
Certified Concurrent Abstraction Layers

Ronghui Gu
Yale University, USA

Columbia University, USA

Zhong Shao
Yale University

USA

Jieung Kim
Yale University

USA

Xiongnan (Newman) Wu
Yale University, USA

Jérémie Koenig
Yale University, USA

Vilhelm Sjöberg
Yale University, USA

Hao Chen
Yale University, USA

David Costanzo
Yale University, USA

Tahina Ramananandro
Microsoft Research, USA

Abstract

Concurrent abstraction layers are ubiquitous in modern
computer systems because of the pervasiveness of multi-
threaded programming and multicore hardware. Abstraction
layers are used to hide the implementation details (e.g., fine-
grained synchronization) and reduce the complex depen-
dencies among components at different levels of abstraction.
Despite their obvious importance, concurrent abstraction
layers have not been treated formally. This severely limits the
applicability of layer-based techniques and makes it difficult
to scale verification across multiple concurrent layers.
In this paper, we present CCALÐa fully mechanized pro-

gramming toolkit developed under the CertiKOS projectÐ for
specifying, composing, compiling, and linking certified con-
current abstraction layers. CCAL consists of three technical
novelties: a new game-theoretical, strategy-based composi-
tional semantic model for concurrency (and its associated
program verifiers), a set of formal linking theorems for com-
posing multithreaded and multicore concurrent layers, and a
new CompCertX compiler that supports certified thread-safe
compilation and linking. The CCAL toolkit is implemented
in Coq and supports layered concurrent programming in
both C and assembly. It has been successfully applied to
build a fully certified concurrent OS kernel with fine-grained
locking.

CCS Concepts · Theory of computation → Logic and

verification; Abstraction; · Software and its engineer-

ing→ Functionality; Software verification;Concurrent
programming languages;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

© 2018 Copyright held by the owner/author(s). Publication rights licensed

to the Association for Computing Machinery.

ACM ISBN 978-1-4503-5698-5/18/06. . . $15.00

https://doi.org/10.1145/3192366.3192381

Keywords abstraction layer, modularity, concurrency, veri-
fication, certified OS kernels, certified compilers

ACM Reference Format:

Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan (Newman) Wu,

Jérémie Koenig, Vilhelm Sjöberg, HaoChen, David Costanzo, and Ta-

hina Ramananandro. 2018. Certified Concurrent Abstraction Layers.

In Proceedings of 39th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’18). ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3192366.3192381

1 Introduction

Abstraction layers (e.g., circuits, ISA, device drivers, OS
kernels, and hypervisors) are widely used in modern com-
puter systems to help reduce the complex interdependencies
among components at different levels of abstraction [3, 48].
An abstraction layer defines an interface that hides the im-
plementation details of its underlying software or hardware
components. Client programs built on top of each layer are
understood solely based on the interface, independent of the
layer implementation.
As multicore hardware and multithreaded programming

become more pervasive, many of these abstraction layers
also become concurrent in nature. Their interfaces not only
hide the concrete data representations and algorithmic de-
tails, but also create an illusion of atomicity for all of their
methods: each method call is viewed as if it completes in a
single step, even though its implementation contains com-
plex interleavings with operations done by other threads.
Herlihy et al. [19, 20] advocated using layers of these atomic
objects to construct large-scale concurrent software systems.

Figure 1 presents a few common concurrent layer objects
in a modern multicore runtime. Here we use the light gray
color to stand for thread-local (or CPU-local) objects, blue
(also with round dots in their top-right corner) for objects
shared between CPU cores, green for objects exported and
shared between threads, and orange for threads themselves.
Above the hardware layers, we must first build an efficient
and starvation-free spinlock implementation [36]. With spin-
locks, we can implement shared objects for sleep and pending
thread queues, which are then used to implement the thread
schedulers, and the primitives yield, sleep, and wakeup. On

646

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3192366.3192381
https://doi.org/10.1145/3192366.3192381

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA R. Gu et al.

S/W
 Layers

CPU

PerCore
PerCore

Core 0 Core 8…H W Memory

CurID PCPU

Thread RdyQ

Scheduler

Spin Locks

PendQ SleepQ

P
e
rT

h
re

a
d TCB

Stack

Ctxt

PPerCore

P
e
rT

h
re

a
d TCB

Stack

Ctxt

Thread 1 Thread 2 Thread N

r

…

Sync. Libs QLock CV IPC…

…

QLock: Queue Lock

CV: Condition Variable
Ctxt: Threat Context

RdyQ: Ready Queue
PendQ: Pending Queue

SleepQ: Sleeping Queue

IPC: Inter-process Communication

TCB: Threat Control Block

CurID: Current IDAcronyms

Sync. Libs: Synchronization Libraries

Figure 1.An overview of concurrent abstraction layers in a modern

multithreaded and multicore environment (arrow means possible

function call from one component to another).

top of them, we can then implement high-level synchroniza-
tion libraries such as queuing locks, condition variables (CV),
and message-passing primitives [2].
Despite the importance of concurrent layers and a large

body of recent work on shared-memory concurrency verifi-
cation [5, 7, 8, 13, 23, 29, 30, 42, 45, 50, 57–59], there are no
certified programming tools that can specify, compose, and
compile concurrent layers to form awhole system [6]. Formal
reasoning across multiple concurrent layers is challenging
because different layers often exhibit different interleaving
semantics and have a different set of observable events. For
example, the spinlock module in Fig. 1 assumes a multicore
model with an overlapped execution of instruction streams
from different CPUs. This model differs significantly from
the multithreading model for building high-level synchro-
nization libraries: each thread will block instead of spinning
if a queuing lock or a CV event is not available; and it must
count on other threads to wake it up to ensure liveness.

Reasoning across these different abstraction levels requires
a general, unified compositional semantic model that can
cover all of these concurrent layers. It must also support
a general “parallel layer composition rule” that can handle
explicit thread control primitives (e.g., sleep and wakeup).
It must also support vertical composition [2] of these con-
current layer objects [19] while preserving both the lineariz-
ability and progress (e.g., starvation-freedom) properties.

Contributions. In this paper, we present CCAL—a fully
mechanized programming toolkit implemented in Coq [55]

and developed under the CertiKOS project [16] for building
certified concurrent abstraction layers. As shown in Fig. 2,
CCAL consists of a novel compositional semantic model
for concurrency, a collection of C and assembly program
verifiers, a library for building layered refinement proofs, a
thread-safe verified C compiler based on CompCertX [15],
and a set of certified linking tools for composing multi-
threaded or multicore layers.
We define a certified concurrent abstraction layer as a

triple (L1[A],M,L2[A]) plus a mechanized proof object show-
ing that the layer implementationM , running on behalf of
a thread set A over the interface L1, indeed faithfully imple-
ments the desirable interface L2 above. Our compositional
semantics model is based upon ideas from game seman-
tics [38]. It enables local reasoning such that the implemen-
tation can be first verified over a single thread t by building
(L1[{t }],M,L2[{t }]) without worrying too much about the
concurrency and the guarantees can then be propagated to
the whole concurrent machine by parallel compositions.
Following Gu et al. [15], certified concurrent layers en-

force termination-sensitive contextual correctness property.
In the concurrent setting, this means that every certified
concurrent object satisfies not only a safety property (e.g.,
linearizability) [10, 20] but also a progress property (e.g.,
starvation-freedom) [33].

The CCAL toolkit has already been used in multiple large-
scale verification projects under CertiKOS: Gu et al. [16]
have successfully used CCAL to build the world’s first fully
certified concurrent OS kernel; Sjöberg et al. [53] used CCAL
to verify the safety and liveness of a complex MCS lock
implementation [36]. Neither of these two papers [16, 53]
explained the internals of CCAL and how and why it can
work so effectively.

This paper, rather than focusing on the applications of
CCAL, gives an in-depth exploration of the CCAL toolkit
itself and how it can be used for building various certified
concurrent objects. Over Gu et al. [16], this paper presents
the following three technical contributions:

• We introduce a new compositional semantic model for
shared-memory concurrent abstract machines and prove
a general parallel layer composition rule. We show how
our new framework is used to specify, verify, and com-
pose various concurrent objects at different levels of ab-
straction (see Fig. 1).

• We showhow to apply standard simulation techniques [15,
26] to verify the safety and liveness of concurrent objects
in a unified setting. Because our environment context
specifies not just the environment’s past events but also
future events, we can readily impose temporal invariants
such as fairness requirements (for schedulers) or definite
actions [30] (for releasing locks). This allows us to give
full specifications for lock primitives and support vertical

647

Certified Concurrent Abstraction Layers PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

PerCore / PerLayerPerCoreLayer L[c]

PerThread / PerLayerPerThreadLayer L[t]

C
Code

C
Spec

Thread Safe
CompCertX

Asm
Code

Asm
Code

Atomic
Spec

Atomic
Spec

Compositional
Semantic Model

⊕

C
Verifier

Asm
Verifier

Refinement
Libraries

⊕

⊕

L[A]

C
er

ti
fi

ed
M

u
lt

i-
tr

h
ea

d
ed

L

in
ki

n
g

⊕
L[D]

Certified
Multi-core

Linking

 PerThreadLayer L’[t] L’[A]

⊕ Certified
Multi-layer

Linking

Certified Asm
Linking

c: CPU id; D = {c1, c2, …}

t: thread id; A = {t1, t2, …} Legend

Layer

Spec

Code

Certified

Tool / Model

⊕ Linking

Refinement

Compile

Figure 2. System architecture of the CCAL programming toolkit.

composition of starvation-free atomic objects, none of
which have ever been possible before [30].

• We have also developed a new thread-safe version of
the CompCertX compiler [15] that can compile certified
concurrent C layers into assembly layers. To support
certified multithreaded linking, we have developed a
new extended algebraic memory model (for CompCertX)
whereby stack frames allocated for each thread are com-
bined to form a single coherent CompCert-style memory.

Scope and Paper Outline. While the notion of certified con-
current layer can potentially be applied to a more general
setting [34, 49], in this paper, we focus on shared-memory
concurrent program modules as described in Anderson and
Dahlin [2] and Herlihy and Shavit [19], which are sufficient
to verify layers as shown in Fig. 1. Section 7 discusses related
work and puts our work in broader perspective. Both the
CCAL toolkit and all our assembly (or C) machines assume
strong sequential consistency for shared primitives. Adding
support for relaxed memory models is left as future work.

