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Abstract

We prove Landau damping for the collisionless Vlasov equation with a class of
L' interaction potentials (including the physical case of screened Coulomb in-
teractions) on R3 x R3 for localized disturbances of an infinite, homogeneous
background. Unlike the confined case T;Z’ X Rs, results are obtained for initial
data in Sobolev spaces (as well as Gevrey and analytic classes). For spatial fre-
quencies bounded away from 0, the Landau damping of the density is similar
to the confined case. The finite regularity is possible due to an additional dis-
persive mechanism available on ]Rg’c that reduces the strength of the plasma echo
resonance. © 2017 Wiley Periodicals, Inc.

1 Introduction

1.1 The Model

The collisionless Vlasov equation is a fundamental kinetic model for so-called
hot plasmas and also arises elsewhere in physics, for example, in stellar dynam-
ics [7,27]. For single-species models, the unknown is the probability density,
known as the distribution function f(z, x,v) of particles in phase space. In this
work, we consider the phase space (x,v) € R3 x R3 and distribution functions
of the form f(t,x,v) = f°w) + h(t,x,v), where f°(v) is the infinitely ex-
tended, homogeneous equilibrium and 4(z, x, v) is the mean-zero fluctuation from
equilibrium. Then, the Vlasov equations for the fluctuation are given by

0h+v-Veh + F(t,x)-Vo(fO+h) =0,
F(t,x) := =V W x4 p(t, x),

p(t,x) = [ga h(t,x,v)dv,

h(t = 0,x,v) = hix(x, v).

(1.1
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The potential W(x) describes the mean-field interaction between particles. In this
paper we will be considering only W e L1 that satisfy (denoting (x) = (1 +
[x[%)2),

(1.2) W (k)| S (k)2

As we will see, one of the reasons for this assumption is that, together with a
stability condition involving f© (see definition 2.6 below), (1.2) ensures that the
linearized Vlasov equation behaves similarly to the free transport d;2+x-Vyh = 0
(for long times) even at low spatial frequencies. Indeed, the results of [16,17] show
that this is not true in general if one allows Coulomb interactions W(k) = |k|72.

Screened Coulomb interactions provide a physically relevant setting that satis-
fies hypothesis (1.2) and the stability condition in definition (2.6) for a large class
of f0 (see Proposition 2.7 below). This model arises when considering the distri-
bution function for ions in a plasma, after making the approximations of (1) that
the electrons can be considered massless and reach thermal equilibrium on a much
faster time scale than the ion evolution, (2) that the plasma is near equilibrium,
(3) that an electrostatic approximation is suitable, and (4) that ion collisions can be
neglected. In this case, the force field F satisfies (some physical parameters have
been suppressed for notational convenience)

(1.3) F=-V¢, —A¢p+ap=np,

where the parameter « > 0 accounts for the fact that the electrons equilibrate in a
manner to shield the long-range effects of the electric field. The quantity a~1/2 has
units of length and is proportional to the quantity known in plasma physics as the
Debye length; it is the characteristic length scale of the mean-field interactions [7].
See [18-20] and the references therein for more details on the model (1.1) with
(1.4) in the context of ion dynamics in quasi-neutral plasmas. In the case of (1.3),
we have FF = —V, W %, p with

(1.4) W (k)

which satisfies (1.2).

. 1
a+ |k]?

1.2 Landau Damping and Existing Results

It was discovered by Landau [23] that the linearized Vlasov equations around
homogeneous steady states satisfying certain stability conditions induce time de-
cay on the nonzero modes of the spatial density. This decay, which is exponentially
fast for analytic data, can be more easily deduced for the free transport evolution
dth + v - Vyh = 0. For the free transport evolution, it becomes evident that
the decay is due to to mixing in phase space; that is, spatial information is trans-
ferred to smaller scales in velocity, which are averaged away by the velocity inte-
gral for p (this appears to be first pointed out in [38]). The work of Landau can
be summarized as asserting that the dynamics of the linearized Vlasov equations
dth+v-Vyh+ F -V, £% = 0 are asymptotic to free transport in a suitably strong



LANDAU DAMPING IN FINITE REGULARITY FOR UNCONFINED SYSTEMS 3

sense as t — oo. A number of other works regarding the linearized Vlasov equa-
tions followed, providing mathematically rigorous treatments, clarifications, and
generalizations [1, 10, 16, 17,29, 32,38]. The phenomenon is now known as Lan-
dau damping and is a cornerstone of plasma physics in approximately collisionless
regimes; see, €.g., [7,34,37].

The dynamics for each spatial mode decouples in the linearized Vlasov equa-
tions and the damping is derived in a relatively straightforward manner via the
Laplace transform. In the nonlinear equations, there exist steady states and travel-
ing waves with nontrivial densities [6,25]; however, one can still hope for Landau
damping in a perturbative nonlinear regime. In the perturbative nonlinear setting,
the decoupling of Fourier modes of course ceases to hold, and it remained debated
for decades whether or on which timescale the damping would hold (for example,
the various discussions in [1,32,37]; see [30] for more information). The existence
of analytic Landau damping solutions to the nonlinear Vlasov equations in T, xR,
was first demonstrated in [8, 22], but only in [30] was there given a full proof of
nonlinear stability with Landau damping in the nonlinear setting, and again in the
confined case ']f)‘f X Rf}i and for smooth enough Gevrey [15] or analytic data. The
proof was later simplified and the result improved to the “critical” Gevrey regular-
ity in [4] by combining ideas of [30] and [3].

It is desirable for physical relevance to extend the theory to the unconfined case,
i.e., when the phase space is Ri x Rf. There are several issues with this even
at the linear level. First, at low spatial frequencies, the decay due to mixing for
free transport is very slow—there is an additional dispersive decay, but this is only
t~@ in L°. Second, for Vlasov-Poisson, e.g., when the force field is given by
F = —uVxA;!lp with i € R, it was shown in [16,17] that the linearized Vlasov
equations cannot be treated as a perturbation of free transport at low spatial fre-
quencies. At the linear level, the modes decouple, so these issues only occur at low
spatial modes; at higher spatial modes, the damping is the same as in the confined
case. It is then natural to ask whether nonlinear stability in (1.1) still holds in a
certain sense and that, at least, the decay of the spatial modes away from O (short
waves) remains similar to the confined case. In this paper, we positively answer
this question in the case that W satisfies (1.2) (and the linear stability condition in
definition (2.6) below). These conditions precisely imply that the linearized Vlasov
equation is close enough to free transport at low frequencies. Moreover, by taking
advantage of a dispersive effect in frequency (see Section 1.4 and Section 3), we
are able to get results in finite regularity.

Previous finite regularity Landau damping results have only been obtained for
kinetic models in which W has compact support, such as Vlasov-HMF [12] or
the mean-field Kuramoto model [11, 13]. These results have been proved in the
confined case; see Section 1.4 for more discussion on how finite regularity is ob-
tained. A dispersive result in finite regularity for Vlasov-Poisson in the unconfined
case R2 x R3 without an infinite background density, thatis f°(v) = 0, was car-
ried out in [2]. The lack of an infinite background greatly simplifies the setting:
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the dynamics do not include the linearized Vlasov equations, and moreover, it is
significantly easier to propagate moments in x —zv on f(¢, x, v)—an important as-
pect of [2] (propagating such moments seems very difficult even for the linearized
Vlasov equations with W € L1 and f° very small). Moreover, the results of [2]
do not directly extend to statements of the form (1.9b) or (1.10b), which quantify
the fast decay of higher spatial modes (almost equivalently, the techniques seem
ill-suited for deducing convergence in such strong norms as (1.9a) and (1.10a)).

1.3 Main Results
Our working norm in this paper is the weighted Sobolev norm:
Wlge = D (V) @)L2,
o] <M

where we define the Fourier multiplier

(1.5) (Ven)? £ o) = (ko) £k, n) = e, m)® f (k. ).
Notice that

1/2
Vg, ~a (D2 10Vx)"@WIF2)  ~ate D 10 (Va) A2,
lo| <M lo| <M

so that one may order the moments and derivatives in whichever order is most
convenient.

The following linear stability condition is essentially an adaptation to finite reg-
ularity of the condition given in [30] (which is essentially the same as the Penrose
condition [32]).

DEFINITION 1.1. Given a homogeneous distribution f°(v), we say that it satisfies
the stability condition (L) if there exists constants Cy, x,0 > 0 with g > % and an
integer M > % such that

(1.6) 1/ bz, = Co
and
1.7 inf inf3|£(§,k) — 1] > «,

£€C:Reé<0keR

where L is defined by the following (§ denotes the complex conjugate of &£):
o0~

(1.8) L k) = —/ & FOk )W (k) |k |t dr.
0

In Section 2.3 below, we discuss in detail how stringent the stability condition
(L) is. We note here that if one takes power law interactions, W(x) = u|x|™! for
any 41 € R, then (L) fails for every equilibrium f° € H23 / 2t see [16,17] (see
Section 1.5 for the notation H?%). A smallness condition on ||W || 1 H 1O HHS/”
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is sufficient to satisfy (1.7); however, it is not necessary. Indeed, we show in Propo-
sition 2.7 below that (L) is satisfied for the screened Coulomb law (1.4), the funda-
mental solution to (1.3), for all @ > 0 and all rapidly decaying, radially symmetric
equilibria £°. The proof extends to any potential w satisfying

0= Wk < k)2,
and hence, a variety of large W and f° are permitted.

