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Abstract— The interconnectivity structure of many complex
systems can be modeled as a network of dynamically interacting
processes. Identification of mutual dependencies amongst the
agents is of primary importance in many application domains
that include internet-of-things, neuroscience and econometrics.
Moreover, in many such systems it is not possible to delib-
erately affect the system and thus passive methods are of
particular relevance. However, for an effective framework that
identifies influence pathways from dynamically related data
streams originating at different sources it is essential to address
the uncertainty of data caused by possibly unknown time-
origins of different streams and other corrupting influences
including packet drops and noise. In this article, a method of
reconstructing the network topology from corrupt data streams
is provided with emphasis on the characterization of the effects
of data corruption on the reconstructed network. The structure
of the network is identified by observing the sparsity pattern
in the joint power spectrum of the measurements.

I. INTRODUCTION

Models of systems as networks of interacting systems

are central to many domains such as repeated drug test-

ing [1], automatically assisted anesthesia [2], mesh com-

pression/video segmentation for video streaming [3], gene

regulatory networks [4], quantitative finance [5] and neu-

roscience [6]. In the internet-of-things (IOT) (see [7], [8]),

data collected from ubiquitously sensorized devices and/or

from many sensors of a single large system are processed

to glean important insights into the network of interacting

components. Here, data-streams from various sensors can

be dynamically related, where the inter-dependency can be

caused by the interaction physics of system components.

Often, in such large systems, the time-origin of time-series

data is not known and the data collection mechanism is

plagued by uncertainty in the measurement process with

noise and lost data packets.

In [9], the authors have introduced and used the concept

of the generative model of linear dynamic graphs and estab-

lished that optimal multivariate Wiener filters can reconstruct

the undirected structure associated with the generative model.

However, the effect of measurement uncertainty on the recon-

struction of the underlying influences was not investigated.

The methods introduced in [9], with ideal measurements do

introduce spurious links, however, an attractive feature here

is that the spurious links are localized within a hop of a true

link. It is desirable to establish conditions under which the

combination of spurious links from the method of [9] and the
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effects of data corruption do not compound so that negative

effects remain localized.

In this article, we seek insights into how the network struc-

ture influences propagation of the effects of data uncertainty.

Time-series data uncertainty sources studied include noise,

uncertainty in time-origin of the various data-streams, and

lost data packets. Our main result, Theorem 2, shows that

data corruption can lead to a spurious addition of links.

Furthermore, we identify a set of nodes in the network in

which spurious links could potentially appear. The results can

be utilized to better inform on what part of the reconstruction

can be trusted and for allocation of resources to minimize

the affects of data corruption.

Section II-B presents the class of models used for rep-

resenting the complex network systems. Next, Section III

describes the general form of perturbations or corruptions

that are of practical relevance. The main results and methods

to identify the network structure are discussed in Section IV.

Section V deals with the simulation results to demonstrate

the theoretical predictions.

Notation:

xi or {x}i means ith element of vector x.

MT denotes the transpose of a matrix or vector M .

Mij indicates the (i, j)th entry of a matrix M .

If M(z) is a transfer function matrix, then M(z)∼ =
M(z−1)T is the conjugate transpose.

E[·] denotes expectation operator.

RXY (k) := E[X[n+k]Y [n]] is the cross-correlation function

of jointly wide-sense stationary processes X and Y . If Y =
X then RXX(k) is called the auto-correlation.

ΦXY (z) := Z(RXY (k)) represents the cross-power spectral

density while ΦXX(z) := Z(RXX(k)) denotes the power

spectral density(PSD). Z(·) is the Z-transform operator.

bi represents the ith element of the canonical basis of Rn.

II. PRELIMINARIES

A. Definitions

Definition 1 (Directed and Undirected Graphs): A

directed graph G is a pair (V,A) where V is a set of

vertices or nodes and A is a set of edges given by ordered

pairs (i, j) where i, j ∈ V . If (i, j) ∈ A, then we say that

there is an edge from i to j. (V,A) forms an undirected

graph if V is a set of nodes or vertices and A is a set of

the ordering of the un-ordered pairs {i, j}.

