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Network Topology Identification From Corrupt Data Streams
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Abstract— The interconnectivity structure of many complex
systems can be modeled as a network of dynamically interacting
processes. Identification of mutual dependencies amongst the
agents is of primary importance in many application domains
that include internet-of-things, neuroscience and econometrics.
Moreover, in many such systems it is not possible to delib-
erately affect the system and thus passive methods are of
particular relevance. However, for an effective framework that
identifies influence pathways from dynamically related data
streams originating at different sources it is essential to address
the uncertainty of data caused by possibly unknown time-
origins of different streams and other corrupting influences
including packet drops and noise. In this article, a method of
reconstructing the network topology from corrupt data streams
is provided with emphasis on the characterization of the effects
of data corruption on the reconstructed network. The structure
of the network is identified by observing the sparsity pattern
in the joint power spectrum of the measurements.

I. INTRODUCTION

Models of systems as networks of interacting systems
are central to many domains such as repeated drug test-
ing [1], automatically assisted anesthesia [2], mesh com-
pression/video segmentation for video streaming [3], gene
regulatory networks [4], quantitative finance [5] and neu-
roscience [6]. In the internet-of-things (IOT) (see [7], [8]),
data collected from ubiquitously sensorized devices and/or
from many sensors of a single large system are processed
to glean important insights into the network of interacting
components. Here, data-streams from various sensors can
be dynamically related, where the inter-dependency can be
caused by the interaction physics of system components.
Often, in such large systems, the time-origin of time-series
data is not known and the data collection mechanism is
plagued by uncertainty in the measurement process with
noise and lost data packets.

In [9], the authors have introduced and used the concept
of the generative model of linear dynamic graphs and estab-
lished that optimal multivariate Wiener filters can reconstruct
the undirected structure associated with the generative model.
However, the effect of measurement uncertainty on the recon-
struction of the underlying influences was not investigated.
The methods introduced in [9], with ideal measurements do
introduce spurious links, however, an attractive feature here
is that the spurious links are localized within a hop of a true
link. It is desirable to establish conditions under which the
combination of spurious links from the method of [9] and the
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effects of data corruption do not compound so that negative
effects remain localized.

In this article, we seek insights into how the network struc-
ture influences propagation of the effects of data uncertainty.
Time-series data uncertainty sources studied include noise,
uncertainty in time-origin of the various data-streams, and
lost data packets. Our main result, Theorem 2, shows that
data corruption can lead to a spurious addition of links.
Furthermore, we identify a set of nodes in the network in
which spurious links could potentially appear. The results can
be utilized to better inform on what part of the reconstruction
can be trusted and for allocation of resources to minimize
the affects of data corruption.

Section II-B presents the class of models used for rep-
resenting the complex network systems. Next, Section III
describes the general form of perturbations or corruptions
that are of practical relevance. The main results and methods
to identify the network structure are discussed in Section IV.
Section V deals with the simulation results to demonstrate
the theoretical predictions.

Notation:

x; or {x}, means ith element of vector z.

M7 denotes the transpose of a matrix or vector M.

M;; indicates the (i, )" entry of a matrix M.

If M(z) is a transfer function matrix, then M(z)~ =
M (z=1)T is the conjugate transpose.

E[-] denotes expectation operator.

Rxvy (k) := E[X [n+E]Y [n]] is the cross-correlation function
of jointly wide-sense stationary processes X and V. If Y =
X then Rxx (k) is called the auto-correlation.

O xy(z) := Z(Rxy(k)) represents the cross-power spectral
density while ®xx(z) := Z(Rxx(k)) denotes the power
spectral density(PSD). Z(-) is the Z-transform operator.

b; represents the i" element of the canonical basis of R".

II. PRELIMINARIES
A. Definitions

Definition 1 (Directed and Undirected Graphs): A
directed graph G is a pair (V,A) where V is a set of
vertices or nodes and A is a set of edges given by ordered
pairs (4, j) where 4,5 € V. If (i,j) € A, then we say that
there is an edge from ¢ to j. (V, A) forms an undirected
graph if V is a set of nodes or vertices and A is a set of
the ordering of the un-ordered pairs {4, j}.

