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Abstract

We prove Landau damping for the collisionless Vlasov equation with a class of
L1 interaction potentials (including the physical case of screened Coulomb in-
teractions) on R3x � R3v for localized disturbances of an infinite, homogeneous
background. Unlike the confined case T3x � R3v , results are obtained for initial
data in Sobolev spaces (as well as Gevrey and analytic classes). For spatial fre-
quencies bounded away from 0, the Landau damping of the density is similar
to the confined case. The finite regularity is possible due to an additional dis-
persive mechanism available on R3x that reduces the strength of the plasma echo
resonance. © 2017 Wiley Periodicals, Inc.

1 Introduction
1.1 The Model

The collisionless Vlasov equation is a fundamental kinetic model for so-called
hot plasmas and also arises elsewhere in physics, for example, in stellar dynam-
ics [7, 27]. For single-species models, the unknown is the probability density,
known as the distribution function f .t; x; v/ of particles in phase space. In this
work, we consider the phase space .x; v/ 2 R3x � R3v and distribution functions
of the form f .t; x; v/ D f 0.v/ C h.t; x; v/, where f 0.v/ is the infinitely ex-
tended, homogeneous equilibrium and h.t; x; v/ is the mean-zero fluctuation from
equilibrium. Then, the Vlasov equations for the fluctuation are given by

(1.1)

8̂̂̂<̂
ˆ̂:
@thC v � rxhC F.t; x/ � rv.f

0 C h/ D 0;

F.t; x/ WD �rxW �x �.t; x/;

�.t; x/ WD
R

Rd h.t; x; v/dv;
h.t D 0; x; v/ D hin.x; v/:
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The potential W.x/ describes the mean-field interaction between particles. In this
paper we will be considering only W 2 L1 that satisfy (denoting hxi D .1 C

jxj2/1=2),

j�W .k/j . hki�2:(1.2)

As we will see, one of the reasons for this assumption is that, together with a
stability condition involving f 0 (see definition 2.6 below), (1.2) ensures that the
linearized Vlasov equation behaves similarly to the free transport @thCx �rxh D 0
(for long times) even at low spatial frequencies. Indeed, the results of [16,17] show
that this is not true in general if one allows Coulomb interactions �W .k/ D jkj�2.

Screened Coulomb interactions provide a physically relevant setting that satis-
fies hypothesis (1.2) and the stability condition in definition (2.6) for a large class
of f 0 (see Proposition 2.7 below). This model arises when considering the distri-
bution function for ions in a plasma, after making the approximations of (1) that
the electrons can be considered massless and reach thermal equilibrium on a much
faster time scale than the ion evolution, (2) that the plasma is near equilibrium,
(3) that an electrostatic approximation is suitable, and (4) that ion collisions can be
neglected. In this case, the force field F satisfies (some physical parameters have
been suppressed for notational convenience)

F D �r�; ��� C ˛� D �;(1.3)

where the parameter ˛ > 0 accounts for the fact that the electrons equilibrate in a
manner to shield the long-range effects of the electric field. The quantity ˛�1=2 has
units of length and is proportional to the quantity known in plasma physics as the
Debye length; it is the characteristic length scale of the mean-field interactions [7].
See [18–20] and the references therein for more details on the model (1.1) with
(1.4) in the context of ion dynamics in quasi-neutral plasmas. In the case of (1.3),
we have F D �rxW �x � with

�W .k/ D 1

˛ C jkj2
;(1.4)

which satisfies (1.2).

1.2 Landau Damping and Existing Results
It was discovered by Landau [23] that the linearized Vlasov equations around

homogeneous steady states satisfying certain stability conditions induce time de-
cay on the nonzero modes of the spatial density. This decay, which is exponentially
fast for analytic data, can be more easily deduced for the free transport evolution
@th C v � rxh D 0. For the free transport evolution, it becomes evident that
the decay is due to to mixing in phase space; that is, spatial information is trans-
ferred to smaller scales in velocity, which are averaged away by the velocity inte-
gral for � (this appears to be first pointed out in [38]). The work of Landau can
be summarized as asserting that the dynamics of the linearized Vlasov equations
@thC v � rxhCF � rvf

0 D 0 are asymptotic to free transport in a suitably strong
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sense as t !1. A number of other works regarding the linearized Vlasov equa-
tions followed, providing mathematically rigorous treatments, clarifications, and
generalizations [1, 10, 16, 17, 29, 32, 38]. The phenomenon is now known as Lan-
dau damping and is a cornerstone of plasma physics in approximately collisionless
regimes; see, e.g., [7, 34, 37].

The dynamics for each spatial mode decouples in the linearized Vlasov equa-
tions and the damping is derived in a relatively straightforward manner via the
Laplace transform. In the nonlinear equations, there exist steady states and travel-
ing waves with nontrivial densities [6, 25]; however, one can still hope for Landau
damping in a perturbative nonlinear regime. In the perturbative nonlinear setting,
the decoupling of Fourier modes of course ceases to hold, and it remained debated
for decades whether or on which timescale the damping would hold (for example,
the various discussions in [1,32,37]; see [30] for more information). The existence
of analytic Landau damping solutions to the nonlinear Vlasov equations in Tx�Rv
was first demonstrated in [8, 22], but only in [30] was there given a full proof of
nonlinear stability with Landau damping in the nonlinear setting, and again in the
confined case Td

x � Rdv and for smooth enough Gevrey [15] or analytic data. The
proof was later simplified and the result improved to the “critical” Gevrey regular-
ity in [4] by combining ideas of [30] and [3].

It is desirable for physical relevance to extend the theory to the unconfined case,
i.e., when the phase space is Rdx � Rdv . There are several issues with this even
at the linear level. First, at low spatial frequencies, the decay due to mixing for
free transport is very slow—there is an additional dispersive decay, but this is only
t�d in L1. Second, for Vlasov-Poisson, e.g., when the force field is given by
F D ��rx�

�1
x � with � 2 R, it was shown in [16, 17] that the linearized Vlasov

equations cannot be treated as a perturbation of free transport at low spatial fre-
quencies. At the linear level, the modes decouple, so these issues only occur at low
spatial modes; at higher spatial modes, the damping is the same as in the confined
case. It is then natural to ask whether nonlinear stability in (1.1) still holds in a
certain sense and that, at least, the decay of the spatial modes away from 0 (short
waves) remains similar to the confined case. In this paper, we positively answer
this question in the case that W satisfies (1.2) (and the linear stability condition in
definition (2.6) below). These conditions precisely imply that the linearized Vlasov
equation is close enough to free transport at low frequencies. Moreover, by taking
advantage of a dispersive effect in frequency (see Section 1.4 and Section 3), we
are able to get results in finite regularity.

Previous finite regularity Landau damping results have only been obtained for
kinetic models in which �W has compact support, such as Vlasov-HMF [12] or
the mean-field Kuramoto model [11, 13]. These results have been proved in the
confined case; see Section 1.4 for more discussion on how finite regularity is ob-
tained. A dispersive result in finite regularity for Vlasov-Poisson in the unconfined
case R3x �R3v without an infinite background density, that is f 0.v/ D 0, was car-
ried out in [2]. The lack of an infinite background greatly simplifies the setting:
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the dynamics do not include the linearized Vlasov equations, and moreover, it is
significantly easier to propagate moments in x� tv on f .t; x; v/—an important as-
pect of [2] (propagating such moments seems very difficult even for the linearized
Vlasov equations with W 2 L1 and f 0 very small). Moreover, the results of [2]
do not directly extend to statements of the form (1.9b) or (1.10b), which quantify
the fast decay of higher spatial modes (almost equivalently, the techniques seem
ill-suited for deducing convergence in such strong norms as (1.9a) and (1.10a)).

1.3 Main Results
Our working norm in this paper is the weighted Sobolev norm:

khkH�
M
D

X
j˛j�M

khrx;vi
� .v˛h/kL2 ;

where we define the Fourier multiplier

3hrx;vi�f .k; �/ D hjk; �ji� yf .k; �/ WD hk; �i� yf .k; �/:(1.5)

Notice that

khkH�
M
�M

� X
j˛j�M

khrx;vi
� .v˛h/k

2
L2

�1=2
�M;�

X
j˛j�M

kv˛hrx;vi
�hkL2 ;

so that one may order the moments and derivatives in whichever order is most
convenient.

The following linear stability condition is essentially an adaptation to finite reg-
ularity of the condition given in [30] (which is essentially the same as the Penrose
condition [32]).

DEFINITION 1.1. Given a homogeneous distribution f 0.v/, we say that it satisfies
the stability condition (L) if there exists constants C0; �; x� > 0 with x� > 3

2
and an

integer M > 3
2

such that

kf 0kH x�M
� C0(1.6)

and

inf
�2CWRe ��0

inf
k2R3
jL.�; k/ � 1j � �;(1.7)

where L is defined by the following (x� denotes the complex conjugate of �):

L.�; k/ D �
Z 1
0

e
x�tcf 0.kt/�W .k/jkj2t dt:(1.8)

In Section 2.3 below, we discuss in detail how stringent the stability condition
(L) is. We note here that if one takes power law interactions, W.x/ D �jxj�1 for
any � 2 R, then (L) fails for every equilibrium f 0 2 H

3=2C
2 ; see [16, 17] (see

Section 1.5 for the notation HpC). A smallness condition on kW kL1


f 0



H
3=2C
2
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is sufficient to satisfy (1.7); however, it is not necessary. Indeed, we show in Propo-
sition 2.7 below that (L) is satisfied for the screened Coulomb law (1.4), the funda-
mental solution to (1.3), for all ˛ > 0 and all rapidly decaying, radially symmetric
equilibria f 0. The proof extends to any potential �W satisfying

0 � �W .k/ . hki�2;

and hence, a variety of large W and f 0 are permitted.
Our main result is the following:

THEOREM 1.2. There exist universal constants R0 > 0 and c 2 .0; R0/ such that
if x� � 3 > � > R0 and f 0 is given that satisfies stability condition (L) with
constants M , C0, �, and x� and hin is mean-zero and satisfiesX

j˛j�2

k´˛hinkH�
M
� �0;

then there exists a mean-zero h1 2 H��c
M so that the solution h.t; x; v/ to (1.1)

satisfies the following for all t � 0:

kh.t; x C tv; v/ � h1.x; v/kH��c
M

.
�

hti3=2
;(1.9a)

jy�.t; k/j . �hk; kti�.��c/;(1.9b)

khrxi
��c�4F.t/kL1 .

�

hti4
:(1.9c)

Remark 1.3. The proof shows that we may take R0 D 36 and c D 5, although
these are unlikely to be sharp.

Remark 1.4. Theorem 1.2 holds in all d � 3; in this case, R0 depends in general
on dimension.