Definition 2 (Children and Parents): Given a directed

graph G = (V,A) and a node j ∈ V , the children of j

are defined as Cj := {i|(j, i) ∈ A} and the parents of j as

Pj := {i|(i, j) ∈ A}.
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Fig. 1: 1a Directed Graph and 1b Kin Graph associated for

a Dynamic Influence Model.

Definition 3 (Kins): Given a directed graph G = (V,A)
and a node j ∈ V , kins of j are defined as Kj :=
{
i|i �= j and i ∈ Cj ∪ Pj ∪ PCj

}
. Kins are formed by par-

ents, children and spouses. A spouse of a node is another

node where both nodes have at-least one common child.

Definition 4 (Kin-Graph): Given a directed graph G =
(V,A), its kin-graph is the undirected graph GM = (V,AM )
where AM := {{i, j}|j ∈ V, i ∈ Kj} .

Fig. 1 provides an example of a directed graph and its kin

graph.

B. Dynamic Influence Model

Let G = (V,A) where V = {1, . . . , N}. To each node, we

associate an agent. For each agent i, we associate a discrete

time sequence xi[·] and a sequence ei[·]. The process ei[·]
is considered innate to agent i and thus ei is independent

of ej if i �= j. The process xj depends dynamically on the

processes of is parents, xi with i ∈ Pj :

xj =
N∑

i∈Pj

Gji(z)xi + ej for j = 1, . . . , N. (1)

Here Gji is a linear convolution operator.

Let x = (x1, x2, . . . , xN )T and e = (e1, e2, . . . , eN )T .

Then (1) is equivalent to

x = G(z)x+ e. (2)

We refer to (2) as the Dynamic Influence Model (DIM). Here,

G is termed as the DIM generative connectivity matrix. The

diagonal entries Gjj(z) are assumed to be zero. The DIM

will be denoted by (G, e) and the underlying graph, G is

called the generative directed graph of (G, e).
We illustrate the notation by an example. Consider a

network of five agents whose node dynamics are given by,

x1 =e1

x2 =G21(z)x1 + e2

x3 =G31(z)x1 + e3

x4 =G42(z)x2 +G43(z)x3 + e4

x5 =G54(z)x4 + e5

with G =









0 0 0 0 0
G21 0 0 0 0
G31 0 0 0 0
0 G42 G43 0 0
0 0 0 G54 0









.

The DIM is described by (G, e) where the generative directed

graph is given by Fig. 1 (a). Note that we do not show the

processes ei in the generative graph.

III. UNCERTAINTY DESCRIPTION

In this section we provide a description for how uncer-

tainty affects the time-series xi.

A. General Perturbation Models

The data stream ui associated with ith node is obtained

from the unperturbed time-series xi as

ui[.] = fi(xi[.], ζi[.]), (3)

where ui can depend dynamically on xi and ζi represents a

stochastic description of the corruption. We highlight three

such perturbation models that are practically relevant.

Temporal Uncertainty: Consider a node i in a DIM (G, e).
Suppose n is the true clock index but the node i measures a

noisy clock index which is given by a random process τi[n].
One such probabilistic model is given by:

τi[n] =

{

n+ k1, with probability pi

n+ k2, with probability (1− pi).

The corruption model from (3) for randomized delays in

information transmission takes the form:

ui[n] = xi[τi[n]] (4)

Measurement Noise: Given a node i in a DIM (G, e) the

data stream xi are corrupted with uncorrelated measurement

noise vi[·], which is another wide-sense stationary process

and is independent of xi[·]. Hence the perturbation models

is given by:

ui[n] = xi[n] + vi[n],

Packet Drops: Here the corrupted data stream ui is

obtained from xi as follows:

ui[n] =

{

xi[n], with probability pi

ui[n− 1], with probability (1− pi)
(5)

B. Relationship of the power spectra of the corrupted data

streams to the original power spectra

Reconstruction of the generative graph of the DIM de-

pends intimately on the sparsity of the inverse of the cross-

power-spectral density matrix (see [9]). Here, the relationship

between the cross-spectral density matrix of the corrupted

data streams and the original cross-spectra is described for

the corruption models presented earlier.