Definition 2 (Children and Parents): Given a directed
graph G = (V,A) and a node j € V, the children of j
are defined as C; := {i|(j,i) € A} and the parents of j as
P; = {i|(3,75) € A}.
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Fig. 1: 1a Directed Graph and 1b Kin Graph associated for
a Dynamic Influence Model.

Definition 3 (Kins): Given a directed graph G = (V| A)
and a node j € V, kins of j are defined as K; :=
{ili # j and i € C; UP; UPc,}. Kins are formed by par-
ents, children and spouses. A spouse of a node is another
node where both nodes have at-least one common child.

Definition 4 (Kin-Graph): Given a directed graph G =
(V, A), its kin-graph is the undirected graph G = (V, AM)
where AM := {{i,j}|j € Vi € K;}.

Fig. 1 provides an example of a directed graph and its kin
graph.

B. Dynamic Influence Model

Let G = (V, A) where V = {1,..., N}. To each node, we
associate an agent. For each agent i, we associate a discrete
time sequence x;[-] and a sequence e;[-]. The process e;]]
is considered innate to agent i and thus e; is independent
of e; if i # j. The process x; depends dynamically on the
processes of is parents, x; with ¢ € P;:

N
T = ZGji(z)xi—i—ej for j=1,...,N. (D
i€EP;
Here G; is a linear convolution operator.
Let x = (z1,22,...,2x5)7 and e = (e, ea,...,en)7T.
Then (1) is equivalent to

x=G(z)x+e. (2)

We refer to (2) as the Dynamic Influence Model (DIM). Here,
G is termed as the DIM generative connectivity matrix. The
diagonal entries G;;(z) are assumed to be zero. The DIM
will be denoted by (G,e) and the underlying graph, G is
called the generative directed graph of (G, e).

We illustrate the notation by an example. Consider a
network of five agents whose node dynamics are given by,

I =€
i) —G21 Z)x1 + e
I3 —G31 Z)xy + €3

0 0 0 0 0

Go1 O 0 0 0

with G = G31 0 0 0 0
0 G Gy3 0 0

0 0 0 Gsg O

The DIM is described by (G, ) where the generative directed

graph is given by Fig. 1 (a). Note that we do not show the
processes e; in the generative graph.

III. UNCERTAINTY DESCRIPTION

In this section we provide a description for how uncer-
tainty affects the time-series x;.

A. General Perturbation Models

The data stream w; associated with i*" node is obtained
from the unperturbed time-series x; as

uil.] = filxil], GLD), (3)

where u; can depend dynamically on z; and (; represents a
stochastic description of the corruption. We highlight three
such perturbation models that are practically relevant.

Temporal Uncertainty: Consider a node i in a DIM (G, e).
Suppose n is the true clock index but the node ¢ measures a
noisy clock index which is given by a random process 7;[n].
One such probabilistic model is given by:

{n + ki, with probability p;
T [Tl] =

n+ kg,  with probability (1 — p;).

The corruption model from (3) for randomized delays in
information transmission takes the form:

u;[n] = z;[1;[n]] 4)

Measurement Noise: Given a node i in a DIM (G, e) the
data stream x; are corrupted with uncorrelated measurement
noise v;[-], which is another wide-sense stationary process
and is independent of z;[-]. Hence the perturbation models
is given by:

ui[n] = i[n] + vi[n],

Packet Drops: Here the corrupted data stream wu; is
obtained from x; as follows:

] = {xm,

ui[n — 1],

with probability p; 5)
with probability (1 — p;)

B. Relationship of the power spectra of the corrupted data
streams to the original power spectra

Reconstruction of the generative graph of the DIM de-
pends intimately on the sparsity of the inverse of the cross-
power-spectral density matrix (see [9]). Here, the relationship
between the cross-spectral density matrix of the corrupted
data streams and the original cross-spectra is described for
the corruption models presented earlier.

Under these perturbation models, the signals u; will have
cross-spectra and power spectra of the form:

for some transfer functions h; and d;. If the perturbations
were deterministic and time invariant so that u; = h;(z)x;,
then the power spectrum formulas would hold with d;(z) =
0. However, the randomized perturbations imply that d;(z) #
0. The temporal uncertainty case is described in detail, while
the other disturbance models are just sketched.

