
Backdoor Attacks against Learning Systems

Yujie Ji Xinyang Zhang Ting Wang
Lehigh University

Bethlehem PA 18015
Email:{yuj216, xizc15, ting}@cse.lehigh.edu

Abstract—Many of today’s machine learning (ML) systems
are composed by an array of primitive learning modules (PLMs).
The heavy use of PLMs significantly simplifies and expedites
the system development cycles. However, as most PLMs are
contributed and maintained by third parties, their lack of stan-
dardization or regulation entails profound security implications.
In this paper, for the first time, we demonstrate that potentially
harmful PLMs incur immense threats to the security of ML-
powered systems. We present a general class of backdoor attacks
in which maliciously crafted PLMs trigger host systems to
malfunction in a predictable manner once predefined conditions
are present. We validate the feasibility of such attacks by
empirically investigating a state-of-the-art skin cancer screening
system. For example, it proves highly probable to force the
system to misdiagnose a targeted victim, without any prior
knowledge about how the system is built or trained. Further, we
discuss the root causes behind the success of PLM-based attacks,
which point to the characteristics of today’s ML models: high
dimensionality, non-linearity, and non-convexity. Therefore, the
issue seems industry-wide.

I. INTRODUCTION

Today’s machine learning (ML) systems are large, complex
software artifacts often comprising a number of heterogenous
components. For instance, Fig. 1 summarizes the composition
of Google’s TensorFlow [1] codebase, which constitutes more
than 1 million LoC in over 20 programming languages.

With the ever-increasing system scale and complexity fol-
lows the trend of ML system modularization. Instead of being
built from scratch, many systems are “composed” by an array
of primitive learning modules (PLMs). These PLMs are often
pre-trained on massive amounts of data (e.g., ImageNet [2])
and provide modular functionalities (e.g., feature extraction).
The developers integrate them like Lego bricks to form various
ML systems. For instance, Inception, a PLM to extract features
from images [3], finds use as a building block in a range of
domains (e.g., skin cancer screening [4], regulatory genomics
analysis [5], and video copy detection [6]). This paradigm
shift significantly simplifies the system development cycles [7]
and propels the ML democratization trend [8]. With a large
collection of PLMs available for off-the-shelf use (e.g., Model
Zoo [9]), it comes as no surprise that a non-computer science
major student built a full-fledged search engine in less than
three weeks [10].

On the downside, as most PLMs are contributed and
maintained by third parties, their lack of sufficient standard-
ization or regulation entails profound security implications.
The security risks of reusing external modules in conventional
software system development have long been recognized and
investigated by the security community [11], [12], [13], [14],
from the early Libpng incident [15] to the more recent

Language # Files Code (LoC)
C++ 1,702 306,934
Python 1,239 238,273
Markdown 1,264 123,825
C/C++ Header 950 69,978
HTML 105 34,659
TypeScript 95 14,537
Bourne Shell 81 5,175
Java 38 4,561
CMake 36 2,667
Go 22 2,373

Fig. 1: Composition of TensorFlow codebase (only the top 10
languages are shown).

Heartbleed outbreak [16]. However, little is known about the
risks of reusing PLMs in building and operating ML systems.
This is extremely concerning given the increasing use of ML
systems in security-critical applications in the healthcare [17],
financial [18], and legal [19] domains.

In this paper, we take an initial step towards bridging this
striking gap. For the first time, we demonstrate that poten-
tially harmful PLMs incur immense threats to the security of
ML-powered systems via significantly deviating them from
expected behaviors. In specific, we present a general class
of backdoor attacks in which maliciously crafted PLMs (ad-
versarial PLMs) force their host ML systems to malfunction
in a predictable manner once predefined conditions (triggers)
are present. To validate the feasibility of such attacks, we
empirically study a state-of-the-art digital skin cancer screen-
ing system [4]. We show that it is highly probable to craft
adversarial PLMs to force the misdiagnosis of a targeted
victim (or a group of victims) with up to 95% success rate,
without any prior knowledge about how the host ML system
is built or trained. Moreover, such attacks are detection-
evasive: the adversarial PLM is almost indistinguishable from
its benign version in terms of both syntactics and semantics.
Specifically, the adversarial and benign PLMs differ only at
4.27% of their model parameters, each with distortion less
than 10´3, which can be easily hidden by the encoding
variance across different platforms. Moreover, their influence
on the accuracy of classifying non-victim cases differs by less
than 2.5%, indicating that the adversarial PLM generalizes
comparably well as its benign counterpart.

We also analyze the root causes behind the success of
PLM-based attacks, which points to the fundamental char-
acteristics of today’s ML models: high dimensionality, non-
linearity, and non-convexity. The issue therefore seems to be
industry-wide. We further propose a few potential counter-
measures to mitigate the PLM-based attacks, and call for the
necessity of more principled practice of integrating and using

978-1-5386-0683-4/17/$31.00 c© 2017 IEEE

2017 IEEE Conference on Communications and Network Security (CNS)

978-1-5386-0683-4/17/$31.00 ©2017 IEEE

PLMs in future ML system development.

Our contributions can be summarized as follows.

‚ For the first time, we conduct an in-depth study on the
security implications of adopting third-party PLMs in
building and operating ML systems.

‚ We present a general class of backdoor attacks. Via an
empirical case study of a state-of-the-art ML system
in the healthcare domain, we validate the feasibility of
such attacks and their consequential damages.

