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Engineering of the translation apparatus has permitted the site-
specific incorporation of nonstandard amino acids (nsAAs) into
proteins, thereby expanding the genetic code of organisms.
Conventional approaches have focused on porting tRNAs and
aminoacyl-tRNA synthetases (aaRS) from archaea into
bacterial and eukaryotic systems where they have been
engineered to site-specifically encode nsAAs. More recent
work in genome engineering has opened up the possibilities of
whole genome recoding, in which organisms with alternative
genetic codes have been constructed whereby codons
removed from the genetic code can be repurposed as new
sense codons dedicated for incorporation of nsAAs. These
advances, together with the advent of engineered ribosomes
and new molecular evolution methods, enable multisite
incorporation of nsAAs and nonstandard monomers (nsiM)
paving the way for the template-directed production of
functionalized proteins, new classes of polymers, and
genetically encoded materials.
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Introduction

Proteins have evolved to assume diverse cellular func-
tions, such as structural, catalytic or regulatory roles
essential for cells. Enzymatic-driven post-translational
modifications increase the chemical diversity of proteins
well beyond the twenty standard amino acids (AA),
thereby considerably enhancing their functions. Research
in the field of genetic code expansion — that is, the
addition of nonstandard amino acids (nsAAs) to the
genetic code — has the potential to greatly expand the
chemistries available for protein and peptide synthesis.

1,2,3 and

More than 150 different nsAAs have been incorporated to
date for a variety of scientific and biotechnological appli-
cations, such as handles for bioconjugation, photo-cross-
linking, biophysical probes and genetically encoded
“post-translational” modifications [1,2]. Additionally,
there is increasing interest in genetically encoded mono-
mers with backbones and chemistries that go beyond the
L-a-AA configuration (i.e. non-standard monomers
(nsM)), setting the stage for synthesis of entirely new
classes of biopolymers and materials.

Expansion of the genetic code with nsAAs requires intro-
duction of orthogonal translation systems to enhance the
chemical repertoire of proteins while also preserving and
not cross-reacting with native protein synthesis. Analo-
gous to standard AAs, the first step is aminoacylation of
the tRNA with its cognate AA by an aminoacyl-tRNA
synthetases (aaRSs) (Figure 1). Next, the charged tRNA
must form a ternary complex with EF-Tu-GTP, where
both the tRNA body and the AA contribute to binding [3].
These ternary complexes sample the open codon by
partially occupying the ribosomal A site (aminoacyl-tRNA
binding site). If the mRNA codon and tRNA anticodon
match, the tRNA is released from the ternary complex
and the acceptor stem enters the ribosomal peptidyl
transferase center (P'T'C). Here, the polypeptide is trans-
ferred from the P site (peptidyl-tRNA site) to the A site
tRNA. Next, translocation of the tRNAs releases the
empty tRNA from the E site (exit site), and the next
codon enters the A site. When a stop codon is presented in
the A site, translation is terminated and the polypeptide is
released [4]. In prokaryotes, the stop codons UAG and
UAA are recognized by the Release Factor 1 (RF1), and
UAA and UGA by RF2.

Engineering of the translation apparatus

There are two main strategies that have been employed
to genetically encode nsAAs. The first re-purposes an
existing aaRS for the incorporation of an nsAA. This
strategy involves the expression of the protein of interest
(POI) in an auxotrophic expression host, that is, a strain
unable to biosynthesize the AA being replaced by the
target nsAA. Substitution of the standard AA with a close
nsAA analog in the growth media will cause global sup-
pression whereby the nsAA is incorporated in all positions
throughout the protecome and POl instead of the standard
AA [5,6]. In this strategy, all components are already in
place; however, it does not allow the addition of an AA to
the genetic code but rather the replacement of a standard
one with a nsAA. Furthermore, the substitution of the
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Translation system and sites of engineering for nsAA incorporation: tRNA, charged by its cognate aaRS with the corresponding AA, is recognized
by EF-Tu-GTP; after the initiation of translation, the ternary complex aa-tRNA-EF-Tu-GTP binds the A site; later, the EF-Tu hydrolyzes GTP,
changes its conformation and leaves the ribosome; tRNAs at A and P sites are translocated to P and E sites, respectively; the empty tRNA
located at the E site is released; at the end of translation, a stop codon is recognized by a release factor that also interacts with acceptor stem of
the P site tRNA and triggers hydrolysis of peptidyl-tRNA at the PTC. Red dotted circles show the identity elements for EF-Tu and aaRSs to
recognize their cognate AAs and tRNAs. For aaRS, they often localize in the anticodon loop and acceptor stem; however, the variable arm (VA)
and D-loop can also be recognized. EF-Tu virtually binds all aa-tRNAs through direct interaction with both AA and tRNA.