Our main result is the following:

THEOREM 1.2. There exist universal constants Ry > 0 and ¢ € (0, Rg) such that
ifo —3 > 0 > Ry and f° is given that satisfies stability condition (L) with
constants M, Co, k, and ¢ and hy, is mean-zero and satisfies

Y 1z%hinll g, < €o.
le|<2

then there exists a mean-zero hoo € Hf"[c so that the solution h(t, x,v) to (1.1)
satisfies the following for all t > 0:

(1.9) 2@, x + v, v) = hoo(x, V) | go— < (t)%ﬂ
(1.9b) 8(t.k)| < elk,kt)=@=9),

o—c—4 L
(1.9¢) [{Vx) F(t)|lLee < ne

Remark 1.3. The proof shows that we may take Rg = 36 and ¢ = 5, although
these are unlikely to be sharp.

Remark 1.4. Theorem 1.2 holds in all d > 3; in this case, Ry depends in general
on dimension.

Remark 1.5. An easier variant of our proof would yield a similar result in the case
where % = 0 (no homogeneous background). The linear stability condition is
trivially satisfied then, and our nonlinear estimates adapt in a simpler way. How-
ever, as discussed briefly above, the results we obtain in Theorem 1.2 are signifi-
cantly stronger, in certain ways, than the results of [2]. Specifically, (1.9a) gives
“scattering” in much higher Sobolev norms, and (1.9b) gives fast decay of higher
spatial modes of the density (as fast as if the problem were posed on T3 x R3).
It is not clear how the techniques employed in [2] can be adapted to deduce these
higher regularity results.

Remark 1.6. That ¢ and Ry are taken independent of all parameters shows that
regularity loss remains uniform even as ¢ — oo.

A natural question is whether one still observes exponential decay of p(z, k)
for k bounded away from O if the initial data is analytic. This is indeed the case,
which is proved via an easy variation of the proof of Theorem 1.2 using some basic
ideas from [4].
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THEOREM 1.7. Let f© be given which satisfies stability condition (L) with con-
stants M, Cg, and k, and is real analytic with

||ez(v>f0||L%4 < oo forsome A > 0.

Then there exists a A* € (0, A] depending only on f° such that for all 0 < A’ <
A < A%, there exists an €y such that if hy, is mean-zero and satisfies

Y1z Vil 2 < eo,
lor| <2

then there exists a mean-zero, real analytic hso satisfying for all t > 0,

(1.10a) le* ¥ (h(t. x + tv,v) = hoo(x, V))ll;2 < MEEk
(1.10b) 18(t, k)| < ee ¥ kK1),
(1.10¢) ¥ T VP () oo S g

(0)*

Remark 1.8. An analogue of Theorem 1.7 also holds for Gevrey initial data (see [4]
for the Vlasov-Poisson systems with Coulomb-Newton potentials on T 4 xR with
Gevrey data).

1.4 Plasma Echoes and Dispersion in Frequency

As discussed in [4,30], the fundamental impediment to nonlinear Landau damp-
ing results in finite regularity are resonances known as plasma echoes, first dis-
covered and isolated in the experiments [28]. During Landau damping, the force
field is damped due to the transfer of O(1) spatial information to small scales in
the velocity distribution. However, mixing is time reversible, and hence unmixing
creates (transient) growth in the force field. This effect is essentially the same as
the analogous Orr mechanism in fluid mechanics, first identified in [31] (see [3]
for more information). A plasma echo occurs when a nonlinear effect transfers
information to modes that are unmixing, as this leads to a large force field in the fu-
ture when that information reaches O(1) spatial scales (hence “echo”). The plasma
echo is a kind of nonlinear resonance, although associated with the transient un-
mixing in the linear problem rather than a true eigenvalue. These echoes can chain
into a cascade, as demonstrated experimentally in the Vlasov equations [28] and
two-dimensional Euler [40,41].

Mathematically, one must confront the echo resonance when attempting to close
an estimate such as (1.9b). During the proof of (1.9b), one needs to get an L%lec —
L%Li estimate on an integral operator that encodes the long-time interactions be-
tween the force field and the information that has already mixed (see Section 3).
The primary new insight in our work is that, unlike in the confined case studied
in [4,8,22,30], we can obtain these estimates in finite regularity. This is completely
due to a dispersive mechanism that is present only in Ri for d > 2 (although it
is too weak in d = 2 for our methods); it has little relevance to the periodically
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confined case Tf (although one could imagine attempting to recover it in a large
box limit) and is quite distinct from the finite regularity results of [11-13].

We will capitalize on a dispersive effect in the free transport operator d; + v - Vy,
which on the Fourier side is of the form d; — k - V;. In order to lose a significant
amount of regularity, one must chain a large number of echoes over a long period
of time (see [4,30]). Indeed, this is precisely why the finite results of [11-13] are
possible: the models studied therein do not support infinite chains of echoes. For
any spatial mode k, the set of possible “resonant” frequencies £, the frequencies
that can react strongly via a plasma echo with k, turns out to be those which are
collinear with k. Indeed, if the two spatial modes are not collinear, then the velocity
information in the two modes is moving in different directions in frequency (due to
the dispersive effect of 3, —k-V;) and is hence well-separated (in frequency) except
for a limited amount of time. On the torus, the set of such resonant frequencies is
of positive density in the lattice Z¢ (for example, it suffices to consider modes that
depend on only one coordinate), whereas in Ri the set of resonant frequencies is
a one-dimensional line and is hence a very small set. Spatial localization implies
that information in the Fourier transform cannot concentrate on small sets, which
suggests that the resonance is weaker in R3 than in T3. This is indeed the case,
as we show in Section 3. We remark that there may also be a link with the idea of
space-time resonances in dispersive equations [14].

1.5 Notation and Conventions

We denote N = {0, 1,2, ...} (including 0) and Z, = Z \ {0}. For § € C we
use £ to denote the complex conjugate. We denote

(v) = (1 + [v])!/2.

We use the multi-index notation: given & = (a1,...,az7) € N9 and v = (vy,

..., vg) € R, then
v =i v3?, Dy = (i0p,)* - (i0y,)%.

We denote Lebesgue norms for p,q € [1,00] and a,b € R? as

plq 1/p
7eguy = ([, ([ 1@ onras) " aa)
plq 1/p
= (/(/lf(a,b)ﬂdb) da)

and Sobolev norms (usually applied to Fourier transforms) as
M2 a 712
”f”H,;W - Z ”anHL%,'
aeN9:|a|<M
We will often use the short-hand ||-||, for ||-|| 1z, or Il 12 depending on the context.
Finally, we use the notation f € H*% as shorthand to denote that f € H**4
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for all § > 0. Similarly, the quantity || f|| s+ is meant to satisfy || f || gs+ <s
|| f || ggs+s for all 6 > O (where the constant in general blows up as § — 0).

For a function g = g(z, v) we write its Fourier transform g () where (k,n) €
R3 x R? with

~ 1 —izk—i
gr(n) = W/]R@ s 1k=ivn g (2, v)dz dv,
X
1 ; o~
€Gov)i= s [ g pakan,
X

We use an analogous convention for Fourier transforms to functions of x or v alone.
With these conventions we have the following relations:

Jraxrs €2 )8z, v)dz dv = [g3, g3 &k, Mgk, n)dk dn,

8'8’ = Gmy8' * 8%

(Vo) (k,n) = (ik,ing(k, ),
(v%g)(k,n) = D2g (k. n).

By convention, we use Greek letters such as 7 and £ to denote velocity frequencies,
and lowercase Latin characters such as k and £ to denote spatial frequencies.

We use the notation f < g when there exists a constant C > 0 independent
of the parameters of interest such that f < Cg (we analogously define f = g).
Similarly, we use the notation f A g when there exists C > 0 such that C " 1g <
f < Cg. We sometimes use the notation f <, g if we want to emphasize that the
implicit constant depends on some parameter «.

2 Outline of the Proof

2.1 Local-in-Time Well-Posedness

The following standard lemma provides local existence of a classical solution
that remains classical as long as a suitable Sobolev norm remains finite. The prop-
agation of regularity can be proved by a variant of the arguments in, e.g., [24],
along with the inequality

(2.1) IB(t. V. Vit)pD)lls S Y [v*B(t. Vi Vo) k(D) |
a<M

for all Fourier multipliers B and all integers M > %

LEMMA 2.1 (Local existence and propagation of regularity). Let M > % be an
integer and hy, € H de for o > 4. Then there exists some To > 0 such that
forall T < To, there exists a unique solution g(t) € C([0,T]; Hy;) to (2.3) on
[0, T). Moreover, if for some T < Ty and o' with 6 > o' > 4, there holds
limsupt/T||g(t)||Hﬂ < o0, then T < Ty.
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Remark 2.2. Finite energy, strong solutions are well-known to be global in time
in T2 x R3 or on R3 x R if there is no homogeneous background [5,21,26,33,
35]; however, to the authors’ knowledge, there is no global existence theory that
covers the entire range of Theorem 1.2. However, Theorem 1.2 shows that in the
perturbative regime, solutions are global.