2 Overview

The key challenge of verifying concurrent systems is how
to untangle the complexities of module dependencies and
interleaving, and then verify different parts independently
and locally at the layers they belong to. To address this issue,
we introduce a layer-based approach to formally specify,
certify, and compose these (concurrent) layers.
In this section, to illustrate our layered techniques, we

will walk through a small example (see Fig. 3) that uses a
lock to protect a critical section. In this example, the client
program P has two threads running on two different CPUs;
each thread makes one call to the primitive foo provided by
the concurrent layer interface L2. The interface L2 is imple-
mented by the concurrent moduleM2, which in turn is built

1 struct ticket_lock {

2 volatile uint n, t;

3 };

4 //Methods provided by L0
5 extern uint get_n();

6 extern void inc_n();

7 extern uint FAI_t();

8 extern void f();

9 extern void g();

10 extern void hold();

11 //M1 module

12 void acq () {

13 uint my_t = FAI_t();

14 while(get_n()!=my_t){};

15 hold();

16 }

17 void rel () { inc_n(); }

18 //Methods provided by L1

19 extern void acq();

20 extern void rel();

21 extern void f();

22 extern void g();

23 //M2 module

24 void foo () {

25 acq();

26 f(); g();

27 rel();

28 }

29 //Methods provided by L2
30 extern void foo();

31

32 //Client program P

33 //Thread running on CPU 1

34 void T1 () { foo(); }

35 //Thread running on CPU 2

36 void T2 () { foo(); }

Figure 3. Certified concurrent layers involving ticket locks.

on top of the interface L1. The method foo calls two prim-
itives f and g in a critical section protected by a lock. The
lock is implemented over the interface L0 using the ticket
lock algorithm [36] in moduleM1. The lock maintains two
integer variables n (the “now serving” ticket number) and
t (i.e., next ticket number). The lock acquire method acq

fetches-and-increments the next ticket number (by FAI_t)
and spins until the fetched number is served. The lock re-
lease method rel simply increments the “now serving” ticket
number by inc_n. These primitives are provided by L0 and
implemented using x86 atomic instructions. L0 also provides
the primitives f and g that are later passed on to L1, as well
as a no-op primitive hold called by acq to announce that the
lock has been taken.

648

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA R. Gu et al.

Certified Abstraction Layers. Gu et al. [15] defines a certi-
fied sequential abstraction layer as a predicate “L′ �R M : L”
plus a mechanized proof object for the predicate, showing
that the layer implementationM , built on top of the interface
L′ (which we call the underlay interface), indeed faithfully
implements the desirable interface L above (which we call
the overlay interface) via a simulation relation R.

Here, the implementationM is a program module written
in assembly (or C). A layer interface L consists of a set of
abstract states and primitives. An abstract layer machine
based on L is just the base assembly (or C) machine extended
with abstract states and primitives defined in L. The imple-

ments relation (�R) is formally defined as a forward simula-
tion [27, 35, 37, 43] with the (simulation) relation R.
A certified layer enforces a contextual correctness prop-

erty: a correct layer is like a “certified compiler,” converting
any safe client program P running on top of L into one that
has the same behavior but runs on top of L′ (i.e., by “compil-
ing” abstract primitives in L into their implementation inM).
If we use “[[·]]L” to denote the behavior of the layer machine
based on L, the correctness property of “L′ �R M : L” is writ-
ten formally as “∀P .[[P ⊕ M]]L′ �R [[P]]L” where ⊕ denotes
a linking operator over programs P andM .

CertifiedConcurrent Layers. To support concurrency, each
layer interface L is parameterized with a “focused” thread set
A (where A ⊆ D and D is the domain of all thread/CPU IDs).
The layer machine based on a concurrent layer interface L[A]
specifies the execution of threads in A (with threads outside
A considered as the environment). For the example in Fig. 3,
the domain D is {1, 2}. If we treat {1} as the focused thread
set, the environment contains thread 2. For readability, we
often abbreviate L[{i}] as L[i] where i ∈ D.
A concurrent layer interface extends its sequential coun-

terpart with a set of abstract shared primitives and a global
log l . Unlike calls to thread-local primitives which are not
observable by other threads, each shared primitive call (to-
gether with its arguments) is recorded as an observable event
appended to the end of the global log. For example, FAI_t (see
Fig. 3) called from thread i takes a log l to a log “l•(i .FAI_t)”
with the symbol “•” means “cons-ing” an event to the log.

To define the semantics of a concurrent program P in a
generic way, we develop a novel compositional (operational)
model based upon ideas from game semantics [38]. Each
run of P over L[D] is viewed as playing a game involving
members of D (plus a scheduler): each participant i ∈ D

contributes its play by appending events into the global log
l ; its strategy φi is a deterministic partial function from the
current log l to its next move φi (l) whenever the last event
in l transfers control back to i .

For example, suppose thread i only invokes FAI_t, its strat-
egy φi can be represented as an automaton:

?l , !i .FAI_t,↓t
?l ′, !ϵ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

L’[t2]

L[t2]

M:foo(){

}

●

●

●

●

E ′

2
= ϕ′

1
⊕ ϕ′

0

L’[t1]

L[t1]

M:foo(){

}

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

E ′

1
= ϕ′

0
⊕ ϕ′

2

⇒

R R
●

●

●

●

●

●

●

●

●

●

●

●

●

M:foo(){

}

●

●

●

●

L’[{t1,t2}]

L[{t1,t2}]

M:foo(){

}

●

●

●

●

R R
E ′

= ϕ′

0

Figure 4. Environment contexts and parallel layer composition.

Suppose the global log is equal to l when the control is trans-
ferred to i (denoted as “?l”). Thread i first generates the event
i .FAI_t (denoted as “!i .FAI_t”) and returns the ticket number
t (denoted as “↓ t”) calculated from l . It then becomes idle
(denoted as a reflexive edge labeled with“?l ′, !ϵ”) and will not
produce any more events. The ticket number t is calculated
by a function that counts the fetch-and-increment events in
l . Such functions that reconstruct the current shared state
from the log are called replay functions.

The scheduler (denoted as φ0) acts as a judge of the game.
At each round, it picks one thread to make a move (and
generate events) using its strategy. The behavior of the whole
layer machine (denoted as “[[·]]L[D]”) is then just the set
of logs generated by playing the game under all possible
schedulers.
When focusing on a subset of threads A, the semantics

(or execution) of the (concurrent) layer machine based on
an interface L[A] is defined over its set of valid environment

contexts. Each environment context (denoted as E) provides a
strategy for its “environment,” i.e., the union of the strategies
by the scheduler plus those participants not in A.
For example, Fig. 4 shows a system with two threads (t1

and t2) and a scheduler. On the left, it shows one execution
of method foo over the layer machine L′[t1] under a spe-
cific environment context E′1. Here, E

′
1 is the union of the

strategy φ ′0 for the scheduler and φ ′2 for thread t2. In the
middle, it shows the execution of foo (invoked by t2) over
L′[t2] under the environment context E′2. On the right, it
shows the interleaved execution of two invocations to foo

over L′[{t1, t2}] where the environment context E′ is just the
scheduler strategy φ ′0.
Given an environment context E which also contains a

specific scheduler strategy, the execution of P over L[A] is
deterministic; the concurrent machine will run P when the
control is transferred to any member of A, but will ask E
for the next move when the control is transferred to the
environment.

To enforce the safety of environmental moves, each layer
interface also specifies its set of valid environment contexts.
This validity corresponds to a generalized version of the “rely”
(or “assume”) condition in rely-guarantee-based reasoning [7,
8, 11, 51, 58]. Each layer interface can also provide its own

649

Certified Concurrent Abstraction Layers PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

łguaranteež condition. These conditions are simply expressed
as invariants over the global log.

Local Layer Interface. Consider the case where the focused
thread set is a singleton {i}. Since the environmental execu-
tions (including the interleavings) are all encapsulated into
the environment context, L[i] is actually a sequential-like (or
local) interface parameterized over E. Before each move of a
client program P over this local interface, the layer machine
first repeatedly asks E for environmental events until the
control is transferred to i . It then makes the move based on
received events. Thus, the semantics of running P over L[i]
(denoted as LPML[i]) can also be viewed as a strategy.

The correctness property asserting that a concurrent mod-
ule on top of a local layer interface indeed satisfies its specifi-
cation (i.e., a more abstract strategy) is defined by the strategy
simulation via a simulation relation R for logs.

Definition 2.1. (≤R) We say a strategy φ is simulated by
another strategy φ ′ with a simulation relation R and write
łφ ≤R φ ′ž, if, and only if, for any two related (by R) environ-
mental event sequences and any two related initial logs, we
have that for any log l produced by φ , there must exist a log
l ′ that can be produced by φ ′ such that l and l ′ also satisfy R.

Consider the acq method of the ticket lock module M1

running over L0[i] (see Fig. 3). Its specification can be repre-
sented as the following strategy φ ′acq[i]:

?E, !i .FAI_t,↓t

?E, !i.get_n,↓n (, t)

?E, !i .get_n,↓t ?E, !i .hold

We write ?E for querying E. We can prove that the simula-
tion łLacqML0[i] ≤id φ

′
acq[i]ž holds for the identical relation:

for any equal E and equal initial state, if φ ′acq[i] takes one

step, acq can take one (or more) steps to generate the same
event and the resulting states are still equal. This correctness
property is also used to define certified concurrent layers:

L0[i] ⊢id acq : φ ′acq[i] := LacqML0[i] ≤id φ
′
acq[i]

Let łM1 := acq ⊕ relž and łL′1[i] := φacq[i]
′ ⊕ φrel[i]

′ž. By
showing that the lock release satisfies its specification (i.e.,
łL0[i] ⊢id rel : φ ′

rel
[i]ž) and by the horizontal composition

rule (see Sec. 3.3), we have:

L0[i] ⊢id M1 : L
′
1[i] := LM1ML0[i] ≤id L′1[i] (2.1)

The notations are extended to a set of strategies, meaning
that each strategy of L′1[i] simulates the one of LM1ML0[i].

