
Biometrics 73, 529–539 DOI: 10.1111/biom.12579
June 2017

Structured Ordinary Least Squares: A Sufficient Dimension
Reduction Approach for Regressions with Partitioned Predictors and

Heterogeneous Units

Yang Liu,* Francesca Chiaromonte,** and Bing Li***

Department of Statistics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.
∗email: ywl5222@psu.edu
∗∗email: fxc11@psu.edu
∗∗email: bxl9@psu.edu

Summary. In many scientific and engineering fields, advanced experimental and computing technologies are producing data
that are not just high dimensional, but also internally structured. For instance, statistical units may have heterogeneous
origins from distinct studies or subpopulations, and features may be naturally partitioned based on experimental platforms
generating them, or on information available about their roles in a given phenomenon. In a regression analysis, exploiting
this known structure in the predictor dimension reduction stage that precedes modeling can be an effective way to integrate
diverse data. To pursue this, we propose a novel Sufficient Dimension Reduction (SDR) approach that we call structured
Ordinary Least Squares (sOLS). This combines ideas from existing SDR literature to merge reductions performed within
groups of samples and/or predictors. In particular, it leads to a version of OLS for grouped predictors that requires far less
computation than recently proposed groupwise SDR procedures, and provides an informal yet effective variable selection tool
in these settings. We demonstrate the performance of sOLS by simulation and present a first application to genomic data.
The R package “sSDR,” publicly available on CRAN, includes all procedures necessary to implement the sOLS approach.
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1. Introduction

High-dimensional data has become ubiquitous in many sci-
entific fields, and Sufficient Dimension Reduction (SDR) is
one way to overcome the challenges it poses for model selec-
tion and inference in regression problems (Li and Duan, 1989;
Li, 1991; Cook and Weisberg, 1991; Adragni and Cook, 2009;
Ma and Zhu, 2013). Considering the conditional distribution
of a response Y ∈ R given a predictor vector X ∈ Rp, SDR
seeks a small number of linear combinations, that is, a low-
dimensional linear subspace onto which to project X without
loss of information on the regression. In symbols, it targets
a dimension reduction subspace S such that Y ⊥⊥ X|PSX (⊥⊥
indicates independence and PS the orthogonal projection on
S). Naturally, the focus is on the smallest such S, called the
central subspace and denoted by SY |X. Under mild conditions
this is the intersection of all dimension reduction subspaces,
which is minimal, unique, and represents the identifiable
“parameter” of SDR (Cook, 2004).

While the central subspace captures all aspects of the
conditional distribution of Y |X, some analyses focus on the
mean function E(Y |X). Cook and Li (2002) proposed to
consider mean dimension reduction subspaces S such that
E(Y |X) = E(Y |PSX) and their intersection, the minimal and
unique central mean subspace SE(Y |X). It is easy to show that
SE(Y |X) ⊆ SY |X with equality for location regressions where
Y ⊥⊥ X|E(Y |X).

Many methods exist for estimating SY |X or SE(Y |X). For
example, whatever the dimension of SE(Y |X), the direction

spanned by the Ordinary Least Squares (OLS) vector falls
within this space (and hence within SY |X) (Li and Duan,
1989) under the so-called linearity condition. This requires
E(X|PSE(Y |X)

X) to be a linear function of X, and is guaranteed
if X has an elliptical distribution. Other methods utilize the
“inverse” regression of X on Y , for example, Sliced Inverse
Regression (SIR; Li, 1991), Sliced Average Variance Esti-
mation (SAVE; Cook and Weisberg, 1991), and Directional
Regression (DR; Li and Wang, 2007), all of which estimate
directions within SY |X under certain conditions. Yet other
methods, such as Minimum Average Variance Estimation
(MAVE; Xia et al., 2002), estimate SE(Y |X) using nonpara-
metric regression tools; these require fewer conditions but are
computationally more expensive.

In their traditional formulation, most SDR methods treat
all predictors and statistical units the same. However, pre-
dictors and/or statistical units can present group structures
relevant for analysis and interpretation. Predictors may be
generated by different experimental platforms or belong to
different phenomenological domains; for example, Guo et al.
(2015) describe a regression where, due to the lack of instru-
mental climate records prior to the 19th century, past global
surface temperatures are reconstructed as a function of a large
number of climate proxies that naturally fall into different
groups, such as tree composites, tree rings, ice cores, cave
deposits, lake sediments, and historical records. At the same
time, statistical units may originate from distinct studies,
data collection efforts or subpopulations.
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As a motivating application, we consider data from
Kuruppumullage Don et al. (2013), who studied four types
of mutations affecting DNA: small insertions, small deletions,
nucleotide substitutions, and repeat number alterations at
microsatellite loci. Divergence rates for these mutations were
estimated in 1Mb (one million base pairs) non-overlapping
windows along the human genome using primate alignments
of neutrally evolving DNA. Hidden Markov Models run on
the rates produced a segmentation of the genome into six dis-
tinct divergence states. The study also associated the states
with 37 quantitative genomic features derived from publicly
available genome-wide annotations for each of the 1Mb non-
overlapping windows. These features were partitioned into
eight groups of biochemical proxies—for example, for chro-
matin structure, transcription, etc. Our aim is to understand
whether the prevalence of non-coding functional elements in
any given window depends on the divergence states and the
naturally partitioned genomic features. These elements are
genomic sequences that do not encode proteins but have a
function, for example, modulating the transcription of pro-
tein coding sequences. Focusing on one of the best annotated
among them, we take as response variable a measurement of
coverage by transcription start sites from (ENCODE Project
Consortium and others, 2012). Thus, we have a regression
where statistical units (windows) have a group structure
determined by the divergence states, and quantitative pre-
dictors (genomic features) have a group structure determined
by the biochemical processes and contexts they proxy. In this
type of settings, accounting for and exploiting group infor-
mation can be critical. Composite predictors accounting for
partitions of X may be more informative, easier to inter-
pret, and may simplify the analysis by “weeding out” whole
groups of predictors with weak explanatory power. At the
same time, composite predictors accounting for heterogeneity
among units may reveal commonalities and differences in the
relationship between Y and X across subpopulations. In some
cases, accounting for groups may also further reduce dimen-
sion (Chiaromonte et al., 2002; Li et al., 2003, 2010; Hilafu
and Yin, 2013; Guo et al., 2015).