2.2 Coordinate Shift

As the solution in Theorem 1.2 is asymptotic to free transport, it makes sense to
begin (as in [4, 8,22]) by modding out by this evolution:

(2.2a) zZ:=Xx—1v,
(2.2b) gt,z,v):=h(t,z +tv,v).
From (2.2) and (1.1) we derive the system
g+ F(t,z+vt)- (Vy—tVy)g + F(t,z +vt)-Vy f0=0,

(2.3) gt =0,z,v) = hin(z,v),
5t k) = 8(1, k. k1),

As in [4], we derive from (2.3) the following system on the Fourier side:

0:2(t,k,n) = —p(t, )W (k)k - (n — tk) f°(n — k)

(2.42) - / P, OW @) - [n— thk8(t, k — €, n— t£)dl
R3

t

plt.k) = fnlk kt) —/0 Pt k)W (k)k - k(t — ) fO(k(t — v))de
t A~
(2.4b) - / / BT, OW @) - k(t — 1) (. k — £, kt — t0)dl dr.
0 JR3

2.3 Linear Landau Damping in R3 x R3

The first step in proving Theorem 1.2 is understanding the linear term in (2.4b).
In particular, we need estimates on the linear Volterra equation

(2.5) ot k) = H(t. k) + /0 t KOt — v, k)¢ (t, k)dz,

where K°(¢, k) := —fo(kt)W(k)|k|2t and H (z, k) has sufficiently rapid decay.
Recall that by definition, £ is the Fourier-Laplace transform of the kernel K°:

2.6) L k) = /Oer’KO(t,k)dt - —[ooe§’|k|2zﬁ/(k)]75(kt)dz.
0 0

We begin by proving that (L) implies Landau damping for (2.5). See Appendix
5.3 for the proof, which is a variation of the arguments in [4,30].

PROPOSITION 2.3 (Linear L% control). Let £ satisfy the condition (L) with con-
stants Cy, k > 0. Let a be arbitrary and s > 0 be an arbitrary integer. Let H(t, k)
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and T* > 0 be given such that, if we denote I = [0, T*), then we take H(t,k) = 0
fort > Ty and

11k |* (k. k)" H(t. k)|

2
< 00.
L)
Then there exists a constant Cr,p = Cr.p(Co, s, G, k) such that the solution ¢ (¢, k)
to the system (2.5) satisfies the pointwise-in-k estimate,

2.7) I1kI* (k. k1Y ¢t k)| L2py < CuplIk|® (k. ke) HE. K72 .

Remark 2.4. As long as condition (L) is satisfied, there is no difference between

x € T? and x € R¥ for the purposes of Proposition 2.3. In [16, 17], the conver-
gence rates are degraded due to the lack of (L).

Remark 2.5. In fact, Proposition 2.3 holds for any s € R4 ; however, the integer
case is simpler. Once the integer case is solved, a decomposition argument based on
almost-orthogonality is applied to reach fractional s; see, e.g., [4] for an analogous
argument (although the finite regularity setting is easier).

It is important to discuss how restrictive the linear stability condition (L) is.
The proofs can be found in Appendix 5.3. The first observation is that a smallness
condition on the interaction is sufficient to imply stability (this follows immediately
from Lemma A.1).

PROPOSITION 2.6. There exists a universal ¢ > 0 such that if |W |1 ||f0||H3/2+
2
< c, then fO,W satisfy the linear stability condition (L) for some Cy, k, and G.
As discussed above, if one takes the interaction potential W(x) = /x|~ for
any u € R, then (L) fails for every equilibrium considered here [16,17]. However,

the screened Coulomb law (1.4) does not have this problem. Indeed, we have linear
stability for all o« > O.

PROPOSITION 2.7. Let W be (1.4), the fundamental solution to (1.3). Then for
any strictly positive, radially symmetric equilibrium f° H23 /2% with | fO()| +
IVFOo®)| < (v)™* for |v| large and all « > 0, W and f© satisfy (L) for some
constants Cy, k, and &. In fact, the same applies to any potential W satisfying

0<W(k) 5 (k)2
Remark 2.8. Of course, the constant k in (L) blows up as o« — 0.

2.4 Nonlinear Energy Estimates

Next we set up the continuity argument we use to derive a uniform bound on g
via the system (2.4). Define the following, which is convenient when considering
the density: for any s > 0,

As(t. k) = k|2 (k, k).
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We will employ the same notation for the corresponding Fourier multiplier:
As(t.V2) = |V V2.1V,

we hope there will be no confusion.

Fix regularity levels ¢ > 04 > 03 > 03 > 01 > 11 and constants K; > 1 deter-
mined by the proof. Let I = [0, T*] be the largest connected interval containing 0
such that the following bootstrap controls hold:

(2.8a) (1 V2, Vi) g (1) | 3yos < 4K1(1)°€?,
M
(2.8b) | A0apllz2 2 < 4Ka2€?,
(2.80) VP g()]7,05 < 4K3€?,
M
(2.8d) ”Aazlb\”LioL% = 4K4€2
(2.8¢) (V)" gllpge, < 4Ks€®.

Remark 2.9. A close reading of the proof suggests that one can take o; —0;—1 = 6
and 0 — o4 = 6, although this seems far from optimal. This technically brings the
regularity requirement given by the proof to 35; however, we did not attempt to
optimize this number.

Remark 2.10. The constants K, and K4 are determined only by the properties of
the linearized Vlasov equations (hence they depend only on f© and W), and the
constants K, K3, K5 are fixed independently, depending only on K, K4, and
universal constants.

Remark 2.11. Notice the order L;"L% in the estimate (2.8d). This norm is remi-
niscent of the norms used by Chemin and Lerner in [9].

PROPOSITION 2.12 (Bootstrap). Let (2.8) be satisfied for all t € [0, T*] with
T* < T (T° defined in (2.1)). Then for € chosen sufficiently small, the estimates
(2.8) all hold with 4 replaced with 2.

Proposition 2.12 comprises the main step of the proof of Theorem 1.2 (see
Proposition 2.17 below).

2.5 Useful Toolbox

First, we observe the following, which at least shows that the norms employed
to measure p in (2.8) are natural.

LEMMA 2.13. Define
po(t.k) = hin(k. kt).
For all s > 4, there holds (recall the notation H s+ from Section 1.5),

l4spollz2z2 S D 1e%hinllgsto+. I1Aspollpeorz © 3 12 %hinll i
lor|<2 loe[<2
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PROOF. Proving the first estimate is straightforward by the H 32+ (R3) — CO
Sobolev embedding applied on the Fourier side and M > 2,

o0
/ f e (e, k225 o . k)| dk d
0 R3

& (/0071;3 % dk dt) (|(§<:2”Zahin“§{;/[+2+)
< (1+ / / Iy
1

) E ||Zahin||i1;/;r2+)
< ap. 1%
= ||Z 1n||H1<‘7/I+2+-

loe] <2
o] <2

The second estimate follows slightly differently. For all k € R3 we have

Oo|k|(k k) |hm(k, k)2 dt < L (Z 2% hin|? )
0 s in\t, ~ 0 <k,kt>1+ in Hjj'H—

o] <2

S (2 Nl ). O

lee] <2

Next, let us point out a consequence of estimate (2.8e), which provides the dis-
persive decay of the density and force field.

LEMMA 2.14. Under the bootstrap hypotheses, for all 0 < o < o1 —y — 3, there
holds

(2.9)  I02]%(0z.192)7 pllLee S /R3|k|°‘(kakt)y|ﬁ(t,k)ldk < Kse(t) 77

PROOF. This follows immediately from (2.8¢) (and recalling that g (¢, k, kt) =
o(t, k) from (2.3)),

/ |k |* (k. k)Y [p(t, k)|dk < e/ k| (k. k)Y~ dk
< Ks(t)_“e[ (k,kt)?~1 dk < Kse(r)™37®.0
R3

Let us also record a few simple inequalities that will be used a few times in what
follows (on the Fourier side).

LEMMA 2.15 (L2 trace). Let g € HS(R%) withs > (d —1)/2 and C C R? be
an arbitrary straight line. Then there holds

Igllz2ccy <s 1gllas-
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LEMMA 2.16.

(@) Let g, g% € L2(RY x RY) and r € LY(RY). Then

(2.10) <

/ g (k.nr)g*(k —£,n —te)de dk dn
R4 xR xR4

1 2
lg™llz2 N~z Nrllzy-
(b) Let g' € L2(RY x RY), g € LY(RY: L2(RY)), and r € L2(RY). Then

2.11) <

/ gl ke, nr)g?(k — €, n —t£)de dk dp
R4 xR4 xR4

1 2
le ”Lﬁ_n le ”LI(R";LZ(R;;’))||”||L%~
As a result, if s > d /2, there also holds
(2.12) / g ke, Mr)g*(k — £, n—t0)de dk dn| <g.
R4 xR4 xR4

182z 202 10 rO;

2.13) f ¢ e myr (g2 (k — €, — 10)d0 dk dy| Sa.s
R4 xR4 xR4

[ PP LOR s VPN ] 12

As a straightforward application of the above lemmas, we show that Proposition
2.12 implies Theorem 1.2.