(6a)
(6b)
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Time-Origin Uncertainty: Appendix I briefly sketches the
derivation of the cross-spectrum between u; and x; which is
given by,

Dyiu,(2) = (pizkl +(1— pi)sz)(I)mimi (2) (7

From this equation, it would appear that the effect on the
spectrum is equivalent to passing the measurements through
the filter h;(2) := (p;z" + (1 — p;)2*2).

However, the situation is more subtle. If the effect
were simply equivalent to applying a filter, the Power
Spectral Density (PSD) of w; is given by: ®,,,,(z) =
hi(2)ha(="1) @, (2).

As seen from the analysis in Appendix I the PSD is in
fact given by,

Doy; (2) = hi(2) Py, (2)hi (271) + d )

where d; = Ry,,(0) {1 -p2-(1 —pi)Q} - pi(1 —
Di)[Ra;z; (k1 — k2) + Ry, (ke — k1)]. Thus, the psd of
the process u; in (4) is equivalent to the PSD of a process
obtained by filtering z; and adding white noise with variance
d;.

Measurement Noise: If v;[n] is a zero-mean wide-sense
stationary process with with power spectrum ®,,,,, (2), inde-
pendent of x;[n], then the perturbation transfer functions are
given by:

di(2) = @y,0,(2).
This is immediate from the independence of x; and v;.

Packet Dropping: For the packet dropping link, the per-
turbation transfer functions are given by:

Pi
hz(z) = 1— Z_l(l _pi)

di(2) = Rez,(0)—
1-— (]. — pz)2
In this case, the cross-correlations R,,;,;, and R,,,, can be
computed from the relationships D, ., (2) = hi(2) Py, (2).
The derivation is briefly sketched in Appendix I.

©))

IV. NETWORK TOPOLOGY IDENTIFICATION

Before tackling the problem of determining the graph of
a DIM for the case with data corruption we discuss the case
where the measurements are ideal and thus u;, = x.

A. Determining the Generative topology of a DIM: Perfect
Measurement Case

The following results are obtained from [9] where the
authors have leveraged Wiener filters for determining gener-
ative graphs of a DIM.

Theorem 1: Consider a DIM (G(z),e) consisting of N
nodes with generative graph G. Let the output of the DIM
be given by © = (x1,...,xN)". Suppose that S is the span
of all random variables xi[t], t = ... —2,—-1,0,1,2...

O—00—0B—0

(a) Perfect Measurements

O—2—0—@
(b) Unreliable Measurements

Fig. 2: When node 2 has corrupt measurements an external
observer might wrongly infer that the third node is directly
influenced by node 1.

excluding x;. Define the estimate %; of the time-series x;
via the optimization problem of

min |(e; — 35)" (a; ~ £5)]-

Then a unique optimal solution to the above exists and is

given by
Li'j = ZW]Z(Z)IZ
i#j

(10)

where W j;(z) # 0 implies x; € K, (equivalently x; €
K, ); that is i is a kin of j.

Corollary 1: Under the assumptions of Theorem 1, let

D, be the power spectral density matrix of the vector
process . Then the (j,i) entry of ®,} is non zero implies
that © is a kin of j.
The solution in (10) is the Wiener Filter solution which is
given by @, ;. (I);}lzj where x; denotes the vector of all
processes excluding x; and ® denotes the power spectral
density.

Remark: We emphasize that the PSD &, can be computed
based solely on the measurements z;, ¢ = 1,...,n..

B. Example of Data Corruption

Consider the generative graph of a directed chain in Figure
2a. Suppose the measured data-streams are denoted by wu;
for node ¢ where w; = z; for ¢ = 1,3,4 (thus no data
uncertainty at nodes 1, 3 and 4) and wuy is related to xo
via the randomized delay model described in (4). In this
case, the processes u; are jointly WSS and the PSD of the

vector process u = (u1,--- ,uq)  is related to the PSD of
the vector process x via:
1 0 0 0 1 0 0 0
0 ha(2) 0 0 0 ha(z"1) 0 0
Pul)=1g 0" 1 o PT=G) o o T 1 0
0 0 0 1 0 0 0 1
H(z) H~(2)
0 0 0 O
0 do 0 0
1o 0 0 of
0 0 00
[ ———
D

where ho and do were described in Subsection I1I-B.
Note that D = bydabd, where by = (0 1 0 0)". Set
U(z) = H(2)Puy(2)H™(2). It follows from the Woodbury
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matrix identity [10] that

Ol (2) =T (2) —

U (2)baby U (2)ATY, (1D

where A = dy ' + b3 U1 (2)bs is a scalar.
Corollary 1 implies that the sparsity pattern of ®_}(z) is
given by:

12)

* ¥ ¥ O
* ¥ O O

S % ¥ X%

where * indicates a potential non-zero entry.