Higher-level Strategies. Although the specifications above
(e.g., φ ′acq[i]) are abstract (i.e., language independent), low-
level implementation details and interleavings within the
module are still exposed. For example, φ ′acq[i] reveals the
loop that repeatedly interacts with the environment to check
the serving ticket number. To simplify the verification of

⊕

∥
i ∈{1,2}

(2.2) (2.3)L0[i] ⊢R1
M1 : L1[i] L1[i] ⊢R2

M2 : L2[i]

L0[i] ⊢R1◦R2
M1 ⊕ M2 : L2[i]

L0[i] ⊢R1◦R2
CompCertX(M1 ⊕ M2) : L2[i]

L0[{1, 2}] ⊢R1◦R2
CompCertX(M1 ⊕ M2) : L2[{1, 2}]

∀P , [[P ⊕ CompCertX(M1 ⊕ M2)]]L0[{1,2}] ⊑R1◦R2
[[P]]L2[{1,2}]

vertical composition

thread-safe compilation

parallel composition

soundness theorem

Figure 5. Layer verification of the ticket lock example using CCAL.

components using locks, we have to refine the strategies of
L′1[i] to a higher-level interface L1[i] that is atomic:

L1[i] := φacq[i] : ⊕ φrel[i] :
?E, !i .acq !i .rel,↓t

Here, φacq[i] simply queries E and produces a single event
i .acq. It then enters a so-called critical state (marked as gray)
to prevent losing the control until the lock is released. Thus,
there is no need to ask E in critical state.

To prove the strategy simulation between L′1[i] and L1[i],
we have to pose łrelyž (i.e., validity) conditions R over the
environment context of L′1[i]:

• L′1[i].Rhs : the scheduler strategy φ
′
hs

must be fair.

• L′1[i].Rj (j , i): lock-related events generated by φ j
must follow φacq′[j] and φrel′[j], and the held locks will
eventually be released.

These conditions ensure that the loop (waiting for the ticket
to be served) in φ ′acq[i] terminates. Also, they can be used to

prove that each run of L′1[i] is captured by L1[i]. For example,
if the scheduler strategy φ ′

hs
schedules as ł1, 2, 2, 1, 1, 2, 1, 2,

1, 1, 2, 2,ž running P (see Fig. 3) over L′1[D] generates the log:

l ′д := (1.FAI_t)•(2.FAI_t)•(2.get_n)•(1.get_n)•(1.hold)•(2.get_n)
•(1.f)•(2.get_n)•(1.g)•(1.inc_n)•(2.get_n)•(2.hold)

This interleaving can be captured by a higher-level scheduler
φhs producing ł1, 2ž (recall that thread 1 is in the critical state
while holding the lock), and the generated log at L1[D] is:

lд := (1.acq)•(1.f)•(1.g)•(1.rel)•(2.acq)

Although logs (and events) at these two layers are different,
the order of lock acquiring and the resulting shared state
(calculated from logs by replay functions) are exactly the
same. By defining the relationR1 over logs as mapping events
i .acq to i .hold, i .rel to i .inc_n and other lock-related events

650

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA R. Gu et al.

to empty ones, we can prove:

L′1[i] ≤R1 L1[i]

Then by the predicate (2.1) and the weakening rule (i.e., the
Wk rule in Fig. 9), we have that:

L0[i] ⊢id◦R1 = R1
M1 : L1[i] (2.2)

Similarly, for the foo method (i.e., M2 in Fig. 3), we can
also introduce a low-level strategy φ ′

foo
[i] as the first step:

L′2[i] := φ ′
foo

[i] :
?E, !i .acq !i .f !i .g !i .rel

Then we prove that a high-level atomic interface φfoo:

L2[i] := φfoo[i] :
?E, !i .foo

simulates (with some R2) φ
′
foo

, which in turn simulates foo:

L′2[i] ≤R2 L2[i] L1[i] ⊢id M2 : L
′
2[i] (2.3)

Based on L′2[i], we can derive the łguaranteež condition
G of the thread i saying that held locks are always released
within three steps, which is consistent but more concrete
than the rely condition R defined above.

Parallel Layer Composition. We say that two layer inter-
faces L[t1] and L[t2] are compatible if the guarantee G of
each interface implies the other interface’s rely conditions R .
The new compositional model allows us to prove a general
parallel layer composition rule: if L′[t1] is compatible with
L′[t2], L[t1] is compatible with L[t2], and łL′[t] ⊢R M : L[t]ž
holds for every t ∈ {t1, t2}, then we have łL′[{t1, t2}] ⊢R M :
L[{t1, t2}].ž Figure 4 shows how to compose certified local
layers (one for t1 and another for t2) to build a certified layer
for the entire machine (with t1 and t2 both focused).

Thread-Safe CompCertX and Layer Linking. Since the
local layer interface is sequential-like, we can adapt the
CompCertX compiler [15] to be thread-safe by merging the
stack frames of threads on the same CPU into a single stack.
In this way, certified C layers can be compiled into certified
assembly layers. We can then apply the horizontal, vertical,
and the new parallel layer composition rules (see Sec. 3.3) to
construct the certified concurrent layer for the entire system
(see Fig. 5). Finally, from łL′[D] ⊢R M : L[D],ž the soundness
theorem enforces a strong contextual refinement property
saying that, for any client program P , we have that for any
log l in the behavior [[P ⊕ M]]L′[D], there must exist a log l ′

in the behavior [[P]]L[D] such that l and l ′ satisfy R.

Theorem 2.2 (Soundness).

L′[D] ⊢R M : L[D] ⇒ ∀P , [[P ⊕ M]]L′[D] ⊑R [[P]]L[D]

3 Concurrent Layer Interface and Calculus

In this section we instantiate our compositional model for
the x86 multicore hardware and explain the concurrent layer
interface and the layer calculus in more detail.

1 Function σ ′
pull

(s: State) (b: Loc) :=

2 match s.a.status b with

3 |free=>ret s{l: s .c .pull(b)::s.l}{a.status.b: own s.c}

4 | _ => None (* get stuck*)

5 end.

Figure 6. Pseudocode of the pull specification ofMx86 in Coq.

3.1 Multiprocessor Machine Model

ThemultiprocessormachinemodelMx86 is defined by thema-
chine state, the transition relation, and the memory model.

Machine State. As shown in Fig. 7, the state ofMx86 is de-
noted as a tuple łs := (c, fρ ,m,a, l),ž where the components
are the current CPU ID c , all CPUs’ private states fρ (i.e., a
partial map from CPU ID to private state ρ), a shared mem-
ory statem, an abstract state a, and a global event log l . The
private state ρ consists of CPU-private memory pm (invisi-
ble to other CPUs) and a register set rs . The shared memory
statem is shared among all CPUs. Each location b in both
local and shared memories contains a memory value v . The
abstract state a is generally used in our layered approach to
summarize in-memory data structures from lower layers. It
is not just a ghost state, because it affects program execution
when making primitive calls. The global log l is a list of ob-
servable events, recording all shared operations that affect
more than one CPU. Events generated by different CPUs
are interleaved in the log, following the actual chronological
order of events.

Transition Relation. The machineMx86 has two types of
transitions that are arbitrarily and nondeterministically in-
terleaved: program transitions and hardware scheduling.

Program transitions are one of three possible types: instruc-
tion executions, private primitive calls, and shared primitive
calls. The first two types are łsilentž, in that they do not gen-
erate events. Shared primitives, on the other hand, provide
the only means for accessing and appending events to the
global log. The transitions for instructions only change ρ,
pm, andm, and are defined as standard operational semantics
for C or x86-assembly, similar to (and in fact based on) the
operational semantics used in CompCert [27]. Primitive calls
are specific to our style of verification: they directly specify
the semantics of function f from underlying layers as a rela-
tion σf defined in Coq. This relation specifies how the state
is updated after f is called with the given arguments and
what the return value is.

Hardware scheduling transitions change the current CPU
ID c to some ID c ′ (recorded as a scheduling event) and can
be arbitrarily interleaved with program transitions. In other
words, at any step,Mx86 can take either a program transition
staying on the current CPU, or a hardware scheduling to
another CPU. The behavior of a client program P over this
multicore machine (denoted as [[P]]Mx86) is a set of global logs
generated by executing P via these two kinds of transitions.

651

Certified Concurrent Abstraction Layers PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

(Id, Loc) c,b ∈ Nat (Bytes) bl ∈ List Byte (Val) v := bl | b | vundef

(Mem) pm,m ∈ Loc→ Val (Reg) r := EIP | EAX | · · · (RegSet) rs ∈ Reg→ Val

(PvtSt) ρ := (pm, rs) (PvtStMap) fρ ∈ Id⇀ PvtSt (Abs) a ∈ Type

(Event) e := ϵ | c .push(b,v) | · · · (Log) l ∈ List Event (State) s := (c, fρ ,m,a, l)

(AsmFn) κx86 ∈ List x86Instr (AsmModule) Mx86 ∈ Loc⇀ AsmFn

(Prim) σ ∈ State → List Val→ State → Val→ Prop

(PrimList) L ∈ Loc⇀ Prim (Layer) L[A] := (L,R,G) (Inv) INV ∈ Log→ Prop

(Rely, Guar) R,G ∈ Id⇀ Inv (Strategy) φ ∈ Log⇀ Log (EC) E ∈ Id⇀ Strategy

Figure 7. The machine state for the concurrent machine model and the concurrent layer interface.

Memory Model. We introduce a łpush/pullž memory model
for the shared memorym (the private memory is separately
handled in ρ), which encapsulates the shared memory oper-
ations into push/pull events and can detect data races.

In this model, each shared memory location b is associated
with an ownership status in the abstract state a, which can
only be manipulated by two shared primitives called pull and
push. The pull operation modifies the ownership from łfreež
to łowned by cž, after which shared memory accesses can be
performed by CPU c . The push operation frees the ownership
and records its memory updates in the log. Figure 6 shows
the specification σ ′

pull
, where łr {i : v}ž means updating the

record r at field i with value v .
If a program tries to pull a not-free location, or tries to

access or push to a location not owned by the current CPU, a
data race may occur and the machine gets stuck. One goal of
concurrent program verification is to show that a program is
data-race free; in our setting, we accomplish this by showing
that the program does not get stuck.