PROPOSITION 2.17. Proposition 2.12 implies Theorem 1.2.

PROOF. Estimate (2.8¢) directly implies (1.9b) by p(z,k) = g(t,k, kt), while
(1.9¢) follows by (2.9) above (also a direct consequence of (2.8e)).

To deduce (1.9a), begin by applying (k, n)°° Dy for a multi-index |«| < M and
09 < 01 — % and integrating (2.4a):

{(k,mDyg(t k,n)

= (k. 1) D¥in(k. 1)
t o~ ~,
- /0 (k. 0)7 D% (3(x. k)W (k)k - (n — k) /(0 — ko)) dr
- /t/ (e, )0 D2 (B(x, )W (0)L - [ — Tk)@(x, k — £, 0 — t£))de dr
0JR3

t t
=(k,r;)"0D$§in—/ Ld‘[—/ NLdr.
0 0
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By Proposition 2.12 there holds (using that ¢ is sufficiently large),

ILI2 f k2 (k. k)20 |o(t, k)2 (1 — k1)2°0| D ((n — k1) Oy — k1)) | dk dn
k. R3xR3

A

< [ PGk ot o ak
R3
s 62/ |k [? (k. k)?70721 dk
R3

S X))

Similarly,

LI, = 0210 1 (.

s €4<t>28_6.

e enyoipa z>|dz)2
3 |k _ £|8 b b
Therefore, both of the time integrals in (2.5) are absolutely convergent in L,2c "
(recall 0 < § K %). Hence, define

hoo(k, ) 1= §in(k,77)—/0 (. k)W (k)k - (n— k) [0 (n — k)dr

o
—// BT, OW ()L - [ — kg (t. k — £, n — t£)de dr.
0 JR3

Inequality (1.9a) then follows from the decay estimates on the integrands and the
definition of g. O

3 Plasma Echoes in Finite Regularity

As discussed in Section 1.4, the plasma echo effect is the main difficulty in
deducing Landau damping. When attempting the estimate (2.8b), one must get an
L?L7 — L7 L7 estimate on the integral operator:

t

(3.1 ot k) — // d(t, K (t, 7, k, £)dldr,
0JR3

where the so-called time-response kernel is given by

k12102 k(e — o)
(0)?

as will be derived in Section 4.1 below. This kernel measures the maximal strength

at which the £ mode of the density at time 7 can force the k™ mode of the density

at time ¢ through the nonlinear interaction with g at mode k — ¢, k¢ — £t at time 7.
By (2.8e), we estimate

(32 Ktk )= 18(c.k — £, kt — €7)],

kY2102 ()
02k — £, kt —Lr)or—1’

(3.3) K(t,t.k,l) < VKae
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for notational convenience we define 8 := o; — 1. By Schur’s test, it suffices to
bound the supremum of the row sums and the supremum of the column sums of
(3.3) in order to show that the integral operator (3.1) is bounded. This is the content
of this section, proved below in Lemmas 3.1 and 3.2. Similar time-response kernels
arose in [4] and [30]—the primary new insight here is the fact that we can prove
Lemmas 3.1 and 3.2 in finite regularity.

It is clear that the row and column sums of (3.3) are dominated by contributions
from large t and where k¢ — £t is small, which is only possible when k and ¢
are nearly collinear. On T¢, the one-dimensional reductions used in the proofs
of the analogous lemmas in [4, 30] are essentially reductions to collinear resonant
frequencies. In the proofs of Lemmas 3.1 and 3.2, we will separate the approxi-
mately collinear “resonant” frequencies from the “nonresonant” frequencies with a
time-varying cutoff. The fact that we can take the cutoff shrinking in time is due to
the dispersion encoded in the free transport on the frequency side, d; + k - V,;. We
will then use that the resonant frequencies comprise a small set that shrinks in time,
whereas on the nonresonant frequencies, K has much better estimates. The cutoff
is then chosen to balance both requirements; it is in this balance where d > 3 is
used.

LEMMA 3.1 (Time response estimate I). Under the bootstrap hypotheses (2.8),
there holds

t
sup  sup / K(t, 7, k,0)drdl < /Kae.
te[0,T*] keR3 JOJR3
PROOF. First, we eliminate irrelevant early times: for § > 4 we have
min(1,¢) Y, 1/2 k 1/2
/ / (D)€"~ |k| dedr < 1.
0 r3 (0)2(k — €, kt — LT)P
For a fixed k € R3 and all £ € R3, define

k-t
K” = Wk and KL =/ —EH,

the collinear and perpendicular components. Define the following parameters:
(3.4a) te(2.1),
(3.4b) b=pg""1,
where we will choose 8 such that at least b < é. Define the two subregions of
resonant £ and nonresonant £:
Ig = IR(v.k) = {€: 01| < (1 + )78 |k|P},
Ing = Ing(x. k) = {€: Je1] = (1 + ) [k,

The set /g denotes the frequencies that can resonate strongly with frequency k and
is a cylinder around the line containing k, which is shrinking in time. Physically,
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IR is restricted to frequencies that spend a long time sufficiently aligned with k.
The dispersive effect is highlighted due to the fact that we can shrink the cross-
sectional area of the cylinder in time. In /g, for each £ with { = ¢} we can
associate a disk of radius (1 + 7)~¢ |k|b that lies in the resonant region. We first
integrate over this two-dimentional disk; this is where we are going to exploit that
¢ € R? with d = 3 (note also that we have used the inequality |x + y|1/ 2 <
Y2 4 1y1Y2 for x, y > 0):

()12 k]2
/ / dldr
min(1,t) IR k Z kt — K‘[)

/ (O V2 + e
R ()2

|x|

dédr
)2k -, kt —£r)B

|k|1/2 |k|2b 12 |k|b/2
|Z||| +7(1 +‘L’)§/2 dsz‘E

5/
(3.5) i)

in(1,¢) | k ZH t—[‘lf)ﬂ (1+ T)2§

=T +1,.

In particular, |k|2b(1 +1)7 % = |k|(d 1)b(l +7)"@- l)é , and hence the argument
extends to all d > 3. Then, requiring that ¢ > ;, 2b + 2 < 2,and B > 4 we get

t |g”|1/2
RS deyd
b /minu,t)/R (k — €.kt — ¢T)p—1/272b 1at

1
< de
g /R DIRETETI.

N

which completes the first term in (3.5). For the second term in (3.5) we require
§>%and1+5b<4:

|k|1/2+5b/2
T N/ / dey dr
2 min(1,t) EH (k — EH kt —£||‘[)/3(f)5§/2—1 I

CMH

~,3 /];{ (k _£H>ﬂ—1/2—3b
<p L.

This completes the treatment of the resonant region in (3.5).
Turn next to the /g region. In this region,

lkt —Lz| Z t|€L| >

S P
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Therefore, using that b = 7!
’ k121602 ()
dedr
min(1,2) JIng <Z>2(k — 0, kt —K‘E)ﬂ

‘ () Ik|2 e
5/ / 73 dédr
min(1,0) JIng (0)2(k — €, kt — 07)B/2|k|Bb/2()B/2(1-0)

’ e
5/ / 5 dfdt
min(1,0) JInvr (€)2(k — £, kt — Lz)> (r)2(1=H-1

t |E | 1/2
< / / Z 3 dldr
min(1,6) JR3 (k — £ kt —£7)2 "1 {g)2(0-9~1
This integral is uniformly bounded provided that (using that the dimension is 3),

§—1>4 and §(1—§)>1,

which, using that 1 — ¢ < % (and otherwise ¢ is arbitrary), gives the regularity
requirement B > 10, which is also sufficiently large to satisfy all of the other
conditions above as well. U

The next estimate is in some sense the dual of Lemma 3.1, and the proof is
analogous.

LEMMA 3.2 (Time response estimate II). Under the bootstrap hypotheses (2.8)
there holds

T*
sup  sup / / I?k,g(t,r)dt dk < VKse.
t€[0,T*] ¢eRd JT JRY
PROOF. As above, we eliminate irrelevant early times: for f > 4 we have
min(1,7*) k 1/2 ¢ 1/2
/ / (D) k[ 771€] drdk < 1.
T R (0)2(k — €, kt — L1)P
For a fixed £ € R3 and all k € R? define

k-0
k|| = —/{ and kJ_=k—k||,

lef®
the collinear and perpendicular components. Fix as in the proof of Lemma 3.1.
(3.62) Le (21,
(3.6b) bh=p"L

Define the two subregions:
Ig = Ig(t,0) = {k : ko] < 1+ 075,
Ing = INg(t,0) = {k : |k1| = (1 + 07515},
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As above, I is cutting out a shrinking cylinder around the line containing £ and
is restricted to the set of frequencies that can create strong echo cascades over the
time interval of interest. Integrating over the two-dimensional disk as above,

T* 1/2 1/2
/ / e Ik| dr dk
min(1,7* ) IR —l,kl—l‘[>
1/21.11/2
v / ol
(3.7 min(1,7%) J1g ()2 (k) — € Kyt = Lx)P

T* 1/2 2b b/2
Sy —I (e L2 Yara
min(1,7+) JR (€)% (k) — L.kt — L1)B (1 4 1)2¢ (1 +1)8/2

=11 +1.