Since H (z) is diagonal, it follows that ¥ ~1(2) and ®_} (2)
have the same sparsity pattern. Thus, the sparsity pattern of
U—1(2)by and W1 (2)byb W1 (2) are given by:

U)o = | |, UTH(2)babg T (2) =

O %k % ¥
O %k % ¥
O ¥ ¥ ¥
O ¥ ¥ ¥

o O O

0
(13)
Combining (11)-(13), it follows that the ®,,!(z) has sparsity
pattern given by:

EE

o (z) =

uu

O ¥ ¥ ¥
O R
* ¥ O O

0

C. Determining Generative Topology from Corrupted Data
Streams

In this subsection, we will generalize the insights from
the preceding subsection to arbitrary DIMs. The following
definitions are needed for the development to follow.

Definition 5 (Neighbors N'): Let GM = (V, AM) be akin
graph. The neighbor set of node i is given by NV = {j :
{i,j} € AMY U {i}.

Definition 6 (Erroneous Links): Let GM = (V, AM) be a
kin graph. An edge or arc {i,j} is called an erroneous link
when it does not belong to AM where i,7 € V.

Definition 7 (Perturbed Kin Graph): Let GM = (V, AM)
be a kin graph. Suppose Y C V is the set of perturbed nodes.
Then the perturbed kin-graph of GM with respect to set Y’
is the graph G = (V, AY) such that {i, j} € A if either
{i,j} € AM or there is a path from i to j in GM such that
all intermediate nodes are in Y.

Note that this graph has the property that the neighbors of
any node in Y must form a clique in G{. Furthermore, by
construction, if Y C Y, then A{\f C Ay .

The following theorem is the main result of the paper.

Theorem 2: Consider a DIM (G(z),e) consisting of N
nodes with the kin graph GM = (V,AM). Let Y =
{v1,v2,...,v,} be the set of n perturbed nodes where each
perturbation satisfies (6). Then (P} (2))pq # 0 implies that
p and q are neighbors in the perturbed kin graph g{y .

Proof: First, we will describe the structure of ®,,(z).
For compact notation, we will often drop the z arguments.

Forp=1,..., N, if pis not a perturbed node, set h,(z) =
1 and dp(z) = 0. With this notation, (6) implies that the
entries of &, are given by:

_ hp((bm)pqth if p#q
(‘I)uu)pq - h AN d . o
(P )pp p Tdp ifp=gq

When p # g, there is no d term because the perturbations
were assumed to be independent.
In matrix notation, we have that:

(I)uu = H(pszN + Zka
k=1

where H is the diagonal matrix with entries h, on the
diagonal and D,, (z) = bvkdq,k(z)bfk where b, is the
canonical unit vector with 1 at entry vy.

Set Vg = H®,,H~. For kK = 0,...,n — 1, we can
inductively define the matrices:
oy s, b,

\I/k+1 = \Ijk‘ + b Vk+1 Vg 41 (14)

Vk+1

For k = 1,...,n let Y = {v1,..., v} and let G¢/ be
the perturbed kin graph constructed by adding edges {%, j}
to the original kin graph if there is a path from ¢ to j whose
intermediate nodes are all in Y.

We will inductively prove the following claim: For k =
1,...,n, if (¥} ")pg # 0, then p and ¢ are neighbors in GJY.
Proving this claim is sufficient to prove the theorem, since
v, =®,,and Y, =Y.

First we focus on the £k = 1 case. Using the Woodbury
Matrix identity we have, \Ilfl = \Ila1 —I'y, where I'] :=
(U5 by, 0L Ug AT and A, = dyt + 0L Uil (2)by, is a
scalar. Therefore, (U] 1), = (\Ilgl)pq = (T'1),g

If (U7'),, # O then at least one of the conditions (i)
(Vg 1),y # 0 or (i) ('), # 0 must hold.