3.2 Concurrent Layer Interface

We now zoom in on the execution of a subset of CPUs A,
introducing the concurrent layer interface L[A] defined as
a tuple (L,R,G). The machine based on this concurrent
interface is łopenž in the sense that it is eligible to capture a
subset of the CPUs and then be composed with any accept-
able execution of the rest of CPUs. The domain of the private
state map fρ is also this captured (or focused) subset. The
interface L[A] equips this open machine with a collection of
primitives that are defined in L and can be invoked at this
level, the rely condition R that specifies a set of acceptable
environment contexts, and the guarantee condition G that
the log l should hold. The instruction transitions are defined
as before, but all hardware scheduling is replaced by queries
to the environment context.

Environment Context. E is a partial function from a CPU
ID to its strategy φ . A strategy is an automata that generates
events in response to given logs.When focusing on a CPU set
A, all the observable behaviors of the hardware scheduling
and the program transitions of other CPUs can be specified
as a union of strategies (i.e., E). Thus, whenever there is a
potential interleaving, the machine can query E about the
events from other CPUs (and the scheduler).

These environmental events cannot influence the behav-
iors of instructions and private primitive calls. This also
applies to shared memory read/write, because the push/pull
memory model encapsulates other CPUs’ effects over the
shared memory into push/pull events. Thus, during the ex-
ecution of instructions and private primitives, it is unnec-
essary to query E, and the appended environmental events
will be received by the next so-called query point, that is, the
point just before executing shared primitives.
To be more specific, at each query point, the machine

repeatedly queries E. Each query takes the current log l as
the argument and returns an event (i.e., łE (c ′, l)ž) from a
CPU c ′ not in A. That event is then appended to l , and this
querying continues until there is a hardware transition event
back to A (assuming the hardware scheduler is fair). In the
following, we write łE[A, l]ž to mean this entire process of
extending l with multiple events from other CPUs.

Rely andGuarantee Conditions. TheR andG of the layer
interface specify the validity of the environment context and
the invariant of the log (containing the locally-generated
events). After each step of threads in A over interface L[A],
the resulting log l must satisfy the guarantee condition
L[A].G, i.e., l ∈ L[A].G (c) if c is the current CPU ID in-
dicated by l . To prove that guarantee conditions always hold,
we not only need to validate the events generated locally but
also need to rely on the validity of the environment context.
The rely condition L[A].R specifies a set of valid environ-
ment contexts, which take valid input logs and return a valid
list of events.

CPU-Local Layer Interface. When focusing on a single
CPU c , L[c] is called a CPU-local layer interface. Its ma-
chine state is (ρ,m,a, l), where ρ is the private state of the
CPU c andm is just a local copy of the shared memory.
Thism can only be accessed locally by c . The primitives

push/pull of L[c] łdeliverž the effects of sharedmemory oper-
ations. Figure 8 shows their specifications, which depend on
a replay function Rshared to reconstruct the shared memory
value v for some location b and check the well-formedness
(i.e., no data race occurs) of the resulting log.

Since σpull is parameterized with E, it can also be viewed
as the following special strategy with private state updates:

652

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA R. Gu et al.

1 Fixpoint Rshared (l: Log) (b: Loc) (c: Id) :=

2 match l with

3 | nil => ret (vundef, free) (* initial value *)

4 | e :: l' => (* l' • a *)

5 do r <- Rshared l' b; (* Haskell syntax sugar*)

6 match r, e with

7 | (v, free), c .pull(b) => ret (v, own c)

8 | (_, own c), c .push(b,v) => ret (v, free)

9 | _ => None (* get stuck *)

10 end

11 end.

12 Function σpull E (s: State) (b: Loc) :=

13 let l':= s .c .pull(b) :: E[s.c, s.l] in (* query E *)

14 do r <- Rshared l' b s.c; ret s {l: l'} {m.b: fst r}.

15 Function σpush E (s: State) (b: Loc) :=

16 let l':= s .c .push(b, s .m b) :: s.l in (*do not query E*)

17 do _ <- Rshared l' b s.c; ret s {l: l'}.

Figure 8. Pseudocode of push/pull specifications of L[c] in Coq.

?E, !c .pull(b),↓ (v, own c)

{m.b : v}

The layer machine enters the critical state after calling pull

by holding the ownership of a shared location. It exits the
critical state by invoking push to free the ownership.

3.3 Concurrent Layer Calculus

To build and compose concurrent layers łL[A] ⊢R M : L′[A],ž
we introduce a layer calculus shown in Fig. 9. We borrow
the notations from Gu et al. [15]: ł∅ž stands for an empty
programmodule, ł⊕ž computes the union of two modules (or
two layers’ primitive collections), and ł(i 7→ ·)ž is a singleton
map with a pointer or location i as its domain.

Composition Rules. The vertical composition rule (Vcomp)
allows us to verify the modules M and N (where N may
depend on M) in two separate steps, while the horizontal
composition rule (Hcomp) enables local reasoning for in-
dependent modules M and N belonging to the same level.
These two composition rules can only compose layers over
the same CPU set.

Layers on different CPUs can be composed by the parallel
composition rule (Pcomp) if simulation relations are the same,
and both overlay and underlay interfaces are compatible. This
compatibility is denoted as łcompat(L[A],L[B],L[A ∪ B]).ž
It says that each guarantee condition of L[A] implies the
corresponding rely condition of L[B] and vice versa. The
composed interface L[A ∪ B] merges the primitives of two
layers and is equipped with stronger guarantees and weaker
rely conditions. The machine based on this composed layer
interface only queries E about the events not from A ∪ B.

Multicore Linking Theorem. By composing all the CPUs
in the machine (denoted as the set D), the resulting layer

interface does not depend on any environmental events ex-
cept those from the hardware scheduler. We construct such
a layer interface Lx86[D] using the primitives provided by
the hardwareMx86. We can then prove a contextual refine-
ment fromMx86 to Lx86[D] by picking a suitable hardware
scheduler of Lx86[D] for every interleaving (or log) ofMx86.

Theorem 3.1 (Multicore Linking).

∀P , [[P]]Mx86
⊑R [[P]]Lx86[D]

This theorem ensures that all code verification overLx86[D]
can be propagated down to the x86 multicore hardwareMx86.

Building Leaf Certified Layers. As the unit of certified
concurrent layers, leaf layers can be built by applying the
Fun rule, which requires to prove the strategy simulation.
Two most common patterns, fun-lift and log-lift, for this
proof have already been shown in Sec. 2. The fun-lift pattern
abstracts a concrete implementation into a low-level strategy
without changing the potential interleaving. In this pattern,
language dependent details (e.g., silent moves changing tem-
poral variables) are hidden and data representation details
(e.g., memory values carried by push events) are replaced
with abstract state values.

The log-lift pattern always involves the events merging
and the interleavings shuffling to form an atomic interface.

4 Building Certified Multicore Layers

In this section, we start to show how to apply our techniques
to verify shared objects in the CCAL toolkit. All layers are
built upon the CPU-local layer interface Lx86[c].

4.1 Spinlocks

Spinlocks (e.g., the ticket lock algorithm described in Sec. 2)
are one of the most basic synchronization methods for mul-
ticore machines; they are used as building blocks for shared
objects and more sophisticated synchronizations.

A spinlock enforces mutual exclusion by restricting CPU
access to a memory location b. Therefore, lock operations
can be viewed as łsafež versions of push/pull primitives. For
example, when the lock acquire for b succeeds, the corre-
sponding shared memory is guaranteed to be łfreež, meaning
that it is safe to pull the contents to the local copy at this
point (line 4 in Fig. 10). We now show how to build layers
for the spinlock in Fig. 10, which uses a ticket lock algorithm.
Note that query points are denoted as ł▷ž in pseudocode.

Bottom Interface Lx86[c]. We begin with the CPU-local in-
terface Lx86[c] extended with shared primitives FAI_t, get_n,
and inc_n. These primitives directly manipulate the lock
state t (next ticket) and n (now serving ticket) via x86 atomic
instructions. The lock state can be calculated by a replay
function Rticket counting c .FAI_t and c .inc_n events.

Fun-Lift to Llock_low[c]. Wehave shown how to establish the
strategy simulation for this low-level interface Llock_low[c]

653

Certified Concurrent Abstraction Layers PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

L[A] ⊢id ∅ : L[A]
Empty

LκML[c] ≤R σ

L[c] ⊢id i 7→ κ : i 7→ σ
Fun

L1[A] ⊢R M : L2[A] L2[A] ⊢S N : L3[A]

L1[A] ⊢R◦S M ⊕ N : L3[A]
Vcomp

L[A] ⊢R M : L1[A] L[A] ⊢R N : L2[A]

L′[A].L = L1[A].L ⊕ tt2[A].L L′[A].R = L1[A].R = tt2[A].R L′[A].G = L1[A].G = tt2[A].G

L[A] ⊢R M ⊕ N : L′[A]
Hcomp

L′1[A] ≤R L1[A] L1[A] ⊢S M : L2[A] L2[A] ≤T L′2[A]

L′1[A] ⊢R◦S◦T M : L′2[A]
Wk

A ⊥ B ∀i ∈ A,L[B].R (i) ⊆ L[A].G (i) ∀i ∈ B,L[A].R (i) ⊆ L[B].G (i)

L[A ∪ B].L = L[A].L = L[B].L L[A ∪ B].R = L[A].R ∩ L[B].R L[A ∪ B].G = L[A].G ∪ L[B].G

compat(L[A],L[B],L[A ∪ B])
Compat

L1[A] ⊢R M : L2[A] L1[B] ⊢R M : L2[B] compat(L1[A],L1[B],L1[A ∪ B]) compat(L2[A],L2[B],L2[A ∪ B])

L1[A ∪ B] ⊢R M : L2[A ∪ B]
Pcomp

Figure 9. The fine-grained layer calculus in the concurrent setting.

1 void acq (uint b) {

2 uint myt=▷FAI_t(b);

3 while(▷get_n(b)!=myt){}

4 ▷pull(b);//acts as hold()

5 }

6 void rel (uint b) {

7 push(b);

8 ▷inc_n(b);

9 }

Figure 10. Pseudocode of ticket lock using push/pull.