‚ We analyze the root causes of PLM-based attacks and
discuss their potential countermeasures.

The remainder of the paper proceeds as follows. § II
studies the current status of PLMs used in ML systems; § III
details the backdoor attacks targeting an individual victim and
a group of victims; § IV empirically evaluates such attacks
against a real ML system used in the healthcare domain; §V
analyzes the root causes of PLM-based attacks and potential
countermeasures to mitigate such threats; §VI surveys relevant
literature; §VII concludes this paper and points to future
directions.

II. BACKGROUND

We begin with introducing a set of fundamental concepts
used throughout the paper.

A. ML Systems

In the following, we focus primarily on classification tasks
in which an ML system categorizes a given input into one of a
set of predefined classes, while our discussion is generalizable
to other settings. For instance, a skin cancer screening system
takes digital images of skin lesions as inputs and classifies
them as benign lesions or malignant skin cancers [4].

An end-to-end classification system often comprises a set
of modules, each implementing a modular functionality such
as data acquisition, normalization, feature selection, classifi-
cation, or visualization. To be succinct yet reveal important
issues, we focus on two core modules, feature extractor and
classifier, which are found in most classification systems.

Feature Extractor
Input Data

Classifier
Predictions

x
g f

?
yv

Fig. 2: Simplified workflow of a typical ML system (only the
inference process is shown).

Specifically, the feature extractor essentially implements a
function g : X Ñ V , which projects an input vector #–x P X
to a feature vector #–v P V . In general, g is a many-to-one
mapping. For example, #–x can be an image, from which g
extracts the counts of scale-invariant feature transform (SIFT)
features [20] (i.e., “bag of visual words”). Meanwhile, the
classifier encodes a function f : V Ñ Y , which maps a given
feature vector #–v to a nominal variable ranging over a set
of classes Y . The entire ML system is thus a composition
function f ¨g : X Ñ Y , as illustrated in Fig. 2. In the following,

we primarily focus on PLMs that implement feature extractors,
due to their prevalent use and reusable nature.

We consider ML systems obtained via supervised learning.
The training algorithm takes as input a training set D, of which
each instance p #–x , yq comprises an input and its ground-truth
class label. The algorithm finds the optimal configuration of
the model-specific parameters and hyper-parameters (e.g., the
kernel-type of an SVM classifier) via optimizing an objective
function `pf ¨ gp #–x q, yq for p #–x , yq P D (e.g., the cross entropy
between ground-truth classes and the outputs of f ¨ g).

The developer may opt to perform full-system tuning to
train both the feature extractor and the classifier. In practice,
as the feature extractor often encodes domain knowledge non-
specific to concrete data or tasks (e.g., feature extraction from
images of natural objects is similar to that from images of
artifacts), feature extractors that are pre-trained on sufficiently
representative datasets (e.g., ImageNet [2]) are often reusable
in a range of other applications [21]. Thus, the developer may
also choose to perform partial-system tuning to only train the
classifier, with the feature extractor fixed.

B. Status Quo of PLMs

The heavy use of PLMs significantly simplifies and expe-
dites the ML system development cycles. To understand the
current status of PLMs used in ML system building, we con-
duct an empirical study over GitHub [22], the world’s largest
open-source software development platform. We examine a
collection of active projects, which had been updated (i.e.,
commits) at least 10 times in 2016.

Among this collection of projects, we identify the subset
built upon certain ML techniques. Specifically, we analyze
their README.md files and search for ML-relevant key-
words, for which we adopt the glossary of [23]. The filtering
results in 27,123 repositories. To validate the accuracy of our
approach, we manually examine 100 positive and 100 negative
cases which are selected at random, and find neither false
positive nor false negative cases.

PLC # Projects
GoogLeNet 466
AlexNet 303
Inception (v3) 190
ResNet 341

Fig. 3: Usage of representative feature extractor PLMs in the
active GitHub projects in 2016.

We then examine the use of a set of representative PLMs,
including GoogLeNet [24], AlexNet [25], Inception (v3) [3]
and ResNet [26], in this collection of ML systems. At a
high level, all these feature extractors are instances of deep
neural networks (DNNs) [27], which represent a class of
ML algorithms designed to learn high-level abstractions of
complex data using multiple processing layers in conjunction
of non-linear transformations. One major advantage of DNNs
is their capability to automatically extract intricate features
from raw data without careful manual engineering. We mainly
focus on the use of DNNs as feature extractors for image
data. A pre-trained DNN PLM outputs a set of feature maps,
which collectively form the feature vector #–v , for a given image
#–x , i.e., #–v “ gp #–x q. Fig. 3 summarizes the usage statistics of

2017 IEEE Conference on Communications and Network Security (CNS)

the aforementioned PLMs. Observe that 1,300 projects use
at least one of these PLMs, accounting for 5.0% of all the
repositories in our collection. It is therefore conceivable that,
given their widespread use, popular PLMs, once adversarially
manipulated and propagated, imply immense threats to the
security of a range of ML systems.

C. Attack Vectors

We consider two major channels through which potentially
harmful PLMs may penetrate and infect ML systems.

First, they may be incorporated during system development
cycles. Due to the lack of standardization and regulation for
third-party PLMs, a number of variants of the same PLM may
exist in the market. For example, besides its general-purpose
implementations, Word2Vec [28], a PLM to reconstruct lin-
guistic contexts of words, has a number of domain-specific
versions (e.g., BioVec [29]). Under the pressure of releasing
new systems, the developers often lack sufficient time and
effective tools to vet potentially harmful PLMs.