Remark 1.5. An easier variant of our proof would yield a similar result in the case
where f 0 D 0 (no homogeneous background). The linear stability condition is
trivially satisfied then, and our nonlinear estimates adapt in a simpler way. How-
ever, as discussed briefly above, the results we obtain in Theorem 1.2 are signifi-
cantly stronger, in certain ways, than the results of [2]. Specifically, (1.9a) gives
“scattering” in much higher Sobolev norms, and (1.9b) gives fast decay of higher
spatial modes of the density (as fast as if the problem were posed on T3 � R3).
It is not clear how the techniques employed in [2] can be adapted to deduce these
higher regularity results.

Remark 1.6. That c and R0 are taken independent of all parameters shows that
regularity loss remains uniform even as � !1.

A natural question is whether one still observes exponential decay of y�.t; k/
for k bounded away from 0 if the initial data is analytic. This is indeed the case,
which is proved via an easy variation of the proof of Theorem 1.2 using some basic
ideas from [4].
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THEOREM 1.7. Let f 0 be given which satisfies stability condition (L) with con-
stants M , C0, and �, and is real analytic with

ke
x�hrif 0kL2M

<1 for some x� > 0:

Then there exists a �? 2 .0; x�� depending only on f 0 such that for all 0 < �0 <

� < �?, there exists an �0 such that if hin is mean-zero and satisfiesX
j˛j�2

k´˛e�hrihinkL2M
� �0;

then there exists a mean-zero, real analytic h1 satisfying for all t � 0,

ke�
0hri.h.t; x C tv; v/ � h1.x; v//kL2M

.
�

hti3=2
;(1.10a)

jy�.t; k/j . �e��
0hk;kti;(1.10b)

ke�
0hrx ;trxiF.t/kL1 .

�

hti4
:(1.10c)

Remark 1.8. An analogue of Theorem 1.7 also holds for Gevrey initial data (see [4]
for the Vlasov-Poisson systems with Coulomb-Newton potentials on Td�Rd with
Gevrey data).

1.4 Plasma Echoes and Dispersion in Frequency
As discussed in [4,30], the fundamental impediment to nonlinear Landau damp-

ing results in finite regularity are resonances known as plasma echoes, first dis-
covered and isolated in the experiments [28]. During Landau damping, the force
field is damped due to the transfer of O.1/ spatial information to small scales in
the velocity distribution. However, mixing is time reversible, and hence unmixing
creates (transient) growth in the force field. This effect is essentially the same as
the analogous Orr mechanism in fluid mechanics, first identified in [31] (see [3]
for more information). A plasma echo occurs when a nonlinear effect transfers
information to modes that are unmixing, as this leads to a large force field in the fu-
ture when that information reachesO.1/ spatial scales (hence “echo”). The plasma
echo is a kind of nonlinear resonance, although associated with the transient un-
mixing in the linear problem rather than a true eigenvalue. These echoes can chain
into a cascade, as demonstrated experimentally in the Vlasov equations [28] and
two-dimensional Euler [40, 41].

Mathematically, one must confront the echo resonance when attempting to close
an estimate such as (1.9b). During the proof of (1.9b), one needs to get anL2tL

2
k
!

L2tL
2
k

estimate on an integral operator that encodes the long-time interactions be-
tween the force field and the information that has already mixed (see Section 3).
The primary new insight in our work is that, unlike in the confined case studied
in [4,8,22,30], we can obtain these estimates in finite regularity. This is completely
due to a dispersive mechanism that is present only in Rdx for d � 2 (although it
is too weak in d D 2 for our methods); it has little relevance to the periodically
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confined case Td
x (although one could imagine attempting to recover it in a large

box limit) and is quite distinct from the finite regularity results of [11–13].
We will capitalize on a dispersive effect in the free transport operator @tCv �rx ,

which on the Fourier side is of the form @t � k � r�. In order to lose a significant
amount of regularity, one must chain a large number of echoes over a long period
of time (see [4, 30]). Indeed, this is precisely why the finite results of [11–13] are
possible: the models studied therein do not support infinite chains of echoes. For
any spatial mode k, the set of possible “resonant” frequencies `, the frequencies
that can react strongly via a plasma echo with k, turns out to be those which are
collinear with k. Indeed, if the two spatial modes are not collinear, then the velocity
information in the two modes is moving in different directions in frequency (due to
the dispersive effect of @t�k �r�) and is hence well-separated (in frequency) except
for a limited amount of time. On the torus, the set of such resonant frequencies is
of positive density in the lattice Zd (for example, it suffices to consider modes that
depend on only one coordinate), whereas in R3x the set of resonant frequencies is
a one-dimensional line and is hence a very small set. Spatial localization implies
that information in the Fourier transform cannot concentrate on small sets, which
suggests that the resonance is weaker in R3 than in T3. This is indeed the case,
as we show in Section 3. We remark that there may also be a link with the idea of
space-time resonances in dispersive equations [14].

1.5 Notation and Conventions
We denote N D f0; 1; 2; : : : g (including 0) and Z� D Z n f0g. For � 2 C we

use x� to denote the complex conjugate. We denote

hvi D .1C jvj2/1=2:

We use the multi-index notation: given ˛ D .˛1; : : : ; ˛d / 2 Nd and v D .v1;

: : : ; vd / 2 Rd , then

v˛ D v
˛1
1 � � � v

˛d
d
; D˛� D .i@�1/

˛1 � � � .i@�d /
˛d :

We denote Lebesgue norms for p; q 2 Œ1;1� and a; b 2 R3 as

kf kLpaL
q

b
D

�Z
R3

�Z
R3
jf .a; b/jq db

�p=q
da
�1=p

D

�Z �Z
jf .a; b/jq db

�p=q
da
�1=p

and Sobolev norms (usually applied to Fourier transforms) as

k yf k2
HM
�
D

X
˛2Nd Wj˛j�M



D˛� yf 

2L2� :
We will often use the short-hand k�k2 for k�kL2´;v or k�kL2v depending on the context.

Finally, we use the notation f 2 H sC as shorthand to denote that f 2 H sCı
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for all ı > 0. Similarly, the quantity kf kH sC is meant to satisfy kf kH sC .ı
kf kH sCı for all ı > 0 (where the constant in general blows up as ı ! 0).

For a function g D g.´; v/ we write its Fourier transform ygk.�/ where .k; �/ 2
R3 �R3 with

ygk.�/ WD
1

.2�/3

Z
R3�R3

e�i´k�iv�g.´; v/d´ dv;

g.´; v/ WD
1

.2�/3

Z
R3�R3

ei´kCiv� ygk.�/dk d�:

We use an analogous convention for Fourier transforms to functions of x or v alone.
With these conventions we have the following relations:8̂̂̂̂

ˆ̂<̂
ˆ̂̂̂̂:

R
R3�R3 g.´; v/g.´; v/d´ dv D

R
R3�R3 yg.k; �/

xyg.k; �/dk d�;

1g1g2 D 1
.2�/3

bg1 � bg2;
.crg/.k; �/ D .ik; i�/yg.k; �/;
.bv˛g/.k; �/ D D˛� yg.k; �/:

By convention, we use Greek letters such as � and � to denote velocity frequencies,
and lowercase Latin characters such as k and ` to denote spatial frequencies.

We use the notation f . g when there exists a constant C > 0 independent
of the parameters of interest such that f � Cg (we analogously define f & g).
Similarly, we use the notation f � g when there exists C > 0 such that C�1g �
f � Cg. We sometimes use the notation f .˛ g if we want to emphasize that the
implicit constant depends on some parameter ˛.

2 Outline of the Proof
2.1 Local-in-Time Well-Posedness

The following standard lemma provides local existence of a classical solution
that remains classical as long as a suitable Sobolev norm remains finite. The prop-
agation of regularity can be proved by a variant of the arguments in, e.g., [24],
along with the inequality

kB.t;rx;rxt /�.t/k2 .
X
˛�M

kv˛B.t;rx;rv/h.t/k2(2.1)

for all Fourier multipliers B and all integers M > 3
2

.

LEMMA 2.1 (Local existence and propagation of regularity). Let M > 3
2

be an
integer and hin 2 H˛

M for ˛ > 4. Then there exists some T0 > 0 such that
for all T < T0, there exists a unique solution g.t/ 2 C.Œ0; T �IH˛

M / to (2.3) on
Œ0; T �. Moreover, if for some T � T0 and � 0 with � � � 0 > 4, there holds
lim supt%T kg.t/kH�0

M

<1, then T < T0.



LANDAU DAMPING IN FINITE REGULARITY FOR UNCONFINED SYSTEMS 9

Remark 2.2. Finite energy, strong solutions are well-known to be global in time
in T3

x � R3v or on R3x � R3v if there is no homogeneous background [5, 21, 26, 33,
35]; however, to the authors’ knowledge, there is no global existence theory that
covers the entire range of Theorem 1.2. However, Theorem 1.2 shows that in the
perturbative regime, solutions are global.

2.2 Coordinate Shift
As the solution in Theorem 1.2 is asymptotic to free transport, it makes sense to

begin (as in [4, 8, 22]) by modding out by this evolution:

´ WD x � tv;(2.2a)

g.t; ´; v/ WD h.t; ´C tv; v/:(2.2b)

From (2.2) and (1.1) we derive the system

(2.3)

8̂<̂
:
@tg C F.t; ´C vt/ � .rv � tr´/g C F.t; ´C vt/ � rvf

0 D 0;

g.t D 0; ´; v/ D hin.´; v/;

y�.t; k/ D yg.t; k; kt/:

As in [4], we derive from (2.3) the following system on the Fourier side:

@t yg.t; k; �/ D �y�.t; k/�W .k/k � .� � tk/ yf 0.� � kt/
�

Z
R3
y�.t; `/�W .`/` � Œ� � tk�yg.t; k � `; � � t`/d`(2.4a)

y�.t; k/ D yfin.k; kt/ �

Z t

0

y�.�; k/�W .k/k � k.t � �/f 0.k.t � �//d�
�

Z t

0

Z
R3
y�.�; `/�W .`/` � k.t � �/yg.�; k � `; kt � �`/d` d�:(2.4b)

2.3 Linear Landau Damping in R3x �R3v

The first step in proving Theorem 1.2 is understanding the linear term in (2.4b).
In particular, we need estimates on the linear Volterra equation

�.t; k/ D H.t; k/C

Z t

0

K0.t � �; k/�.�; k/d�;(2.5)

where K0.t; k/ WD � yf 0.kt/�W .k/jkj2t and H.t; k/ has sufficiently rapid decay.
Recall that by definition, L is the Fourier-Laplace transform of the kernel K0:

L.�; k/ D
Z 1
0

e
x�tK0.t; k/dt D �

Z 1
0

e
x�t
jkj2t �W .k/cf 0.kt/dt:(2.6)

We begin by proving that (L) implies Landau damping for (2.5). See Appendix
5.3 for the proof, which is a variation of the arguments in [4, 30].