Under these perturbation models, the signals ui will have

cross-spectra and power spectra of the form:

Φuixi
(z) = hi(z)Φxixi

(z) (6a)

Φuiui
(z) = hi(z)hi(z

−1)Φxixi
(z) + di(z), (6b)

for some transfer functions hi and di. If the perturbations

were deterministic and time invariant so that ui = hi(z)xi,

then the power spectrum formulas would hold with di(z) =
0. However, the randomized perturbations imply that di(z) �=
0. The temporal uncertainty case is described in detail, while

the other disturbance models are just sketched.
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Time-Origin Uncertainty: Appendix I briefly sketches the

derivation of the cross-spectrum between ui and xi which is

given by,

Φuixi
(z) = (piz

k1 + (1− pi)z
k2)Φxixi

(z) (7)

From this equation, it would appear that the effect on the

spectrum is equivalent to passing the measurements through

the filter hi(z) := (piz
k1 + (1− pi)z

k2).
However, the situation is more subtle. If the effect

were simply equivalent to applying a filter, the Power

Spectral Density (PSD) of ui is given by: Φuiui
(z) =

hi(z)hi(z
−1)Φxixi

(z).
As seen from the analysis in Appendix I the PSD is in

fact given by,

Φuiui
(z) = hi(z)Φxixi

(z)hi(z
−1) + di (8)

where di = Rxixi
(0)

{

1− pi
2 − (1− pi)

2
}

− pi(1 −

pi)[Rxixi
(k1 − k2) + Rxixi

(k2 − k1)]. Thus, the psd of

the process ui in (4) is equivalent to the PSD of a process

obtained by filtering xi and adding white noise with variance

di.

Measurement Noise: If vi[n] is a zero-mean wide-sense

stationary process with with power spectrum Φvivi
(z), inde-

pendent of xi[n], then the perturbation transfer functions are

given by:

hi(z) = 1

di(z) = Φvivi(z).

This is immediate from the independence of xi and vi.

Packet Dropping: For the packet dropping link, the per-

turbation transfer functions are given by:

hi(z) =
pi

1− z−1(1− pi)

di(z) = Rxixi
(0)−

p2iRxixi
(0) + pi(1− pi)(Ruixi

(−1) +Rxiui
(1))

1− (1− pi)2
(9)

In this case, the cross-correlations Ruixi
and Rxiui

can be

computed from the relationships Φuixi
(z) = hi(z)Φxixi

(z).
The derivation is briefly sketched in Appendix I.

IV. NETWORK TOPOLOGY IDENTIFICATION

Before tackling the problem of determining the graph of

a DIM for the case with data corruption we discuss the case

where the measurements are ideal and thus uk = xk.

A. Determining the Generative topology of a DIM: Perfect

Measurement Case

The following results are obtained from [9] where the

authors have leveraged Wiener filters for determining gener-

ative graphs of a DIM.

Theorem 1: Consider a DIM (G(z), e) consisting of N

nodes with generative graph G. Let the output of the DIM

be given by x = (x1, . . . , xN )′. Suppose that S is the span

of all random variables xk[t], t = . . . − 2,−1, 0, 1, 2 . . .

1 2 3 4

(a) Perfect Measurements

1 2 3 4

(b) Unreliable Measurements

Fig. 2: When node 2 has corrupt measurements an external

observer might wrongly infer that the third node is directly

influenced by node 1.

excluding xj . Define the estimate x̂j of the time-series xj

via the optimization problem of

min
x̂j∈S

E

[

(xj − x̂j)
T
(xj − x̂j)

]

.

Then a unique optimal solution to the above exists and is

given by

x̂j =
∑

i �=j

Wji(z)xi (10)

where Wji(z) �= 0 implies xi ∈ Kxj
(equivalently xj ∈

Kxi
); that is i is a kin of j.

Corollary 1: Under the assumptions of Theorem 1, let

Φxx be the power spectral density matrix of the vector

process x. Then the (j, i) entry of Φ−1
xx is non zero implies

that i is a kin of j.