(i.e., L′1[c], see Sec. 2). Note that LacqMLlock_low[c] contains extra
silent moves (e.g., assigning myt, line 2 in Fig. 10) compared
with φ ′acq[c]. The simulation relation Rlock not only states
the equality between logs but also maps the lock state in the
memory to the ones calculated by Rticket. Here we must also
handle potential integer overflows for t and n. We can prove
that, as long as the total number of CPUs (i.e., #CPU) in the
machine is less than 232 (determined by uint), the mutual
exclusion property will not be violated even with overflows.

Log-Lift to Llock[c]. We then lift the acq and rel primitives to
an atomic interface, meaning that each invocation produces
exactly one event in the log (see Sec. 2). These atomic lock in-
terfaces (or strategies) are similar to pull/push specifications,
except that the former ones are safe (i.e., will not get stuck).
This safety property can be proved using rely conditions
Llock[c].R saying that, for any CPU c ′ , c , its c ′.acq event
must be followed by a sequence of its own events (generated
in the critical state) ending with c ′.rel. The distance between
c ′.acq and c ′.rel in the log is less than some number n.

By enforcing the fairness of the scheduler in rely condi-
tions, saying that any CPU can be scheduled withinm steps,
we can show the liveness property (i.e., starvation-freedom):
the while-loop in acq terminates in łn ×m × #CPU ž steps.

4.2 Shared Queue Object

Shared queues are widely used in concurrent programs, e.g.,
as the list of threads in a scheduler, etc. In previous work [30],
due to the lack of layering support, the verification of any

shared object required inlining the lock implementation and
duplicating the lock-related proofs. In the following, we il-
lustrate how to utilize concurrent abstraction layers to verify
a shared queue module using fine-grained locks.

Fun-Lift to Lq[c]. The shared queues are implemented as
doubly linked lists, and are protected by spinlocks. For exam-
ple, the dequeue (deQ) operation first acquires the spinlock
associated with queue i , then performs the actual dequeue
operation in the critical state, and finally releases the lock.
Instead of directly verifying deQ in one shot, we first intro-
duce an intermediate function deQ_t, which contains code
that performs the dequeue operation over a local copy, under
the assumption that the corresponding lock is held. Since
no environmental queries are needed in the critical state,
building concurrent layers for deQ_t is similar to building a
sequential layer [15]: we first introduce the abstract states
a.tcbp and a.tdqp, which stand for the thread control block
(i.e., tcb) array and the thread queue array. The abstract tdqp
is a partial map from the queue index to an abstract queue,
which is represented as a list of tcb indices. Then we can
show that deQ_t meets its specification σdeQ_t:

1 Function σdeQ_t E (s: State) (i: Loc) :=

2 do r <- R′
shared

s.l i s.c; (* replay ownership *)

3 match r with

4 | (_, own s.c) => (*if the lock of queue i is held*)

5 match s.a.tdqp i with (* case over the queue*)

6 | td :: q => ret (s {s.a.tdqp.i: q}, td}

7 | _ => ret (s, -1) (* return -1 for empty queue*)

8 end

9 | _ => None (*get stuck*)

10 end.

Fun- and Log-Lift to Lq_high[c]. Finally, we have to show
that the deQ function that wraps deQ_twith lock primitives

654

PLDI’18, June 18–22, 2018, Philadelphia, PA, USA R. Gu et al.

indeed meets an atomic interface. With a simulation relation
Rlock that merges two queue-related lock events (i.e., c .acq
and c .rel) into a single event c .deQ at the higher layer, we
can prove the following strategy simulation:

�deQ�Lq[c] :

φdeQ [c] :

≤Rlock

?E, !c .acq(i),↓q σdeQ_t (q) = (q′, r) !c .rel(i,q′)

?E, !c .deQ (i),↓r

5 Building Certified Multithreaded Layers

Multithreaded programs have to deal with interleavings trig-
gered by not only the hardware scheduler but also the explicit
invocation of thread scheduling primitives. In this section,
we introduce the certified layers dealing with scheduling
primitives, a new concept of thread-local layer interfaces
equipped with compositional rules, and a thread-safe ver-
sion of CompCertX.

5.1 Certified Layers for Scheduling Primitives

Based on the shared thread queues provided by the multicore
toolkit (see Sec. 4.2), we introduce a new layer interface
Lbtd[c] that supports multithreading. At this layer interface,
the transitions between threads are done using scheduling
primitives, implemented in a mix of C and assembly.
In our multithreaded setting, each CPU c has a private

ready queue rdq and a shared pending queue pendq (con-
taining the threads woken up by other CPUs). A thread yield
sends the first pending thread from pendq to rdq and then
switches to the next ready thread. There are alsomany shared
sleeping queues slpq. When a sleeping thread is woken up,
it will be directly appended to the ready queue if the thread
belongs to the currently-running CPU. Otherwise, it will be
appended to the pending queue of the CPU it belongs to.
Thread switching is implemented by the context switch

function cswitch, which saves the current thread’s kernel
context (i.e., ra, ebp, ebx, esi, edi, esp), and loads the context
of the target thread. This cswitch (invoked by yield and sleep)
can only be implemented at the assembly level, as it does
not satisfy the C calling convention. A scheduling primitive
like yield first queries E to update the log, appends its own
event, and then invokes cswitch to transfer the control.

thread 1

thread 0 yield

c.yield cswitch

yield

c.yield

cswitch

This layer interface introduces three new events c .yield,
c .sleep(i, lk) (sleep on queue i while holding the lock lk),
and c .wakeup(i) (wakeup the queue i). These events record
the thread switches, which can be used to track the currently-
running thread by a replay function Rsched.

5.2 Multithreaded Layer Interface

The CPU-local interface Lbtd[c] captures the execution of the
whole thread set of CPU c and does not support thread-local
verification. Ideally, we would like to formally reason about
each thread separately and later compose the proofs together
obtaining a global property. Thus, we introduce a new layer
interface that is compositional and only focuses on a subset
of thread running on CPU c .
Let Tc denote the whole thread set running over CPU c .

Based upon L[c], we construct a multithreaded layer inter-
face “L[c][Ta] := (L[c].L,L[c].R ∪ RTa ,L[c].G|Ta),” which
is parameterized over a focused thread set Ta ⊆ Tc . Besides
Tq , strategies of other threads running on c form a thread
context Et . Rely conditions of this multithreaded layer inter-
face extend L[c].R with a valid set of Et (denoted as “RTa ”)
and guarantee conditions replace L[c].G (c) with the invari-
ants held by threads in Ta (denoted as “L[c].G|Ta ”). Since
our machine model does not allow preemption, Et will only
be queried during the execution of scheduling primitives,
which have two kinds of behaviors depending on whether
the target thread is focused or not.

thread 1

thread 0 yield

c.yield

queries

yield

c.yield

change cid

● ● ● ●

c.yield

Ta

E , ETc

Consider the above execution with Ta = {0, 1}. Whenever
an execution switches (by yield or sleep) to a thread outside
of Ta (i.e., the yellow yield above), it takes environmental
steps (i.e., inside the red box), repeatedly appending the
events returned by the environment context E and the thread
context Et to the log until a c .yield event indicates that the
control has switched back to a focused thread. Whenever
an execution switches to a focused one (i.e., the blue yield
above), it will perform the context switch without asking
E/Et and its behavior is identical to the one of Lbtd[c].

ComposingMultithreaded Layers. Multithreaded layer in-
terfaces with disjoint focused thread sets can also be com-
posed in parallel (using an extended Pcomp rule) if the guar-
antee condition implies the rely condition for every thread.
The resulting focused thread set is the union of the composed
ones, and some environmental steps are “replaced by” the
local steps of the other thread set. For example, if we com-
pose Ta in the above example with thread 2, the previously
yellow yield of thread 0 will then switch to a focused thread.

c.yield

thread 1

thread 0
c.yield

queries

change cid

● ●

thread 2 yield

yield

c.yield

● ●

Ta ∪ {2}

E , ETc

655

Certified Concurrent Abstraction Layers PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

1 void acq_q(uint l) {

2 � acq(ql_loc(l));

3 if (ql_busy[l] != -1) {

4 � sleep(l);

5 } else {

6 ql_busy[l] = get_tid();

7 � rel(ql_loc(l));

8 }

9 }

10 void rel_q (uint l) {

11 � acq(ql_loc(l));

12 ql_busy[l] =� wakeup(l);

13 � rel(ql_loc(l));

14 }

Figure 11. Pseudocode of queuing lock.

Here, the event list l1 generated by E and Et has been divided
into two parts: “l1a•c .yield” (generated by thread 2) and l1b
(consisting of events from threads outside {0,1,2}).

Multithreaded Linking. When the wholeTc is focused, all
scheduling primitives fall into the second case and never
switch to unfocused ones. Thus, its scheduling behaviors are
equal to the ones of Lbtd[c]. By introducing a multithreaded
layer interface Lhtd[c][Tc] that contains all the primitives of
Lbtd[c], we can prove the following theorem:

Theorem 5.1 (Multithreaded Linking).

Lbtd[c] ≤id Lhtd[c][Tc]

This theorem guarantees that, once the multithreaded ma-
chine based on Lhtd[c][Tc] captures the whole thread set, the
properties of threads running on top can be propagated down
to the layer with concrete scheduling implementations.

5.3 Thread-Local Layer Interface

If a multithreaded interface L[c][t] focus only on a single
thread t ∈ Tc , yield and sleep primitives always switch to an
unfocused thread and then repeatedly query E and Et until
yielding back to t .

c.yield

thread 0 yield

c.yield

c.yield

● ● ● ● ● ● ● ●

query

yield

c.yield
● ● ● ● ● ● ● ●

We can prove that this yielding back procedure in our system
always terminates. This proof relies on the fact that the
software scheduler is fair and every running thread gives up
the CPU within a finite number of steps. We call L[c][t] a
“thread-local” layer interface because scheduling primitives
always end up switching back to the same thread; they do not
modify the kernel context (i.e., ra, ebp, ebx, esi, edi, esp) and
effectively act as a “no-op”, except that the shared log gets
updated. Thus, these scheduling primitives indeed satisfy C
calling conventions.