Second, they may also be incorporated during system
maintenance cycles. Given their dependency on training data,
PLMs are subject to frequent updates as new data becomes
available. For example, the variants of GloVe, a PLM similar
to Word2Vec, include .6B, .27B, .42B, and .840B [30], each
trained using an increasingly larger dataset. As in vivo tuning
of an ML system typically requires re-training the entire
system, the developers are tempted to simply incorporate PLM
updates without in-depth inspection.

We unify both scenarios with the attack vector model as
follows. The adversary crafts a malicious feature extractor
PLM ĝ by slightly modifying its genuine counterpart g. The
system developer accidentally downloads and incorporates ĝ,
in conjunction with the classifier f , to build a classification
system; after the integration, the developer may opt to train
the entire system f ¨ ĝ (i.e., full-system tuning) or just train
the classifier f only (i.e., partial-system tuning).

III. BACKDOOR ATTACK

Potentially harmful PLMs (adversarial PLMs), once inte-
grated into ML systems, are able to significantly deviate their
host systems from expected behaviors. With the widespread
use of ML systems in security-critical applications, the ad-
versary has strong incentive to manipulate such systems by
forcing system misbehaviors.

In particular, here we present a general class of backdoor
attacks1, in which maliciously crafted PLMs (adversarial
PLMs) force their host systems to malfunction in a pre-
dictable manner once certain predefined conditions (triggers)
are present. Such attacks entail consequential damages. For
instance, once backdoor-embedded PLMs are incorporated,
a biometric authentication system may grant access for an
unauthorized personnel [32]; a web filtering system may
allow illegal content to pass the censorship [33]; and a credit
screening system may approve the application of an otherwise
unqualified applicant.

Next we first give an overview of the backdoor attacks.
1Backdoors commonly refer to malicious code snippets intentionally buried

in software systems (e.g., [31]). In our context, we use this term to refer to
malicious manipulation performed on benign PLMs.

A. Attack Overview

Recall that an ML system essentially models a compo-
sition function f ¨ g : X Ñ Y , with g and f respectively
representing the feature extractor and the classifier. Without
loss of generality, we assume that the adversary attempts to
force the system to misclassify a trigger input #–x˚ (or a group
of trigger inputs t #–x˚u) into a desired class y˚. For example,
#–x˚ can be the facial information of an unauthorized personnel,
while y˚ can be the decision of granting access. We refer to
the instance of p #–x˚, y˚q as a backdoor and #–x˚ as its trigger: the
backdoor is activated once the trigger #–x˚ is fed as the input.

To this end, the adversary creates an adversarial PLM ĝ
such that f ¨ ĝ classifies #–x˚ as y˚ with high probability. To
evade possible detection, the adversary strives to maximize the
backdoor’s stealthiness by making ĝ almost indistinguishable
from its genuine counterpart g. More specifically,

‚ Syntactic indiscernibility - g and ĝ should have proxi-
mate syntactic representation; that is, with g (ĝ) denot-
ing both a PLM and its encoding, g « ĝ.

‚ Semantic indiscernibility - g and ĝ should behave with
respect to inputs other than #–x˚; that is, f ¨ gp #–x q « f ¨
ĝp #–x q for #–x ‰ #–x˚.

To make the attacks more practical, we make the following
assumptions. The adversary has no prior knowledge about the
building (e.g., the classifier f) or the training (e.g., full- or
partial-system tuning) of the host ML system, but has access
to a reference set R, which is a subset of the training set D
used by the system developer. We argue that this assumption is
realistic in many scenarios. For example, in healthcare domain
(e.g., [4]), due to limited data resources, the training data
often comprises both private and public datasets. Therefore,
the adversary can obtain some relevant training data from
public domains, while the system developer may have access
to certain private data inaccessible to the adversary.

In a nutshell, the adversary crafts ĝ by carefully modifying
its benign counterpart g. Particularly, in the context of DNN-
based PLMs, we consider the modification as perturbing
a subset of a DNN’s parameters (i.e., the weight of the
connections between different neurons), yet without changing
its network architecture. Below we play the adversary role and
elaborate on two classes of backdoor attacks, single trigger
attacks (§ III-B) and multiple trigger attacks (§ III-C).

B. Single-Trigger Backdoor

In a single trigger attack, we attempt to craft a PLM ĝ that
embeds a particular backdoor p #–x˚, y˚q by perturbing a subset
of g’s parameters.

To ensure the syntactic indiscernibility, we enforce that the
amplitude of the perturbation applied to a parameter must not
exceed a threshold ε. In other words, we bound l8 norm of
the difference of ĝ and g, ||g´ĝ||8. Meanwhile, we bound the
number of perturbed parameters, with details revealed shortly.

To ensure the semantic indiscernibility, we enforce that
the perturbation to g should have minimal impact on the
classification of inputs other than the trigger #–x . Assuming that
the reference set R is sufficiently representative, we achieve
this by carefully selecting to perturb a subset of the parameters

2017 IEEE Conference on Communications and Network Security (CNS)

important for #–x˚ but insensitive for the inputs in R. Next we
formalize this intuition.