The solution in (10) is the Wiener Filter solution which is

given by Φxjxj̄
Φ−1

xj̄xj̄
where xj̄ denotes the vector of all

processes excluding xj and Φ denotes the power spectral

density.

Remark: We emphasize that the PSD Φxx can be computed

based solely on the measurements xi, i = 1, . . . , n..

B. Example of Data Corruption

Consider the generative graph of a directed chain in Figure

2a. Suppose the measured data-streams are denoted by ui

for node i where ui = xi for i = 1, 3, 4 (thus no data

uncertainty at nodes 1, 3 and 4) and u2 is related to x2

via the randomized delay model described in (4). In this

case, the processes ui are jointly WSS and the PSD of the

vector process u = (u1, · · · , u4)
⊤

is related to the PSD of

the vector process x via:

Φuu(z) =







1 0 0 0
0 h2(z) 0 0
0 0 1 0
0 0 0 1







︸ ︷︷ ︸

H(z)

Φxx(z)







1 0 0 0
0 h2(z

−1) 0 0
0 0 1 0
0 0 0 1







︸ ︷︷ ︸

H∼(z)

+







0 0 0 0
0 d2 0 0
0 0 0 0
0 0 0 0







︸ ︷︷ ︸

D

,

where h2 and d2 were described in Subsection III-B.

Note that D = b2d2b
T
2 , where b2 =

(
0 1 0 0

)T
. Set

Ψ(z) = H(z)Φxx(z)H
∼(z). It follows from the Woodbury
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matrix identity [10] that

Φ−1
uu (z) = Ψ−1(z)−Ψ−1(z)b2b

T
2 Ψ

−1(z)∆−1, (11)

where ∆ = d−1
2 + bT2 Ψ

−1(z)b2 is a scalar.

Corollary 1 implies that the sparsity pattern of Φ−1
xx (z) is

given by:

Φ−1
xx (z) =







∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ ∗







(12)

where ∗ indicates a potential non-zero entry.

Since H(z) is diagonal, it follows that Ψ−1(z) and Φ−1
xx (z)

have the same sparsity pattern. Thus, the sparsity pattern of

Ψ−1(z)b2 and Ψ−1(z)b2b
T
2 Ψ

−1(z) are given by:

Ψ−1(z)b2 =







∗
∗
∗
0






, Ψ−1(z)b2b

T
2 Ψ

−1(z) =







∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 0







(13)

Combining (11)-(13), it follows that the Φ−1
uu (z) has sparsity

pattern given by:

Φ−1
uu (z) =







∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗
0 0 ∗ ∗






.

C. Determining Generative Topology from Corrupted Data

Streams

In this subsection, we will generalize the insights from

the preceding subsection to arbitrary DIMs. The following

definitions are needed for the development to follow.

Definition 5 (Neighbors N ): Let GM = (V,AM ) be a kin

graph. The neighbor set of node i is given by N = {j :
{i, j} ∈ AM} ∪ {i}.

Definition 6 (Erroneous Links): Let GM = (V,AM ) be a

kin graph. An edge or arc {i, j} is called an erroneous link

when it does not belong to AM where i, j ∈ V .

Definition 7 (Perturbed Kin Graph): Let GM = (V,AM )
be a kin graph. Suppose Y ⊂ V is the set of perturbed nodes.

Then the perturbed kin-graph of GM with respect to set Y

is the graph GM
Y = (V,AM

Y ) such that {i, j} ∈ AM
Y if either

{i, j} ∈ AM or there is a path from i to j in GM such that

all intermediate nodes are in Y .

Note that this graph has the property that the neighbors of

any node in Y must form a clique in GM
Y . Furthermore, by

construction, if Y ⊂ Ŷ , then AM
Y ⊂ AM

Ŷ
.

The following theorem is the main result of the paper.

Theorem 2: Consider a DIM (G(z), e) consisting of N

nodes with the kin graph GM = (V,AM ). Let Y =
{v1, v2, . . . , vn} be the set of n perturbed nodes where each

perturbation satisfies (6). Then (Φ−1
uu (z))pq �= 0 implies that

p and q are neighbors in the perturbed kin graph GM
Y .