As advances in experimental and computing technolo-
gies produce data that, in addition to high dimensional,
are increasingly complex and structured, the need for con-
sidering group information in SDR is ever more pressing.
Beyond the application introduced above, contemporary
Genomics research requires integrating data across differ-
ent high-throughput experimental platforms, multiple studies,
diverse experimental conditions and various classifications of
genes—or more generally of DNA regions (Louie et al., 2007;
Wu et al., 2012; Kuruppumullage Don et al., 2013; Gomez-
Cabrero et al., 2014). Our overarching goal is to develop
methodology that employs SDR as a means to both reduce
and integrate this type of data. We do this building upon
a number of prior efforts; traditional SDR methods have
been extended to account for the subpopulation structure
induced by categorical predictors (Chiaromonte et al., 2002;
Li et al., 2003) and, separately, to incorporate prior knowl-
edge on predictor groups (Naik and Tsai, 2005; Li, 2009; Li
et al., 2010; Guo et al., 2015). Notably, most methods that
utilize partitions of the predictors do not require indepen-
dence or uncorrelation across predictor groups; their ability

to tackle interdependent groups is what makes them partic-
ularly appealing in applications. Combining ideas from this
literature, we create a comprehensive approach for what we
call structured data, that is, data with naturally grouped pre-
dictors and units.

As we will see in Section 2, we focus on structured OLS
(sOLS). While in some respects OLS is inferior to inverse
regression or nonparametric SDR methods, it is the least
computationally expensive and most informationally parsi-
monious because it only extracts one dominant direction—in
our case, one for each combination of predictor and unit
groups. If for some such combinations several directions are
relevant for the response, sOLS will not be able to cap-
ture them all. However, since the applications we have in
mind are high dimensional and often characterized by rel-
atively small sample sizes, it may not be reasonable to
attempt estimation of multiple directions per combination.
Section 5 discusses possible extensions and the handling of
under-sampled regressions where the sample size n is smaller
than the number of predictors p. Section 3 describes the per-
formance of sOLS in simulations. Section 4 illustrates our
application of sOLS to the data from Kuruppumullage Don
et al. (2013).

2. Structured Ordinary Least Squares

2.1. Sufficient Dimension Reduction for Structured Data

Here, we introduce the theoretical formulation of Struc-
tured Sufficient Dimension Reduction at the population level.
Because of our focus on OLS methodology, we do this from
the perspective of the mean function, with the associated
notions of structured mean dimension reduction subspace and
structured central mean subspace (see below). These spaces
are defined to fully preserve location information while con-
forming to both predictor and unit groups. We combine the
frameworks of groupwise SDR (e.g., Li et al., 2010; Guo
et al., 2015), where the reduction is partitioned through an
orthogonal decomposition of the predictor space, and partial
SDR (e.g., Chiaromonte et al., 2002; Li et al., 2003), where
the reduction is “informed” by the subpopulation structure
induced by one or more categorical predictors. Note that in
groupwise SDR, the partition of the predictor space is orthog-
onal in terms of the Euclidean inner product aT b, not in terms
of the predictors’ covariance—predictors can be dependent as
well as correlated across groups. Note also that in partial SDR
the categorical predictors are not reduced and comprised in
linear combinations along with the quantitative predictors,
but shape their reduction.

Consider the regression Y |(X, W), where Y ∈ R is the
response, X ∈ Rp is the vector of quantitative predictors to
be reduced, and W ∈ {1, . . . , c} labels the subpopulations—
in the case of several categorical predictors, the c levels of
W represent all combinations of their levels. Next, denoting
with ⊕ the direct sum of subspaces, consider an orthogonal
decomposition G = {S1, . . . ,Sg} of the predictor space; Rp =
S1 ⊕ · · · ⊕ Sg. For example, if p = 6 predictors are grouped as
(X1, X2, X3, X6) and (X4, X5), we set S1 = span(e1, e2, e3, e6)
and S2 = span(e4, e5), where ei ∈ R6 has the ith element = 1
and all others = 0 (here, again, S1 and S2 are orthogonal
with respect to the Euclidean inner product, but all kinds
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of dependencies may exist across the corresponding groups of
predictors).

Definition 1. If there exist subspaces Fi ⊆ Si, i = 1, . . . , g

such that

E(Y |X;W) = E(Y |PF1X, . . . , PFg
X;W) (1)

then F = F1 ⊕ · · · ⊕ Fg is a structured mean dimension reduc-
tion subspace with respect to the orthogonal decomposition
G = {S1, . . . ,Sg} and the categorical variable W .

This includes all information in X conforming to the orthog-
onal decomposition G, which is useful for predicting the
conditional mean E(Y |X;W) when considered along with the
categorical W . To focus on the smallest such subspace we use
a Lemma from Li et al. (2010).

Lemma 1. Suppose that F′ = F′
1 ⊕ · · · ⊕ F′

g and F′′ = F′′
1 ⊕

· · · ⊕ F′′
g with F′

i ⊆ Si and F′′
i ⊆ Si, i = 1, . . . , g. Then F′ ∩

F′′ = (F′
1 ∩ F′′

1) ⊕ · · · ⊕ (F′
g ∩ F′′

g).

By Lemma 1 and under mild conditions (Cook, 1998; Yin
et al., 2008), the intersection of all subspaces satisfying (1)
still satisfies (1). A sufficient condition to guarantee this is as
follows:

C.1 (support) for each w = 1, . . . , c, the support of Xw is
open and convex.

We are thus justified in making the following definition.

Definition 2. Under condition C.1, the structured
central mean subspace with respect to the orthogonal decom-
position G = {S1, . . . ,Sg} and the categorical variable W is the
intersection of all structured mean dimension reduction sub-
spaces with respect to G and W . It is itself a structured mean

dimension reduction subspace, denoted as S
(G,W)

E(Y |X).

This setup mimics the one used to define the cen-
tral mean subspace in traditional SDR literature. Similarly,
one can mimic the setup used to define the central sub-
space, switching attention to the stronger condition Y ⊥⊥
X|(PF1X, . . . , PFg

X;W). If this condition holds, F = F1 ⊕
· · · ⊕ Fg is a structured dimension reduction subspace; this
includes all information in X which, conforming to G, is use-
ful for predicting Y |(X;W) along with W . Intersecting all such

subspaces one obtains the structured central subspace S
(G,W)
Y |X .

In the remainder of this subsection, we present only one the-

orem which links S
(G,W)

E(Y |X) to groupwise central mean subspaces

(Li et al., 2010) within subpopulations, and is critical for the
development of the methodology proposed in the next subsec-

tion. The proof, along with an analogous theorem for S
(G,W)
Y |X

and more results connecting structured, groupwise and partial

SDR are provided in the Supplement. Let S
(G)

E(Yw|Xw) = ⊕g

i=1Fwi

be the groupwise central mean subspace within subpopulation
w; its component spaces Fwi ⊆ Si, i = 1, . . . , g are the small-
est such that E(Yw|Xw) = E(Yw|PFw1Xw, . . . , PFwg

Xw), where
(Xw, Yw) denotes a pair distributed as (X, Y)|W = w. We have:

Theorem 1. Under C.1, the structured central mean sub-

space with respect to G and W can be written as S
(G,W)

E(Y |X) =
⊕c

w=1S
(G)

E(Yw|Xw) = ⊕c
w=1 ⊕g

i=1 Fwi = ⊕g

i=1 ⊕c
w=1 Fwi.