5.4 Queuing Lock

Based upon thread-local layer interfaces, we build additional
synchronization toolkits, such as a queuing lock (see Fig. 11).
With queuing locks, waiting threads are put to sleep to avoid
busy spinning. Reasoning about this locking algorithm is

particularly challenging since its C implementation utilizes
both spinlocks and low-level scheduler primitives (i.e., sleep
and wakeup). This verification task can be decomposed into
a bunch of layers above Lhtd[c][t] using CCAL.

The correctness property of a queuing lock consists of two
parts: mutual exclusion and starvation freedom. The lock
implementation (Fig. 11) is mutually exclusive because the
busy value of the lock (ql_busy) is always equal to the lock
holder’s thread ID. This busy value is set either by the lock
requester when the lock is free (line 6 of Fig. 11) or by the
previous lock holder when releasing the lock (line 12). With
the atomic interface of the spinlock, the starvation-freedom
proof of queuing lock is mainly about the termination of
the sleep primitive call (line 4). By showing that all the lock
holders will eventually release the lock, we prove that all
the sleeping threads will be added to the pending queue or
ready queue within a finite number of steps. Thus, sleep will
terminate thanks to the fair software scheduler. Note that
all these properties proved at the C level can be propagated
down to the assembly level using the thread-safe CompCertX.

5.5 Thread-Safe Compilation and Linking

In this section, we show how to adapt Gu et al.’s CompCertX
verified separate compiler [15, §6] to handle programs that
call scheduling primitives. Section 5.3 shows how thread-
local layer interfaces allow us to give C style specifications
to scheduling primitives (yield and sleep) which are partly
implemented in assembly. Thus, code of each thread can be
verified at the C level over Lhtd[c][t] and individual threads
can then be composed into programs on Lbtd[c] by Thm. 5.1.
However, it is still challenging to show that the compiled
programs at the assembly level are also compatible with
this parallel composition because of a small snag which
we glossed over until now: stack frames. In the CompCert
memory model [28], whenever a function is called, a fresh
memory block has to be allocated in the memory for its
stack frame. This means that, on top of the thread-local layer
Lhtd[c][t], a function called within a thread will allocate its
stack frame into the thread-private memory state, and con-
versely, a thread is never aware of any newer memory blocks
allocated by other threads. In comparison, on top of the CPU-
local layer Lbtd[c], all stack frames have to be allocated in the
CPU-local memory (i.e., thread-shared memory) regardless of
which thread they belong to; thus, in the thread composition
proof, we need to account for all such stack frames.
Our solution is based on a special memory extension [28,

§5.2] that only removes the access permissions of some mem-
ory blocks. To enable the thread composition, we extended
the semantics of yield and sleep on the thread-local layer
Lhtd[c][t]. Besides generating a c .yield/c .sleep event, such
a scheduling primitive also allocates empty memory blocks
as “placeholders" for other threads’ new stack frames during
this yield/sleep. These empty blocks are the ones without

656

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA R. Gu et al.

m1 ⊛m2 ≃m

nb(m) = max(nb(m1), nb(m2))
(Nb)

m1 ⊛m2 ≃m

m2 ⊛m1 ≃m
(Comm)

m1 ⊛m2 ≃m ld(m2, ℓ) = ⌊v⌋

ld(m, ℓ) = ⌊v⌋
(Ld)

m1 ⊛m2 ≃m

m1 ⊛ st(m2, ℓ,v) ≃ st(m, ℓ,v)
(St)

m1 ⊛m2 ≃m nb(m1) ≤ nb(m2)

m1 ⊛ alloc(m2, l ,h) ≃ alloc(m, l ,h)
(Alloc)

m1 ⊛m2 ≃m nb(m1) ≤ nb(m2)

m1 ⊛ liftnb(m2,n) ≃ liftnb(m,n)
(Lift-R)

m1 ⊛m2 ≃m nb(m1) ≤ nb(m2)

liftnb(m1,n) ⊛m2 ≃ liftnb(m,n − (nb(m) − nb(m1)))
(Lift-L)

Figure 12. Algebraic memory model

any access permissions. We write łnb(m)ž to denote the to-
tal number of blocks in m, and write łliftnb(m,n)ž as the
memory extended fromm by allocating n new empty blocks.
With the extended semantics for scheduling primitives,

we can prove that a ternary relation łm1 ⊛m2 ≃ mž holds
between the private memory statesm1,m2 of two disjoint
thread sets and the thread-shared memory statem after the
parallel composition. This relation among memory states is
called the łalgebraic memory modelž, which is defined by
the axioms shown in Fig. 12.
Rule Nb states that the block number of the composed

memorym is equal to łmax(nb(m1), nb(m2)).ž Rule Comm
says that the parallel memory composition is commutative.
Rule Ld and St state that the behaviors of memory load and
store (overm1 orm2) are preserved by the composedmemory
m. It is because that every non-shared memory block ofm1

either does not exist inm2 or corresponds to an empty block
inm2, and vice versa.
All the remaining rules in Fig. 12 share the condition

łnb(m1) ≤ nb(m2).ž This condition indicates that thread 2
is łmore-recently scheduled/runningž because only running

thread can allocate memory blocks. Thus, memory alloca-
tions onm2 can be preserved by the composed memorym
(see Rule Alloc). In addition, if thread 2 is still the next
scheduled thread and there are n new stack frames allocated
by threads other than {1, 2}, we can then simply allocate n
empty blocks inm2, which will be preserved bym (see Rule
Lift-R). If thread 1 is the next thread to run, after allocating
n new empty blocks tom1, the composed memorym only
need to allocate the blocks that have not been captured by
m2 (see Rule Lift-L).

Based on the parallel composition for two memory states,
we can use Rule Lift-R and Lift-L to generalize to N threads
by saying that m is a composition of the private memory
states łm1, . . . ,mN ž of N threads (on a single processor) if,
and only if, there exists a memory statem′ such thatm′ is a
composition of łm1, . . . ,mN−1ž andmN ⊛m′ ≃m holds.

6 Evaluation and Experience

We have implemented the CCAL toolkit (see Fig. 2) in the
Coq proof assistant. Table 1 presents the number of lines
(in Coq) for each component in Fig. 2. The auxiliary library

Table 1. Lines of proofs in Coq for the toolkit.

Component LOC Component LOC

Auxiliary library 6,200 Multilayer linking 17,000

C verifier 2,200 Multithread linking 10,000

Asm verifier 800 Multicore linking 7,000

Simulation library 1,800 Thread-safe CompCertX 7,500

Table 2. Statistics for implemented components.

C&Asm

Source
Spec.

Invariant

Proof

C & Asm

Proof

Simulation

Proof

Ticket lock 74 615 1,080 1,173 2,296

MCS lock 287 1,569 2,299 1,899 3,049

Local queue 377 554 748 2,821 3,647

Shared queue 20 107 190 171 419

Scheduler 62 153 166 1,724 2,042

Queuing lock 112 255 992 328 464

contains the common tactics and lemmas for 64 bit integers,
lists, maps, integer arithmetic, etc.

Case Studies. To evaluate the framework itself, we have
implemented, specified, and verified various concurrent pro-
grams in the framework. Table 2 presents some of the statis-
tics with respect to the implemented components. As for lock
implementations, their source code contains not only the
code of the associated functions, but also the data structures
and their initialization. In addition to the top-level interface,
the specification contains all the specifications used in the
intermediate layers. For both the ticket and MCS locks, the
simulation proof column includes the proof of starvation
freedom (about 1,500 lines) in addition to the correctness
proof. The gap between the underlying C implementation
and the high-level specification of the locks also contributes
to the large proof size for these components. For example, in-
termediate specification of the ticket lock uses an unbounded
integer for the ticket field, while the implementation uses a
binary integer which wraps back to zero. Similarly, the queue
is represented as a logical list in the specification, while it is
implemented as a doubly linked list.

657

Certified Concurrent Abstraction Layers PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

Our development is compositional. Both ticket and MCS
locks share the same high-level atomic specifications (or
strategies) shown in Sec. 2. Thus the lock implementations
can be freely interchanged without affecting any proof in
the higher-level modules using locks. When implementing
the shared queue library, we also reuse the implementation
and proof of the local (or sequential) queue library: to im-
plement the atomic queue object, we simply wrap the local
queue operations with lock acquire and release statements.
As shown in Table 2, using verified lock modules to build
atomic objects such as shared queues is relatively simple and
does not require many lines of code.

Following the same philosophy, Gu et al. [16] has further
extended our work with paging-based dynamically allocated
virtual memory, device drivers with in-kernel interrupts, a
synchronous inter-process communication (IPC) protocol
using the queuing lock, a shared-memory IPC protocol with
a shared page, and Intel hardware virtualization support;
our CCAL toolkit was used to produce the world’s first fully
certified concurrent OS kernel with fine-grained locking.

Performance Evaluation. We have measured the perfor-
mance of the ticket lock on an Intel 4-Core i7-2600S (2.8GHz)
processor with 16GB memory. Initially, the ticket lock imple-
mentation incurred a latency of 87 CPU cycles in the single
core case. After a short investigation, we found that we forgot
to remove some function calls to łlogical primitivesž used for
manipulating ghost abstract states. After we removed these
extra null calls, the latency dropped down to only 35 CPU
cycles. Gu et al. [16] also presented performance evaluations
of their OS kernel built using CCAL.

Limitations. Our concurrentmachinemodels assume strong
sequential consistency (SC) for atomic primitives. Previous
work [52] demonstrated that race-free programs on a TSO
model do indeed behave as if executing on a sequentially
consistent machine. Since safe programs on our push/pull
model are race-free, we believe extending our work from SC
to TSO is promising. In our future work, we will formalize
and integrate this proof in Coq. Furthermore, the current
event-based contextual refinement proofs still require quite
a bit of manual proof. We are working on developing more
automation tactics to further cut down the proof effort. In
addition to this general toolkit that can support a broad
range of concurrent programs, we also plan to provide more
aggressive automation for commonly-used concurrent pro-
gramming patterns, either through additional tactic libraries
or using specific program logics targeting such patterns.