PROPOSITION 2.3 (Linear L2t control). Let f 0 satisfy the condition (L) with con-
stants C0; � > 0. Let ˛ be arbitrary and s � 0 be an arbitrary integer. Let H.t; k/
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and T ? > 0 be given such that, if we denote I D Œ0; T ?/, then we takeH.t; k/ D 0
for t > T? and

kjkj˛hk; ktisH.t; k/k2
L2t .I /

<1:

Then there exists a constantCLD D CLD.C0; s; x�; �/ such that the solution �.t; k/
to the system (2.5) satisfies the pointwise-in-k estimate,

kjkj˛hk; ktis�.t; k/kL2t .I /
� CLDkjkj

˛
hk; ktisH.t; k/k2

L2t .I /
:(2.7)

Remark 2.4. As long as condition (L) is satisfied, there is no difference between
x 2 Td and x 2 Rd for the purposes of Proposition 2.3. In [16, 17], the conver-
gence rates are degraded due to the lack of (L).

Remark 2.5. In fact, Proposition 2.3 holds for any s 2 RC; however, the integer
case is simpler. Once the integer case is solved, a decomposition argument based on
almost-orthogonality is applied to reach fractional s; see, e.g., [4] for an analogous
argument (although the finite regularity setting is easier).

It is important to discuss how restrictive the linear stability condition (L) is.
The proofs can be found in Appendix 5.3. The first observation is that a smallness
condition on the interaction is sufficient to imply stability (this follows immediately
from Lemma A.1).

PROPOSITION 2.6. There exists a universal c > 0 such that if kW kL1kf
0k
H
3=2C
2

< c, then f 0,W satisfy the linear stability condition (L) for some C0, �, and x� .

As discussed above, if one takes the interaction potential W.x/ D �jxj�1 for
any � 2 R, then (L) fails for every equilibrium considered here [16,17]. However,
the screened Coulomb law (1.4) does not have this problem. Indeed, we have linear
stability for all ˛ > 0.

PROPOSITION 2.7. Let W be (1.4), the fundamental solution to (1.3). Then for
any strictly positive, radially symmetric equilibrium f 0 2 H

3=2C
2 with jf 0.v/j C

jrf 0.v/j . hvi�4 for jvj large and all ˛ > 0, W and f 0 satisfy (L) for some
constants C0, �, and x� . In fact, the same applies to any potential W satisfying

0 � �W .k/ . hki�2:

Remark 2.8. Of course, the constant � in (L) blows up as ˛ ! 0.

2.4 Nonlinear Energy Estimates
Next we set up the continuity argument we use to derive a uniform bound on g

via the system (2.4). Define the following, which is convenient when considering
the density: for any s > 0,

As.t; k/ D jkj
1=2
hk; tkis:
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We will employ the same notation for the corresponding Fourier multiplier:

As.t;r´/ D jr´j
1=2
hr´; tr´i

s
I

we hope there will be no confusion.
Fix regularity levels x� > �4 > �3 > �2 > �1 � 11 and constantsKi � 1 deter-

mined by the proof. Let I D Œ0; T ?� be the largest connected interval containing 0
such that the following bootstrap controls hold:

khtr´;rvig.t/k
2

H
�4
M

� 4K1hti
5�2;(2.8a)

kA�4 y�k
2
L2tL

2
k

� 4K2�
2;(2.8b)

kjr´j
ıg.t/k2

H
�3
M

� 4K3�
2;(2.8c)

kA�2 y�kL1
k
L2t
� 4K4�

2(2.8d)

k2hri�1gkL1
k;�
� 4K5�

2:(2.8e)

Remark 2.9. A close reading of the proof suggests that one can take �i ��i�1 D 6
and x� � �4 D 6, although this seems far from optimal. This technically brings the
regularity requirement given by the proof to 35; however, we did not attempt to
optimize this number.

Remark 2.10. The constants K2 and K4 are determined only by the properties of
the linearized Vlasov equations (hence they depend only on f 0 and W ), and the
constants K1; K3; K5 are fixed independently, depending only on K2, K4, and
universal constants.

Remark 2.11. Notice the order L1
k
L2t in the estimate (2.8d). This norm is remi-

niscent of the norms used by Chemin and Lerner in [9].

PROPOSITION 2.12 (Bootstrap). Let (2.8) be satisfied for all t 2 Œ0; T ?� with
T ? < T 0 (T 0 defined in (2.1)). Then for � chosen sufficiently small, the estimates
(2.8) all hold with 4 replaced with 2.

Proposition 2.12 comprises the main step of the proof of Theorem 1.2 (see
Proposition 2.17 below).

2.5 Useful Toolbox
First, we observe the following, which at least shows that the norms employed

to measure � in (2.8) are natural.

LEMMA 2.13. Define

�0.t; k/ D chin.k; kt/:

For all s > 4, there holds (recall the notation H sC from Section 1.5),

kAs�0kL2tL
2
k

.
X
j˛j�2

k´˛hinkH sC2C
M

; kAs�0kL1
k
L2t

.
X
j˛j�2

k´˛hinkH sC1C
M

:
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PROOF. Proving the first estimate is straightforward by the H 3=2C.R3/ ,! C 0

Sobolev embedding applied on the Fourier side and M � 2,Z 1
0

Z
R3
jkjhk; kti2sjchin.k; kt/j

2 dk dt

.
�Z 1

0

Z
R3

jkj

hk; kti4C
dk dt

��X
j˛j�2

k´˛hink
2

H
sC2C
M

�
.
�
1C

Z 1
1

1

t4

Z
�

j�j

h�i4C
d� dt

��X
j˛j�2

k´˛hink
2

H
sC2C
M

�
.
X
j˛j�2

k´˛hink
2

H
�C2C
M

:

The second estimate follows slightly differently. For all k 2 R3 we haveZ 1
0

jkjhk; ktisjchin.k; kt/j
2 dt .

�Z 1
0

jkj

hk; kti1C
dt
��X
j˛j�2

k´˛hink
2

H
sC1C
M

�
.
�X
j˛j�2

k´˛hink
2

H
sC1C
M

�
: �

Next, let us point out a consequence of estimate (2.8e), which provides the dis-
persive decay of the density and force field.

LEMMA 2.14. Under the bootstrap hypotheses, for all 0 � ˛ < �1 � 
 � 3, there
holds

kj@´j
˛
h@´; t@´i


�kL1 .
Z

R3
jkj˛hk; kti
 jb�.t; k/jdk . K5�hti

�3�˛:(2.9)

PROOF. This follows immediately from (2.8e) (and recalling that yg.t; k; kt/ D
y�.t; k/ from (2.3)),Z

R3
jkj˛hk; kti
 jb�.t; k/jdk . �

Z
R3
jkj˛hk; kti
��1 dk

. K5hti
�˛�

Z
R3
hk; kti
��1C˛ dk . K5�hti

�3�˛:�

Let us also record a few simple inequalities that will be used a few times in what
follows (on the Fourier side).

LEMMA 2.15 (L2 trace). Let g 2 H s.Rd / with s > .d � 1/=2 and C � Rd be
an arbitrary straight line. Then there holds

kgkL2.C/ .s kgkH s :
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LEMMA 2.16.
(a) Let g1; g2 2 L2.Rd

k
�Rd� / and r 2 L1.Rd� /. Then

(2.10)
ˇ̌̌̌Z

Rd�Rd�Rd
g1.k; �/r.`/g2.k � `; � � t`/d` dk d�

ˇ̌̌̌
.

kg1kL2
k;�
kg2kL2

k;�
krkL1� :

(b) Let g1 2 L2.Rd
k
�Rd� /, g

2 2 L1.Rd
k
IL2.Rd� //, and r 2 L2.Rd /. Then

(2.11)
ˇ̌̌̌Z

Rd�Rd�Rd
g1.k; �/r.`/g2.k � `; � � t`/d` dk d�

ˇ̌̌̌
.

g1



L2
k;�



g2


L1.Rd

k
IL2.Rd� //

krkL2� :

As a result, if s > d=2, there also holds

(2.12)
ˇ̌̌̌Z

Rd�Rd�Rd
g1.k; �/r.`/g2.k � `; � � t`/d` dk d�

ˇ̌̌̌
.d;s

kg2kL2
k;�
kg2kL2

k;�
kh�i

sr.�/kL2�

(2.13)
ˇ̌̌̌Z

Rd�Rd�Rd
g1.k; �/r.`/g2.k � `; � � t`/d` dk d�

ˇ̌̌̌
.d;s

g1



L2
k;�



hkisg2


L2
k;�

krkL2� :

As a straightforward application of the above lemmas, we show that Proposition
2.12 implies Theorem 1.2.

PROPOSITION 2.17. Proposition 2.12 implies Theorem 1.2.

PROOF. Estimate (2.8e) directly implies (1.9b) by y�.t; k/ D yg.t; k; kt/, while
(1.9c) follows by (2.9) above (also a direct consequence of (2.8e)).

To deduce (1.9a), begin by applying hk; �i�0D˛� for a multi-index j˛j �M and
�0 < �1 �

5
2

and integrating (2.4a):

hk; �i�0D˛� yg.t; k; �/

D hk; �i�0D˛� ygin.k; �/

�

Z t

0

hk; �i�0D˛�
�
y�.�; k/�W .k/k � .� � �k/ yf 0.� � k�/�d�

�

Z t

0

Z
R3
hk; �i�0D˛�

�
y�.�; `/�W .`/` � Œ� � �k�yg.�; k � `; � � t`/�d` d�

D hk; �i�0D˛� ygin �

Z t

0

L d� �
Z t

0

NL d�:
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By Proposition 2.12 there holds (using that x� is sufficiently large),

kLk2
L2
k;�

.
Z

R3�R3
jkj2hk; kti2�0 j�.t; k/j2h� � kti2�0

ˇ̌
D˛�

�
.� � kt/cf 0.� � kt/�ˇ̌2 dk d�

.
Z

R3
jkj2hk; kti2�0 j�.t; k/j2 dk

. �2
Z

R3
jkj2hk; kti2�0�2�1 dk

. �2hti�5:

Similarly,

kNLk2
L2
k;�

. hti2kj@´jıf k2
L
�0
M

�Z
R3

j`j

jk � `jı
h`; `ti�0 jy�.t; `/jd`

�2
. �4hti2ı�6:

Therefore, both of the time integrals in (2.5) are absolutely convergent in L2
k;�

(recall 0 < ı � 1
2

). Hence, define

bh1.k; �/ WD ygin.k; �/ �

Z 1
0

y�.�; k/�W .k/k � .� � �k/ yf 0.� � k�/d�
�

Z 1
0

Z
R3
y�.�; `/�W .`/` � Œ� � �k�yg.�; k � `; � � t`/d` d�:

Inequality (1.9a) then follows from the decay estimates on the integrands and the
definition of g. �

3 Plasma Echoes in Finite Regularity
As discussed in Section 1.4, the plasma echo effect is the main difficulty in

deducing Landau damping. When attempting the estimate (2.8b), one must get an
L2tL

2
k
! L2tL

2
k

estimate on the integral operator:

�.t; k/ 7!