Proof: First, we will describe the structure of Φuu(z).
For compact notation, we will often drop the z arguments.

For p = 1, . . . , N , if p is not a perturbed node, set hp(z) =
1 and dp(z) = 0. With this notation, (6) implies that the

entries of Φuu are given by:

(Φuu)pq =

{

hp(Φxx)pqh
∼
q if p �= q

hp(Φxx)pph
∼
p + dp if p = q

When p �= q, there is no d term because the perturbations

were assumed to be independent.

In matrix notation, we have that:

Φuu = HΦxxH
∼ +

n∑

k=1

Dvk

where H is the diagonal matrix with entries hp on the

diagonal and Dvk(z) = bvk
dvk

(z)bTvk
where bvk is the

canonical unit vector with 1 at entry vk.

Set Ψ0 = HΦxxH
∼. For k = 0, . . . , n − 1, we can

inductively define the matrices:

Ψk+1 = Ψk + bvk+1
dvk+1

bTvk+1
(14)

For k = 1, . . . , n let Yk = {v1, . . . , vk} and let GM
Yk

be

the perturbed kin graph constructed by adding edges {i, j}
to the original kin graph if there is a path from i to j whose

intermediate nodes are all in Yk.

We will inductively prove the following claim: For k =
1, . . . , n, if (Ψ−1

k )pq �= 0, then p and q are neighbors in GM
Yk

.

Proving this claim is sufficient to prove the theorem, since

Ψn = Φuu and Yn = Y .

First we focus on the k = 1 case. Using the Woodbury

Matrix identity we have, Ψ−1
1 = Ψ−1

0 − Γ1, where Γ1 :=
(Ψ−1

0 bv1
bTv1Ψ

−1
0 )∆−1

v1
and ∆v1 = d−1

v1
+ bTv1Ψ

−1
0 (z)bv1 is a

scalar. Therefore, (Ψ−1
1 )pq = (Ψ−1

0 )pq − (Γ1)pq .

If (Ψ−1
1 )pq �= 0 then at least one of the conditions (i)

(Ψ−1
0 )pq �= 0 or (ii) (Γ1)pq �= 0 must hold.

Suppose that (Ψ−1
0 )pq �= 0. Then

(H−∼(z)Φ−1
xxH

−1(z))pq �= 0. As H is diagnoal it

follows that (Φ−1
xx )pq �= 0. From Corollary 1, it follows that

p and q are neighbors in GM . Thus p and q are neighbors

in GM
Y1

.

Suppose that (Γ1)pq �= 0. Then it follows that

(Ψ−1
0 bv1

bTv1Ψ
−1
0 )

pq
∆−1

v1
�= 0. Thus (Ψ−1

0 bv1
)p �= 0 and

(bTv1
Ψ−1

0 )
q
�= 0. Noting that Ψ0 = HΦxxH

∼, it follows

that , (Φ−1
xx )pv1

�= 0 and (Φ−1
xx )v1q �= 0. From Corollary 1

it follows that {v1, p} and {v1, q} are edges in the kin

graph GM . Thus, there is a path from p to q whose only

intermediate node is v1 ∈ Y1. Thus, p, q are neighbors in

GM
Y1

and the claim is verified for k = 1.

Now assume that the claim holds for some k > 1.

Combining the Woodbury matrix identity with (14) implies

that

Ψ−1
k+1 = Ψ−1

k − Γk+1

where Γk+1 = Ψ−1
k bvk+1

bTvk+1
Ψ−1

k ∆−1
vk+1

and ∆vk+1
=

d−1
vk+1

+ bTvk+1
Ψ−1

k (z)bvk+1
is a scalar.

As before, if (Ψ−1
k+1)pq �= 0, then either (Ψ−1

k )pq �= 0 or

(Γk+1)pq �= 0.
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(c) Corrupted Hub

Fig. 3: This figure shows an extreme example of the effect of data corruption of even a single node. 3a shows the original

directed graph. 3b shows that even if the leaf is corrupted there are no erroneous links introduced. But if the hub is corrupted

as shown in 3c then all the nodes become spuriously correlated.