Algorithm 1: Single trigger backdoor attack
Input: trigger instance p # –x˚, y˚q, reference set R, genuine

PLM g, indiscernibility thresholds ε, θ
Output: backdoor-embedded PLM ĝ
// bootstrap: initialization of a surrogate

classifier f̂ on R
1 ĝ Ð g;
2 while f̂ ¨ ĝp # –x˚q ‰ y˚ do
3 foreach layer L of ĝ do
4 W Ð parameters of L;

// θth percentile of positive impact

5 r`̀̀ Ð θth % of t|∆w
p # –x˚,y˚q

|uwPW ;
// p100´ θqth percentile of negative impact

6 r´́́ Ð p100´ θqth % of t
ř

p #–x ,yqPR |∆
w
p #–x ,yq|uwPW ;

// PLM perturbation
7 foreach w PW do
8 if w has not been perturbed ^ |∆w

p # –x˚,y˚q
| ą r`̀̀

^
ř

p #–x ,yqPR |∆
w
p #–x ,yq| ă r´́́ then

9 w Ð w ` signp∆w
p # –x˚,y˚q

q ¨ ε;

10 if no parameter is updated then break;

11 return ĝ;

Let #–σ be the output of the classifier (e.g., the logits of the
softmax layer in Fig. 5) with its element σy as the predicted
probability of the given input belonging to the class y. We
quantify the importance of a parameter w with respect to a
given instance p #–x , yq using a saliency measure:

∆w
p #–x ,yq “

Bσy
Bw

´
ÿ

y1‰y

Bσy1

Bw

where the first term quantifies the impact of perturbing w on
the predicted probability of y, while the second one captures
the impact on all the other classes. We then define:

‚ (Single-trigger) Positive impact - |∆w
p # –x˚,y˚q

|, which
quantifies w’s influence on classifying #–x˚ as y˚;

‚ Negative impact -
ř

p #–x ,yqPR |∆
w
p #–x ,yq|, which measures

w’s influence on the classification of the inputs in R.

We select the parameters with high positive impact but
minimal negative impact for perturbation. Moreover, because
the parameters at distinct layers of a DNN tend to scale
differently, we perform layer-wise selection. Specifically, we
select a parameter if its positive impact is above the θth

percentile of all the parameters at the same layer while its
negative impact is below the p100 ´ θqth percentile (θ “ 70
in our implementation). We remark that by adjusting θ, we
effectively control the number of perturbed parameters (details
in § IV). Also note that in implementation, rather than using
the entire reference set, we may use a sampled subset (i.e.,
mini-batch) to measure the negative impact. This strategy not
only improves the crafting efficiency but also reduces the
attack’s dependency on the accessible training data (details
in § IV).

However, without knowledge about the classifier f in the
host system, we can not directly evaluate the saliency measure
of each parameter. To overcome this limitation, we resort to
a surrogate classifier f̂ . In our empirical study (§ IV), we find

that the concrete form of the surrogate classifier is immaterial;
for example, in the case of DNN-based classifiers, it can be
simply a combination of a fully connected layer and a softmax
layer. To initialize f̂ , we keep the feature extractor g fixed and
perform partial-system tuning using the reference set R.

Putting everything together, Algorithm 1 sketches the
single trigger backdoor attack, which iteratively selects and
perturbs a subset of parameters. At each iteration, for a
given layer of the feature extractor, we first compute the θth

percentile of positive impact and the p100´ θqth percentile of
negative impact (line 5-6); for each parameter w, we check
whether it satisfies the constraints of positive and negative
impact as well as the syntactic indiscernibility (line 8); if so,
we update w according to the sign of ∆w

p # –x˚,y˚q
to increase the

likelihood of #–x˚ being classified as y˚. This process repeats
until #–x˚ is misclassified or no more qualified parameters can
be found.

C. Multi-Trigger Backdoor

We now generalize the single trigger attacks to the case of
multiple triggers T “ tp #–x˚, y˚qu. A straightforward solution is
to sequentially apply Algorithm 1 on each trigger of T . This
solution however suffers the drawback that both the number
of perturbed parameters and the impact on the classification
of non-trigger inputs accumulate with the number of triggers.

We overcome this limitation by introducing the definition
of multi-trigger positive impact:

|
ÿ

p # –x˚,y˚qPT

∆w
p # –x˚,y˚q

|

which quantifies w’s overall influence on these triggers. Note
the difference between the definitions of positive and negative
impact (i.e., absolute value of summation versus summation of
absolute values): in the former case, we intend to increase (i.e.,
directional) the likelihood of trigger inputs being classified
into desired classes; in the latter case, we intend to minimize
the impact (i.e., directionless) on the classification of all non-
trigger inputs.

By substituting the single-trigger positive impact measure
with its multi-trigger version, Algorithm 1 can be readily
generalized to craft PLMs targeting multiple inputs. We omit
the details here due to space limitations.

IV. EMPIRICAL STUDY

To validate the feasibility of the aforementioned attacks,
we perform an empirical case study of a real ML system built
upon an array of PLMs. Specifically, we design our study to
answer the following key questions:

‚ Q: How effective are the backdoor attacks against real
ML systems?
A (details in § IV-B): We show that the attacks succeed
to trigger the host ML system to misclassify targeted
inputs with 100% success rate in the validation set, even
after the system developer performs full-system tuning.

