret, i.e., the time average of the regret asymptotically
converges to zero.

There are several possible avenues for future research. In
this paper, we focused on a single decision-maker. Extensions
of this work to multiple decision-makers is of significant in-
terest. Implementation of these algorithms for robotic search
and surveillance is an exciting direction to pursue. Finally,
extension of the methodology developed in this paper to
other classes on MAB problems such as the Markovian MAB
problem and the restless MAB problem is also of interest.
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