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Abstract—Age of Information (AoI), measures the time elapsed
since the last received information packet was generated at the
source. We consider the problem of AoI minimization for single-
hop flows in a wireless network, under pairwise interference con-
straints and time varying channel. We consider simple, yet broad,
class of distributed scheduling policies, in which a transmission
is attempted over each link with a certain attempt probability.
We obtain an interesting relation between the optimal attempt
probability and the optimal AoI of the link, and its neighboring
links. We then show that the optimal attempt probabilities can
be computed by solving a convex optimization problem, which
can be done distributively.

I. INTRODUCTION

Timely delivery of information updates is gaining increasing
relevance with the advent of technologies such as autonomous
flying vehicles, internet of things, and other cyber physical
systems. In autonomous flying vehicles, for example, timely
exchange of position, velocity, and other control information
can improve network safety [1], [2].

Packet delay, the traditionally used measure, accounts for
the average time taken for a packet to reach the destination
node, but does not measure the ‘information lag’ at the destina-
tion node, especially when the information update generation
can be controlled [3]–[5]. For example, if two packets carry
the same information, and one arrives early at the destination,
then there is no need in accounting for the delay in reception
of the second packet.

Age of information (AoI), a newly proposed metric [3], [6],
is defined to be the time elapsed since the last received infor-
mation update was generated at the source node. AoI, upon
reception of a new update packet drops to the time elapsed
since generation of the packet, and grows linearly otherwise.
AoI, therefore, more accurately captures the ‘information lag’
at the destination node.

AoI has been analyzed for various queueing models [3], [7]–
[11], but very little attention has been paid to AoI minimization
in wireless networks. A problem of scheduling finitely many
update packets under physical interference constraints was
shown to be NP-hard in [12]. Age for a broadcast network,
where only a single link can be activated at any time, was
studied in [13]–[15]. Some preliminary analysis of age for
a slotted ALOHA like random access was done in [16],
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while multi-hop networks have been considered in [5], [17].
More recent work includes [4], [18], [19], which propose
centralized scheduling policies for AoI minimization, under
general interference constraints and time varying channels.

In a wireless network, it is not always possible to implement
centralized schemes. In this paper, we consider a simple, yet
broad, class of distributed scheduling policies for wireless
networks, in which each link attempts transmission with a
certain probability. We consider time varying channel and a
pairwise interference model, in which each link interferes with
a specified set of links in the network.

We first derive an interesting relation between the optimal
attempt probability, and the optimal age of the given link
and the interfering links. We then characterize the optimal
distributed policy πD, as a solution to a convex optimization
problem. We further show that this convex problem can be
solved distributively.

II. SYSTEM MODEL

We model a wireless communication network as a graph
G = (V,E), where V is the set of nodes and E is the set of
directed communication links between the nodes. Each link
e ∈ E is associated with a source-destination pair. Time is
slotted, with the duration of each slot set equal to the time
it takes to transmit a single update packet. For simplicity, we
normalize the slot duration to unity.

Transmission of update packets cannot occur simultaneously
over all links due to wireless interference constraints [20]. For
each link e ∈ E, there is a subset of links Ne ⊂ E, that
interfere with link e, i.e., if link e and a link l ∈ Ne attempt
simultaneous transmission, then the transmission over link e
fails due to interference. We call this the pairwise interference
model. Popular models such as 1-hop and 2-hop interference
models [20] are special cases of this model.

Channel uncertainty can also lead to failure in reception
of update packets. We consider a two state channel process
Se(t) ∈ {0, 1} for all time t and links e. Channel state Se(t) =
1 implies that link e’s channel is ON at time t, and a non-
interfering transmission over e is successfully received. When
Se(t) = 0, even a non-interfering transmission over link e fails
due to bad channel conditions. We assume the channel process
{Se(t)}t,e to be independent and identically distributed (i.i.d.)
across time t, and only independent across links e. We let
γe = Pr (Se(t) = 1) denote the channel success probability
for link e. We consider the case when the channel statistics,
namely γe for all e ∈ E, are known but the current channel
state Se(t) cannot be observed.



We use Ue(t) to denote scheduling decisions at time t, for
each link e. Ue(t) = 1 when link e attempts transmissions
in slot t, and Ue(t) = 0 otherwise. Thus, a successful
transmission occurs over link e if and only if a transmission
is attempted on link e, the link e’s channel is ON, and
no transmission is attempted over links e′ ∈ Ne. This is
equivalent to

Ûe(t) , Se(t)Ue(t)
∏
e′∈Ne

(1− Ue′(t)) = 1. (1)

A. Age of Information

AoI of a network is a function of AoI of each source-
destination pair. Thus, we define age Ae(t) for each link, to
be the time since the last received update was generated. We
assume source nodes to be active sources, i.e., it can generates
a fresh update packet before every transmission.