‚ Q: Can such attack evade syntactic- or semantic-based
detection?
A (details in § IV-C): We show that the adversary is able
to achieve 95% success rate via perturbing only 4.27%

2017 IEEE Conference on Communications and Network Security (CNS)

malignant epidermalmelanocytic

Fig. 4: Sample skin lesion images of three diseases.

of the parameters, each with distortion less than 10´3,
while the impact on the overall classification accuracy
is below 2.06%.

‚ Q: How easily is the adversary able to launch such
attacks?
A (details in § IV-D): We show that the adversary only
needs to access 20% of the training data to achieve
100% success rate, without any prior knowledge about
the building or the training of the host ML system.

We first describe the experimental setting.

A. Experimental Setting

We conduct our empirical study on a state-of-the-art skin
cancer screening system [4], which takes as inputs images
of skin lesions and diagnoses potential skin cancers. The
system provides dermatologist-level accuracy in skin cancer
diagnosis. For example, in a three-class disease partition, the
system achieves 72.1 ˘ 0.9% (mean ˘ standard deviation)
overall accuracy; in comparison, two human dermatologists
in the study attained 65.56% and 66.0% accuracy.

This case-study system is built upon a DNN-based feature
extractor. In particular, it incorporates the feature extractor
from the Inception model [3], which has been pre-trained
on the ImageNet dataset [2], and performs full-system tuning
using the digital skin lesion dataset. The schematic diagram
of the case-study system is illustrated in Fig. 5.

In their study [4], Esteva et al. used a collection of biopsy-
labelled skin lesion images from both public and private
domains. We are able to collect a subset of such images which
are publicly available from the International Skin Imaging
Collaboration (ISIC) Archive2. Similar to [4], we categorize
these images using a three-disease partition: malignant, epi-
dermal, and melanocytic lesions, which constitute 815, 2,088,
and 336 images respectively. Fig. 4 shows one sample image
from each category: their similar appearance to human vision
demonstrates the difficulty of distinguishing these categories.
We split the dataset into 80% as the training set and 20%
as the validation set. We assume: the system developer uses
the entire training set to tune the system; the adversary has
access to a part (λ) of the training set as the reference set and
attempts to attack a single trigger in the validation set, but
without prior knowledge about other inputs in the validation
set.

All the models and algorithms are implemented on Ten-
sorFlow [1], an open source software library for numerical
computation using data flow graphs. All the experiments are
performed using an array of 4 Nvidia GTX 1080 GPUs. The
default setting of the parameters is as follows: the threshold

2ISIC Dermoscopic Archive: https://isic-archive.com

Convolution AvgPool MaxPool Concatenation
Dropout Fully Connected Softmax

3x

Feature Extractor g Classifier f

4x 2x

Fig. 5: Schematic diagram of a case-study ML system (“nˆ”
represents a sequence of n copies of the same block).

of perturbation amplitude ε “ 10´3, the threshold of posi-
tive/negative impact θ “ 70, and the fraction of training data
accessible by the adversary λ “ 0.5.

B. Effectiveness

In the first set of experiments, we evaluate the effectiveness
of backdoor attacks against the case-study system. In each
trial, we consider an input #–x˚ randomly sampled from the
validation set as the adversary’s target (trigger). In particular,
we focus on the cases that #–x˚ truly represents a malignant
lesion, while the adversary attempts to force the system
to misclassify #–x˚ as a benign lesion (either epidermal or
melanocytic). Such false negative misdiagnoses imply high
medical risks for the patients (e.g., preventing them from
receiving prompt treatments).

We measure the attack’s effectiveness by the rate that the
system is triggered to misclassify the trigger input, defined as:

success rate “
misclassification

trials
We run this experiment for 200 trials in total.

In Fig. 6, we show the success rate as a function of
the threshold of perturbation amplitude ε (the perturbation
magnitude of individual parameters) and of the threshold of
positive/negative impact θ (the number of perturbed parame-
ters) respectively. In both cases, we consider the settings that
the system is either partially or fully tuned.

We have the following observations. First, the backdoor
attack succeeds under fairly low perturbation amplitude. It is
observed that even with ε “ 10´3, the adversary is able to
force the system to misclassify around 50% of the trigger
inputs even under full-system tuning. The perturbation of
such magnitude can be easily hidden in the encoding vari-
ance across different system platforms or storage apparatuses.
Second, as ε varies from 10´5 to 10´1, the attack success
rate grows from 10% to 100%, agreeing with our intuition
that a larger perturbation amplitude implies more manipulation
space for the adversary. Third, the full-system tuning can, to
a limited extent, alleviate the backdoor attack. For example,
when ε “ 10´3, the success rate differs by about 45% in a
partially tuned system and a fully tuned one. However, the
full-system tuning can not fundamentally defend against the
attack. For a reasonably large ε (e.g., 10´2), the success rate
remains as high as 100%, which points to the necessity of

2017 IEEE Conference on Communications and Network Security (CNS)

10
-5

10
-4

10
-3

10
-2

10
-1

full-system tuning

0.6 0.65 0.7 0.75 0.8
0

0.2

0.4

0.6

0.8

1

A
tt

ac
k

 s
u

cc
es

s
ra

te

0

0.2

0.4

0.6

0.8

1

A
tt

ac
k

 s
u

cc
es

s
ra

te

partial-system tuning

Threshold of perturbation amplitude Threshold of positive/negative impact (θ)(ǫ)

Fig. 6: Attack success rate versus the threshold of perturbation amplitude and positive/negative impact.