Z t

0

Z
R3
�.�; `/ xK.t; �; k; `/d` d�;(3.1)

where the so-called time-response kernel is given by

xK.t; �; k; `/ D
jkj1=2j`j1=2jk.t � �/j

h`i2
jyg.�; k � `; kt � `�/j;(3.2)

as will be derived in Section 4.1 below. This kernel measures the maximal strength
at which the `th mode of the density at time � can force the kth mode of the density
at time t through the nonlinear interaction with g at mode k � `; kt � `� at time � .
By (2.8e), we estimate

xK.t; �; k; `/ .
p
K2�

jkj1=2j`j1=2h�i

h`i2hk � `; kt � `�i�1�1
I(3.3)
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for notational convenience we define ˇ WD �1 � 1. By Schur’s test, it suffices to
bound the supremum of the row sums and the supremum of the column sums of
(3.3) in order to show that the integral operator (3.1) is bounded. This is the content
of this section, proved below in Lemmas 3.1 and 3.2. Similar time-response kernels
arose in [4] and [30]—the primary new insight here is the fact that we can prove
Lemmas 3.1 and 3.2 in finite regularity.

It is clear that the row and column sums of (3.3) are dominated by contributions
from large � and where kt � `� is small, which is only possible when k and `
are nearly collinear. On Td

x , the one-dimensional reductions used in the proofs
of the analogous lemmas in [4, 30] are essentially reductions to collinear resonant
frequencies. In the proofs of Lemmas 3.1 and 3.2, we will separate the approxi-
mately collinear “resonant” frequencies from the “nonresonant” frequencies with a
time-varying cutoff. The fact that we can take the cutoff shrinking in time is due to
the dispersion encoded in the free transport on the frequency side, @t C k � r�. We
will then use that the resonant frequencies comprise a small set that shrinks in time,
whereas on the nonresonant frequencies, xK has much better estimates. The cutoff
is then chosen to balance both requirements; it is in this balance where d � 3 is
used.

LEMMA 3.1 (Time response estimate I). Under the bootstrap hypotheses (2.8),
there holds

sup
t2Œ0;T ?�

sup
k2R3

Z t

0

Z
R3
xK.t; �; k; `/d� d` .

p
K2 �:

PROOF. First, we eliminate irrelevant early times: for ˇ > 4 we haveZ min.1;t/

0

Z
R3

h�ij`j1=2jkj1=2

h`i2hk � `; kt � `�iˇ
d` d� . 1:

For a fixed k 2 R3 and all ` 2 R3, define

`jj D
k � `

jkj2
k and `? D ` � `jj;

the collinear and perpendicular components. Define the following parameters:

� 2
�
4
5
; 1
�
;(3.4a)

b D ˇ�1;(3.4b)

where we will choose ˇ such that at least b < 1
6

. Define the two subregions of
resonant ` and nonresonant `:

IR D IR.�; k/ D
˚
` W j`?j < .1C �/

��
jkjb

	
;

INR D INR.�; k/ D
˚
` W j`?j � .1C �/

��
jkjb

	
:

The set IR denotes the frequencies that can resonate strongly with frequency k and
is a cylinder around the line containing k, which is shrinking in time. Physically,
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IR is restricted to frequencies that spend a long time sufficiently aligned with k.
The dispersive effect is highlighted due to the fact that we can shrink the cross-
sectional area of the cylinder in time. In IR, for each ` with ` D `jj we can
associate a disk of radius .1 C �/�� jkjb that lies in the resonant region. We first
integrate over this two-dimentional disk; this is where we are going to exploit that
` 2 Rd with d D 3 (note also that we have used the inequality jx C yj1=2 �
jxj1=2 C jyj1=2 for x; y > 0):

(3.5)

Z t

min.1;t/

Z
IR

h�ij`j1=2jkj1=2

h`i2hk � `; kt � `�iˇ
d` d�

.
Z t

min.1;t/

Z
IR

h�ijkj1=2.j`jjj
1=2 C j`?j

1=2/

h`jji
2hk � `; kt � `�iˇ

d` d�

.
Z t

min.1;t/

Z
R

h�ijkj1=2

h`jji
2hk � `jj; kt � `jj�i

ˇ

jkj2b

.1C �/2�

�
j`jjj

1=2
C

jkjb=2

.1C �/�=2

�
d`jj d�

D I1 C I2:

In particular, jkj2b.1C�/�2� D jkj.d�1/b.1C�/�.d�1/� , and hence the argument
extends to all d � 3. Then, requiring that � > 1

2
, 2b C 1

2
< 2, and ˇ > 4 we get

I1 .
Z t

min.1;t/

Z
R

j`jjj
1=2

hk � `jj; kt � `jj�i
ˇ�1=2�2b

d`jj d�

.ˇ
Z

R

1

j`jjj
1=2hk � `jji

ˇ�3
d`jj

.ˇ 1;

which completes the first term in (3.5). For the second term in (3.5) we require
� > 4

5
and 1C 5b < 4:

I2 .
Z t

min.1;t/

Z
R

jkj1=2C5b=2

h`jji
2hk � `jj; kt � `jj�i

ˇ h�i5�=2�1
d`jj d�

.ˇ
Z

R

1

hk � `jji
ˇ�1=2�3b

d`jj

.ˇ 1:

This completes the treatment of the resonant region in (3.5).
Turn next to the INR region. In this region,

jkt � `� j & � j`?j �
�

.1C �/�
jkjb:
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Therefore, using that b D ˇ�1Z t

min.1;t/

Z
INR

jkj1=2j`j1=2h�i

h`i2hk � `; kt � `�iˇ
d` d�

.
Z t

min.1;t/

Z
INR

h�ijkj1=2j`j1=2

h`i2hk � `; kt � `�iˇ=2jkjˇb=2h�iˇ=2.1��/
d` d�

.
Z t

min.1;t/

Z
INR

j`j1=2

h`i2hk � `; kt � `�i
ˇ
2 h�i

ˇ
2
.1��/�1

d` d�

.
Z t

min.1;t/

Z
R3

j`j1=2

hk � `; kt � `�i
ˇ
2
�1
h�i

ˇ
2
.1��/�1

d` d�:

This integral is uniformly bounded provided that (using that the dimension is 3),
ˇ

2
� 1 > 4 and

ˇ

2
.1 � �/ > 1;

which, using that 1 � � < 1
5

(and otherwise � is arbitrary), gives the regularity
requirement ˇ > 10, which is also sufficiently large to satisfy all of the other
conditions above as well. �

The next estimate is in some sense the dual of Lemma 3.1, and the proof is
analogous.

LEMMA 3.2 (Time response estimate II). Under the bootstrap hypotheses (2.8)
there holds

sup
�2Œ0;T ?�

sup
`2Rd

Z T ?

�

Z
Rd
xKk;`.t; �/dt dk .

p
K2 �:

PROOF. As above, we eliminate irrelevant early times: for ˇ > 4 we haveZ min.1;T ?/

�

Z
Rd

h�ijkj1=2j`j1=2

h`i2hk � `; kt � `�iˇ
dt dk . 1:

For a fixed ` 2 R3 and all k 2 R3 define

kjj D
k � `

j`j2
` and k? D k � kjj;

the collinear and perpendicular components. Fix as in the proof of Lemma 3.1.

� 2 .4
5
; 1/;(3.6a)

b D ˇ�1:(3.6b)

Define the two subregions:

IR D IR.t; `/ D fk W jk?j < .1C t /
��
j`jbg;

INR D INR.t; `/ D fk W jk?j � .1C t /
��
j`jbg:
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As above, IR is cutting out a shrinking cylinder around the line containing ` and
is restricted to the set of frequencies that can create strong echo cascades over the
time interval of interest. Integrating over the two-dimensional disk as above,

(3.7)

Z T ?

min.1;T ?/

Z
IR

htij`j1=2jkj1=2

h`i2hk � l; kt � l�iˇ
dt dk

.
Z T ?

min.1;T ?/

Z
IR

htij`j1=2jkj1=2

h`i2hkjj � `; kjjt � `�i
ˇ

dt dk

.
Z T ?

min.1;T ?/

Z
R

htij`j1=2

h`i2hkjj � `; kjjt � `�i
ˇ

j`j2b

.1C t /2�

�ˇ̌
kjj
ˇ̌1=2
C

j`jb=2

.1C t /�=2

�
dt dkjj

DW I1 C I2:

Then using that � > 1
2

and ˇ is sufficiently large (equivalently, b is sufficiently
small),

I1 .
Z T ?

min.1;T ?/

Z
R

jkjjj
1=2

hkjj � `; kjjt � `�i
ˇ�1

dt dkjj

.b
Z

R

1

jkjjj
1=2hkjj � `i

ˇ�3
dkjj .ˇ 1;

For the other contribution in (3.7) we use � > 4
5

and ˇ is sufficiently large (equiv-
alently, b is sufficiently small),

I2 .
Z T ?

min.1;T ?/

Z
R

1

hkjj � `; kjjt � `�i
ˇ�1�3b.1C t /5�=2�1

dt dkjj

.
Z

R

1

hkjj � `i
ˇ�1�3b

dkjj . 1:

This completes the treatment of the resonant region in (3.7).
Turn now to the nonresonant INR region. On the support of the integrand, notice

that

jkt � `� j & t jk?j �
t

.1C t /�
j`jb:

Recalling the choice b D ˇ�1 we getZ T ?

min.1;T ?/

Z
INR

jkj1=2j`j1=2hti

h`i2hk � `; kt � `�iˇ
dt dk

.
Z T ?

min.1;T ?/

Z
INR

htijkj1=2j`j1=2

h`i2hk � `; kt � `�iˇ=2j`j1=2htiˇ=2.1��/
dt dk

.
Z T ?

min.1;T ?/

Z
INR

jkj1=2

h`i3=2hk � `; kt � `�i.ˇ�1/=2hti.ˇ=2/.1��/�1
dt dk:
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This integral is uniformly bounded in ` and � if (using that the dimension is 3),

ˇ

2
� 1 > 4 and

ˇ

2
.1 � �/ > 1;

as in Lemma 3.1 above. �

4 Nonlinear Energy Estimates on �.t; k/

4.1 L2
k

Estimates on y�
From (2.4b) and the linearized damping inequality, Proposition 2.3, we have

(recall A� D jkj1=2hk; kti� ),

(4.1)

kA�4 y�k
2
L2t .I /

. kA�4chin.k; k�/k
2
L2t .I /

C

Z T?

0

�
A�4.t; k/

Z t

0

Z
R3
y�.�; `/�W .`/` � k.t � �/yg.�; k � `; kt � `�/d� d`

�2
dt:

To improve the L2
k

estimate (2.8b), we integrate in k to yield

(4.2)

kA�4 y�k
2
L2tL

2
k
.I�R3/

.
Z T?

0

Z
R3
jA�4.k; kt/

chin.k; kt/j
2 dt dk

C

Z T?