7 Related Work and Conclusions

Certified Abstraction Layers. Gu et al. [15] presented the
first formal account of certified abstraction layers and showed
how to apply layer-based techniques to build certified system
software. The layer-based approach differs from Hoare-style

program verification [4, 21, 40, 46] in several significant ways.
First, it uses the termination-sensitive forward simulation
techniques [26, 35] and proves a stronger contextual correct-
ness property rather than simple partial or total correctness
properties (as done for Hoare logics). Second, the overlay
interface of a certified layer object completely removes the
internal concrete memory block (for the object) and replaces
it with an abstract state suitable for reasoning; this abstract
state differs from auxiliary or ghost states (in Hoare logic)
because it is actually used to define the semantics of the
overlay abstract machine and the corresponding contextual
refinement property. Third, as we move up the abstraction
hierarchy by composing more layers, each layer interface
provides a new programming language that gets closer to
the specification languageÐit can call primitives at higher
abstraction levels while still supporting general-purpose pro-
gramming in C and assembly.
Our CCAL toolkit follows the same layer-based method-

ologies. Each time we introduce a new concrete concurrent
object implementation, we replace it with an abstract atomic
object in its overlay interface. All shared abstract states are
represented as a single global log, so the semantics of each
atomic method call would need to replay the entire global
log to find out the return value. This seemingly łinefficientž
way of treating shared atomic objects is actually great for
compositional specification. Indeed, it allows us to apply
game-semantic ideas and define a general semantics that
supports parallel layer composition.

Abstraction for Concurrent Objects. Herlihy and Wing
[20] introduced linearizability as a key technique for building
abstraction over concurrent objects. Developing concurrent
software using a stack of shared atomic objects has since
become the best practice in the system community [2, 19].
Linearizability is quite difficult to reason about, and it is not
until 20 years later that Filipovic et al. [10] showed that lin-
earizability is actually equivalent to a termination-insensitive
version of the contextual refinement property. Gotsman and
Yang [14] showed that such equivalence also holds for con-
current languages with ownership transfers [42]. Liang et
al. [30, 33] showed that linearizability plus various progress
properties [19] for concurrent objects is equivalent to various
termination-sensitive versions of the contextual refinement
property. These results convinced us that we should prove
termination-sensitive (contextual) simulation when building
certified concurrent layers as well.

RGSim and LiLi. Building contextual refinement proofs for
concurrent programs (and program transformations) is chal-
lenging. Liang et al. [30ś32] developed the Rely-Guarantee-
based Simulation (RGSim) that can support both parallel
composition and contextual refinement of concurrent ob-
jects. Our contextual simulation proofs between two con-
current layers can be viewed as an instance of RGSim if we

658

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA R. Gu et al.

extend RGSimwith auxiliary states such as environment con-
texts and shared logs. This extension, of course, is the main
innovation of our new compositional layered model. Also,
all existing RGSim systems are limited to reasoning about
atomic objects at one layer; their client program context can-
not be the method body of another concurrent object, so they
cannot support the same general vertical layer composition
as our work does.

Treatment of Parallel Composition. Most concurrent lan-
guages (including those used by RGSim) use a parallel compo-
sition command (C1∥C2) to create and terminate new threads.
In contrast, we provide thread spawn and join primitives, and
assign every new thread a unique ID (e.g., t , which must be
a member of the full thread-ID domain set D). Parallel layer
composition in our work is always done over the whole pro-
gram P and over all members of D. This allows us to reason
about the current thread’s behaviors over the environment’s
full strategies (i.e., both past and future events). Even if a
thread t is never created, the semantics for running P over
L[t] is still well defined since it will simply always query its
environment context to construct a global log.

ProgramLogics for Shared-MemoryConcurrency. A large
body of new program logics [5, 7, 8, 13, 18, 22, 23, 29, 39, 42,
44, 45, 50, 51, 56ś59] have been developed to support mod-
ular verification of shared-memory concurrent programs.
Most of these follow Hoare-style logics so they do not prove
the same strong contextual simulation properties as RGSim
and our layered framework do. Very few of them (e.g., [45])
can reason about progress properties. Nevertheless, many
of these logics support advanced language features such
as higher-order functions and sophisticated non-blocking
synchronization, both of which will be useful for verifying
specific concurrent objects within our layered framework.
Our use of a global log is similar to the use of compositional
subjective history traces [51]; the main difference is again
that our environment context can talk about both past and
future events but a history trace can only specify past events.
Both CIVL [18] and FCSL [50] attempt to build proofs of

concurrent programs in a łlayeredž way, but their notions of
layers are different from ours in three different ways: (1) they
do not provide formal foundational contextual refinement
proofs of linearizability as shown by Filipovic et al. [10]
and Liang et al. [33]; (2) they do not address the liveness
properties; (3) they have not be connected to any verified
compilers.

Compositional CompCert. Stewart et al. [54] developed a
new compositional extension of the original CompCert com-
piler [26] with the goal of providing thread-safe compilation
of concurrent Clight programs. Their interaction semantics
also treats all calls to synchronization primitives as external

calls. Their compiler does not support a layered ClightX lan-
guage as our CompCertX does, so they cannot be used to
build concurrent layers as shown in Fig. 1.

Game Semantics. Even thoughwe have used game-semantic
concepts (e.g., strategies) to describe our compositional se-
mantics, our concurrent machine and the layer simulation
is still defined using traditional small-step semantics. This
is in contrast to several past efforts [1, 12, 41, 47] of model-
ing concurrency in the game semantics community which
use games to define the semantics of a complete language.
Modeling higher-order sequential features as games is great
for proving full abstraction, but it is still unclear how it
would affect large-scale verification as done in the certified
software community. We believe there are great potential
synergies between the two communities and hope our work
will promote such interaction.

OS Kernel Verification. There has been a large body of re-
cent work on OS kernel verification including seL4 [24, 25],
Verve [60], and Ironclad [17]. None of these works have
addressed the issues on concurrency with fine-grained lock-
ing. Very recently, Xu et al. [59] developed a new verifica-
tion framework based on RGSim and Feng et al.’s program
logic [9] for reasoning about interrupts; they have success-
fully verified many keymodules (in C) in the µC/OS-II kernel,
though so far, they have not proved any progress properties.

Conclusions. Abstraction layers are key techniques used in
building large-scale concurrent software and hardware. In
this paper, we have presented CCALÐa novel programming
toolkit developed under the CertiKOS project for building
certified concurrent abstraction layers. We have developed a
new compositional model for concurrency, program verifiers
for concurrent C and assembly, certified linking tools, and
a thread-safe verified C compiler. We believe these are criti-
cal technologies for developing large-scale certified system
infrastructures in the future.

Acknowledgments

We would like to thank our shepherd Grigore Rosu and
anonymous referees for helpful feedbacks that improved this
paper significantly. This research is based on work supported
in part by NSF grants 1521523 and 1715154 and DARPA
grants FA8750-12-2-0293, FA8750-16-2-0274, and FA8750-15-
C-0082. Tahina Ramananandro’s work was completed while
he was employed at Reservoir Labs, Inc. Hao Chen’s work
is also supported in part by China Scholarship Council. The
U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions con-
tained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA or
the U.S. Government.

659

Certified Concurrent Abstraction Layers PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

References
[1] Samson Abramsky and Paul-Andre Mellies. 1999. Concurrent Games

and Full Completeness. In Proc. 14th IEEE Symposium on Logic in

Computer Science (LICS’99). 431ś442.

[2] Thomas Anderson and Michael Dahlin. 2011. Operating Systems Prin-

ciples and Practice. Recursive Books.

[3] Carliss Y. Baldwin and Kim B. Clark. 2000. Design Rules: Volume 1, The

Power of Modularity. MIT Press.

[4] Michael Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs,

and K. Rustan M. Leino. 2005. Boogie: A Modular Reusable Verifier for

Object-Oriented Programs. In Proc. 4th Symposium on Formal Methods

for Components and Objects (FMCO’05). 364ś387.

[5] Stephen Brookes. 2004. A Semantics for Concurrent Separation Logic.

In Proc. 15th International Conference on Concurrency Theory (CON-

CUR’04). 16ś34.

[6] Stephen Chong, Joshua Guttman, Anupam Datta, Andrew Myers,

Benjamin Pierce, Patrick Schaumont, Tim Sherwood, and Nickolai

Zeldovich. 2016. Report on the NSF Workshop on Formal Methods

for Security. people.csail.mit.edu/nickolai/papers/chong-nsf-sfm.pdf.

(2016).

[7] Xinyu Feng. 2009. Local Rely-Guarantee Reasoning. In Proc. 36th

ACM Symposium on Principles of Programming Languages (POPL’09).

315ś327.

[8] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. 2007. On the

Relationship Between Concurrent Separation Logic and Assume-

Guarantee Reasoning. In Proc. 16th European Symposium on Program-

ming (ESOP’07). 173ś188.

[9] Xinyu Feng, Zhong Shao, Yuan Dong, and Yu Guo. 2008. Certify-

ing Low-Level Programs with Hardware Interrupts and Preemptive

Threads. In Proc. 2008 ACM Conference on Programming Language

Design and Implementation (PLDI’08). 170ś182.

[10] Ivana Filipovic, Peter W. O’Hearn, Noam Rinetzky, and Hongseok

Yang. 2010. Abstraction for Concurrent Objects. Theor. Comput. Sci.

411, 51-52 (2010), 4379ś4398.

[11] Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010.

Reasoning about Optimistic Concurrency Using a Program Logic for

History. In Proc. 21st International Conference on Concurrency Theory

(CONCUR’10). 388ś402.

[12] Dan R. Ghica and Andrzej S. Murawski. 2008. Angelic Semantics of

Fine-Grained Concurrency. Annals of Pure and Applied Logic 151, 2-3

(2008), 89ś114.

[13] Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. 2013. Verifying

Concurrent Memory Reclamation Algorithms with Grace. In Proc. 22nd

European Symposium on Programming (ESOP’13). 249ś269.

[14] Alexey Gotsman and Hongseok Yang. 2012. Linearizability with Own-

ership Transfer. In Proc. 23rd International Conference on Concurrency

Theory (CONCUR’12). 256ś271.