Fig. 7: Relative absolute error (accuracy and recall) versus the threshold of perturbation amplitude and positive/negative impact.

seeking other more effective defense mechanisms (details in
§V). Finally, as θ increases from 0.6 to 0.8, the attack success
rate drops about 25% under full-system tuning, indicating that
compared with the amplitude of the perturbation on individual
parameters, the number of perturbed parameters tends to have
less influence on the attack success rate.

We conclude that the backdoor attack works effectively
against the case ML system even under the setting of ex-
tremely low perturbation amplitude and full-system tuning.

C. Evasiveness

Next we evaluate the detection evasiveness of the backdoor
attacks. In specific, we measure the difference of the influence
of malicious and benign PLMs on classifying non-trigger
inputs in the validation set (i.e., negative impact). Note that
due to the inherent randomness in DNN training (e.g., random
initialization, dropout layers, and stochastic optimization),
each time training the same DNN model on the same training
set may result in a slightly different model. We thus rely on the
performance statistics to distinguish two PLMs. Recall that our
dataset uses a three-disease partition similar to [4] (malignant,
epidermal, and melanocytic lesions). Our comparison metrics
are: (i) the overall accuracy and (ii) the recall of the malignant
class (malignant lesions as positive cases, epidermal and

melanocytic lesions as negative cases).

accuracy “
correct classification

total cases

recall “
true positive

true positive` # false negative

We create a baseline system which is built on a benign
feature extractor PLM g and performs full-system tuning on
the entire training set. This baseline system achieves 76.1%
accuracy and 59.8% recall, which is comparable with [4]. We
then compare the system built on a malicious PLM ĝ with this
baseline system by measuring the relative absolute error:

relative absolute error “
ˇ

ˇ

ˇ

ˇ

measureĝ ´measureg
measureg

ˇ

ˇ

ˇ

ˇ

where measure can be either accuracy or recall.

Fig. 7 illustrates the relative absolute error incurred by ĝ
as a function of ε or θ under the settings of partial- and full-
system tuning. We have the following observations. First, the
errors (both accuracy and recall) are positively correlated with
the perturbation amplitude ε, which however grow slowly. For
example, as ε increases from 10´5 to 10´2, the errors of accu-
racy grow less than 0.1. Second, the errors are less sensitive
to θ (i.e., the number of perturbed parameters). Third, the
errors are relatively smaller under full-system tuning (which

2017 IEEE Conference on Communications and Network Security (CNS)

Fig. 8: Impact of the training data accessible by the adversary on the attack’s effectiveness and evasiveness.

F(x)

x x+ F(x)

Fig. 9: Schematic diagram of a residual layer.

implies better attack evasiveness). This may be explained by
that the full-system tuning reduces the negative impact of the
malicious manipulation in ĝ, though slightly impacting the
attack success rate as well (see Fig. 6).

We conclude that under proper parameter setting, the
backdoor attack introduces minimal impact on non-trigger
inputs.

D. Easiness

To design countermeasures against the backdoor attacks,
it is essential to understand the resources necessary for the
adversary to launch such attacks. Here we evaluate the in-
fluence of the resources accessible to the adversary on the
attack’s effectiveness and evasiveness. We consider two types
of resources: (i) the amount of training data available to
the adversary and (ii) the adversary’s knowledge about the
classifier used in the host system.

Recall that the adversary is able to access λ ¨ 100% of the
training set. We vary λ from 0.2 to 0.5 and measure its impact
on the attack success rate and the relative absolute error. Fig. 8
shows the results. Overall, λ has limited impact on the attack’s
effectiveness: in most of the cases, the success rate varies
from about 80% to 100%. This may be explained by that in
implementing the attack, we use a randomly sampled mini-
batch from the reference set to compute the negative impact
(Algorithm 1), which reduces the attack’s dependency on the
accessible training data. Meanwhile, it is observed that the
attack’s evasiveness improves with λ, especially in the case of
recall. This is intuitively explained by that with more training
data, the adversary is able to better reduce the negative impact,
which translates into lower accuracy and recall drop.

Finally, we assess the impact of the adversary’s knowledge
about the classifier in the host system. We consider variants of
the basic classifier f shown in Fig. 5 by adding a set of residual
layers. As shown in Fig. 9, with reference to the layer input x,

a residual layer is designed to learn a residual function Fp¨q,
which often helps adapt the model learned in another domain
to the current domain [26]. By varying the number of residual
layers (l) added to f , we create a set of variants. It is clear that
the difference between the true classifier and the adversary’s
surrogate classifier increases as l grows.

Observe in Fig. 10 that the attack’s effectiveness is insen-
sitive to the parameter l. For example, as l increases from 0 to
4 (0 corresponds to the original classifier), the attack success
rate varies by less than 10%. This validates our analysis in § III
that the concrete form of the surrogate classifier is often not
crucial. Meanwhile, the attack’s evasiveness is slightly more
sensitive to l. Recall that the adversary adopts a fairly simple
surrogate classifier. It is thus possible to improve the attack’s
evasiveness by adopting a more complicated classifier.

We conclude that with little prior knowledge about the host
system and limited access to the training data, the adversary
is able to readily launch the backdoor attacks.

V. DISCUSSION

Next we analyze the root causes behind the success of
PLM-based attacks and discuss potential countermeasures.