0

Z
R3

�
A�4.t; k/

Z t

0

Z
R3
y�.�; `/�W .`/` � k.t � �/yg.�; k � `; kt � `�/d� d`

�2
dt dk:

As in Lemma 2.13, we haveZ T?

0

Z
R3
jjkjhk; kti2�4chin.k; kt/j

2 dt dk . �2:(4.3)

It remains to see how to deal with the nonlinear contributions in (4.2). By the
triangle inequality and (1.2):

(4.4)

kA�4 y�k
2
L2tL

2
k
.I�R3/

. �2 C

Z T?

0

Z
R3

"Z t

0

Z
R3
hk � `; kt � `�i�4 jkjˇ̌̌̌
y�.�; `/

`

h`i2
� k.t � �/yg.�; k � `; kt � `�/

ˇ̌̌̌
d� d`

#2
dt dk

C

Z T?

0

Z
R3

�Z t

0

Z
R3
h`; `�i�4 jkj

ˇ̌̌̌
y�.�; `/

`

h`i2
� k.t � �/yg.�; k � `; kt � `�/

ˇ̌̌̌
d� d`

�2
dt dk

D �2 C T CR;

where we refer to T and R as transport and reaction as they are analogous to the
corresponding terms named similarly in [4] (the terminology reaction goes back
to [30] and transport goes back to [3]).
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Transport
The purpose of this section is to prove the following:

T . K2K3�
4;(4.5)

which is consistent with Proposition 2.12 provided � is chosen sufficiently small.
By Cauchy-Schwarz,

T .
Z T ?

0

Z
R3

� Z t

0

Z
R3
jk.t � �/hk � `; kt � `�i�4 yg.�; k � `; kt � `�/jjkj1=2ˇ̌̌̌
`

h`i2
y�.�; `/

ˇ̌̌̌
d� d`

�2
dt dk

.
Z T ?

0

Z
R3

�Z t

0

Z
R3
h�i5=2

j`j

h`i2
jy�.�; `/jd� d`

�
�Z t

0

Z
R3
jk.t � �/hk � `; kt � `�i�4 yg.�; k � `; kt � `�/j

2

jkjh�i�5=2
j`j

h`i2
jy�.�; `/jd� d`

i
dt:

Using (2.9),

T .
p
K5�

Z T ?

0

Z
R3

�Z t

0

Z
R3

ˇ̌̌
.jk.t � �/jhk � `; kt � `�i�4bg.�; k � `; kt � `�/ˇ̌̌2
jkjh�i�5=2

j`j

h`i2
jy�.�; `/jd� d`

�
dt dk

�
p
K5�

Z T ?

0

Z
R3

�“
R�R3

jkj
ˇ̌̌
k.t � �/hk � `; kt � `�i�4bg.�; k � `; kt � `�/ˇ̌̌2 dt dk

�
h�i�5=2

j`j

h`i2
jy�.�; `/jd� d`

. K5�
2 sup
��0

sup
`2R3
h�i�5

�“
R�R3

jkj
�
j.kt � `�/ � �.k � `/jhk � `; kt � `�i�4

jyg.�; k � `; kt � `�/j
�2 dt dk

�

D K5�
2 sup
��0

sup
`2R3
h�i�5

�“
R�R3

ˇ̌̌̌b.htr´;rvihr´;vi�4g/��; k � `; k
jkj
� � `�

�ˇ̌̌̌2
d� dk

�
� K5�

2 sup
��0

sup
`2R3
h�i�5

�Z
R3

�
sup
!2S2

Z
R

ˇ̌b.htr´;rvihr´;vi�4g/.�; k � `; !� � `�/ˇ̌2 d�
�

dk
�

� K5�
2 sup
��0

sup
`2R3
h�i�5

�Z
R3

�
sup
y2R3

sup
!2S2

Z
R

ˇ̌b�htr´;rvihrx;vi�4g�.�; k; !� � y/ˇ̌2 d�
�

dk
�
:

The inside factor is an L2 norm along a line in R3, maximized over all possible
lines; therefore, by the Sobolev trace lemma, Lemma 2.15, we have from (2.8a)

T . K5�
2 sup
��0

h�i�5
X
j˛j�M

kv˛htr´;rvihri
�4gk

2
2 . K5K1�

4;
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as stated in (4.5). By choosing �2 � K1K5, this is consistent with Proposition
2.12.

Reaction
For the reaction term we will prove

R . K3�
2
kA�4 y�k

2
L2tL

2
k

;(4.6)

since for � chosen sufficiently small, this contribution can then be absorbed on the
left-hand side of (4.4). By (1.2),

R .
Z T ?

0

Z
R3

�Z t

0

Z
R3
jkj1=2

ˇ̌̌̌
yg.�; k � `; kt � `�/

j` � k.t � �/j

h`i2
h`; `�i�4 y�.�; `/

ˇ̌̌̌
d� d`

�2
dt dk:

By Schur’s test, it follows that

R .
�

sup
t�0

sup
k2R3

Z t

0

Z
R3
xK.t; �; k; `/d� d`

�
�

sup
��0

sup
`2R3

Z T ?

�

Z
R3
xK.t; �; k; `/dt dk

�
kA�4 y�k

2

L2tL
2
k

;(4.7)

where the time-response kernel xK.t; �; k; `/ is given in (3.2). Therefore, Lemmas
3.1 and 3.2 imply (4.6). Putting the previous estimates together and choosing �
sufficiently small implies (2.8b).

4.2 L1
k
L2t Estimate on y�

Next, it remains to see how we can get the requisite L1
k
L2t estimate on y�. For

this, we will rely on the higher regularity controls (2.8b) and (2.8c). Fix k arbitrary.
As in (4.1) above, applying Lemma 2.3 to (2.4b) implies

kA. � ; k/�2 y�. � ; k/k
2
L2t .I /

.


jkj1=2hk; k�i�2chin.k; k�/



2
L2t .I /

C

Z T?

0

�
jkj1=2hk; kti�2

Z t

0

Z
R3
y�.�; `/�W .`/` � k.t � �/yg.�; k � `; kt � `�/d� d`

�2
dt

D L.k/CNL.k/:

From (2.13) it follows that L.k/ . �2, so it suffices to consider the nonlinear term.
We begin by dividing into two contributions via the triangle inequality:

NL .
Z 1
0

�
jkj1=2

Z t

0

Z
R3
Œh`; `�i�2 C hk � `; kt � `�i�2 �ˇ̌
y�.�; `/`�W .`/ � k.t � �/yg.k � `; kt � `�/ˇ̌d� d`

�2
dt

. RC T:
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For the R term we start with Cauchy-Schwarz followed by (2.8b) and (2.8e) for
some ˛ > 6 depending on �i :

R .
Z C1
0

�Z t

0

Z
R3
h`; `�i2�4 j`jjy�.�; `/j2 d� d`

�
�Z t

0

Z
R3

j`j

h`i4
jkj3jt � � j2

h`; `�i2�4�2�2
jyg.k � `; kt � `�/j2 d� d`

�
dt

. K2K5�
4

Z C1
0

Z t

0

Z
R3

j`j

h`i4
jkj3jt � � j2

h`; `�i2�4�2�2hk � `; kt � `�i2�1
dt d` d�

. K2K5�
4

Z C1
0

Z t

0

jkj3jt � � j2

h�ihki4hkti˛=2

�Z
R3

1

h`i3h`; `�i˛=2
d`
�

dt d�

. K2K5�
4

Z C1
0

Z t

0

jkj3jt � � j2

h�ihki4hkti˛=2

1

h�i3�2ı
dt d�

. K2K5�
4:

Consider next T , using y�.�; `/ D yg.�; `; `�/ and (2.8e), followed by Cauchy-
Schwarz in ` and (2.8c), again for some ˛ > 3 depending on the gaps between �i :

T . K5�
2

Z C1
0

�Z t

0

Z
R3

jkj1=2j`j

h`i2h`; `�i�1
jk.t � �/jhk � `; kt � `�i�2

jyg.�; k � `; kt � `�/jd� d`
�2

dt

. K5K3�
4

Z C1
0

jkj

hkti˛hki

�Z t

0

h�i

 Z
R3

j`j2

h`i3h`; `�i˛
1

jk � `j2ı
d`
�1=2

d�

!2
dt

. K5K3�
4

Z C1
0

jkj

hkti˛hki

�Z t

0

h�i

�
1

h�i5�4ı

�1=2
d�
�2

dt

. K5K3�
4

Z C1
0

jkj

hkti˛hki
dt

. K5K3�
4:

This completes the estimate L1
k
L2t estimate on y�.
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5 Nonlinear Energy Estimates on g
5.1 High Norm Estimates
Estimate on khrvigkH �4

M

First consider the velocity high norm estimate on g stated in Proposition 2.12.
Let ˛ 2 N3 be a multi-index. An energy estimate yields

1

2

d
dt
khrviv

˛gk
2

H
�4
M

D �

“
R3�R3

h�ihk; �i�4D˛� yg.k; �/h�ihk; �i
�4

�
y�.t; k/�W .k/k �D˛� �.� � kt/ yf 0.� � kt/��dk d�

�

•
R3�R3�R3

h�ihk; �i�4D˛� yg.k; �/h�ihk; �i
�4

�
y�.t; `/�W .`/` �D˛� ..� � kt/yg.k � `; � � `t//�d` dk d�

D LCNL:

Consider first the linear term L. We have

L .
Z

R3�R3
h�ihk; �i�4

ˇ̌
D˛� yg.k; �/

ˇ̌
hktihk; kti�4

jkj

hki2

jy�.t; k/jh� � kti�4
ˇ̌
D˛� ..� � kt/

yf 0.� � kt//
ˇ̌
dk d�

.
Z

R3�R3
h�ihk; �i�4

ˇ̌
D˛� yg.k; �/

ˇ̌
hk; kti�4 t jkj1=2

jy�.t; k/jh� � kti�4
ˇ̌
D˛� ..� � kt/

yf 0.� � kt//
ˇ̌
dk d�

. htikhrviv˛gkH�4
0
kA�4 y�kL2

k

.
ı0

hti
khrviv

˛gk
2

H
�4
0

C
hti3

ı0
kA�4 y�k

2
L2
k

;

which for ı0 sufficiently small depending only on universal constants and f 0 and
K1 sufficiently large depending only on ı0 and K2 is consistent with Proposition
2.12.