If (Ψ−1
k )pq �= 0, then the induction hypothesis implies that

p and q are neighbors in GM
Yk

. Since Yk ⊂ Yk+1, it follows

that p and q are neighbors in GM
Yk+1

.

If (Γk+1)pq �= 0, then as in the k = 1 case, we must have

that (Ψ−1
k )pvk+1

�= 0 and (Ψ−1
k )vk+1q �= 0. This implies that

{p, vk+1} ∈ AM
Yk

and {vk+1, q} ∈ AM
Yk

. Thus, either p and

vk+1 are kins in the original kin graph, or there is a path from

p to vk+1 whose intermediate nodes are in Yk. Similarly, for

q and vk+1. It follows that there is a path from p to q whose

nodes are in Yk+1, and thus p and q are neighbors in GM
Yk+1

.

The claim, and thus the theorem, are now proved.

V. SIMULATION RESULTS

Power spectrum estimates were computed after 104 simu-

lation time steps. The estimated spectra were then averaged

over 100 trials. The red boxes indicate the erroneous links

introduced as a result of the network perturbation in addition

to the the links in the true kin topology as indicated by the

black boxes. For both the networks, the sequences ei are zero

mean white Gaussian noise.

A. Star Topology

The transfer function for each link is z−1.

1) Corrupted Leaf: The perturbation considered here is

τ2[n] =

{

n− 3, with probability 0.65

n− 1, with probability 0.35.

Φ−1
uu(z) =





















15.02 0.14 1.49 1.49 1.50 1.50 1.45

0.14 1.74 0.05 0.05 0.05 0.05 0.04
1.49 0.05 2.36 0.05 0.06 0.06 0.06
1.49 0.05 0.05 2.35 0.06 0.05 0.06
1.50 0.05 0.06 0.06 2.36 0.05 0.05
1.50 0.05 0.06 0.05 0.05 2.36 0.05
1.45 0.04 0.06 0.06 0.05 0.05 2.34





















As predicted by Theorem 2, perturbation of Node 2 for

this architecture does not introduce any erroneous links. See

Figure 3b.

2) Corrupted Hub: The perturbation considered here is

τ1[n] =

{

n− 2, with probability 0.75

n− 4, with probability 0.25.

Theorem 2 predicts that perturbing the central node could

introduce erroneous links between all of the nodes. See

Figure 3c.

Φ−1
uu(z) =





























5.08 0.40 0.40 0.40 0.39 0.39 0.38

0.40 2.07 0.27 0.27 0.27 0.26 0.27

0.40 0.27 2.08 0.27 0.27 0.28 0.27

0.40 0.27 0.27 2.07 0.27 0.27 0.27

0.39 0.27 0.27 0.27 2.07 0.27 0.27

0.39 0.26 0.28 0.27 0.27 2.08 0.27

0.38 0.27 0.27 0.27 0.27 0.27 2.08





























B. Chain Topology

The chain topology in Figure 4 is considered. The transfer

functions are: between nodes 1 and 2, 1.2+0.9z−1, between

nodes 2 and 3, 1 + 0.2z−1, between nodes 3 and 4, 1 −
0.9z−1 + 0.3z−2 and then for the last link z−1. Figure 4 In

the simulations, nodes 2 and 3 are simultaneously corrupted

with the temporal uncertainty models

τ2[n] =

{

n− 1, with probability 0.83

n− 2, with probability 0.17.

τ3[n] =

{

n− 2, with probability 0.85

n− 4, with probability 0.15.

Φ−1
uu(z) =

















4.23 0.54 0.12 0.25 0.05

0.54 1.20 0.16 0.13 0.02

0.12 0.16 1.06 0.12 0.02

0.25 0.13 0.12 2.22 0.90

0.05 0.02 0.02 0.90 1.42

















Perturbation of 2 adds a false relationship between 1 and 3.