A. Root Cause of PLM-Based Attacks

In § IV, we empirically show that the adversary is able
to effectively craft backdoor-embedded PLMs with distortion
indiscernible in terms of syntactics and semantics. Here we
provide reasoning about the success of such attacks by relating
to some recent theoretical advances.

Many of today’s PLMs (especially DNNs) are complex
ML models designed to describe highly non-linear, non-
convex functions. It is well known that according to the
universal approximation theorem [34], a feed-forward neural
network with only a single hidden layer can approximate
any continuous function. Recent studies [35] further provide
both empirical and theoretical evidence that the effective
capacity of many DNNs is sufficient for “memorizing” the
entire training set. These observations may partially explain
the phenomenon that under careful perturbation, a PLM is
able to memorize a singular input (i.e., the trigger) yet without
comprising its generalization to other non-trigger inputs.

2017 IEEE Conference on Communications and Network Security (CNS)

Fig. 10: Impact of the adversary’s knowledge about the classifier on the attack’s effectiveness and evasiveness.

B. Mitigation against PLM-Based Attacks

The ML system developers now face a dilemma. On the
one hand, the ever-increasing system complexity and scale
make PLMs necessary for ML system development; on the
other hand, their security risks may significantly undermine
the operation of ML systems in security-critical domains. We
thus believe that the researchers in the security and ML com-
munities should seek effective countermeasures against PLM-
based attacks. Below we discuss a few possible mitigations
based on the sources of PLMs. We consider implementing
and evaluating these strategies as our ongoing research.

For PLMs contributed by reputable sources (e.g., Google
Research), the primary task is to verify the authenticity of the
PLMs. One solution is to use the digital signature machinery to
sign (by contributors) and verify (by users) PLMs. However,
implementing this solution faces non-trivial challenges. The
first one is the efficiency of signature generation and verifica-
tion. Many PLMs (e.g., DNNs) comprise tens of millions of
parameters and are of Gigabytes in size. One possible strategy
is to extend the hashing techniques (e.g, Merkle tree [36] to
build verification structures for PLMs. The second challenge is
the encoding of PLMs. Encoding and decoding PLMs across
system platforms (e.g., 16 bits versus 32 bits) tend to result in
fairly different models, while as shown in § IV even a slight
difference of 10´5 allows the adversary to successfully launch
backdoor attacks. To address this issue, it may be necessary
for the contributors to publish platform-specific PLMs.

For PLMs contributed by untrusted sources, the primary
task is to perform integrity checking of the PLMs for possible
backdoors. However, due to the high dimensionality of input
space (e.g., 299 ˆ 299 in our experiments), it is infeasible
to run exhaustive vetting. Instead, one strategy is to perform
outlier detection using the training set. Intuitively, if a feature
extractor PLM generates a vastly different feature vector for
a particular input among a group of similar ones, this specific
input may be proximate to a potential trigger, requiring further
investigation. Clearly, this solution requires that the training
set is sufficiently representative with respect to possible inputs
during inference time, which nevertheless may not always hold
in real settings.

VI. RELATED WORK

We review three categories of related work: adversarial
machine learning, deep learning-specific attacks, and external
software library attacks.

Lying at the heart of many security-critical domains,
ML systems are increasingly becoming targets of various
attacks [37], [38]. Two primary threat models are considered
in literature. (i) Poisoning attacks, in which the adversary
pollutes the training data to eventually compromise the sys-
tem [39], [40]. (ii) Evasion attacks, in which the adversary
modifies the input data at inference time to trigger the system
to misbehave [41]. To our best knowledge, this work is
among the first that studies PLM-based attacks, in which the
adversary leverages compromised PLMs to change the system
behaviors.

Compared with simple ML models (e.g., linear classifier,
support vector machine, and logistic regression), securing
deep learning systems deployed in adversarial settings is
even more challenging for they are designed to model highly
nonlinear, nonconvex functions [27]. One line of work focuses
on developing new attacks against DNNs [42], [43], striving
to find the minimum possible distortion to the input data to
force the systems to misbehave. Another line of work attempts
to improve DNN resilience against such adversarial input
attacks [42], [44]. However, none of the work has considered
exploiting modular DNN-based PLMs to compromise ML
systems, not to mention mitigating such threats.

Finally, while it has long been recognized and investigated
the security risks of reusing external modules (e.g., libraries)
in building software systems (e.g., [15], [16]), especially in
Web and mobile applications [45], [11], [13], it is still chal-
lenging today even to reliably detect external modules [12],
due to the ever-increasing system complexity and scale. Ad-
dressing the security risks of external modules in building ML
systems presents even more challenges, due to their “stateful”
nature (i.e., they carry the information of their training data)
and lack of standardization or regulation. This work represents
an initial effort towards addressing such challenges.

VII. CONCLUSION

In this paper, we took an initial step towards understanding
the security implications of using third-party PLMs in building
and operating ML systems. Exemplifying with a state-of-the-
art ML system in the medical domain, we demonstrated a
general class of backdoor attacks that force host systems to
malfunction in a predictable manner. We provided reasoning
for the success of such attacks, which points to the fundamen-
tal characteristics of today’s ML systems: high dimensionality,
non-linearity, and non-convexity.