standard AA with the nsAA is oftentimes cytotoxic, pre-
venting stable expression with the nsAA.

The second approach permits the site-specific incorpo-
ration of an nsAA alongside the full complement of the 20
standard AAs. This strategy involves the development of
orthogonal translation systems (OTS) whereby engi-
neered tRNA-aaRS pairs function alongside the native
translation machinery. In this scheme, the orthogonal
tRNA is not aminoacylated by any of the native aaRSs,
and similarly, none of the native tRNAs are charged by
the orthogonal aaRS. T'wo of the most widely used OTSs
in bacteria are the natural amber suppressor pyrrolysyl-RS

(PyIRS)-tRNA™! pair derived from Methanosarcina barkeri
[71, and the tyrosyl-RS (TyrRS)-tRNA™Y" from Methano-
coccus jannaschii. In eukaryotes, both the PylOTS and E.
coli TyrRS-tRNA™" can be used to genetically encode
nsAAs [7-9]. Although OTSs are generally employed to
encode nsAAs, they may also be used to encode standard
AA and thus functionally replace a native tRNA/aaRS
pair. In turn, this native tRNA/aaRS pair can be repur-
posed for genetic code expansion [10°,11]. For example,
the endogenous tryptophanyl-RS and tRNA pair from .
coli was functionally replaced with its Saccharomyces cer-
evisiae counterpart. Subsequently, the E. co/i pair was
reintroduced as either a UAG or UGA suppressor to
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expand the genetic code with several tryptophan analogs,
such as 5-hydroxytryptophan [10°].

As goals for genetic code expansion aim to go beyond the
incorporation of a single nsAA into proteins, the enhance-
ment of activity and orthogonality of OTSs that can
operate simultaneously has emerged as a key challenge.
Many of the current OTSs are polyspecific and permit
charging of multiple nsAAs by the same orthogonal aaRS.
T'o enable site-specific incorporation of multiple geneti-
cally encoded nsAAs, it will be imperative to ensure the
compatibility and selectivity of the OT'Ss.

To address these challenges, powerful engineering strat-
egies are needed to optimize properties of OTSs.
Advances in molecular evolution and genome engineer-
ing have presented new methods to evolve the perfor-
mance of O'T'Ss in cells. For example, in a recent study by
Bryson et al. phage-assisted continuous evolution (PACE)
was used to generate 45-fold more active PyIRS variants
and MjRS variants with improved specificity [12°].
Another study by Amiram et al. combined the use of
multiplex automated genome engineering (MAGE) in a
genomically recoded organism (GRO; see next section) to
produce 25-fold more active MjRS enzymes capable of
introducing 30 instances of an nsAA in a single protein
[13°]. The MAGE-OTS platform in this study also iso-
lated aaRS enzymes with tunable specificities to >200
nsAAs, including one exclusive for para-azido-L.-phenyl-
alanine (pAzF).

In general, engincering the aaRS binding pocket to
facilitate the accommodation of the desired nsAA may
be sufficient; however, generating well-performing O'T'Ss
may require evolution of multiple components in parallel.
For example, the performance of several aaRS/tRNA
pairs was greatly enhanced by engineering the AA bind-
ing pocket of the aaRS in conjunction with the binding
interface between the tRNA anticodon loop and the aaRS
[13°]. In other cases, it became apparent that poor binding
characteristics between the tRNA™* and EF-Tu greatly
limited the incorporation of the nsAA O-phosphoserine
[14]. Indeed, it was necessary to modify the EF-Tu [14] or
the tRNA [15] to tune their binding kinetics for improved
incorporation. A similar strategy improved the incorpo-
ration efficiency of selenocysteine and bulky residues (e.
g. DL-2-anthraquinonylalanine) [16,17]. We anticipate
future genetic code expansion efforts will also need to
conduct EF-Tu engineering.