Of course S
(G)

E(Yw|Xw), w = 1, . . . , c, can overlap in any fash-

ion, but S
(G,W)

E(Y |X) always coincides with their direct sum—which
in turn can be reconstructed combining the subspaces Fwi

first across the orthogonal decomposition and then over sub-
populations, or conversely first over subpopulations for each
predictor group and then across the orthogonal decomposi-
tion. In the equations above, we are using the symbol ⊕
both to indicate the direct sum of orthogonal subspaces
when adding across predictor groups i = 1, . . . , g, and that
of subspaces that are not required to be orthogonal when
adding over subpopulations w = 1, . . . , c (later in the article,
we sometimes use the word “stacking,” as opposed to the
more general “combining,” to distinguish in an intuitive way
the direct sum of orthogonal subspaces). Importantly though,

what Theorem 1 tells us is that S
(G,W)

E(Y |X) can be estimated
from subspaces obtained performing groupwise SDR within
subpopulations.

As an example, consider again X ∈ R6 partitioned in
S1 = span(γ1) and S2 = span(γ2), where γ1 = (e1, e2, e3, e6)
and γ2 = (e4, e5). Along with X, consider a categorical W ∈
{1, 2} that labels units from two subpopulations. Suppose
the true regression models in the two subpopulations are:
Y1 = sin(X11 + X12 − X13 − X16) + cos(X14 + X15) + ε1, Y2 =
sin(−X21 − X22 + X23 + X26)+ cos(X24−X25)+ ε2, with inde-
pendent additive errors. Here, within each subpopu-
lation, each group of predictors affects the response
through a single direction. For w = 1 we have β11 =
(1, 1, −1, −1)T and β12 = (1, 1)T , while for w = 2 we have
β21 = (−1, −1, 1, 1)T and β22 = (1, −1)T . Consequently, the
groupwise central mean subspaces within the two subpopula-

tions are S
(G)

E(Y1|X1) = F11 ⊕ F12 = span(γ1β11) ⊕ span(γ2β12)

and S
(G)

E(Y2|X2) = F21 ⊕ F22 = span(γ1β21) ⊕ span(γ2β22), and

the structured central mean subspace is S
(G,W)

E(Y |X) = S
(G)

E(Y1|X1) ⊕
S

(G)

E(Y2|X2) which, combining the Fwi’s, is simply the

3-dimensional span of the vectors (1, 1, −1, 0, 0, −1)T ,
(0, 0, 0, 1, 0, 0)T and (0, 0, 0, 0, 1, 0)T .

In actual applications the γi’s will be known and fixed, while
the βwi’s will need to be estimated. Note also that, although
in this example the dimension contributed by each group of
predictors within each subpopulation is 1, in full generality it
could be larger—possibly with spans that overlap across sub-
populations. However, as discussed in the Introduction, our
OLS-based methodology does in fact rely on the notion that
each predictor group within each subpopulation is adequately
summarized by at most one direction.

2.2. Proposed Methodology

Based on the above theoretical formulation, we now describe
novel methodology for structured SDR. From Theorem 1,
this is naturally organized into an inner level, which
accomplishes groupwise SDR within each subpopulation,
and an outer level, which combines the resulting sub-
spaces across subpopulations—akin to partial SDR. While
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the inner level could utilize any existing groupwise SDR
method (e.g., assembled Sliced Inverse Regression (aSIR;
Li, 2009), groupwise Minimum Average Variance Estima-
tion (gMAVE; Li et al., 2010), groupwise Sliced Inverse
Regression (gSIR; Guo et al., 2015), groupwise Directional
Regression (gDR; Guo et al., 2015)), we focus on Ordinary
Least Squares for the reasons explained earlier.

Our groupwise OLS (gOLS) targets directions relevant for
the mean function E(Y |X) while accounting for a partition
of the predictors expressed by the orthogonal decomposition
G = {S1, . . . ,Sg} of Rp. In other words, it targets directions in

the groupwise central mean subspace S
(G)

E(Y |X) (Li et al., 2010).
Following the direct sum envelope approach of Guo et al.
(2015), the main idea is to enclose the subspace targeted by
a traditional SDR method—in this case SE(Y |X) estimated by
OLS—with a subspace that conforms to the group structure.

Since by definition any groupwise dimension reduction sub-
space is also a traditional dimension reduction subspace, one

has SE(Y |X) ⊆ S
(G)

E(Y |X). That is, the traditional central mean

subspace, which preserves information on E(Y |X), is bound to
be contained in the groupwise central mean subspace, which
preserves information on E(Y |X) and at the same time con-
forms to the given predictor groups. Another way of thinking
of this is that accounting for predictor groups limits the reduc-
tion one can perform on X.

The direct sum envelope approach of Guo et al. (2015)
allows one to find the smallest subspace that both conforms
to the orthogonal decomposition G and encloses the subspace
spanned by the columns of a p × r random matrix U. In
particular, we use the following definition:

Definition 3. Given an orthogonal decomposition G =
{S1, . . . ,Sg} of Rp and a subspace S of Rp, consider the col-
lection of subspaces

A = {H1 ⊕ · · · ⊕ Hg : H1 ⊆ S1, . . . ,Hg ⊆ Sg,

S ⊆ H1 ⊕ · · · ⊕ Hg almost surely}.

The intersection of all members of A is called the direct-sum
envelope of S with respect to G, and is denoted by E⊕(S|G).

Thus, E⊕(S|G) is the unique and smallest subspace that
both conforms to G and encloses S. Under C.1, if S ⊆ SE(Y |X),

then E⊕(S|G) ⊆ S
(G)

E(Y |X), where equality holds if and only if

S is not a proper subspace of S
(G)

E(Y |X). This property of the
direct sum envelope suggests how to derive an estimator for

S
(G)

E(Y |X) from any estimator for SE(Y |X) and provides the condi-

tion required to guarantee exhaustiveness (i.e., recovering of
the whole space of interest) as defined by Li et al. (2005).

In the context of gOLS, S spanned by a single vector in Rp,
representing the overall OLS direction. This has a particu-
larly attractive consequence; namely, that gOLS can be solved
explicitly without resorting to the iterative least-squares opti-
mization required by other groupwise SDR estimates, such as
those proposed in Li et al. (2010) and Guo et al. (2015). This
is due to the following theorem (a proof is provided in the
Supplement).

Theorem 2. Let G = (S1, . . . ,Sg) be an orthogonal decom-
position of Rp, v ∈ Rp and S = span(v). Then

E
⊕(S|G) = span(PS1v) ⊕ · · · ⊕ span(PSg

v). (2)

As a result, the direct-sum envelope of the overall OLS
vector can be obtained explicitly by projecting it onto the
subspaces corresponding to each group.