Suppose  that  (¥y'),, # 0.  Then
(H~(2)®, H Y(2))py # 0. As H is diagnoal it
follows that (®!),, # 0. From Corollary 1, it follows that
p and ¢ are neighbors in GM. Thus p and g are neighbors
in Q% .

Suppose that (I'1),, # 0. Then it follows that
(Ug by, by Wo ) ALY # 0. Thus (¥5'by,), # 0 and
(bflllfgl)q # 0. Noting that g = H®,, H"~, it follows
that , (®.1)ps, # 0 and (®,}),4 # 0. From Corollary 1
it follows that {v1,p} and {vi,q} are edges in the kin
graph GM. Thus, there is a path from p to ¢ whose only
intermediate node is v; € Yj. Thus, p,q are neighbors in
G! and the claim is verified for k = 1.

Now assume that the claim holds for some k£ > 1.
Combining the Woodbury matrix identity with (14) implies
that

—1 -1
Vi1 =9 —Dipa

- T —1A-1 _
where Iy = Vb, by U AL and A, =
-1 T -1 .

Ay T 00, Vi (2)by,,, is a scalar.

As before, if (\I/,;il)pq # 0, then either (¥, '),, # 0 or
(FkH)pq 7 0.
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(c) Corrupted Hub

Fig. 3: This figure shows an extreme example of the effect of data corruption of even a single node. 3a shows the original
directed graph. 3b shows that even if the leaf is corrupted there are no erroneous links introduced. But if the hub is corrupted
as shown in 3c then all the nodes become spuriously correlated.

If (\Il,:l) pq 7 0, then the induction hypothesis implies that
p and ¢ are neighbors in g% . Since Yy C Yj41, it follows
that p and ¢ are neighbors in g% e

If (T'k41)pg # O, then as in the £ = 1 case, we must have
that (U} "), ., #0and (U} ")y, ,q # 0. This implies that
{p,vr41} € AY and {vg41,q} € AY . Thus, either p and
vg+1 are kins in the original kin graph, or there is a path from
p to vi+1 whose intermediate nodes are in Y. Similarly, for
q and vg1. It follows that there is a path from p to ¢ whose
nodes are in Yy, and thus p and ¢ are neighbors in Q% e
The claim, and thus the theorem, are now proved. [ |

V. SIMULATION RESULTS

Power spectrum estimates were computed after 10* simu-
lation time steps. The estimated spectra were then averaged
over 100 trials. The red boxes indicate the erroneous links
introduced as a result of the network perturbation in addition
to the the links in the true kin topology as indicated by the
black boxes. For both the networks, the sequences e; are zero
mean white Gaussian noise.

A. Star Topology

The transfer function for each link is z~!.

1) Corrupted Leaf: The perturbation considered here is

raln] = {n -3,

n—1,

with probability 0.65
with probability 0.35.

Cu(2) =
1502 [014] [149] [149] [1s0] [150] [145
014 174 005 005 005 005 0.04
149 0.05 236 0.05 0.06 0.06 0.06
149 0.05 005 235 0.6 0.05 0.06
150 0.05 0.06 006 236 0.05 0.05
150 0.05 0.06 005 005 236 0.5
145 0.04 006 0.06 005 005 234

As predicted by Theorem 2, perturbation of Node 2 for
this architecture does not introduce any erroneous links. See
Figure 3b.

2) Corrupted Hub: The perturbation considered here is

] n—2,
Ti[n] =

! n —4,
Theorem 2 predicts that perturbing the central node could

introduce erroneous links between all of the nodes. See
Figure 3c.

with probability 0.75
with probability 0.25.

o, (2) =

[5.08 |0.40 [ 0.40 0.40 0.39 0.39 0.38 ||
040 2.07 |027| |o027| |o027| |o26| |o027
040 0.27 208 |027| |027| |o028] |o027
040 0.27 027 207 |027| |027| |o027
0.39 027 027 027 207 [027] |027
0.39 0.26 028 027 027 2.08 |027
0.38 027 027 027 027 027 2.08