Turn next to the nonlinear term NL. It is here where the full hti5=2 growth is
observed. First, we commute the moments and the differentiation in the transport
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operator:

NL D �

Z
R3�R3

hrvihri
�4.v˛g/hrvihri

�4�
E.t; ´C tv; v/ � .rv � tr´/.v

˛g/
�
dv d´

�

Z
R3�R3

hrvihri
�4.v˛g/hrvihri

�4�
E.t; ´C tv; v/ � rv.v

˛/g
�
dv d´

D NL0 CNLM :

First consider the leading-order NL0 term. As is standard when treating trans-
port equations, we use the following integration-by-parts trick:

NL0 D �

Z
R3�R3

hrvihri
�4.v˛g/

�
hrvihri

�4
�
E.t; ´C tv; v/ � .rv � tr´/.v

˛g/
�

�E.t; ´C tv; v/ � .rv � tr´/hrvihri
�4.v˛g/

�
dv d´:

On the frequency side this becomes the following, which we decompose based on
which frequencies are dominant:

NL0 D �

Z
R3�R3�R3

h�ihk; �i�4D˛� yg.k; �/
�
h�ihk; �i�4 � h� � t`ihk � `; � � t`i�4

�
�
y�.t; `/�W .`/` � .� � kt/D˛� yg.k � `; � � `t/�d` dk d�

D �

Z
R3�R3�R3

�
1j`;`t j�jk�`;��t`j C 1j`;`t j�jk�`;��t`j

�
h�ihk; �i�4D˛� yg.k; �/�

h�ihk; �i�4 � h� � t`ihk � `; � � t`i�4
�

�
y�.t; `/�W .`/` � .� � kt/D˛� yg.k � `; � � `t/�d` dk d�

D RC T;

where the terminology is again reaction and transport in analogy with (4.4) (and
[3]). Consider the leading-order R:

R .
Z

R3�R3�R3
1j`;`t j�jk�`;��t`jh�ihk; �i�4

ˇ̌
D˛� yg.k; �/

ˇ̌
h`tih`; `ti�4

jy�.t; `/j
j`j

h`i2
j� � kt jjyg.k � `; � � `t/jd` dk d�

.
Z

R3�R3�R3
1j`;`t j�jk�`;��t`jh�ihk; �i�4

ˇ̌
D˛� yg.k; �/

ˇ̌h`tij`t j
h`i2

h`; `ti�4

jy�.t; `/j
ˇ̌2.hrig/.k � `; � � `t/ˇ̌d` dk d�

. �hti2khrviv
˛gk

H
�4
0
kA�4 y�kL2

k

.
ı0

hti
khrviv

˛gk
2
H�
0
C �2

hti5

ı0
kA�4 y�k

2
L2
k

;
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which, for ı0 sufficiently small and depending only on universal constants and �
sufficiently small, is consistent with Proposition 2.12. This completes the treatment
of the reaction term R.

Turn next to the transport term. We use the following inequality, which follows
from the mean value theorem and holds on the support of the integrand:

h�ihk; �i� � h� � t`ihk � `; � � t`i�

D h�i.hk; �i� � hk � `; � � t`i� /C .h�i � h� � t`i/hk � `; � � t`i�

. h�ihk � `; � � t`i��1j`; `t j C ht`ihk � `; � � t`i�

. h`; `ti2
�
h� � t`ihk � `; � � t`i��1 C hk � `; � � t`i�

�
:

Applying this to T implies

T .
Z

R3�R3�R3
1j`;`t j�jk�`;��t`jh�ihk; �i�4

ˇ̌
D˛� yg.k; �/

ˇ̌�
h� � t`ihk � `; � � t`i�4�1 C hk � `; � � t`i�4

�
j� � kt j

ˇ̌
D˛� yg.k � `; � � `t/

ˇ̌
j`jh`; `ti2jy�.t; `/jd` dk d�

D T1 C T2:

For T1 we use (2.9):

T1 .
Z

R3�R3�R3
h�ihk; �i�4

ˇ̌
D˛� yg.k; �/

ˇ̌
h� � t`ihk � `; � � t`i�4ˇ̌

D˛� yg.k � `; � � `t/
ˇ̌
j`jhtih`; `ti2jy�.t; `/jd` dk d�

. khrviv˛gk2H�
M

Z
R3
j`jhtih`; `ti2jy�.t; `/jd`

.
�

hti3
khrvigk

2
H�
M
:

For T2 we similarly use

T2 .
Z

R3�R3�R3
h�ihk; �i�

ˇ̌
D˛� yg.k; �/

ˇ̌
hk � `; � � t`i� ht .k � `/; � � `tiˇ̌

D˛� yg.k � `; � � `t/
ˇ̌
j`jh`; `ti2jy�.t; `/jd` dk d�

.
�

hti4
khrvigkH�

M
khtr´;rvigkH�

M
;

which for � sufficiently small is consistent with Proposition 2.12. This completes
the leading-order T term.
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Turn next to the moment term NLM (recall (5.1)), which we divide into high-
and low-frequency contributions similar to NL0:

NLM .
X

jˇ jDj˛j�1

Z
R3�R3�R3

�
1j`;`t j�jk�`;��t`j C 1j`;`t j�jk�`;��t`j

�
h�ihk; �i�4

ˇ̌
D˛� yg.k; �/

ˇ̌
h�ihk; �i�4

ˇ̌
y�.t; `/�W .`/`Dˇ� yg.k � `; � � `t/ˇ̌d` dk d�

D RM C TM :

The RM term is treated in essentially the same way as R above:

RM .
X

jˇ jDj˛j�1

Z
R3�R3�R3

1j`;`t j�jk�`;��t`jh�ihk; �i�4
ˇ̌
D˛� yg.k; �/

ˇ̌
h`tih`; `ti�4 jy�.t; `/j

j`j
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Dˇ� yg.k � `; � � `t/

ˇ̌
d` dk d�

. �htikhrviv
˛gk

H
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0
kA�4 y�kL2

k

.
ı0
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H
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C
�2hti3

ı0
kA�4 y�k

2
L2
k

;

which for ı0 sufficiently small depending only on universal constants and � suffi-
ciently small, is consistent with an improvement to (2.8a). For the TM treatment,
we use the following, applying (2.9):

TM .
X

jˇ j�j˛j�1

Z
R3�R3�R3

h�ihk; �i�4
ˇ̌
D˛� yg.k; �/

ˇ̌ j`j
h`i2
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Dˇ� yg.k � `; � � `t/

ˇ̌
d` dk d�

.
�

hti4
khrvigkH�4

M
khtr´;rvigkH�4

M

;

which is sufficient as in T2 above. This completes the estimate on khrvigkH�
M

.

Estimate on khr´igkH �4
M

Next turn to the estimate on khr´igkH�4
M

, which proceeds similarly to that on

khrvigkH�4
M

. Let ˛ 2 N3 be a multi-index. An energy estimate yields

1

2

d
dt
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˛gk
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Z
R3�R3
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y�.t; k/�W .k/k �D˛� ..� � kt/ yf 0.� � kt//�dk d�

�

Z
R3�R3�R3

hkihk; �i�4D˛� yg.k; �/hkihk; �i
�4�

y�.t; `/�W .`/` �D˛� ..� � kt/yg.k � `; � � `t//�d` dk d�

D LCNL:
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The linear term is treated as in Section 5.1:

L .
Z

R3�R3
hkihk; �i�4

ˇ̌
D˛� yg.k; �/

ˇ̌
hkihk; kti�4

jkj

hki2

jy�.t; k/jh� � kti�4
ˇ̌
D˛� ..� � kt/

yf 0.� � kt//
ˇ̌
dk d�

.
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R3�R3
hkihk; �i�4

ˇ̌
D˛� yg.k; �/

ˇ̌
hk; kti�4 jkj1=2

jy�.t; k/jh� � kti�4
ˇ̌
D˛� ..� � kt/

yf 0.� � kt//
ˇ̌
dk d�

.
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H
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C
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2
L2
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;

which, for ı0 sufficiently small and depending only on universal constants and f 0,
is consistent with an improvement on (2.8b) provided K1 is chosen sufficiently
large (depending on ı0 and K2) and K2 is consistent with an improvement on
(2.8c).

As above in Section 5.1, we commute the moments and the differentiation in the
transport operator:

(5.1)

NL D �

Z
R3�R3

hr´ihri
�4.v˛g/hr´ihri

�4.E.t; ´C tv; v/ � .rv � tr´/.v
˛g//dv d´

�

Z
R3�R3

hr´ihri
�4.v˛g/hr´ihri

�4.E.t; ´C tv; v/ � rv.v
˛/g/dv d´

D NL0 CNLM :

First consider the leading-order NL0 term, which we begin as above with an inte-
gration by parts and subdivide based on which frequencies are dominant:

NL0 D �

Z
R3�R3

hr´ihri
�4.v˛g/

�
hr´ihri

�4.E.t; ´C tv; v/ � .rv � tr´/.v
˛g//

�E.t; ´C tv; v/ � .rv � tr´/hr´ihri
�4.v˛g/

�
dv d´

D �

Z
R3�R3�R3

�
1j`;`t j�jk�`;��t`j C 1j`;`t j�jk�`;��t`j

�
hkihk; �i�4D˛� yg.k; �/

.hkihk; �i�4 � hk � `ihk � `; � � t`i�4/�
y�.t; `/�W .`/` � .� � kt/D˛� yg.k � `; � � `t/�d` dk d�

D RC T:

The reaction R is treated similarly to the treatment in Section 5.1 (note that there
is one less power of t lost),
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;

which for ı0 sufficiently small depending only on universal constants is consistent
with an improvement on (2.8a).
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Similar to the analogous estimate in Section 5.1, we have

T .
Z

1j`;`t j�jk�`;��t`jhkihk; �i�4
ˇ̌
D˛� yg.k; �/

ˇ̌�
hk � `ihk � `; � � t`i�4�1 C hk � `; � � t`i�4
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j� � kt j
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D˛� yg.k � `; � � `t/

ˇ̌
j`jh`; `ti2jy�.t; `/jd` dk d�

D T1 C T2:

The first term, T1, is treated as above.
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hti3
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:

The second is treated with a slight variation:

T2 .
Z

R3�R3�R3
hkihk; �i�
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D˛� yg.k; �/

ˇ̌
hk � `; � � t`i� ht .k � `/; � � `tiˇ̌
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M
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M
;

which is still consistent with the final estimate provided ı < 1
2

.
The lower-order moment term NLM is treated as in Section 5.1 and is omitted

here for brevity. After collecting all the above estimates and choosing � small, this
completes the improvement of (2.8a).