Once gOLS has produced estimates of bwi, i = 1, . . . , g, for
each subpopulation w = 1, . . . c at the inner level, we com-
bine at the outer level the corresponding directions across
subpopulations based on Theorem 1. First, for each predictor
group we utilize an eigen decomposition to combine directions
over the c subpopulations. Then, we “stack” the resulting
spaces across the g predictor groups, which are orthogonal
by construction. Importantly, the eigen decompositions order
directions in each predictor group based on the magnitudes
of their eigenvalues, which is relevant for dimension estima-
tion (see below). In summary, our sOLS performs structured
sufficient dimension reduction with a two-level procedure
employing gOLS at the inner level, and eigen decompositions
at outer level.

As mentioned in the Introduction, for OLS to produce a
direction within the space of interest, the linearity condition
must be satisfied. In our context this means:

C.2 (linearity) For each w = 1, . . . , c, E(Xw|P
S
(G)

E(Yw |Xw)

Xw) is

linear in Xw.

Versions of the linearity condition similar to C.2 are used by
many SDR methods, especially those that are computation-
ally simple. In many situations this does not impose a serious
restriction, because the predictors are often pre-transformed
to approximate normality, and also because low-dimensional
projections of high-dimensional random vectors tend to have
a normal distribution (Hall and Li, 1993).

2.3. Numerical Implementation of sOLS

Let (Xj, Wj, Yj), j = 1, . . . , n, be an i.i.d. sample of size n from
the joint distribution of (X, W, Y). To explicitly distinguish the
subpopulations labeled by w = 1, . . . , c, we use the notation
(Xw, Yw) ∼ (X, Y)|W = w for predictor vector and response
within subpopulation w, and (Xw,j, Yw,j), j = 1, . . . , nw for the
corresponding subsample, with n =

∑c

w=1
nw. Without loss of

generality, we assume the predictor vector to be centered in
each subpopulation, and estimate its p × p covariance matrix
as �̂w = n−1

w

∑nw

j=1
Xw,jX

T
w,j.

Concerning the predictor groups, we use γi, i = 1, . . . , g

to indicate known p × pi matrices spanning the subspaces
of the orthogonal partition G = {S1, . . . ,Sg}. Without loss of
generality, we assume γT

i γi = Ipi
for all i = 1, . . . , g. Accord-

ingly, within each subpopulation w = 1, . . . , c and for each
predictor group i = 1, . . . , g we use the notation Xwi = γT

i Xw

for the restricted predictor vector and Xwi,j, j = 1, . . . , nw for
its observations. The restricted pi × pi covariance matrix is
estimated as �̂wi = n−1

w

∑nw

j=1
Xwi,jX

T
wi,j.

Finally, we let dwi, w = 1, . . . , c, i = 1, . . . , g indicate
the dimension contributed within the wth subpopulation
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by the ith predictor group, dw =
∑g

i=1
dwi, di =

∑c

w=1
dwi

and d =
∑g

i=1
di. Recall our use of OLS implies that all

dwi’s are either 0 or 1; we assume temporarily that they are
all known. Our numerical implementation proceeds as follows:

Inner level:

� Within each subpopulation w = 1, . . . , c, estimate the over-
all p × 1 OLS vector b̂w = �̂−1

w n−1
w

∑nw

j=1
XT

w,jYw,j.
� Split b̂w into b̂wi = γT

i b̂w, i = 1, . . . , g.

Outer level:

� For each predictor group i = 1, . . . , g, form Vi =
∑c

w=1
(nw/n)b̂wib̂

T
wi and compute its eigenvectors vi1, . . . , vidi

corresponding to the di largest eigenvalues, assuming tem-
porarily that the b̂wi, w = 1, . . . , c, are linearly independent
(so that these eigenvalues are all > 0).

� Form the subspaces Ai = span(vi1, . . . , vidi
) ⊆ Si.

� Estimate the structured central mean subspace of dimen-
sion d stacking such spans over the orthogonal partition of

the predictors; that is, set Ŝ
(G,W)

E(Y |X) = span(A1 ⊕ . . . ⊕ Ag).

At the inner level, each b̂wi is simply obtained from the
ith predictor group components of the overall OLS vec-
tor estimated within the wth subpopulation. The outer
level combines such b̂wi’s across subpopulations using an
eigen decomposition—first separately for each predictor
group, and then stacking over predictor groups. We also
note that, even though the asymptotic distribution of the
b̂wi’s is not directly utilized in our developments, it fol-
lows straightforwardly from that of the overall OLS b̂w:
Let bw = E[(Xw − E(Xw))(Yw − E(Xw))] and �w = E[(Yw −
E(Yw))2(Xw − E(Xw))(Xw − E(Xw))T ]. Then, as nw → ∞, we

have
√

nw(b̂w − bw)
D−→ N (0, �w). Consequently, for each i =

1, . . . , g, we have

√
nw(b̂wi − bwi)

D−→ N
(

0, γT
i �wγi

)

.

Importantly, in the above description we have assumed that
we know whether each dwi is 0 or 1, and that for each predictor
group i the vectors b̂wi, w = 1, . . . , c, are linearly indepen-
dent. In practice, we will have to determine whether or not
each predictor group contributes a nontrivial direction within
each subpopulation, and we will have to assess whether non-
trivial directions for the same predictor group overlap across
subpopulations—leading to smaller spans. This is the topic of
the next subsection.

2.4. Dimension Estimation

Dimension estimation is needed at both the inner and outer
levels. At the inner level, within each subpopulation w, we
need to estimate the dimensions (dw1, . . . , dwg) contributed
by each predictor group. At the outer level, we need to
estimate how these dimensions combine across subpopula-
tions to produce the actual di for each predictor group: in
the case where directions do not overlap, we simply have
di =

∑c

w=1
dwi as assumed in the description of our numerical

implementation—but in many practical applications we
may very well have di <

∑c

w=1
dwi. Finally, stacking over

orthogonal predictor groups gives us the dimension of the
structured central mean subspace, d =

∑g

i=1
di.