B. Chain Topology

The chain topology in Figure 4 is considered. The transfer
functions are: between nodes 1 and 2, 1.2+0.92~!, between
nodes 2 and 3, 1 + 0.2271, between nodes 3 and 4, 1 —
0.9271 +0.3272 and then for the last link z~!. Figure 4 In
the simulations, nodes 2 and 3 are simultaneously corrupted
with the temporal uncertainty models

] n — 1, with probability 0.83
To[n] =
2 n—2, with probability 0.17.
n — 2, with probability 0.85
T3[n] = . .
n —4, with probability 0.15.
@ (2) =
423 [o0s54] [o12] [o2s] 0.0
0.54 1.20 |016| [013] 0.02
0.12 016 1.06 [0.12] 0.02
0.25 013 012 222 |09
0.05 0.02 002 090 142

Perturbation of 2 adds a false relationship between 1 and 3.
In addition, perturbation of 3 introduces erroneous relations
between the nodes 1 and 4 as well as between 2 and 4. Thus
the erroneous relationships could arise between any nodes
that are kins of 3 including the already introduced false kins
of 3. Despite this cascaded effect the erroneous links remain
local in the sense that the dependency of 5 is unaffected.

VI. CONCLUSIONS AND FUTURE WORK

We established that network topology reconstruction from
corrupt data streams can result in erroneous links/correlations
between the nodes. Intuitively, these erroneous links appear
with reason that since there is a loss of information occurring
due to the corruption of an agent, the nodes dependent on the
corrupted agent now has to rely on measurements from other
agents. Through the examples considered we also observed
that certain architectures and certain nodal corruption has
more drastic effects compared to others. Therefore, it is
important to rigorously study and come up with topological
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O——0—0—0
(a) Node 2 Perturbed

O—O—F+—@—0
(b) Node 3 Perturbed

(¢) Nodes 2 and 3 Perturbed

Fig. 4: This figure shows how multiple perturbations can
lead to a cascade effect as predicted by Theorem 2. Here the
original kin graph is a chain. 4a and 4b show the erroneous
edges that can arise from perturbing a single node. If nodes
2 and 3 are both perturbed, then another erroneous link
between 1 and 4 must be added.

designs that can reduce the spread of corruption. Moreover,
motivated with real-world applications such as IOT, it is
imperative to devise stronger models for data-uncertainty for
networks that can have highly non-linear inter-dependencies.

APPENDIX I
RANDOM DELAYS

Let us examine the auto-correlation of u;. Let k =n—m
and let £ # 0. Then

Ryu; (n —m) = B [z[ms[n]Jai[r:[m]]] = pi® R0, (k) +
(1= pi)*Rayo, (k) + pi(1 = pi) Raa, (k + k2 — k1) +
pi(1 = pi) Ry, (k+ k1 — Ek2).  (15)
Ryiu;(0) = E [2[ri[n]]a;[r:[n]]
=piRs,x, (0) + (1 _pi)inmi(O) = Ry,z, (O) (16)
The PSD is given by,

where hi(2) = pizM + (1 — p)z* and 4 =
Rapa,(0) {1 = pi2 = (1= pi)? }=pi(1=p3) (R, (k1 —k2) +
RLL (kQ - kl)]

The cross correlation between u; and x; is given by,

Ry, (k) = Elzi[ri[n]]2[m]]

Perform Z(-) on both sides of (18) to obtain the cross
spectrum of u; and x;:

PACKET DROPPING LINKS

Let £ = n — m. Substituting (5) into the definition of the
cross correlation gives:

Rulwl (’I’L -

= leIz‘Iz‘ (TL - m) + (1 - pz)RuzIz (TL -

m) = Elu;[n]z;[m]]
m—1).

Taking Z-transform of both sides and rearranging gives:

11— p)

Now we examine the PSD of w;. By a similar argument from
the derivation of R,,,,, for k # 0, we have that

P2
pi(1—pi) _
Similar to the derivation of (16), we have that R, ,,(0) =
Rz, (0).

It can be shown that taking Z-transform of R, (k)
yields:

where d;(z) is same as in (9). We remark that both the
random delay uncertainty and the packet drop uncertainty
result in w; with ¢y, (2) and ¢y, (z) of the form (6).

Note that we have omitted the proof that u; and x; are
JWSS due to space constraints.
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