Attempts to incorporate bulky or charged nsAAs or even
altered backbone monomers (nsM) will likely confront
challenges dispersed across multiple steps in the transla-
tion process. Such efforts will likely require engineering
of the ribosome. Despite the fact that the ribosome limits
the incorporation of exotic backbones, /7 vitro work has
shown that N*-methylated [18,19], D-a- [20-22] and

B-amino acids [23°] and N-substituted glycines [24] can
be successfully incorporated in peptides. Notably, for
several of these monomers, the efficiency was improved
by mutating the ribosome in the PTC [18-23°24].
Recently, the incorporation of $-amino acids has even
been reported 77 vivo using an engineered ribosome [25].

A large challenge to ribosome engineering is that the
fidelity and activity of the ribosome is inherently tied to
protein synthesis and as a result to cell viability. To
relieve this interdependency, it has been shown that in
E. coli an additional, orthogonal ribosome (oRibosome)
can be introduced, which is uncoupled from cell viability.
The oRibosome has an altered anti Shine-Dalgarno (SD)
sequence, which reduces its ability to initiate translation
of native mRNA transcripts. Next, orthogonal genes can
be introduced with a SD sequence that matches the anti-
SD of the oRibosome (Figure 2) [26,27]. Despite these
efforts, full orthogonality has not been achieved and
complete isolation of oRibosome translation remains a
challenge worthy of further pursuit.

A second challenge is that the anti-SD is located in the
16S rRNA, and the 23S rRNA can freely exchange
between the native and orthogonal 16S rRNA popula-
tions. Recent work has shown that physical tethering of
the 16S and 23S rRNAs establishes an oRibosome that
will not cross-react with native ribosomes and therefore
becomes an isolated ribosomal system [28°°,29°°]. As a
result, this tethered oRibosome can be evolved beyond
what native ribosomes can tolerate without impeding
native translation and becoming lethal. This establishes
a path toward fully isolated ribosomes whose P'T'C can be
mutagenized to accommodate modified backbones and
drive new catalysis beyond amide bond formation.

Lastly, cell-free protein synthesis (CFPS) is a unique
opportunity to study and manipulate translational sys-
tems to produce proteins with nsAAs without the con-
straints of cell viability [30]. For example, amino acids
that cannot pass cell membranes can be readily added in
these systems [31]. Even more, if tRNA aminoacylation
by a cognate aaRS cannot be achieved, chemical charging
or flexizymes can be used to overcome this step [32,33].
Additionally, CFPS systems with defined tRNA compo-
sition, either reconstituted from purified components [34]
or cell extracts lacking native tRNAs [35], facilitate
genetic code reassignment [36].

Genomically recoded organisms (GROs):

organisms with alternative genetic codes

An important challenge in genetic code expansion is that
native systems typically do not possess open codons that
can be dedicated to a nsAA. In other words, the OTS
competes with a native tRNA or release factor for the
assigned codon. For example, if the tRNA from the OTS
decodes the UAG amber stop codon, then it competes
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Figure 2
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Ribosome engineering. The ribosome has been modified at the peptidyl transferase center (PTC) to enable the incorporation of nonstandard
backbones; orthogonal ribosomes, that read different mRNAs, are obtained through changing the wt anti SD-sequence; tethering of 16S and 23S

rRNAs avoids crosstalk between different rRNA subunits.

with RF1. In this scenario, a fraction of the POI will be
terminated prematurely at the UAG codon, resulting in
truncated POI and reduced yields of full-length protein.
This issue i1s magnified for efforts aimed at multisite
incorporation of nsAAs. Additionally, the OTS may also
suppress native stop codons, leading to misincorporation
of the nsAA at more than 300 UAG codons found in native
proteins (Figure 3). This misincorporation may result in
non-functional proteins and cytotoxicity, further lowering
yields of the POI [37°].