Inner level: In order to estimate the dimensions
(dw1, . . . , dwg) when applying gOLS within a subpopula-
tion w, we propose a Bayesian Information Criterion (bic)
approach. Without loss of generality, assume that both the
predictor and the response in the subsample (Xw,j, Yw,j),
j = 1, . . . , nw are standardized—that is, they are centered to
have mean 0 and rescaled by �̂−1/2

w and σ−1
y,w, respectively,

where σy,w is the standard deviation of Yw,j. Let (b̂w1, . . . , b̂wg)
be the gOLS estimates produced by running our algorithm on
the standardized data, using the working dimensions d̃wi = 1,
i = 1, . . . , g. Without loss of generality, assume the b̂wi’s are
ordered by decreasing norm: ||b̂w1|| ≥ ||b̂w2|| . . . ≥ ||b̂wg||. Our
inner-level criterion is

G(IL)
nw

(k) =
k

∑

i=0

λi(Mw) −
k + 1

n
φ
wlog(nw)

, k = 0, 1, . . . , g (3)

where 0 < φ < 1/2, Mw = (b̂w1 ⊕ . . . ⊕ b̂wg)(b̂w1 ⊕ . . . ⊕ b̂wg)
T ,

and λi(Mw) = ||b̂wi||2 is its ith eigenvalue (recall the par-
tition of the predictor space is orthogonal). Intuitively, as

nw → ∞, the first term in G
(IL)
nw (k) increases as k increases,

while the second is negligible before k reaches dw =
∑g

i=1
dwi,

and dominant afterward. The net effect is that, for large nw,
the criterion tends to be maximized at the true dimension
dw. We thus estimate dw by the integer d̂w that maxi-
mizes the criterion (3), and set d̂wi = 1 for i = 1, . . . , d̂w and
d̂wi = 0 for i = d̂w + 1, . . . , g. The next theorem, which is
proved in the Supplement, establishes that these estimated
dimensions convergence in probability to the true dimen-
sions. We assume that, for each subpopulation w and group
i, the population-level OLS vector bwi satisfies the following
condition:

C.3 (coverage) bwi �= 0 whenever Fwi �= {0}.

In the SDR literature, this is known as the coverage condition:
once the linearity condition guarantees that bwi belongs to the
space Fwi, coverage is used to ensure that bwi spans such space.
In practice, we are eliminating from consideration the special
situation in which, due to symmetry of the regression surface
about the origin, estimators such as OLS cannot estimate the
targeted central mean subspace (Cook and Li, 2002).

Theorem 3. If conditions C.1 ∼ C.3 are satisfied, then

lim
n→∞

P [(d̂w1, . . . , d̂wg) = (dw1, . . . , dwg)] = 1.

Note that if d̂wi = 0, the mean function E(Yw|Xw) within
subpopulation w does not depend on any of the predictors
belonging group i; this corresponds to b̂wi = 0 in the gOLS
estimate.
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Outer level: Having produced dimension estimates
(d̂w1, . . . , d̂wg) and gOLS estimates (b̂w1, . . . , b̂wg) for each w,
at the outer level we combine these vectors across subpopula-
tions using an eigen decomposition for each predictor group,
and then stacking over predictor groups. At the population
level, some of the b1i, . . . , bci for group i may be 0 vectors,
and those that are not may exhibit linear dependence.
The dimension di is simply the column rank of the matrix
(b1i, . . . bci). We again use a bic approach. As with the inner
level bic, we assume without loss of generality that predictor
vector and response are standardized within subsamples. Our
outer-level criterion is

G(OL)
nmin

(k) =
k

∑

ℓ=1

λℓ(M̂i) −
k

n
ψ

min

, k = 1, . . . , c, (4)

where 0< ψ < 1/2, nmin = minw nw, M̂i = (b̂1i, . . . , b̂Ci)(b̂1i, . . . ,

b̂Ci)
T and λℓ(M̂i) is its ℓth eigenvalue. The next Theorem

states that the estimate d̂i obtained maximizing the criterion
convergences in probability to the true dimension. The proof
is given in the Supplement.

Theorem 4. If conditions C.1 ∼ C.3 are satisfied, then
lim
n→∞

P(d̂i = di) = 1.

In addition to the bic approach, we can also estimate di by
extending the bootstrap procedure of Ye and Weiss (2003).
The underlying idea is that the average of the distances
between the space estimated on the original sample and the
spaces estimated on the bootstrap samples ought to be small-
est in the vicinity of the true dimension di. The bootstrap
procedure has the advantage of being entirely data-driven,
not requiring any assumption, and especially not relying on
large sample sizes. We resample the samples from each sub-
population separately, so as to maintain the subpopulation
proportions, and proceed as follows:

� Based on d̂wi and b̂wi, w = 1, . . . , c, obtained by run-
ning inner-level dimension estimation and gOLS on the
original sample, set d̃i =

∑c

w=1
d̂wi, form the matrix Vi =

∑c

w=1
nw

n
d̂wi(b̂wib̂

T
wi), and take the eigenvectors vi1, . . . , vid̃i

of the d̃i largest eigenvalues of this matrix.
� Fix the dimension estimates d̂wi, w = 1, . . . , c, from the

original sample and, for the m = 1, . . . , M bootstrap sam-

ples, run the inner-level gOLS to obtain b̂
(m)
wi , w = 1, . . . , c.

Form the matrix V
(m)
i =

∑c

w=1
nw

n
d̂wi(b̂

(m)
wi b̂

(m)T
wi ) and take

the eigenvectors v
(m)
i1 , . . . , v

(m)

id̃i
of the d̃i largest eigenvalues

of this matrix.
� Compute h(k) = 1

M

∑M

m=1
‖Pk − P

(m)
k ‖F, k = 1, . . . , d̃i,

where ‖ · ‖F is the Frobenious norm (the square root
of the sum of all squared entries of the argument
matrix), Pk =

∑k

ℓ=1
viℓv

T
iℓ is the orthogonal projection onto

span(vi1, . . . , vik), and P
(m)
k =

∑k

ℓ=1
v
(m)
iℓ v

(m)T
iℓ is the orthog-

onal projection onto span(v
(m)
i1 , . . . , v

(m)
ik ), m = 1, . . . , M.

For each k, this measures the average distance between
spans produced by original and bootstrap samples.

� Select d̂i as the minimizer of h(k).

Finally, since the last step of the outer level of our proce-
dure consists simply of stacking spans over the orthogonal
partition of the predictors, our estimate for the dimension

of the whole structured central mean subspace S
(G,W)

E(Y |X) is sim-

ply d̂ =
∑g

i=1
d̂i. All procedures for numerical implementation

and dimension estimation in sOLS are provided as part of the
R package “sSDR,” publicly available on CRAN.

3. Simulation Study

We conducted an extensive simulation study to investigate the
empirical performance of our methodology under a variety
of scenarios. In each scenario, we measured subspace esti-
mation accuracy, computational efficiency, and accuracy of
our inner-level and outer-level dimension estimation. Due to
space constraints, we only highlight key findings here, rele-
gating details on simulation scenarios, full results and more
extensive comments to the Supplement.