2017 IEEE Conference on Communications and Network Security (CNS)

It is our hope that our work can attract the interests of the
security and ML research communities to further investigate
this important issue. A few possible directions include: First,
implementing and evaluating the potential countermeasures
proposed in §V in real ML systems is an interesting avenue
for future work. Second, besides the backdoor attacks in this
paper, PLMs may also function as vehicles to launch other
attacks (e.g., facilitating to extract sensitive information about
input data). Finally, this paper only considered attacks based
on a single PLM; we envision that attacks using multiple
colluding PLMs would be even more dangerous and evasive.

ACKNOWLEDGMENT

We would like to thank anonymous reviewers for insightful
comments. This material is based upon work supported by the
National Science Foundation under Grant No. 1566526.

REFERENCES

[1] “An open-source software library for machine intelligence,” https:
//www.tensorflow.org.

[2] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
IJCV, vol. 115, no. 3, pp. 211–252, 2015.

[3] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethink-
ing the Inception Architecture for Computer Vision,” ArXiv e-prints,
2015.

[4] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau,
and S. Thrun, “Dermatologist-level classification of skin cancer with
deep neural networks,” Nature, vol. 542, no. 7639, pp. 115–118, 2017.

[5] C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle, “Deep learning
for computational biology,” Molecular Systems Biology, vol. 12, no. 7,
2016.

[6] Y. G. Jiang and J. Wang, “Partial copy detection in videos: A bench-
mark and an evaluation of popular methods,” IEEE Transactions on
Big Data, vol. 2, no. 1, pp. 32–42, 2016.

[7] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden
technical debt in machine learning systems,” in NIPS, 2015.

[8] Quora, “Why is it important to democratize machine learning?” https:
//www.forbes.com/, 2016.

[9] BVLC, “Model zoo,” https://github.com/BVLC/caffe/wiki/Model-Zoo,
2017.

[10] C. Moody, “Thisplusthat: A search engine that lets you ‘add’ words as
vectors,” https://blog.insightdatascience.com/, 2014.

[11] R. Bhoraskar, S. Han, J. Jeon, T. Azim, S. Chen, J. Jung, S. Nath,
R. Wang, and D. Wetherall, “Brahmastra: Driving apps to test the
security of third-party components,” in SEC, 2014.

[12] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library
detection in android and its security applications,” in CCS, 2016.

[13] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma,
A. Wang, Y. Zhang, and W. Zou, “Following devil’s footprints: Cross-
platform analysis of potentially harmful libraries on android and ios,”
in S&P, 2016.

[14] Veracode, “Open source and third-party components embed 24 known
vulnerabilities into every web application on average,” https://www.
veracode.com/, 2014.

[15] “Security and crash bugs of libpng,” http://www.libpng.org/pub/png/
libpng.html.

[16] “The heartbleed bug,” http://heartbleed.com.
[17] B. Marr, “First fda approval for clinical cloud-based deep learning in

healthcare,” https://www.forbes.com/, 2017.
[18] A. Satariano, “Ai trader? tech vet launches hedge fund run by artificial

intelligence,” http://www.dailyherald.com/, 2017.
[19] B. Kepes, “ebrevia applies machine learning to contract review,” https:

//www.forbes.com/, 2015.

[20] M. Vidal-Naquet and S. Ullman, “Object recognition with informative
features and linear classification,” in ICCV, 2003.

[21] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?” ArXiv e-prints, 2014.

[22] “The world’s leading software development platform,” https://github.
com.

[23] T. Minka, “A statistical learning/pattern recognition glossary,” http://
alumni.media.mit.edu/„tpminka/statlearn/glossary/.

[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” in CVPR, 2015.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” arXiv preprint, 2015.

[27] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, 2015.

[28] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation
of Word Representations in Vector Space,” ArXiv e-prints, 2013.

[29] E. Asgari and M. R. K. Mofrad, “Continuous distributed representation
of biological sequences for deep proteomics and genomics,” PLOS
ONE, vol. 10, no. 11, pp. 1–15, 2015.

[30] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014.

[31] Y. Zhang and V. Paxson, “Detecting backdoors,” in SEC, 2000.
[32] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to

a crime: Real and stealthy attacks on state-of-the-art face recognition,”
in CCS, 2016.

[33] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial Perturbations Against Deep Neural Networks for Malware
Classification,” ArXiv e-prints, 2016.

[34] K. Hornik, “Approximation capabilities of multilayer feedforward
networks,” Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[35] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Understand-
ing deep learning requires rethinking generalization,” ArXiv e-prints,
2016.

[36] R. C. Merkle, “A digital signature based on a conventional encryption
function,” in CRYPTO, 1988.

[37] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar, “Can
machine learning be secure?” in ASIACCS, 2006.

[38] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D. Tygar,
“Adversarial machine learning,” in AISec, 2011.

[39] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” in ICML, 2012.

[40] H. Xiao, B. Biggio, B. Nelson, H. Xiao, C. Eckert, and F. Roli,
“Support vector machines under adversarial label contamination,” Neu-
rocomput., vol. 160, no. C, pp. 53–62, 2015.

[41] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, “Adver-
sarial classification,” in KDD, 2004.

[42] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and Harness-
ing Adversarial Examples,” ArXiv e-prints, 2014.

[43] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swamil, “The limitations of deep learning in adversarial settings,”
in Euro S&P, 2016.

[44] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in S&P, 2016.

[45] F. Roesner and T. Kohno, “Securing embedded user interfaces: Android
and beyond,” in SEC, 2013.

2017 IEEE Conference on Communications and Network Security (CNS)