Benefiting from recent advances in genome engineering,
these issues can be overcome through whole-genome
recoding, in which all instances of a codon can be
eliminated from the genome. To achieve compatibility
of recoding at the translational level, these efforts need
to be coordinated with elimination or modification of
native translation machinery that decodes the target
codon at the ribosome. This was first demonstrated in
E. coli MG1655 by converting all 321 UAG (amber)
codons to UAA (ochre), constructing the first GRO
(Figure 3) [38]. For this work, the UAG to UAA muta-
tions were introduced in 32 strains in parallel through
MAGE [39] and recoded genomic fragments were then
combined through five hierarchical steps with

conjugative assembly genome engineering (CAGE)
[40]. In addition, RF1 (p7fA gene) was deleted to elimi-
nate native UAG function. This GRO, named C321.AA,
exhibited enhanced functions [37], which include block-
ing of horizontally transferred genetic elements, resis-
tance to multiple viruses [41], biocontainment [42,43],
and improved properties for nsAA incorporation [13°°].
Using a similar strategy, all 123 essential genes contain-
ing AGA and AGG codons (arginine) in K. coli were
reassigned to CGN (Figure 3) [44]. Also, more aggressive
attempts to recode the genome by removing 13 rare
codons from 42 highly expressed essential genes have
also been pursued using similar methodology [45]. This
work has inspired several other ambitious recoding strat-
egies that include sense recoding. One large effort aims
to generate a GRO with a 57-codon genome by intro-
ducing synthetic DNA fragments (recoding of serine:
AGC, AGU; leucine: UUA, UUG; arginine: AGG, AGA;
stop: UAG; Figure 3) [46°]. Another project has devel-
oped SIRCAS (stepwise integration of rolling circle
amplified segments) to construct a Salmonella typhimur-
ium (8. typhimurium) strain where 1557 leucine codons
were replaced with synonymous codons across 176 genes
(Figure 3) [47°]. Lastly, a project dedicated to the design
of a synthetic Saccharomyces cerevisiae genome (Sc 2.0) is
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Genome Recoding. (a) The genetic code has been modified, in several species and diverse codons, to repurpose codon usage: In E. coli all

321 UAG codons/all genes were converted to UAA + RF1 deleted (red); In S. cerevisiae all UAG codons/ genes are being converted to UAA (red);
In E. coli 123 AGR codons/all essential genes were converted to CGN (orange); In S. typhimurium, 1657 UUR codons/176 genes were converted

to CTA/CTG (green); Ongoing project to obtain a 57-codon E. coli. Codons left for each amino acid: Leu (CUA, CUC), Ser (UCA, UCC), Arg (CGC,
CGA), Stop (UAA) (all colours). (b) UAG suppression using an OTS in C321.AA does not compete with native translation, whereas standard amber
suppression produces truncated products of the protein of interest (POI) due to transcription termination when RF1 binds UAG codons and

misincorporation of nsAA in 321 native proteins terminating in UAG.

re-writing synthetic yeast genomes with numerous
planned alterations, which include no introns, no IS
elements, an inducible evolution system, and UAG to
UAA codon reassignment across the genome to harness
unique properties of GROs (Figure 3) [48°°].

Expanding the genetic code: 4/5-base codon

and nonstandard nucleobases (nsNB)

Other exciting strategies aim to expand the genetic code
by stepping outside the standard 64 codons. The first of
these aims to introduce tRNA species that read quadru-
plet codons, rather than the canonical triplets. Almost fifty
years ago, quadruplet suppression was observed in strains
of 8. wyphimurium carrying the mutation sufD (a CCCC
quadruplet anticodon), thereby producing a tRNA®Y
containing the frameshift suppressor mutation, a CCCC
anticodon [49]. Recently, quadruplet decoding, and thus
+1 frameshifting, has been used for nsAA incorporation
[50,51]. Much work has focused on UAGN codons, which
could theoretically expand the genetic code with four
new open codons.