Regarding the inner level of our procedure we find that,
when predictor groups exist, both gOLS and assembled OLS
(aOLS, which utilizes OLS vectors obtained separately for
each predictor group instead of projections of the overall
OLS vector onto the groups) have higher subspace esti-
mation accuracy than the overall OLS computed ignoring
groups. However, gOLS consistently and substantially outper-
forms aOLS because, unlike the latter, it guarantees unbiased
estimation regardless of interdependencies among predictor
groups (Tables S1 and S2 in the Supplement). In addition,
although gOLS can identify at most one direction in each
predictor group, we find that in scenarios where several rele-
vant directions exist it does succeed in capturing the dominant
one (Table S8 in the Supplement). Finally, compared to other
groupwise SDR methods such as gSIR, gDR (Guo et al., 2015)
and gMAVE (Li et al., 2010), we find that gOLS is more accu-
rate and vasty less computationally expensive (as much as
four orders of magnitude lower running times than gMAVE;
Tables S14 and S15 in the Supplement).

Regarding the outer level of our procedure we find that,
when both predictor groups and subpopulations exist, sOLS
has higher subspace estimation accuracy and induces lower
prediction error in models fitted after dimension reduction
than other least-squares-based SDR techniques that ignore
subpopulations (gOLS), or ignore predictor groups (partial
OLS, or pOLS, along the lines in Li et al., 2003), or ignore
both (overall OLS) (Table 1; Tables S3, S4, S5, and S6 in the
Supplement). We also find that, when combining estimated
directions across subpopulations, applying weights propor-
tional to the sizes of the samples from each subpopulation (see
Subsection 2.3) matters for subspace estimation accuracy and
subsequent model prediction error; if the data is unbalanced,
ignoring these weights hinders performance (Table S7 in the
Supplement).

Regarding inner-level and outer-level dimension estimation,
we find that our bic approaches work reasonably well espe-
cially for large sample sizes, as to be expected given the
asymptotic properties discussed in Subsection 2.4 (Tables 2
and 3; Tables S9 and S10 in the Supplement). The results pre-
sented here are based on setting both φ in (3) and ψ in (4) to
1/8, a value that provides satisfactory performance on finite
simulated samples. Also, our outer-level bootstrap dimension



Structured Ordinary Least Squares 535

Table 1

Estimation accuracy and prediction error: means (standard deviations) of the distances between true and estimated
structured central mean subspaces (upper table), and of the prediction errors calculated with 100 test samples (lower table),

over 100 simulated data sets

Measurement ρ θ NSR Method n = 50 n = 100 n = 500 n = 1000

BM 2.497 (0.098) 2.493 (0.099) 2.501 (0.098) 2.493 (0.087)
OLS 1.808 (0.032) 1.770 (0.019) 1.740 (0.003) 1.736 (0.001)

Space distance 0.3 1 7% gOLS 1.619 (0.101) 1.523 (0.064) 1.439 (0.014) 1.426 (0.007)
pOLS 1.482 (0.027) 1.445 (0.019) 1.419 (0.002) 1.416 (0.001)
sOLS 0.655 (0.139) 0.442 (1.121) 0.192 (0.039) 0.136 (0.027)

OLS 3.244 (0.242) 3.213 (0.850) 2.983 (0.193) 2.969 (0.239)
gOLS 3.230 (0.248) 3.182 (0.737) 2.961 (0.187) 2.936 (0.224)

Prediction error 0.3 1 7%
pOLS 1.812 (0.233) 1.772 (0.958) 1.447 (0.196) 1.441 (0.232)
sOLS 1.582 (0.199) 1.476 (0.825) 1.159 (0.111) 1.151 (0.129)

Simulation model with two predictor groups and two subpopulations: Yw = exp(0.8βT
w1Xw1) + 2βT

w2Xw2 + θεw, w = 1, 2, where β11 �= β21,
β12 �= β22, X ∼ Np(0, R) and εw ∼ N(0, 1). ρ is the pairwise correlation coefficient in the compound covariance matrix postulated for the
predictors, θ controls the error variance, and NSR represents the ratio between variance of the error (noise) and variance of the regression
mean function (signal). n is the sample size used in simulations. BM, benchmark generated using random directions; OLS, no grouping;
gOLS, grouped predictors; pOLS, grouped units; sOLS, grouped predictors and units. Distances between subspaces are measured by the
Frobenius norm of the difference between their projection matrices (smaller distances correspond to better estimation). Prediction errors
are computed fitting parametric models (regression for OLS and gOLS, ANCOVA for pOLS and sOLS) after dimension reduction. See
Supplement for more details and results.

estimator has satisfactory performance (Table 3; Table S11
in the Supplement). The outer-level bic and bootstrap proce-
dures tackle dimension estimation very differently—utilizing
eigenvalues and eigenvectors in the eigen decompositions,
respectively. Our simulation results suggest that both can
be effective. Finally, we find that weighting actually hinders
dimension estimation at the outer level because it leads to
downplaying dimensional contributions from poorly sampled
subpopulations (Tables S12 and S13 in the Supplement).

4. Application to Genomic Data

As a first application, we analyze the data from
Kuruppumullage Don et al. (2013) (see Introduction). For n =

Table 2

bic for inner level dimension estimation with gOLS:
Proportion of cases with correct dimensions selected, out of

100 simulated data sets

Dimensions ρ θ n = 50 n = 100 n = 500 n = 1000

(1, 1) 0.3 1 0.70 0.90 1.00 1.00
(1, 0) 0.3 1 0.88 0.96 1.00 1.00
(0, 1) 0.3 1 1.00 1.00 1.00 1.00
(0, 0) 0.3 1 0.54 0.86 1.00 1.00

Simulation model with two predictor groups restricted to subpop-
ulation w = 1: Y1 = exp(0.8βT

11X11) + 2βT
12X12 + θε1, where X ∼

Np(0, R) and εw ∼ N(0, 1). ρ is the pairwise correlation coefficient
in the compound covariance matrix postulated for the predictors
and θ controls the error variance. n is the sample size used in sim-
ulations. (1, 1): β11 �= 0 and β12 �= 0; (1, 0): β11 �= 0 and β12 = 0;
(0, 1): β11 = 0 and β12 �= 0; (0, 0): β11 = 0 and β12 = 0. Accurate
inner level dimension estimation with the bic is, relatively speak-
ing, harder in the presence of directions that contribute non-linearly
to the mean function, and hardest in the (0, 0) case, that is, in the
absence of signal. See Supplement for more details and results.

2556 1Mb non-overlapping windows along the human genome,
we consider a vector of quantitative genomic features (X, with
p = 37), a divergence state label (W , with w = 1, 2, . . . , 6) and
coverage by transcription start sites (Y). Windows are par-
titioned into six divergence states: IDS− (w = 1, depressed
insertions, deletions and substitutions); IDS− − (w = 2,
strongly depressed insertions, deletions and substitutions,
located exclusively on chromosome X); I+ (w = 3, moder-
ately enhanced insertions); IDS+ (w = 4, strongly enhanced
insertions, deletions and substitutions, located preferentially
near the telomeres of autosomes); M++ (w = 5, strongly
enhanced microsatellite alterations); and DS+ (w = 6, moder-
ately enhanced deletions and substitutions). See Table S16 in
the Supplement. Genomic features are partitioned into eight
biochemical proxy groups: replication (i = 1); transposition
(i = 2); recombination (i = 3); chromatin structure (i = 4);
transcription (i = 5); methylation (i = 6); slippage (i = 7);
and repair (i = 8). See Table S17 in the Supplement. Our
sOLS can be applied to reduce dimension while accounting
for both group structures simultaneously, and an appropriate
parametric model to express Y as a function of the partitioned
X and of W can be developed and fit after X has been reduced.