[15] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao,

Xiongnan(Newman) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu

Guo. 2015. Deep Specifications and Certified Abstraction Layers. In

Proc. 42nd ACM Symposium on Principles of Programming Languages

(POPL’15). 595ś608.

[16] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jie-

ung Kim, Vilhelm Sjöberg, and David Costanzo. 2016. CertiKOS: An

Extensible Architecture for Building Certified Concurrent OS Kernels.

In Proc. 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI’16). 653ś669.

[17] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan

Parno, Danfeng Zhang, and Brian Zill. 2014. Ironclad Apps: End-to-

End Security via Automated Full-System Verification. In Proc. 11th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI’14). 165ś181.

[18] Chris Hawblitzel, Erez Petrank, Shaz Qadeer, and Serar Tasiran. 2015.

Automated and Modular Refinement Reasoning for Concurrent Pro-

grams. In Proc. 27th International Conference on Computer Aided Verifi-

cation (CAV’15). 449ś465.

[19] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Pro-

gramming. Morgan Kaufmann.

[20] Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A

Correctness Condition for Concurrent Objects. ACM Trans. Program.

Lang. Syst. 12, 3 (1990), 463ś492.

[21] C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming.

Commun. ACM 12, 10 (Oct. 1969), 576ś580.

[22] Bart Jacobs and Frank Piessens. 2011. Expressive Modular Fine-grained

Concurrency Specification. In Proc. 38th ACM Symposium on Principles

of Programming Languages (POPL’11). 133ś146.

[23] Ralf Jung, David Swasey, Filip Sieczkowski, Ksper Svendsen, Aaron

Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invari-

ants as an Orthogonal Basis for Concurrent Reasoning. In Proc. 42nd

ACM Symposium on Principles of Programming Languages (POPL’15).

637ś650.

[24] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,

Thomas Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Compre-

hensive Formal Verification of an OS Microkernel. ACM Transactions

on Computer Systems 32, 1 (Feb. 2014), 2:1ś2:70.

[25] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D.

Elkaduwe, K. Engelhardt, et al. 2009. seL4: Formal Verification of an OS

Kernel. In Proc. 22nd ACM Symposium on Operating System Principles

(SOSP’09). 207ś220.

[26] Xavier Leroy. 2005ś2018. The CompCert verified compiler. http:

//compcert.inria.fr/. (2005ś2018).

[27] Xavier Leroy. 2009. Formal verification of a realistic compiler. Commun.

ACM 52, 7 (2009), 107ś115.

[28] Xavier Leroy and Sandrine Blazy. 2008. Formal verification of a C-like

memory model and its uses for verifying program transformations.

Journal of Automated Reasoning 41, 1 (2008), 1ś31.

[29] Ruy Ley-Wild and Aleksandar Nanevski. 2013. Subjective Auxiliary

State for Coarse-Grained Concurrency. In Proc. 40th ACM Symposium

on Principles of Programming Languages (POPL’13). 561ś574.

[30] Hongjin Liang and Xinyu Feng. 2016. A Program Logic for Concur-

rent Objects under Fair Scheduling. In Proc. 43rd ACM Symposium on

Principles of Programming Languages (POPL’16). 385ś399.

[31] Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A Rely-Guarantee-

Based Simulation for Verifying Concurrent Program Transformations.

In Proc. 39th ACM Symposium on Principles of Programming Languages

(POPL’12). 455ś468.

[32] Hongjin Liang, Xinyu Feng, and Zhong Shao. 2014. Compositional

Verification of Termination-Preserving Refinement of Concurrent Pro-

grams. In Proc. Joint Meeting of the 23rd EACSL Annual Conference on

Computer Science Logic and 29th IEEE Symposium on Logic in Computer

Science (CSL-LICS’14). 65:1ś65:10.

[33] Hongjin Liang, Jan Hoffmann, Xinyu Feng, and Zhong Shao. 2013.

Characterizing Progress Properties of Concurrent Objects via Contex-

tual Refinements. In Proc. 24th International Conference on Concurrency

Theory (CONCUR’13). 227ś241.

[34] Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann

Publishers, Inc.

[35] Nancy A. Lynch and Frits W. Vaandrager. 1995. Forward and Backward

Simulations: I. Untimed Systems. Inf. Comput. 121, 2 (1995), 214ś233.

[36] John M. Mellor-Crummey and Michael L. Scott. 1991. Algorithms for

Scalable Synchronization on Shared-Memory Multiprocessors. ACM

Transactions on Computer Systems 9, 1 (Feb. 1991), 21ś65.

[37] Robin Milner. 1971. An Algebraic Definition of Simulation Between

Programs. In Proc. 2nd International Joint Conference on Artificial Intel-

ligence (IJCAI’71). 481ś489.

660

people.csail.mit.edu/nickolai/papers/chong-nsf-sfm.pdf
http://compcert.inria.fr/
http://compcert.inria.fr/

PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA R. Gu et al.

[38] Andrzej S. Murawski and Nikos Tzevelekos. 2016. An invitation to

game semantics. ACM SIGLOG News 3, 2 (2016), 56ś67.

[39] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and German Andres

Delbianco. 2014. Communicating State Transition Systems for Fine-

Grained Concurrent Resources. In Proc. 23rd European Symposium on

Programming (ESOP’14). 290ś310.

[40] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. 2006. Poly-

morphism and Separation in Hoare Type Theory. In Proc. 2006

ACM SIGPLAN International Conference on Functional Programming

(ICFP’06). 62ś73.

[41] Susumu Nishimura. 2013. A Fully Abstract Game Semantics for Par-

allelism with Non-Blocking Synchronization on Shared Variables. In

CSL 2013. 578ś596.

[42] Peter W. O’Hearn. 2004. Resources, Concurrency and Local Reasoning.

In Proc. 15th International Conference on Concurrency Theory (CON-

CUR’04). 49ś67.

[43] David Michael Ritchie Park. 1981. Concurrency and Automata on

Infinite Sequences. In Theoretical Computer Science, 5th GI-Conference,

Karlsruhe, Germany, March 23-25, 1981, Proceedings. 167ś183.

[44] Pedro Da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner.

2014. TaDA: A Logic for Time and Data Abstraction. In Proc. 28th

European Conference on Object-Oriented Programming (ECOOP’14).

207ś231.

[45] Pedro Da Rocha Pinto, Thomas Dinsdale-Young, Philippa Gardner,

and Julian Sutherland. 2016. Modular Termination Verification for

Non-blocking Concurrency. In Proc. 25th European Symposium on

Programming (ESOP’16). 176ś201.

[46] John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable

Data Structures. In Proc. 17th IEEE Symposium on Logic in Computer

Science (LICS’02). 55ś74.

[47] Silvin Rideau and Glynn Winskel. 2011. Concurrent Strategies. In Proc.

26th IEEE Symposium on Logic in Computer Science (LICS’11). 409ś418.

[48] Jerome H. Saltzer and M. Frans Kaashoek. 2009. Principles of Computer

System Design. Morgan Kaufmann.

[49] Davide Sangiorgi and David Walker. 2003. The Pi-Calculus: A Theory

of Mobile Processes. Cambridge University Press, Cambridge, England.

[50] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Mech-

anized Verification of Fine-grained Concurrent Programs. In Proc. 2015

ACM Conference on Programming Language Design and Implementation

(PLDI’15). 77ś87.

[51] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015. Speci-

fying and Verifying Concurrent Algorithms with Histories and Subjec-

tivity. In Proc. 24th European Symposium on Programming (ESOP’15).

333ś358.

[52] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli,

and Magnus O. Myreen. 2010. x86-TSO: A Rigorous and Usable Pro-

grammer’s Model for x86 Multiprocessors. Commun. ACM 53, 7 (2010),

89ś97.

[53] Vilhelm Sjöberg, Jieung Kim, Ronghui Gu, and Zhong Shao. 2017.

Safety and Liveness of MCS LockÐLayer by Layer. In Proc. 15th Asian

Symposium on Programming Languages and Systems (APLAS’17). 273ś

297.

[54] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W.

Appel. 2015. Compositional CompCert. In Proc. 42nd ACM Symposium

on Principles of Programming Languages (POPL’15). 275ś287.

[55] The Coq development team. 1999 ś 2018. The Coq proof assistant.

http://coq.inria.fr. (1999 ś 2018).

[56] Aaron Turon, Derek Dreyer, and Lars Birkedal. 2013. Unifying Re-

finement and Hoare-style Reasoning in a Logic for Higher-Order Con-

currency. In Proc. 2013 ACM SIGPLAN International Conference on

Functional Programming (ICFP’13). 377ś390.

[57] Aaron Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and

Derek Dreyer. 2013. Logical Relations for Fine-Grained Concurrency.

In Proc. 40th ACM Symposium on Principles of Programming Languages
(POPL’13). 343ś356.

[58] Viktor Vafeiadis and Matthew Parkinson. 2007. A Marriage of Re-

ly/Guarantee and Separation Logic. In Proc. 18th International Confer-

ence on Concurrency Theory (CONCUR’07). 256ś271.

[59] Fengwei Xu, Ming Fu, Xinyu Feng, Xiaoran Zhang, Hui Zhang, and

Zhaohui Li. 2016. A Practical Verification Framework for Preemptive

OS Kernels. In Proc. 28th International Conference on Computer Aided

Verification (CAV’16), Part II. 59ś79.

[60] Jean Yang and Chris Hawblitzel. 2010. Safe to the Last Instruction:

Automated Verification of a Type-Safe Operating System. In Proc. 2010

ACM Conference on Programming Language Design and Implementation

(PLDI’10). 99ś110.

661

http://coq.inria.fr

	Abstract
	1 Introduction
	2 Overview
	3 Concurrent Layer Interface and Calculus
	3.1 Multiprocessor Machine Model
	3.2 Concurrent Layer Interface
	3.3 Concurrent Layer Calculus

	4 Building Certified Multicore Layers
	4.1 Spinlocks
	4.2 Shared Queue Object

	5 Building Certified Multithreaded Layers
	5.1 Certified Layers for Scheduling Primitives
	5.2 Multithreaded Layer Interface
	5.3 Thread-Local Layer Interface
	5.4 Queuing Lock
	5.5 Thread-Safe Compilation and Linking

	6 Evaluation and Experience
	7 Related Work and Conclusions
	References