5.2 The L1
t H

�3
M

Estimate
In this section we improve the estimate (2.8c) as stated in Proposition 2.12. For

˛ 2 Nd , an energy estimate yields
1

2

d
dt



j@´jıhri�3v˛g

2L2
D �

Z
R3�R3

jkjıhk; �i�3D˛� yg.k; �/jkj
ı
hk; �i�3

y�.t; k/�W .k/k �D˛� ..� � kt/ yf 0.� � kt//dk d�

�

Z
R3�R3�R3

jkjıhk; �i�3D˛� yg.k; �/jkj
ı
hk; �i�3�

y�.t; `/�W .`/` �D˛� ..� � kt/yg.k � `; � � `t//�d` dk d�

D LCNL:
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The linear term L is treated as follows:

L .
Z

R3�R3
jkjıhk; �i�3

ˇ̌
D˛� yg.k; �/

ˇ̌
hk; kti�3

jkj1Cı

hki2

jy�.t; k/jh� � kti�3
ˇ̌
D˛� ..� � kt/

yf 0.� � kt//
ˇ̌
dk d�

.
Z

R3�R3
jkjıhk; �i�3

ˇ̌
D˛� yg.k; �/

ˇ̌ jkj1Cı

hki2hk; kti�4��3
hk; kti�4 jy�.t; k/j

h� � kti�3
ˇ̌
D˛� ..� � kt/

yf 0.� � kt//
ˇ̌
dk d�

.
1

hti1=2Cı

Z
R3�R3

jkjıhk; �i�3
ˇ̌
D˛� yg.k; �/

ˇ̌
hk; kti�4 jkj1=2

jy�.t; k/jh� � kti�3
ˇ̌
D˛� ..� � kt/

yf 0.� � kt//
ˇ̌
dk d�

.
1

hti1=2Cı



j@´jıg

H�3
M

kA�4 y�kL2
k
;

which is sufficient to deduce kj@´jıgkH�3
M

.ı K2�2 via (2.8b). This is consistent
with an improvement of (2.8c) by choosingK3 sufficiently large relative toK2 (see
Remark 2.10).

As in Section 5.1, we begin the nonlinear estimate by commuting the moments
and the differentiation:

(5.2)

NL D �

Z
R3�R3

j@´j
ı
hri

�3
�
v˛g

�
j@´j

ı
hri

�3

ŒE.t; ´C tv; v/ � .rv � tr´/.v
˛g/�dv d´

�

Z
R3�R3

j@´j
ı
hri

�3
�
v˛g

�
j@´j

ı
hri

�3

.E.t; ´C tv; v/ � rv.v
˛/g/dv d´

D NL0 CNLM :

For the leading-order term, as above in Section 5.1, we use the following via inte-
gration by parts and subdividing based on frequency:

NL0 D �

Z
R3�R3

j@´j
ı
hri

�3.v˛g/
�
j@´j

ı
hri

�3.E.t; ´C tv; v/ � .rv � tr´/.v
˛g//�

�E.t; ´C tv; v/ � .rv � tr´/j@´j
ı
hri

�3.v˛g/
�
dv d´

D �

Z
R3�R3�R3

�
1j`;`t j�jk�`;��t`j C 1j`;`t j�jk�`;��t`j

�
jkjıhk; �i�3D˛� yg.k; �/�

jkjıhk; �i�3 � jk � `jıhk � `; � � t`i�3
��

y�.t; `/�W .`/` � .� � kt/D˛� yg.k � `; � � `t/�d` dk d�

D RC T:



30 J. BEDROSSIAN, N. MASMOUDI, AND C. MOUHOT

In the reaction term R, we use that on the support of the integrand there holds
(using ı < 1),ˇ̌

jkjıhk; �i�3 � jk � `jıhk � `; � � t`i�3
ˇ̌

. .j`jı C jk � `jı/h`; `ti�3 :(5.3)

Hence

R .
Z

R3�R3�R3
jkjıhk; �i�3

ˇ̌
D˛� yg.k; �/

ˇ̌ j`j1Cı
h`i2

h`; `ti�3 jy�.t; `/j

.j� � `t j C t jk � `j/
ˇ̌
D˛� yg.k � `; � � `t/

ˇ̌
d` dk d�

C

Z
R3�R3�R3

jkjıhk; �i�3
ˇ̌
D˛� yg.k; �/

ˇ̌ j`j
h`i2
h`; `ti�3 jy�.t; `/j

jk � `jı.j� � `t j C t jk � `j/
ˇ̌
D˛� yg.k � `; � � `t/

ˇ̌
d` dk d�

D R1IV CR1IZ CR2IV CR2IZ ;

where the subdivisions Ri IV versus Ri IZ denote the terms involving j� � `t j and
t jk � `j, respectively. The first contribution we treat in a manner analogous to the
treatment of the L-term above (using j`j1=2Cıh`; `ti�1=2�ı . hti�1=2�ı , Lemma
2.16, and Cauchy-Schwarz):

R1IV .
Z

R3�R3�R3
jkjıhk; �i�3

ˇ̌
D˛� yg.k; �/

ˇ̌ j`j1=2

h`i2hti1=2Cı
h`; `ti�3ˇ̌

y�.t; `/
ˇ̌
� � `t

ˇ̌
D˛� yg.k � `; � � `t/

ˇ̌
d` dk d�

.
1

hti1=2Cı




j@´jıg



H
�3
M




j@´j1=2h@´; @´ti�3�



L2

Z
R3



h�iD˛� yg.t; `; � /

L2� d`

.
1

hti1=2Cı



j@´jıg

2H�3
M



j@´j1=2h@´; @´ti�3�

L2 :
This estimate is sufficient to improve (2.8c) for ı > 0 and � sufficiently small by
(2.8b).

Turn next to RZ , which is treated with a slight variation (using (2.8c)):

(5.4)

R1IZ .
Z

R3�R3�R3
jkjıhk; �i�3

ˇ̌
D˛� yg.k; �/

ˇ̌ j`j1Cı t
h`i2

h`; `ti�3

jy�.t; `/j� � `t jjk � `jD˛� yg.k � `; � � `t/jd` dk d�

. t


j@´jıg

2H�3

M

Z
R3

j`j1Cı

h`i2
h`; `ti�3 jy�.t; `/jd`

. t


j@´jıg

2H�3

M

�Z
R3

j`j1C2ı

h`i4
h`; `ti�2�4C2�3d`

�1=2

j@´j1=2h@´; @´ti�4�

L2
.

1

hti1Cı



j@´jıg

2H�3
M



j@´j1=2h@´; @´ti�4�

L2 ;
which is sufficient to improve (2.8c) for � sufficiently small. The terms R2IZ C
R2IV are treated in the same manner as R1IZ ; the details are omitted for brevity:

R1IV CR1IZ .
1

hti



j@´jıg

2H�3
M



j@´j1=2h@´; @´ti�4�

L2 ;
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which is sufficient to improve (2.8c) for � sufficiently small.
Turn next to the transport term T . On the support of the integrand there holds

(from the mean value theorem)

ˇ̌
jkjıhk; �i�3 � jk � `jıhk � `; � � t`i�3

ˇ̌
.

jk � `jı j`; `t jhk � `; � � t`i�3�1 C hk � `; � � t`i�3
ˇ̌
jkjı � jk � `jı

ˇ̌
:

Therefore,

T .
Z

R3�R3�R3
jkjıhk; �i�3

ˇ̌
D˛� yg.k; �/

ˇ̌ j`jj`; `t j
h`i2

jy�.t; `/jj� � kt j

jk � `jıhk � `; � � `ti�3�1
ˇ̌
D˛� yg.k � `; � � `t/

ˇ̌
d` dk d�

C

Z
R3�R3�R3

jkjıhk; �i�3
ˇ̌
D˛� yg.k; �/

ˇ̌ j`j
h`i2
jy�.t; `/j

j� � kt j
ˇ̌
jkjı � jk � `jı

ˇ̌
hk � `; � � `ti�3

ˇ̌
D˛� yg.k � `; � � `t/

ˇ̌
d` dk d�

D T1 C T2:

First consider T1. Using j� � kt j . htihk � `; � � t`i and (2.9), there holds

T1 .
Z

R3�R3�R3
jkjıhk; �i�3

ˇ̌
D˛� yg.k; �/

ˇ̌ j`jhtij`; `t j
h`i2

jy�.t; `/jjk � `jıhk � `; � � `ti�3
ˇ̌
D˛� yg.k � `; � � `t/

ˇ̌
d` dk d�

.


j@´jıg

2H�3

M

Z
R3

j`jhtij`; `t j

h`i2
j�.t; `/jd`

.
�

hti3




j@´jıg


2
H
�3
M

:

For T2 we instead have the following, using jjkjı � jk � `jı j � j`jı and (2.9):

T2 .
Z

R3�R3�R3
jkjıhk; �i�3

ˇ̌
D˛� yg.k; �/

ˇ̌ j`j1Cı
h`i2

jy�.t; `/j

j� � kt jhk � `; � � `ti�3
ˇ̌
D˛� yg.k � `; � � `t/

ˇ̌
d` dk d�

.


j@´jıf 

H�3

M

�
hti�5=2khr´t;rvigkH�4

M

�
hti5=2

Z
R3

j`j1Cı

h`i2
j�.t; `/jd`

.
�

hti3=2Cı



j@´jıg

H�3
M

�
hti�5=2khr´t;rvigkH�4

M

�
;

which suffices to improve (2.8c) for � sufficiently small by (2.8a).
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Turn to the lower-order moments. We divide the treatment into reaction and
transport as above:

NLM �
X

jˇ jDj˛j�1

Z
R3�R3�R3

�
1j`;`t j�jk�`;��t`j C 1j`;`t j�jk�`;��t`j

�
jkjıhk; �i�3

ˇ̌
D˛� yg.k; �/

ˇ̌
jkjıhk; �i�3

ˇ̌
y�.t; `/�W .`/`Dˇ� yg.k � `; � � `t/ˇ̌d` dk d�

D RM C TM :

For the RM term, we may treat as R1IV and R1IZ above. Indeed, using (5.3) and
treating the resulting two terms as in (5.4) and (5.4), respectively,

RM .
X

jˇ jDj˛j�1

Z
R3�R3�R3

jkjıhk; �i�3
ˇ̌
D˛� yg.k; �/

ˇ̌ j`j1Cı C j`jjk � `jı
h`i2

h`; `ti�4

jy�.t; `/j
ˇ̌
Dˇ� yg.k � `; � � `t/

ˇ̌
d` dk d�

.
1

hti1=2Cı



j@´jıg

2H�3
M



j@´j1=2h@´; @´ti�4�

L2 ;
which suffices to improve (2.8c) for � sufficiently small by (2.8b). For TM we can
use a treatment as in T2:

TM .
X

jˇ jDj˛j�1

Z
R3�R3�R3

jkjıhk; �i�3
ˇ̌
D˛� yg.k; �/

ˇ̌ j`j1Cı
h`i2

jy�.t; `/jhk � `; � � `ti�3
ˇ̌
Dˇ� yg.k � `; � � `t/

ˇ̌
d` dk d�

.


j@´jıg

H�3

M

�
hti�5=2khr´t;rvigkH�3

M

�
hti5=2

Z
R3

j`j1Cı

h`i2
j�.t; `/jd`

.
�

hti3=2Cı



j@´jıg

H�3
M

�
hti�5=2khr´t;rvigkH�4

M

�
;

which, as above, is sufficient to improve (2.8c) for � sufficiently small.