A complicating issue is that, since the windows are con-
secutive along the genome, adjacent observations present
autocorrelation. To mitigate it, we form 100 independent
random subsamples of n = 1000 windows (out of 2556) and
repeat our analysis on each. An important side effect of
this strategy, however, is that for some divergence states the
sample size is now rather modest compared to the num-
ber of quantitative predictors (see again Table S16 in the
Supplement)—supporting the use of a parsimonious approach
such as sOLS, which seeks no more than one relevant direction
for each predictor group in each divergence state.

On a technical note, we apply square-root transformation
to the response to regularize its distribution, and then stan-
dardize both the response and the quantitative predictors.
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Table 3

bic and Bootstrap for outer level dimension estimation: Proportion of cases with correct dimensions selected, out of 100
simulated data sets (gOLS with fixed known dimensions at the inner level)

Method Predictor group Dimension ρ θ n = 50 n = 100 n = 500 n = 1000

First 1 0.3 1 1.00 1.00 1.00 1.00
bic

Second 2 0.3 1 1.00 1.00 1.00 1.00

First 1 0.3 1 1.00 1.00 1.00 1.00
Bootstrap

Second 2 0.3 1 0.79 0.86 0.97 0.98

Simulation model with two predictor groups and two subpopulations: Yw = exp(0.8βT
w1Xw1) + 2βT

w2Xw2 + θεw, w = 1, 2, where β11 = β21

and β12 �= β22; thus here (d1, d2) = (1, 2). As in Tables 1 and 2, X ∼ Np(0, R) and εw ∼ N(0, 1). ρ is the pairwise correlation coefficient in
the compound covariance matrix postulated for the predictors and θ controls the error variance. Accurate outer level dimension estimation
with the Bootstrap is, relatively speaking, harder when different subpopulations contribute distinct directions. See Supplement for more
details and results.

Moreover, while we do use sample size weighting for esti-
mation of the structured central mean subspace, we perform
outer level dimension estimation without weighting; since the
number of windows belonging to various divergence states
are very different, this prevents deterioration in dimension
estimation (see Section 3 and Supplement).

We use the bic in (3) with φ = 1/8 to perform inner-level
dimension estimation. Counts of “votes” for dwi = 1 (versus 0)
obtained for every i = 1, . . . , 8 and w = 1, . . . , 6 across the 100
subsamples, along with summary inferences based on majority
votes, are reported in Table S18 in the Supplement. Interest-
ingly, the only two strongly supported predictor groups are
chromatin structure (i = 4) with 100% votes in all states, and
slippage (i = 7) with very strong effects in the “cold” state
IDS− (100% votes) and the “warm” states I+ (100% votes)
and DS+ (86% votes), but only weak effects in the “cold”
state IDS− − (27% votes) and the “hot” states IDS++ (20%
votes) and M++ (32% votes). Based on these results, we
completely remove from further analysis replication, transpo-
sition, recombination, transcription, methylation, and repair.
Next, we use gOLS to estimate directions within diverge
states, including only the chromatin structure group in all
states and the slippage group in IDS−, I+, and DS+.

Passing to the outer level, we combine directions across
divergence states using eigen decompositions. To perform
outer-level dimension estimation, we use the bic in (4) with
ψ = 1/8. Results shown in Table S19 of the Supplement
support the choice di = 1 for both i = 4 and i = 7; for the chro-
matin structure predictor group a unique direction appears to
work as a sufficient summary for all six divergence states, and
for the slippage predictor group a unique direction appears
to work as a sufficient summary for IDS−, I+, and DS+.
Our bootstrap procedure confirms these inferences (Figure
S1 in the Supplement). Thus, we reduce our analysis to a
2-dimensional structured central mean subspace, with one
direction proxying chromatin structure and the other prox-
ying slippage. The former is expected to contribute to the
explanation of coverage by transcription start sites in all
divergence states, and the latter in IDS−, I+, and DS+.

Figure 1 shows average loadings for these two directions
across the 100 random subsamples. Remarkably, a strong
dominant feature emerges in each; the number of dnase1
hypersensitive sites for chromatin structure, and the number
of microsatellite loci for slippage.

After performing dimension reduction with sOLS, we use
standard model building and diagnostics tools to construct
a parametric ANCOVA model for the response as a function
of the two composite predictors and the divergence states.
Table 4 reports performance for various models comprising
linear and quadratic terms; the one we chose has an excellent
performance, with an R2 of 77.3%. Its form is

Y1 = μ1 + ηchrX1,chr + ηslpX1,slp + ε1

Y3 = μ1 + �μ3 + ηchrX3,chr + ηslpX3,slp + ε3

Y6 = μ1 + �μ6 + ηchrX6,chr + ηslpX6,slp + τ6X6,chrX6,slp + ε6

Yw = μ1 + �μw + ηchrXw,chr + εw, w = 2, 4, 5

Figure 1. Relevant directions associated with chromatin
structure and slippage predictor groups. Horizontal axis: 37
genomic features arranged by group. Vertical axis: average
estimated loadings from 100 independent random subsamples
of size n = 1000.
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Table 4

Performance of ANCOVA models: means (standard deviations) of R2 and prediction error over 100 independent random
subsamples of size n = 1000, and number of free parameters. Prediction error is computed associating to each subsample the

test set of ñ = 1556 windows not included in it.

ANCOVA model R2 Prediction error Free parameters

Quadratic (all terms) 77.8% (1.0%) 0.053 (0.001) 27
Linear (all terms) 77.3% (1.0%) 0.053 (0.001) 15
Linear (only chromatin structure) 70.8% (1.2%) 0.059 (0.001) 12
Linear (only slippage) 8.6% (1.3%) 0.104 (0.001) 4
Final Model 77.3% (0.9%) 0.052 (0.001) 9

Quadratic (all terms): linear and quadratic terms in Xchr in all states; linear and quadratic terms in Xslp and interaction Xchr · Xslp in
states IDS−, I+, and DS+. Linear (all terms): linear terms in Xchr in all states; linear terms in Xslp in states IDS−, I+, and DS+. Linear
(only chromatin structure): linear terms in Xchr in all states. Linear (only slippage): linear terms in Xslp in states IDS−, I+, and DS+.
All models include the base intercept and intercept difference terms.

where Yw, Xw,chr, w = 1, 2, 3, 4, 5, 6 and Xw,slp, w = 1, 3, 6 indi-
cate the response and the (common) chromatin structure and
slippage composite predictors as observed in different diver-
gence states. This model has intercepts that vary among
divergence states, parameterized using differences versus the
intercept in IDS− (state w = 1). However, it has a shared
linear slope for the chromatin structure composite predictor
across all states, and a shared linear slope for the slippage
composite predictor across the three states where such pre-
dictor is relevant. Moreover, the model comprises only one
second-order term—the interaction product between the two
composite predictors—and only in state DS+ (w = 6).