Then using that { > % and B is sufficiently large (equivalently, b is sufficiently
small),

T* |k|||1/2
7 5/ / dr dkH
min(1,7%) JR (kj| — €, k)t — (r)B-1

dky <p L.

Sb/ :
R [k |12 (k) — €)F—3

For the other contribution in (3.7) we use { > % and B is sufficiently large (equiv-
alently, b is sufficiently small),

T
1
Ir 2 dr dk
2 »[nin(l,T*)[R (k) — £, kit — Lr)B—1-3b(1 4 1)58/2-1 |

1
S| —————di S 1
N/]R{<k||_€)ﬂ_l_3b I~

This completes the treatment of the resonant region in (3.7).
Turn now to the nonresonant /g region. On the support of the integrand, notice
that

1%

t
kt —LCz| =tk | >

Recalling the choice b = B! we get

1/2(7(1/2
[ Ry,
min(1, T*) Ive (O2(k — €, kt —LT)B

1/25(1/2
/ / ()K"~ 1e] _ dr dk
min(1,T*) Ing (€)2(k — €, kt — £x)BI21€|Y/?(1)B/20-8)

/ / 0372 G-npyEDa—o-1 9 k-
min(1,7*) JIyg (k =€, kt —L7) (t)
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This integral is uniformly bounded in £ and 7 if (using that the dimension is 3),

§—1>4 and 2(1—§)>1,

as in Lemma 3.1 above. O

4 Nonlinear Energy Estimates on p(z, k)

4.1 L} Estimates on p

From (2.4b) and the linearized damping inequality, Proposition 2.3, we have
(recall Ay = [k|"/?(k, kt)?),

140,811 72)
I L
(41) 5 ||A64hm(k,k)”L?(1)
T. t . 2
+ / [Am(z,k) // B, OW ) - k(t —1)8(t.k — €, kt — Lr)dT d(] dr.
0 0JR3
To improve the Li estimate (2.8b), we integrate in k to yield

A2
HAU4P||L?L%(IXR3)

T e
4.2) 5/ f |Ag, (k, kt)hin(k, k)% dt dk
: o JR3
Ts t =R R 2
+/0 /RS[f1(,4(z,1c)[0/];Ks p(f,z)W(e)z-k(z—f)g(f,k—z,kz—ef)dfde] dr dk.

As in Lemma 2.13, we have

T, e
4.3) / / k| (k, kt)2%4hin(k, kt)|* de dk < €2.

0o JR3

It remains to see how to deal with the nonlinear contributions in (4.2). By the
triangle inequality and (1.2):

A2
H A‘”p”L’;’Li (IxR3)

Tw t
552+f f [// (k — €, kt — €)% |k|
o JR3 0J/R3

2
4.4) ﬁ(f,ﬂ)% “k(t —1)g(t.k — L, kt —Lr)|dT d€i| dr dk
Ts t . { . 2
+/0 /RS[/()[RS(Z,Zr)"ﬂM R L drdZ] dr dk

=+ T+R,

where we refer to T and R as transport and reaction as they are analogous to the
corresponding terms named similarly in [4] (the terminology reaction goes back
to [30] and transport goes back to [3]).
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Transport
The purpose of this section is to prove the following:
(45) T ,S K2K364,

which is consistent with Proposition 2.12 provided € is chosen sufficiently small.
By Cauchy-Schwarz,

T* t
T 5/ / [/ lk(t —t)(k — £, kt — L7)%* 8 (v, k — €, kt — L1)||k|"/?
0 R3 0J/R3

2
dr d€:| dr dk

14
‘Wﬁ(f’ 0)

< ([T @721 5 pjarae
o JR3LJoJR3 (€)

t
U/ k(t — ) (k — €, kt — €0)%4 8 (v, k — £, kt — £7)[?
0J/R3

¢
|k|(t)_5/2%|,b\(r,€)|dr de]dz.

Using (2.9),

T* t R 2
T < Kse/ / (// ‘(|k(t—r)|(k—€,kt—Er)"“g(r,k—(,kt—ﬂr)‘
0o JR3\JoJ/R3

|k|<r>—5/2%m(f, 0))dz dZ)dz "

T* . 2
< K5e/ / (// |k|‘k(z—r)k—Z,kt—Zr)‘”g(r,k—[,ki—ér)‘ dzdk)
o JR3 RxR

(r)™ 5/2<‘£)' A(x. O)ldr dt

< Ks€2 sup sup ( (// |k| |(kt —Lt) —t(k — O)|(k — £, kt — £1)°4

f>0£eR3
g,k — £, kt — ZI)|) dt dk)

2

ﬁm(k zmc er)

dgdk)

= Kse? sup sup ( (//
r>0(e]R3 RxR3

< Kse? sup sup (1’)_5(/3( sup /|m\w(r,k—e,w§—zz)|2dz)dk)
R

720 fcR3 wesS?2 /R

< ke sup sup (15[ (s sup [ 1029 (V) ) n koo = ) o ok )

>0 (eR3 3\yeR3 wes2 /R

The inside factor is an L2 norm along a line in R3, maximized over all possible
lines; therefore, by the Sobolev trace lemma, Lemma 2.15, we have from (2.8a)

T < Kse? sup(t Z [v*(tV,, VW (V )"4g||§§K5K164,

=0 le|<M
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as stated in (4.5). By choosing €2 <« KK, this is consistent with Proposition
2.12.

Reaction
For the reaction term we will prove

2 ~112
(4.6) R 5 K3 | Aoipli7 2.

since for € chosen sufficiently small, this contribution can then be absorbed on the
left-hand side of (4.4). By (1.2),

T* t . — 2
R5/ / [// k|V/? §(r,k—€,kl—Zr)w(ﬂ,h)‘“ﬁ(f,ﬂ) drdz] dr dk.
o Jr3lJo/r3 (€)
By Schur’s test, it follows that
t
R < (sup sup / K(t, 1k, 0)dr dK)
120 keR3 JOJ/R3
T* _ 5
4.7 (sup sup/ K(t, t, k,0)dt dk)||Ag4,5||L2L2,
>0/¢ecR3Jt JR3 1™k

where the time-response kernel K (t,7,k, ) is given in (3.2). Therefore, Lemmas
3.1 and 3.2 imply (4.6). Putting the previous estimates together and choosing €
sufficiently small implies (2.8b).

4.2 L?L% Estimate on p

Next, it remains to see how we can get the requisite L2° L% estimate on p. For
this, we will rely on the higher regularity controls (2.8b) and (2.8c¢). Fix k arbitrary.
As in (4.1) above, applying Lemma 2.3 to (2.4b) implies

IAC K0P B 172

< WK k)2 hin (K ) | 72

Ts t =R 2
+/ [|k|1/2<k,kt)"2// ﬁ(r,e)W(e)z-k(z—r)g(z,k—e,kt—er)dzde] dt
0 0J/R3

= L(k) + NL(k).

From (2.13) it follows that L (k) < €2, so it suffices to consider the nonlinear term.
We begin by dividing into two contributions via the triangle inequality:

[ele] t
NLsf (|k|1/2// [(€,07)72 + (k — €, kt — £1)°?]
0 0J/R3 N 2
m@xwuqm-mf—ﬂgm—ejm—eﬂmfw)<n

SR+T.
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For the R term we start with Cauchy-Schwarz followed by (2.8b) and (2.8e) for
some « > 6 depending on oj:

+o0 t 204 ~ )
R< [ (e P drat
0
€] Ikl - . 2
(//R3 ooy 0k = Lkt — (o) dedt
oo ﬁl k) —7|?
e |
< KaKse / //R% V1L, zz Y2oi—20 (k — 0. k1 — fryzer O 4647
< Kokset [ "" " U a)drdr
kt a/z RS (0)3(C, ()e/2

< K7 K5 e |k| |t ! drd
2 6 kt a/2< )3—28 T

S K2K5€ .

Consider next T, using p(z,£) = g(z,£,£7) and (2.8e), followed by Cauchy-
Schwarz in £ and (2.8c), again for some o > 3 depending on the gaps between o

Foe |k|”2|e|
T < Kse? / (// s k(= Dk — €kt — €x)7
R3 5

|g(r,k —Z,kl —{t)|dt dﬂ) dr

2

4 +o00 |k| ( t |€|2 1 )1/2
skske [ o U O o wemiam ) @) @
4 +o00 |k| t 1 1/2 2
< kakset [ e (] <’)(<r>5—48) i) w

<1<1<e4/+Oo K] dr
NIl koK)

< KsK3e*.