5.3 The L1
t L

1
k;�

Estimate
In this section we improve (2.8e). Integrating (2.4a) gives

hk; �i�1 jyg.T; k; �/j

� hk; �i�1
ˇ̌3hin.k; �/

ˇ̌
C hk; �i�1

Z T

0

ˇ̌
y�.t; k/kW.k/ � .� � kt/ yf 0.� � kt/

ˇ̌
dt

C hk; �i�1
Z T

0

Z
R3
jy�.t; `/`W.`/ � .� � kt/yg.t; k � `; � � `t/jd` dt

D I C LCNL:
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For the linear term we have (using j yf 0.� � kt/j . h� � kti��1�3=2)

L .
�Z T

0

hk; kti2�2 jy�.t; k/j2jkjdt
�1=2

�Z T

0

jkjh� � kti2�1 jW.k/.� � kt/j2
ˇ̌̌
yf 0.� � kt/

ˇ̌̌2
dt
�1=2

. �:

For the nonlinear term, we use a more sophisticated estimate. Write

NL .
Z T

0

Z
R3
jkjı

�
h`; `ti�1 C hk � `; � � `ti�1

�
jy�.t; `/j

j`j

h`i2
j� � kt jjbg.t; k � `; � � `t/jdt d`

D NLHL CNLLH :

The easier is NLHL, which is handled via the following by (2.8d) and (2.8e) (also
using that �2 � �1 and �1 are sufficiently large),

NLHL .
Z

R3

�Z T

0

j�.t; `/j2j`jh`; `ti2�2dt
�1=2

�Z T

0

j`jj� � kt j2

h`i4h`; `ti2.�2��1/hk � `; � � t`i2�1

hk � `; � � t`i2�1 jbg.t; k � `; � � t`/j2 dt
�1=2

d`

. �2
Z

R3

�Z T

0

j`jj� � kt j2

h`i4h`; `ti2.�2��1/hk � `; � � t`i2�1
dt
�1=2

d`

. �2
Z

R3

�
j`j

j`j3h`i6

�1=2
d`

. �2:

Now turn to the NLLH term. First, we use that �.t; k/ D yg.t; k; kt/, (2.8e),
and (2.8c); second (using that the dimension is d D 3)

NLLH .
Z T

0

Z
R3
jyg.`; `t/j

j`j

h`i2
j� � kt jhk � `; � � `ti�1 jyg.k � `; � � `t/jdt d`

. �

Z T

0

Z
R3

j`j

h`; `ti�1h`i2
j� � kt jhk � `; � � `ti�1 jyg.k � `; � � `t/jdt d`

. �

Z T

0

hti

�Z
R3

j`j2

h`; `ti2�1h`i4jk � `j2ı
d`
�1=2

�Z
R3
jk � `j2ıhk � `; � � `ti2�3 jyg.k � `; � � `t/j2 d`

�1=2
dt
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. �2
Z T

0

hti

�Z
R3

j`j2

h`; `ti2�1h`i4jk � `j2ı
d`
�1=2

dt

. �2
Z T

0

hti

�
1

hti2�2ıC3

�1=2
dt

. �2:

which, by choosing � small enough, completes the improvement of theL1t L
1

R3�R3
estimate (2.8e). As this is the last estimate, this also completes the proof of Propo-
sition 2.12.

Appendix: Details Regarding the Linear Problem
First, we state an important lemma regarding L.

LEMMA A.1. Recall the definition of L in (2.6). For 0 � j � � and any � > 0

jkjj
ˇ̌
@j!L.i!; k/

ˇ̌
.� kW kL1kf 0kHjC3=2C�

2

:(A.1)

PROOF. By the regularity requirement f 0 2 H�C3=2C0
M and the Sobolev trace

Lemma 2.15, we haveˇ̌
@j!L.i!; k/

ˇ̌
�

Z C1
0

jkt jj j�W .k/jjkj2t ˇ̌cf 0.kt/ˇ̌dt
D

Z C1
0

j�W .k/jsjC1 ˇ̌̌̌cf 0� k

jkj
s

�ˇ̌̌̌
ds

.� kW kL1
�Z C1

0

s2jC2hsi1C2�
ˇ̌̌̌cf 0� k

jkj
s

�ˇ̌̌̌2
ds
�1=2

. kW kL1kf 0kHjC3=2C�
2

: �

Next, we prove Proposition 2.7.

PROOF OF PROPOSITION 2.7. Let us recall the following formula from [30]
(essentially from [32]; see also [16]), adapted here to our slightly different defi-
nition of L, which neatly divides L into real and imaginary parts:

L.i!; k/ D �W .k/�p.v.
Z

R

.f 0
k
/0.r/

r � !jkj�1
dr � i�

�
f 0k
�0� !
jkj

��
;

where

f 0k .r/ WD

Z
k
jkj
rCk?

f 0.x/dx:

Next note that when f 0 is radially symmetric, f 0
k

does not depend on k. Further,
recall that if f 0 is radially symmetric and f 0 is strictly positive, then .f 0

k
/0 < 0 by
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v 2 R3 (see, e.g., [30]). Further, observe that, by Sobolev embedding, f 0 2 C 0;


for some 
 2 .0; 1/, and hence the real part of L is also a C 0;
 function of !jkj�1

(since the Hilbert transform maps C 0;
 7! C 0;
 for 
 2 .0; 1/ [36]). Next note
that

p.v.
Z

R

�
f 0
k

�0
.r/

r
dr � 0;

and hence by the Hölder continuity, there is an m depending only on f 0 and ˛
such that, for all !jkj�1 < m, there holds

p.v.
Z

R

�
f 0
k

�0
.r/

r � !jkj�1
dr <

1

2˛
:

As 0 � �W .k/ � 1
˛

(recall (1.4)), it follows that for !jkj�1 < m, jL � 1j � 1
2

.
For !jkj�1 > M , for M to be chosen below sufficiently large, write

p.v.
Z

R

�
f 0
k

�0
.r/

r � !jkj�1
dr

D

Z
jrj� 1

2
!jkj�1

�
f 0
k

�0
.r/

r � !jkj�1
dr C p.v.

Z
jrj> 1

2
!jkj�1

�
f 0
k

�0
.r/

r � !jkj�1
dr

D �
jkj

!

Z
jrj� 1

2
!jkj�1

�
f 0k
�0
.r/

1X
nD0

�
r jkj

!

�n
dr

C p.v.
Z
jrj> 1

2
!jkj�1

�
f 0
k

�0
.r/

r � !jkj�1
dr

D LI C LO :

For f 0 and rf 0 rapidly decaying, the outer integral satisfies

LO .
jkj3

!3
:

Since .f 0
k
/0 has zero average and is rapidly decaying, the leading-order contribu-

tion to the inner integral is also decaying rapidly:

�
jkj

!

Z
jrj� 1

2
!jkj�1

�
f 0k
�0
.r/dr .

jkj3

!3
:

Therefore, the next-order contribution is

LI D �
jkj2

!2

Z
R

�
f 0k
�0
.r/r dr CO

�
jkj3

!3

�
:
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It follows that for !jkj�1 > M ,

ReL.i!; k/ D �
jkj2

.˛ C jkj2/!2

Z
R

�
f 0k
�0
.r/r dr CO

�
jkj3

!3

�
:

Therefore, for M chosen sufficiently large (depending on ˛ and f 0), there holds

jReL.i!; k/ � 1j �
1

2
:

On the other hand, for all 0 < m < M < 1, due to the assumptions on f 0
k

, the
imaginary part of L is bounded uniformly away from 0 over m < !jkj�1 < M ;
that is, there exists a � D �.m;M/ > 0 such that

inf
m�!jkj�1�M

jImL.i!; k/j � �:

The result then follows. �

Next we prove Proposition 2.3.

PROOF OF PROPOSITION 2.3. Note that � will not generally be compactly sup-
ported in time but obviously

jkj˛hk; kti��.t; k/



L2t .I /
�


jkj˛hk; kti��.t; k/



L2t .RC/
:

Step 1. A priori estimate for integer � . Define

ˆ.t; k/ D jkj˛�.t; k/; H 0.t; k/ D jkj˛H.t; k/;

and multiply both sides of equation (2.5) by jkj˛ to derive

ˆ.t; k/ D H 0.t; k/C

Z t

0

K0.t � �; k/ˆ.�; k/d�:(A.2)

If we assume a priori that all the quantities involved are L2 integrable in time, then
we can take the Fourier transform in time (extending as 0 for t < 0 and extending
H by 0 for t > T?), and we have for ! 2 R,

�̂.!; k/ D fH 0.!; k/C fK0.!; k/�̂.!; k/;
where �̂.!; k/;fH 0.!; k/, and fK0.!; k/ is the Fourier transform in time ofˆ.t; k/,
H 0.t; k/, and K0.t; k/, respectively, after extending by 0 for negative times. Now
we note that fK0.!; k/ D L.i!; k/:(A.3)

Regularity estimates in ! imply decay in t , so let us prove H� estimates in !.
Taking ˇ derivatives, where 0 � ˇ � � , and multiplying by jkjˇ hki
 for 0 � 
 �
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� gives

jkjˇ@ˇ!hki

 ẑ .!; k/ D jkjˇ hki
@ˇ!

fH 0.!; k/
C jkjˇ hki


ˇX
jD0

�
ˇ

j

�
@ˇ�j! L.i!; k/@j!ê.!; k/:

By taking L2! norms and using the stability condition we then have

jkjˇ hki



@ˇ!�̂. � ; k/

L2!

.�;ˇ jkjˇ hki



@ˇ!fH 0. � ; k/

L2!

C hki

ˇ�1X
jD0



jkjˇ�j @ˇ�j! L.i �; k/



L1!
jkjj



@j!�̂. � ; k/

L2! :
Then using (A.1) and induction on ˇ, we get for all ˇ, 0 � ˇ � � , and all s for
0 � s � � ,

kjkt jˇ hkisˆ.t; k/kL2t .I /
.s;ˇ ��ˇ hkiskhktiˇH 0.t; k/kL2t .I /:(A.4)

Now we apply hk; kti� � hki� C jkt j� and use (A.4) with ˇ D 0, s D � , and
ˇ D � , s D 0, to conclude the a priori estimate (2.7).

Step 2. Justifying a priori estimate for integer � . Recall that this argument as-
sumes a priori that we already have sufficiently rapid decay on �. In order to make
this argument rigorous, one may use the technique described in [4,39] which is for
all ı > 0, define �ı.t/ D e�ıt

2=2, and choose � � 0 to be a real number; then
study

ˆı.t; k/ D e�t�ı.t/ˆ.t; k/:

It is straightforward to show that for C sufficiently large jˆ.t; k/j . eCt and hence
for � < �C , one goes through the derivations above and derives:

f̂ı.!; k/ D e�ı � � �H. � ; k/
1 � L.�C i �; k/

�
.!/:

Moreover, this function depends analytically on � as long as we stay away from a
singularity where L D 1. By analytic continuation, we may hence deduce that this
formula holds all the way for all � � 0. From there, one may proceed by taking
derivatives in ! on �̂ı.!; k/ and then passing to the limit ı ! 0 to deduce the
desired estimate (2.7). �
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