Inferences on the �μw’s indicate that IDS− − has a signif-
icantly larger, and IDS++ and DS+ a significantly smaller,
intercepts versus IDS−. Inferences on ηchr, ηslp, and τ6, which
are all positive and significant, suggest that the prevalence of
transcription start sites increases with the chromatin struc-
ture composite predictor (and thus in particular with the
number of dnase1 hypersensitive sites) in all divergence states,
with the slippage composite predictor (and thus in particular
with the number of microsatellite loci) in IDS−, I+, and DS+,
and that these effects are further strengthened by an interac-
tion in DS+. Complete output is provided in Table S20 in the
Supplement.

Finally, to evaluate the relative contribution of each com-
posite predictor we compute their partial R2. On average over
our 100 subsamples, these are 62.0 and 7.3%, respectively,
for the chromatin structure and slippage composite predic-
tors. The former, which is relevant in all divergence states as
opposed to just three out of six, plays a much stronger role in
explaining the prevalence of transcription start sites.

Figure 2 shows two 3D plots of the response against
the chromatin structure and slippage composite predictors
obtained through the average loadings in Figure 1. On the
left are the 928 windows in state IDS−, and on the right the
464 windows in DS+. Superimposed to the points are fitted
surfaces representing the final model with average coefficient
estimates.

In summary, a very substantial share of the variability in
transcription start sites prevalence along the human genome
can be explained by using a function of the divergence
states from Kuruppumullage Don et al. (2013) and as few
as two composite predictors proxying chromatin structure

and slippage. The former has a very strong, positive linear
effect which is the same in all states. The latter is relevant
only in three states, IDS−, I+, and DS+, where it has a
weaker but still substantial positive linear effect. In addition,
the two composite predictors have a positive interaction in
DS+. The efficacy and parsimony of this exercise demonstrate
that sOLS can indeed aid analysis and interpretation of high
dimensional, structured genomic data.

5. Discussion

We introduced a general strategy to perform SDR when both
the statistical units and the predictors in a regression are char-
acterized by group structures. We argued, and demonstrated
through simulations and a first application to genomic data,
that this strategy provides an effective reduction and integra-
tion approach—with broad applicability to data that are not
just high dimensional, but also complex.

Our proposal builds upon several prior developments. In
particular, we combine ideas from groupwise SDR (e.g.,
Li et al., 2010; Guo et al., 2015) and partial SDR (e.g.,
Chiaromonte et al., 2002; Li et al., 2003). In principle,
we could utilize any groupwise SDR method at the inner
level of our procedure. However, in applications that com-
bine high dimensions with relatively small sample sizes, it
often makes sense to restrict attention to just one domi-
nant direction for each combination of predictors’ and units’
groups—diminishing computational burden, and making the
most parsimonious use of the limited information available.
We therefore developed the novel groupwise OLS (gOLS) as
the basis for the inner level of our structured OLS (sOLS).
Simulation results indeed suggest that gOLS is more effec-
tive, in both computation and estimation accuracy, than other
groupwise methods.

In conjunction with gOLS, we also tackled dimension esti-
mation at the inner level. To jointly ascertain whether the
relevant dimension is 0 or 1 for each predictor group (within
each subpopulation), we proposed a bic approach. Interest-
ingly, both the simulations and our preliminary application
suggest that this criterion implements a sort of “group-
based” variable selection—where whole groups of predictors
are eliminated from the analysis at once if they provide weak
explanatory power in the context of the other groups. Intu-
itively, screening predictors partitioned in meaningful groups,
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Figure 2. 3D plots of the response (coverage by transcription start sites) against the chromatin structure and slippage
composite predictors for divergence state IDS− (left) and DS+ (right): all observations, that is, windows, are shown with
fitted surfaces representing the final model. The equations of the surfaces are y = 0.0085 + 0.0839xchr + 0.0366xslp (left) and
y = −0.0108 + 0.0839xchr + 0.0366xslp + 0.0085xchrxslp (right; with a modified intercept and an additional interaction term).
The coefficients are average estimates from 100 independent random subsamples of size n = 1000.

as opposed to individually, could be quite efficient in some
applications. We plan to investigate how this group-based
variable selection compares to established methods such as
lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001) and elastic
net (Zou and Hastie, 2005).

Notwithstanding its parsimony, sOLS still requires inver-
sion of the sample predictor covariance matrix in each
combination of predictor and unit groups—which will be sin-
gular if nw < pi and a poor estimator even if nw ≈ pi. Our
current implementation can still be run when nw < pi for
some or all w’s and i’s, utilizing Moore–Penrose generalized
inverse for the corresponding covariance matrices. Of course
this could be substantially improved upon incorporating
known methods for high-dimensional and under-sampled data
into our structured SDR framework. For instance, shrink-
age could be used to stabilize and recover invertibility of
sample covariance matrices (Zhong et al., 2005), regular-
ization/penalization techniques to sparsify OLS coefficients
estimation (Li and Yin, 2008), and feature screening tools
to weed out irrelevant predictors at the outset (Fan and Lv,
2008; Zhu et al., 2011). In addition, under-sampling could
be tackled switching to Partial Least Squares (PLS) to build
groupwise (gPLS) and thus structured Partial Least Squares
(sPLS) along lines similar to Cook et al. (2007). This, too,
will be the subject of future work.

Finally, sOLS could be generalized to yet more complex
data. For example, some combinations of predictors’ and
units’ groups may be “missing” because not all predictors are
measured on units from all subpopulations, or groups may be
nested or organized hierarchically. These cases are common
in applications and warrant extending our methodology. Also
common are multivariate responses, and we plan to incorpo-
rate multivariate SDR techniques in our framework. Hilafu

and Yin (2013) already combined partial SDR (Chiaromonte
et al., 2002) and projective resampling (Li et al., 2008) to deal
with regressions comprising subpopulations and a multivari-
ate responses; a similar idea could be used for sOLS.

6. Supplementary Materials

Definition S1 and S2, Lemma S1 to S3, Theorem S1 to S5,
all the Proofs, as well as details of the simulation study
and additional Tables and Figures referenced in Section 2.1,
Section 2.2, Section 2.4, Section 3 and Section 4 are avail-
able with this article at the Biometrics website of the Wiley
Online Library. The R package “sSDR” is publicly available
on CRAN.
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