In addition, perturbation of 3 introduces erroneous relations

between the nodes 1 and 4 as well as between 2 and 4. Thus

the erroneous relationships could arise between any nodes

that are kins of 3 including the already introduced false kins

of 3. Despite this cascaded effect the erroneous links remain

local in the sense that the dependency of 5 is unaffected.

VI. CONCLUSIONS AND FUTURE WORK

We established that network topology reconstruction from

corrupt data streams can result in erroneous links/correlations

between the nodes. Intuitively, these erroneous links appear

with reason that since there is a loss of information occurring

due to the corruption of an agent, the nodes dependent on the

corrupted agent now has to rely on measurements from other

agents. Through the examples considered we also observed

that certain architectures and certain nodal corruption has

more drastic effects compared to others. Therefore, it is

important to rigorously study and come up with topological
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1 2 3 4 5

(a) Node 2 Perturbed

1 2 3 4 5

(b) Node 3 Perturbed

1 2 3 4 5

(c) Nodes 2 and 3 Perturbed

Fig. 4: This figure shows how multiple perturbations can

lead to a cascade effect as predicted by Theorem 2. Here the

original kin graph is a chain. 4a and 4b show the erroneous

edges that can arise from perturbing a single node. If nodes

2 and 3 are both perturbed, then another erroneous link

between 1 and 4 must be added.

designs that can reduce the spread of corruption. Moreover,

motivated with real-world applications such as IOT, it is

imperative to devise stronger models for data-uncertainty for

networks that can have highly non-linear inter-dependencies.

APPENDIX I

RANDOM DELAYS

Let us examine the auto-correlation of ui. Let k = n−m

and let k �= 0. Then

Ruiui
(n−m) = E [xi[τi[n]]xi[τi[m]]] = pi

2Rxixi
(k)+

(1− pi)
2
Rxixi

(k) + pi(1− pi)Rxixi
(k + k2 − k1)+

pi(1− pi)Rxixi
(k + k1 − k2). (15)

Ruiui
(0) = E [xi[τi[n]]xi[τi[n]]]

= piRxixi
(0) + (1− pi)Rxixi

(0) = Rxixi
(0). (16)

The PSD is given by,

Φuiui
(z) = hi(z)Φxixi

(z)hi(z
−1) + di, (17)

where hi(z) = piz
k1 + (1 − pi)z

k2 and di =

Rxixi
(0)

{

1− pi
2 − (1− pi)

2
}

−pi(1−pi)[Rxixi
(k1−k2)+

Rxixi
(k2 − k1)].

The cross correlation between ui and xi is given by,

Ruixi
(k) = E[xi[τi[n]]xi[m]]

= piRxixi
(k + k1) + (1− pi)Rxixi

(k + k2). (18)

Perform Z(·) on both sides of (18) to obtain the cross

spectrum of ui and xi:

Φuixi
(z) = hi(z)Φxixi

(z). (19)

PACKET DROPPING LINKS

Let k = n−m. Substituting (5) into the definition of the

cross correlation gives:

Ruixi
(n−m) = E[ui[n]xi[m]]

= p1Rxixi
(n−m) + (1− pi)Ruixi

(n−m− 1).

Taking Z-transform of both sides and rearranging gives:

Φuixi
(z) =

pi

1− z−1(1− pi)
Φxixi

(z) = hi(z)Φxixi
(z).

Now we examine the PSD of ui. By a similar argument from

the derivation of Ruixi
, for k �= 0, we have that

Ruiui
(k) =

p2i
1− (1− pi)2

Rxixi
(k)+

pi(1− pi)

1− (1− pi)2
(Ruixi

(k − 1) +Rxiui
(k + 1)) . (20)

Similar to the derivation of (16), we have that Ruiui
(0) =

Rxixi
(0).

It can be shown that taking Z-transform of Ruiui
(k)

yields:

Φuiui
(z) = hi(z)Φxixi

(z)hi(z
−1) + di(z)

where di(z) is same as in (9). We remark that both the

random delay uncertainty and the packet drop uncertainty

result in ui with φuiui
(z) and φuixi

(z) of the form (6).

Note that we have omitted the proof that ui and xi are

JWSS due to space constraints.
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