This completes the estimate L2° L? estimate on p.
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5 Nonlinear Energy Estimates on g

5.1 High Norm Estimates
Estimate on [|(Vy)g || o4
M

First consider the velocity high norm estimate on g stated in Proposition 2.12.
Let o € N3 be a multi-index. An energy estimate yields

! >
S (V)08 e

. // (1) (k. 1) DEg (k. ) () (k. )™
R3xR3

(B, k)W (k)k - D ((n — k1) fO( — kt)))dk dn

- ///]R3xR3xR3 (n) (k. m)7* Dy gk, m) () (k. n)*

(B, OW (0)€ - DE((n — k1)g(k — €, — €1)))de dk dn

=L+ NL.

Consider first the linear term L. We have

I
(k)?

B(t. k) |(n — k)| DE((n — k1) £°(n — k1))|dk dn

L 5/ (n) (e, )4 | D2 & ke, m) | (et} (k, k)4 =L
R3xR3

5[ (n) (k. n)°*| Dy & (k. ) |(k. kt)o4e|k| '/
R3xR3

B, k) (n— k1) | Dy (n — k1) [ (n — k1))|dk dn

< OIVo)v¥gll gosll Aoy Pl 2

& (I)3 ~2
ﬁ||<vv>v gllH 5 1 4oupll2.

which for §’ sufficiently small depending only on universal constants and f° and
K sufficiently large depending only on 8’ and K> is consistent with Proposition
2.12.

Turn next to the nonlinear term N L. Tt is here where the full (¢)°/= growth is
observed. First, we commute the moments and the differentiation in the transport

5/2
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operator:

NL=— / (V) (V)% (0% ) (V) (V)%
R3xR3
(E(t,z +tv,v) - (Vy — IVZ)(v“g))dv dz

o ARSI AT
(E(t,z + tv,v) - Vy(v¥)g)dvdz
=NLo+ NLy.

First consider the leading-order NLg term. As is standard when treating trans-
port equations, we use the following integration-by-parts trick:

NLo== [ (GO @ [(V)T) (B2 + 1.0) - (V= 1))
ROR — E(t.z + 10,0) - (Vy — 1V)(V) (V) (v%g) |dv dz.

On the frequency side this becomes the following, which we decompose based on
which frequencies are dominant:

NLo==[ | o DR () (k. = (= )k = L = 1))
(Bt OW (©)L - (7 —kt)DEG(k — €, 7 — £1))de dk dn

= —fR3xR3xR3 (Li,et12 —e.—10) + Lie,ee1<lk—.q—re1) (0) (k. ) 7* DR (K. )
((m) (ke )% — (n — 2£) {k — £, — 1£)°*)
(e, OW (£)¢ - (n — k1) D@ (k — £, — £1))d dk dn
=R+T,

where the terminology is again reaction and transport in analogy with (4.4) (and
[3]). Consider the leading-order R:

R< / 10,0015 et sy () e 14| D2 (K. )| () (€. €)%
R3xR3xR3 | |
1p(t, O 5,5 In—kt||g(k —£,n — Lr)|de dk dn

(€)?
~ Le)|et
S/ leulzk—e, n—ze|(7l)(k,71)04|Dag(k,?7)\( il
R3xR3xR

(. 1| ((V)g) (k — €0 — £1)|de dk dn

(€, 01)0

N 6(f)2||(Vu)v"‘gllH(;M |4yl 2

8 200
ﬁll(%)v g||H<7+€ 5 14oupll 2.
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which, for §’ sufficiently small and depending only on universal constants and ¢
sufficiently small, is consistent with Proposition 2.12. This completes the treatment
of the reaction term R.

Turn next to the transport term. We use the following inequality, which follows
from the mean value theorem and holds on the support of the integrand:

(m (k)7 — (n—tl)(k —€,n— 1)

= Mk, =k =L,n—16)%) + ((n) — (n—t&)(k —€,n—1L)°
(M — €, — &)L, Le| + (t0)(k — £, n—10)°
() ((n—t0)(k — €, n—t8)" " + (k —£,n—1£)°).

N
N
Applying this to T implies

T 5/ L, 01 <le—e,n—ce) (M) (k. )74 | DY g (k. ) |
R3xR3xR3
((n—1€)(k — €, 0 —10)°* 1 + (k — £, — 1£)%)
[0 — kt|| DGk — €. — €0)||€](€. €1)?|p(e. £)]de dk
=T + T>.

For T7 we use (2.9):

T1§/ ()kn““!Da (k, 17)‘ — )k — L, n— L)%
R3xR3xR3
|DEg(k — €,n— £0)||€1(1) (¢, £)?](t, £)|de dk dn

< IVoh®glde / 1€1{0) (€. 1)1, £)]ae

W”(Vv)g”H" -

For T, we similarly use
T2 < / () (k, m)? | Dy gk, m)|(k — €, —16)° (e (k — €),n — L)
R3xR3xR3
|Dg§(k —4£,n —Zt)‘|€|(€,€t)2|ﬁ(t,f)|dﬁ dk dn

€
S a8 g 162 Vgl

which for € sufficiently small is consistent with Proposition 2.12. This completes
the leading-order T term.
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Turn next to the moment term N Lz (recall (5.1)), which we divide into high-
and low-frequency contributions similar to N L:

Niw s 3, /]R e etrlzle—ta—st + Leeri<tk—tn—ca) in) (k. m) 7 DY (k. )|
1B1=Tal-1 JURR A
(n) (k. m)®* (e, OW (©)EDF gk — €.5 — £1)|de dk dn

=Ry + Ty
The Rjs term is treated in essentially the same way as R above:

Ry s ) /RXR%XR}1|£,£t|z|k—[,n—t£|<n)(k’77>04|Dg§(k’77)|
|Bl=la|—1 ) €|

(E0){C. €715 Ol 7oy [ Dy 8k — €. — EndE dk dy
e(DI(Vo)v*gl gos | APl 2

81 2(1‘)
< (t)II(Vv)v g||H<r4 +— IIAa4p||Lz,

which for & sufficiently small depending only on universal constants and € suffi-
ciently small, is consistent with an improvement to (2.8a). For the Tjs treatment,
we use the following, applying (2.9):

5 4
Ty < )| D23k n
" |ﬂ|<Z|:oc| 1/1'@3XR3XR3 7) | g( ,n){(ﬁ)z
P(t, )10 — t€)(k — £, =107 DJR(k — €, — t1)|de dk di
n

€
S V08 g 1092, Volgllgy.

which is sufficient as in T, above. This completes the estimate on || (V) g]| HY,-

Estimate on [|(V;)g || ;o4
M
Next turn to the estimate on |[(V;)g|| ;o4 , which proceeds similarly to that on
M

Vo) gll HE Let o € N3 be a multi-index. An energy estimate yields

EEHWZ) g||Ho4
/ ) (k. 1) DEG (k. ) (k) (k. )"
p(z )W (k)k - D% ((n — ke) 7y — k1)) dk dy

A3XR3XR3(k>(k 77>04D°‘§(k 77)( )(k 77)04
(B(t. OW (0)€ - DE((n— k1)g(k — £.7 — £2)))de dk dn
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The linear term is treated as in Section 5.1:
k
L 5/ (k){k.n)*| D3 g (k. n)\(k)(k,kt)vﬂ_'z
R3xR3 R . ' N (k)
PN — k)4 [ D (= ko) [ = ko)) |ak do

% /1;3 3(k>(k’ 77)04‘D$§(kv n)\(k,kt)"4|k|1/2
PG k)| (n = k)4 | Dy (g = ket) [ — k) |dk

)

’
2 ~112
< m|l(VU)v°‘g||Hg4 + 5 [ 4oupll 2.

which, for §’ sufficiently small and depending only on universal constants and f°,
is consistent with an improvement on (2.8b) provided K is chosen sufficiently
large (depending on §’ and K3) and K, is consistent with an improvement on
(2.8¢).

As above in Section 5.1, we commute the moments and the differentiation in the
transport operator:

V== [ O DTN E 2 + 10,0) - (T = )0 )i d:
6D N / (V2 UV g) (Ve UV)THE( 2 + tv,v) - Vy (v¥)g)du dz
R3xR3

= NLo+ NLy.

First consider the leading-order NL¢ term, which we begin as above with an inte-
gration by parts and subdivide based on which frequencies are dominant:

NLo==[ | (Tl [Vl )™ (B2 + 10,0) - (T = 1¥)(0%)
—E(t,z+tv,v)-(Vy — tVZ)(VZ)(V)”“(v“g)]dv dz

= _/]R3><]R3><R3 (L, 012 fk—t.n—t] + Ve ee| <l—t.n—ee)) (k) (k. M) * DE & (K. 1)
(k) (k) — (k=€) (k — £, n — t£)7*)
(,5([, K)W(ﬁ)ﬁ -(n— kt)Dg:g\(k —L,n— Et))dﬁ dk dn
=R+ T

The reaction R is treated similarly to the treatment in Section 5.1 (note that there
is one less power of ¢ lost),

8 o 12 2(5)3 A2
I gl + 5 140,517,

5/
which for §’ sufficiently small depending only on universal constants is consistent
with an improvement on (2.8a).