The second strategy is based on the introduction of
nonstandard nucleobases (nsNB). Benner and co-workers

designed an nsNB pair (P-Z) with a different hydrogen
bonding donor/acceptor pattern compared to that found
in standard nucleobases [52,53], whereas Hirao and
Romesberg’s groups developed hydrophobic nsNB pairs,
Ds-Px [54-57] and NaM-TPT3 [58-60], respectively.
Impressively, the Romesberg lab recently developed a
strain of K. ¢o/i that imports [61,62] and uses NaM-TPT3
as the third pair of nucleotides: they can be maintained in
the genome [63] and transcribed [64°°]. Additionally,
protein is translated from these mRNAs, enabling the
incorporation of nsAA [64°°]. Theoretically, the addition
of this orthogonal nsNB pair to the genetic code would
expand it from 64 to 216 possible codons; however, it is
difficult to assess the physical and biological properties of
this new nsNB pair, and it is unlikely that all new codons
may allow genetic code expansion.

Conclusions

T'hree major efforts in the field of genetic code expansion
are rapidly advancing the possibilities of nsAA incorpo-
ration in proteins: (1) advanced molecular evolution strat-
egies to engineer O'TSs, (2) efforts to free codons that can
be reassigned for dedicated incorporation of nsAAs, and
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(3) ribosome engineering to expand nsAA incorporation
beyond L-a-AAs.

Engineering components of translation requires the use
of in vitro or in vive approaches that diversify and select
for evolved components (e.g. aaRS, tRNA, and EF-Tu).
However, the combinatorial possibilities to evolve more
than one component at a time are vast and empirically
unattainable, yet evolution of single components alone
has limitations. Integration of combined efforts to evolve
all of these individual components to work in a selective
and efficient manner with the native translation apparatus
will allow faithful expansion of the genetic code. In this
regard, two main features need to be addressed using
advanced molecular evolution strategies to enable effi-
cient incorporation of multiple nsAAs, namely OT'S effi-
ciency (aaRS activity is typically 10°=10°-fold below their
native counterparts) [65,66] and specificity, as many
orthogonal aaRSs exhibit polyspecificity towards several
nsAAs [67].

Historically, OTS performance limited the nsAA incor-
poration to only one or a few instances per protein, but

Figure 4

this limitation is also due to the lack of open codons
dedicated to the incorporation of an nsAA. The construc-
tion of a GRO has enabled the incorporation of multiple
instances of an nsAA into a single protein. Further recod-
ing efforts, advances in quadruplet suppression and intro-
duction of nsNBs are likely to expand the number of
codons available for genetic code expansion in the near
future. This will pave the way for efficient genetic code
expansion with multiple nsAAs.

Finally, the work on orthogonal and tethered ribosomes
provides the cell with a complementary translation appa-
ratus that can be fully dedicated to the synthesis of
biotechnological products, breaking the link between cell
survival and translational synthesis.

We envision GROs with mu/ltiple open codons combined
with multiple O'T'Ss and orthogonal, tethered ribosomes
integrated in the genome, providing a biological frame-
work capable of establishing a stable and expanded
genetic code (Figure 4). Accurate, specific, and multi-site
incorporation of diverse nsAAs is a major goal to be met
soon and enable the production of functionalized proteins
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Expansion of the genetic code in GROs containing multiple open coding channels. Native translation (left) is preserved and isolated from

orthogonal translation systems (OTS, right) containing o-tRNA, 0-aaRS, oRiboT. The OTS is designed to minimize cross-reacting or interfering with
the native translational machinery. The open coding channels in the GRO permit efficient, multi-site incorporation of nonstandard amino acids
(nsAAs) into proteins. Future efforts aimed at engineering all components of OTSs may enable the use of nonstandard monomers (nsM)
possessing chemistries and modified backbones distinct from standard AA or nsAAs. Such capabilities could permit multi-site incorporation of
multiple combinations of AA, nsAAs or nsMs for templated-directed production of genetically encoded materials (GEMs).

Current Opinion in Chemical Biology 2018, 46:1-9 www.sciencedirect.com

Please cite this article in press as: Arranz-Gibert P, et al.: Next-generation genetic code expansion, Curr Opin Chem Biol (2018), https://doi.org/10.1016/j.cbpa.2018.07.020



https://doi.org/10.1016/j.cbpa.2018.07.020

COCHBI-1704; NO. OF PAGES 9

Next-generation genetic code expansion Arranz-Gibert, Vanderschuren and Isaacs 7

and polymers containing diverse nsAAs and nsM, leading
to the production of entirely new forms of matter, geneti-
cally encoded materials (GEMs).
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