R < ) {Vo)vgllgos | Aospl L2 <
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Similar to the analogous estimate in Section 5.1, we have
T < / L 01 <fk—e,m—re) (k) (k. n)%*| D5 g (k. )|
(k=) (k — ,n— &) + (k — £, — 1£)7)
In— ke||DEG(k — €1 — £o)|lEl(e. 1) £)]de dk dy
=T+ T>.
The first term, 77, is treated as above.

T1§/ (k)k7704|D g(k, r)){k Ok —€,n—1tL)%
R3xR3xR3
|D2@(k — £, — £0)| |1}, £0)? |3, €)]de dk dn

IS II(Vz)v“glllzqg/ [£1(e) (L. £1)?|p(e, O)]de
VZ o .
<) —51(V2) f e

The second is treated with a slight variation:

T2 < / (k) (k. n)°| Dy g (k. n)|(k — £, —1£)° (t(k — £),n — Lr)
R3xR3xR3 oA 2
DGk — .5 — €0)||E1(€. 1) (2. )] dE dk d
€
N W”(Vz)fHH;\g||(1Vz,vv)f||H;{4a
which is still consistent with the final estimate provided § < %
The lower-order moment term N L is treated as in Section 5.1 and is omitted

here for brevity. After collecting all the above estimates and choosing € small, this
completes the improvement of (2.8a).

52 The LH ;13 Estimate

In this section we improve the estimate (2.8c) as stated in Proposition 2.12. For
o€ Nd an energy estimate yields

2dt A AR
== [ W™ DRk k1)
k)W (k- D(n — k) fOn — k) do

- / k1% (. )72 DEZ (k. )k |® (k. )
R3xR3xR3 ~ R
(P, OW ()L - Dy ((n—kt)g(k — £, n—L£1)))dL dk dn
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The linear term L is treated as follows:

|k|1+3
L s/ k1% (k. )3 DE& (k. )| (k. k1)
R3xR3

Aék
|B(t.k)|(n — k1) Dy (n — k1) f*(n — k1)) |dk dn

| |1+5
o’ ~
. (k. k1) (e, )
(n— kt))}dkdr]

5/ Ikl (k.| Dgg (k. n)\
R3xR
(n k1)°3| D2((n — kt) f

1 o~ 1/2
< m./]R3XR3|k| (k,n "3‘D gk, n)} (k,kt)°*|k| /

|p(t, k) [{n—kt) "3\D$((n—kt)f (n—kt))|dk dn
| 5 R
< W‘“ad gHH}“’;HAmPHLIZC,

which is sufficient to deduce |||d, |8 gllgos s K»€? via (2.8b). This is consistent
M

with an improvement of (2.8c) by choosing K3 sufficiently large relative to K5 (see
Remark 2.10).

As in Section 5.1, we begin the nonlinear estimate by commuting the moments
and the differentiation:

NL = - / 19,18 (V)7 (%) 8 1° (V)3
R3xR3
[E(t,z +tv,v) - (Vy —tV;)(v*g)]dvdz

52 [l @) ) el (9)
R3xR3
(E(t,z +tv,v)-Vy(v¥)g)dvdz

= NLo+ NLy.

For the leading-order term, as above in Section 5.1, we use the following via inte-
gration by parts and subdividing based on frequency:

NLo = /R L0z WP @I [0 (VIPE 2 + 1v.0) - (Vo —1V2) (0))
[E(t, 2+ 1v,0) - (Vo —1V7)]0,]* (V)73 (v% g) |dv dz

= _/R%x]z@xnv (V012 k—t,n—6) + Lje,eei<le—t.n—ee) 1K1 (k. )73 DEG (k. )
(1l (e, m)> = [k — £ (k — €, — 1))
(Bt OW (0)€ - (n— kt)DZg(k — €. n — €))dl dk dn
=R+T.
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In the reaction term R, we use that on the support of the integrand there holds
(using § < 1),

(53)  |Ik[® ke, ) — ke — €15 (k — £, — 10)%3] < (€15 + [k — £%)(L, £1)73

Hence

Rs/ I e m) | D5 . )| .00 [t )
R3xR3xR3
(In— €] + 1]k — z|)|D°“(k 0.0 — €1)|dt dk dy

| |1+5

e Dy . ) . o)
R3xR3xR3
Ik — €% (In — £1] + 1]k — Kl)\D“ (k — €, n— £r)|de dk dn

= R,y + R1;z + Ro;v + Ry, 7,
where the subdivisions R;.y versus R;.z denote the terms involving |n — £¢| and
t|k — £|, respectively. The first contribution we treat in a manner analogous to the
treatment of the L-term above (using |E|1/2+‘s (€,01)"1/278 < (1)=1/278 1 emma
2.16, and Cauchy-Schwarz):
Riv s [ k) Dged ) L
LV < R3xR3xR> 7 n 8,1 (0)2()1/2+8 1
|p(t.0)|n —Lt| Dy g (k — £.n— Lr)|dL dk dn

1921"/2(8,.,9,1)%p /H gg(r,e,-)”L%dz

H?

1 §
S w191
1 2
s Wﬂlﬂzlsgllm 11021Y2(0, 0:2)73p|| .-

This estimate is sufficient to improve (2.8¢c) for § > 0 and € sufficiently small by
(2.8b).

Turn next to Rz, which is treated with a slight variation (using (2.8¢)):
| |1+8

Riz < / 1 s D3tk m| L e ey
R3xR3xR3
|[>(t,€)|r;—€t||k—€|D"‘”(k ¢, n— £0)|de dk dy

szl [
(5.4) < 1]10) g||,,,;;/R o (6.6 D

s ’ | |1+28 1/2
,St“|3z| g“H,‘(f (/IR 0 (€, et)~ 204+203d€) |||az|1/2(3z,azt>04p”L2

1 § 112 1/2

S e el e g 1012002, 0207

which is sufficient to improve (2.8c) for € sufficiently small. The terms Ry.z +
Ry.y are treated in the same manner as Rj.z; the details are omitted for brevity:

1
Riw + Ruz < 75 10:8 [z 102720z, 02000 1.2
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which is sufficient to improve (2.8c) for € sufficiently small.
Turn next to the transport term 7. On the support of the integrand there holds

(from the mean value theorem)

|1k P (e ) — [k — £ (k = £.0 = 1£)7] <
lk —€151e, €| (k — €,n — €)1 4+ (k — €, — 10)%3||k]® — |k —€]°].

Therefore,

Iﬁllﬁ 5 4

Tﬁfw . R;V" (k.m)%|DFg(k.n)| |p(t, O)l|n — kt|
X X
k=% (k — €, — 1)~ 1|D 2k — €, 7 — tr)|de dk dn

R l

+/ 1 . ) [ D&k )| e )
R3xR3xR3

I — k|| Ik [ — k — ¢ |k 0. — €)% | D%g(k — £, — €1)|de dk dn

=T+ T>.
First consider 7. Using |n — k| < (¢t)(k — £, n — t£) and (2.9), there holds

N LI{t)|L, Lt
s [ ke pggen]
R3xR3xR3

1p(t, )|k — € (k — €,y — Zz )72 D2 (k — €. 1 — €1)|de dk dn

Ll(e)|€. ¢
o P e

< bl

For T, we instead have the following, using ||k|8 — |k — €|8| < |€|8 and (2.9):

146
T < / kP (k. )% | DS (k. n>\' | - 19.0)
R3xR3xR3

In—kt|(k —€,n— 1) 03}Dgg(k — 0,0 —n)|de dk dy

|€|1+8
< 1020 1 gy (02 1(Ver. Vo) gl o )<>5/2/R3 g e 0lat

< W!Hazl gHHJ(\’f«[)_S/zII(Vz”Vv)gHH;‘ff),

which suffices to improve (2.8c) for € sufficiently small by (2.8a).
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Turn to the lower-order moments. We divide the treatment into reaction and
transport as above:

NLpy < Z /]:R3X]R3 R3(1\e | lk—tm—tt] + Lie.0e|<|k—t,n—te))
[B|=la|-1
k1% (k. n)°3 | D¢ (k. )]

kI (k. 1) Bt OW ()€ Df g (k — £, — £1)]dC dk dn

=Ry +Ty.
For the Ry term, we may treat as Ry;y and Ry.z above. Indeed, using (5.3) and
treating the resulting two terms as in (5.4) and (5.4), respectively,

. 1)1 4 jefk — e
Rus ) /N . Rglkl (k. )7 Dy & (k. ) o (€, 01y
[Bl=la|-1 RTX

(. 0| DEg(k — £.n— £1)|de dk dn

1
S iz 10el g Lz 106172 02, 020070 .2

which suffices to improve (2.8c) for € sufficiently small by (2.8b). For Tjs we can
use a treatment as in 75:

& o3 an
e |BIZ~:| 1/]R XR3XR3|k| {fe. m) }D g(k, 77)|

1+
¢ |

(¢, O)|(k — €, — £1) U3|D,€g(k — 0,7 — €r)|dedk dn

— ¢ 1+6
|||8z| g“H"3( )21Vt Vv)g||H 3)(t 1)/ /R3| |

<@)
< —|||az| g”H"S(U) / ||(;zlv ;v>g”(.1"4)’
(1)3/24‘5 M M

which, as above, is sufficient to improve (2.8c) for € sufficiently small.

lp(z. £)]de

5.3 The L ‘t’°L,‘:° Estimate
R

In this section we improve (2.8e). Integrating (2.4a) gives
(k. ) 18(T. k., m)|

(e ) [Bin (k. 0) | + (k. ) / |6 k)W (k) - (n — k) fO(n — k)] dr

+ (k,n)° / /|p(l DLW ) - (n—kt)g(t,k — L€, n—Lr)|dlde

=I]+L+ NL.
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For the linear term we have (using |f0(77 —kt)| S (n—kt)"0173/2)

T 1/2
L< ( / <k,kr>2"2|ﬁ(r,k)|2|k|dz)
0

T R 5 \1/2
(0 kI — kY2 (W) (n = k)| 7001 — ) dz)
Se.

For the nonlinear term, we use a more sophisticated estimate. Write

NL<// k1% ( Zﬁt"‘ +(k—€.n—n)®)

oz, 15)|< 02 |77 kt|[g(t.k —£.n—Lr)|dr de

= NLyg; + NLrg.

The easier is NL g, which is handled via the following by (2.8d) and (2.8e) (also
using that 0, — 01 and o are sufficiently large),

T 1/2
NLHLsf (/ |p(z,5)|2|z|<e,ez>202dz)
R3 0
2

(/T |€lIn — k|
o (0)4(C,€1)2@2=00 (k — ¢, 7 — 1£)20

1/2
(k— €, —t0)25(t,k — 0,0 —t0)? dt) de

62/ (/T €]l — ke ? dt)l/zdz
rR3\Jo (0)4(€,£1)2(02=00) (k — £, 5 — 1£)201

"2
562/ ( 3 ) dl
w2\ €] ()6

< €.

A

Now turn to the NLy g term. First, we use that p(¢,k) = g(t,k,kt), (2.8e),
and (2.8c); second (using that the dimension is d = 3)

T V4
NLLHs// |§(z,ez)|H|n—kr|<k—e,n—mm@(k—e,n—emdrde

//R3 gg[ 2|'I—kl|(k L,n—Lt)°" gk — £, n—Lr)|dr d

|£|2 )1/2
¢
& 6/0 m(/mz (0, 01)201 (0)4 |k — £]* ‘

1/2
(/ k — 0 (k — 0, n— €)% |g(k — €,y —Et)|2d€) dt
]R3




34 J. BEDROSSIAN, N. MASMOUDI, AND C. MOUHOT

T 2 1/2
2 14| dz) q
‘ /0 (l>(/Rs (0, L1)201 (£)4 |k — 0?8 t
T 1 1/2
2 o) o

2.

A

A

A

which, by choosing € small enough, completes the improvement of the L°°L <R3
estimate (2.8e). As this is the last estimate, this also completes the proof of Propo—
sition 2.12.

Appendix: Details Regarding the Linear Problem
First, we state an important lemma regarding L.
LEMMA A.1. Recall the definition of L in (2.6). For 0 < j <o and any { > 0
(A1) k|0, LG, k)| S WLl f 0l gy+arze.

0+3/240
€ HM

PROOF. By the regularity requirement f° and the Sobolev trace

Lemma 2.15, we have

0] LG, k)| < / e 1 Gl 1] 70 ke
0

+o0 k
=/ W ()l ! f°( )d
A i

+o0 . k 2 1/2
selwin ([ 2001 72 (s ) os)
0

< ||W||L1||f0||H21+3/2+z. O

Next, we prove Proposition 2.7.

PROOF OF PROPOSITION 2.7. Let us recall the following formula from [30]
(essentially from [32]; see also [16]), adapted here to our slightly different defi-
nition of £, which neatly divides £ into real and imaginary parts:

Clio.k) = W) p /(f"o)vflz =) (557))

Rey= [ o

Wr‘i‘kL

where

Next note that when £ is radially symmetric, fk0 does not depend on k. Further,
recall that if f© is radially symmetric and £ is strictly positive, then ( fko)’ < Oby
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v € R3 (see, e.g., [30]). Further, observe that, by Sobolev embedding, f° € C%Y
for some y € (0, 1), and hence the real part of £ is also a C %Y function of w|k| ™!
(since the Hilbert transform maps C%? — C%Y for y € (0, 1) [36]). Next note

that
() ()
p.v./R dr <0,

r

and hence by the Holder continuity, there is an m depending only on f° and «
such that, for all w|k|™' < m, there holds

(V)
v [ dr <

ol 2

As0 < W (k) < L (recall (1.4)), it follows that for w|k| ™" <m, |£—1] > L.
For w|k|™! > M, for M to be chosen below sufficiently large, write

V/ (R "

r—olk|™!

O/l’ r
:/l (fk)()ldr+p.V/| (fk)()

rl<iolk|™ r —olk|” rI>tolkl™t r —a)|k|

g <>z( Y,

Irl<dolk|™ 1
+pv / (fk) (’)
ri> 3ok~ 1 —wlk|™!

=L;+ Lo.
For f© and V £ rapidly decaying, the outer integral satisfies

k|

Lo <
0)3

~

Since ( fko)/ has zero average and is rapidly decaying, the leading-order contribu-
tion to the inner integral is also decaying rapidly:

k|?

_K () (ndr < 5

Irl<lolk|™!

Therefore, the next-order contribution is

k|? / k|
Ly = —L/R(fko) (r)rdr + o(lw—L).
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It follows that for w|k|™! > M,

|k |? 0y/ k|
SR fR(fk) (r)r dr + O(F).

Therefore, for M chosen sufficiently large (depending on « and £?), there holds

ReL(iw, k) =

1
ReL(iw.k)—1] = 2.

On the other hand, for all 0 < m < M < oo, due to the assumptions on fko, the

imaginary part of £ is bounded uniformly away from 0 over m < a)|k|_1 < M;
that is, there exists a k = k(m, M) > 0 such that

inf ImL(iw, k)| > «.

m<olk|"'<M

The result then follows. U
Next we prove Proposition 2.3.

PROOF OF PROPOSITION 2.3. Note that ¢ will not generally be compactly sup-
ported in time but obviously

K1 (k. k) 0.0 | 2y < (K1 Kk 0.0 2,
Step 1. A priori estimate for integer o. Define
(. k) = |k|*¢p(t. k), H'(t.k) = |k|*H(t,k),
and multiply both sides of equation (2.5) by |k|* to derive

t
(A.2) (k) = H'(t,k) + / K°(t — 7, k)®(z, k)dr.
0

If we assume a priori that all the quantities involved are L? integrable in time, then
we can take the Fourier transform in time (extending as O for # < 0 and extending
H by 0 fort > T,), and we have for v € R,

(w.k) = H'(w.k) + K (0. ). k),

where E)(a), k), E//(a), k), and Eﬁ (w, k) is the Fourier transform in time of ®(z, k),
H'(t, k), and K°(t, k), respectively, after extending by 0 for negative times. Now
we note that

(A.3) Kw. k) = Liw. k).

Regularity estimates in w imply decay in ¢, so let us prove H? estimates in w.
Taking B derivatives, where 0 < 8 < o, and multiplying by |k|ﬂ (k)Y for0 <y <
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o gives
k188 (k) B(w, k) = [k|P (k)7 0B H' (o, k)
B /3 R o~
+ (kI (k) Z(j)ag—fﬁ(iw,k)aguq>(w,k).
j=0

By taking L2 norms and using the stability condition we then have

[kIP (k)Y 85 B(-. k)| .2

Sep KPP () OB H' () 2
B-1 . )
+ (k)7 Y IKPT 087 LG k)| oo Kl 05, BC- )] 2 -
j=0
Then using (A.1) and induction on g, we get for all 5, 0 < 8 < g, and all s for
0<s <o,

(A4) k21 (k) D, ) 2ry Ssp PV Ik H (0| 2y

Now we apply (k,kt)? ~ (k)° + |kt|° and use (A.4) with B = 0, s = o, and
B = 0,5 = 0, to conclude the a priori estimate (2.7).

Step 2. Justifying a priori estimate for integer o. Recall that this argument as-
sumes a priori that we already have sufficiently rapid decay on ¢. In order to make
this argument rigorous, one may use the technique described in [4,39] which is for
all § > 0, define ng(¢r) = o812/ 2, and choose ;< 0 to be a real number; then
study

D8 (1, k) = eMns(1)D(1, k).

It is straightforward to show that for C sufficiently large |®(z, k)| < e’ and hence
for u < —C, one goes through the derivations above and derives:

oy e H(-.k)
D (w, k) =ng * (1 —L‘(,u—l—i-,k))(w)'

Moreover, this function depends analytically on u as long as we stay away from a
singularity where £ = 1. By analytic continuation, we may hence deduce that this
formula holds all the way for all & < 0. From there, one may proceed by taking
derivatives in @ on ®° (w, k) and then passing to the limit § — 0 to deduce the
desired estimate (2.7). O
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