When all sources are active, the age Ae(t), is equal to
the time elapsed since the last successful transmission over
e. Thus, the evolution of age Ae(t) can be written as

Ae(t+ 1) =

{
Ae(t) + 1 if Ûe(t) = 0

1 if Ûe(t) = 1
, (2)

for all e ∈ E. We define average age for link e to be

Aave
e = lim sup

T→∞

1

T

T∑
t=1

Ae(t), (3)

whenever the limit exists. We define the peak age to be the
average of all the age peaks:

Ap
e = lim sup

T→∞

1

Ne(T )

Ne(T )∑
i=1

Ae(Te(i)), (4)

where Te(i) denote the ith instance of successful transmission
over link e, i.e., the ith instance when Ûe(t) = 1, and Ne(T )
is the number of successful transmissions over link e until
time T . We define average and peak AoI of the network to be
a weighted sum of link AoI:

Aave =
∑
e∈E

weA
ave
e , and Ap =

∑
e∈E

weA
p
e. (5)

Our objective is to design distributed scheduling policies
that minimize the network average and peak age.

B. Distributed Stationary Policies

We focus our attention on policies in which scheduling
decisions are made by the source of each link e, and not
by a centralized scheduler. In particular, we consider policies
in which each link e attempts transmission with probability
pe > 0, independent across links and slots. We refer to these
policies as the distributed stationary policies.

The probability that a non-interfering transmission is at-
tempted over link e is given by fe = pe

∏
e′∈Ne

(1− pe′). We
will refer to fe as the link activation frequency of link e, and
use f = (fe)e∈E to denote the link activation frequency vector.

Fig. 1. Example of two interfering links, 1 and 2. The yellow region is FD .
Also shown is the set of feasible link activation frequencies for centralized
schedule: F = {(f1, f2) | f1 + f2 ≤ 1 and fi ≥ 0}.

The space of all link activation frequencies f , attainable using
distributed stationary policies, is given by

FD =

{
f ∈ R|E| | fe = pe

∏
e′∈Ne

(1− pe′)

and 0 ≤ pe ≤ 1 ∀ e ∈ E
}
. (6)

Figure 1 shows the set of feasible link activation frequencies
for distributed policies for the two interfering link example.
Also, shown is the set of all link activation frequencies F
attainable using a centralized scheduler. It can be seen that
the set FD is non-convex, and strictly smaller than F . The
gap between these two sets indicates the price one has to pay
in resorting to distributed scheduling.

III. OPTIMAL POLICY

In this section, we characterize an age optimal policy, and
propose an implementation that requires only local informa-
tion. We first show that for any distributed stationary policy,
the peak and average age are equal, and can be written as a
simple convex function in link activation frequencies fe.

Lemma 1: For any distributed stationary policy, the
average and peak age is given by

Aave = Ap =
∑
e∈E

we
γefe

, (7)

where fe = pe
∏
e′∈Ne

(1 − pe′) is the link activation
frequency of link e.

Proof: A similar result was proved in [4] which consid-
ered a class of centralized policies, that are not necessarily
stationary. Here, we provide a proof for distributed stationary
policies.

Consider a link e. Then, under any distributed stationary
policy, the event that link e is successfully activated in slot
t is independent and identically distributed across slots, with
success probability of γefe. Thus, the time since last activation



We use Ue(t) to denote scheduling decisions at time t, for
each link e. Ue(t) = 1 when link e attempts transmissions
in slot t, and Ue(t) = 0 otherwise. Thus, a successful
transmission occurs over link e if and only if a transmission
is attempted on link e, the link e’s channel is ON, and
no transmission is attempted over links e′ ∈ Ne. This is
equivalent to
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is geometrically distributed with mean 1
γefe

. It turns out that
the peak and average age for link e are indeed equal to this
quantity, i.e.,

Aave
e = Ap

e =
1

γefe
,

and therefore, the network age is
∑
e∈E

we

γefe
. The detailed

proof is given in Appendix A.
An immediate consequence of Lemma 1 is that both peak

and average age minimization problems, over the space of all
distributed stationary policies, can be written as

Minimize
f∈FD

∑
e∈E

we
γefe (8)

Notice that, although the objective function is convex, the
constraint set FD is non-convex, see Figure 1. Furthermore,
obtaining optimal link activation frequencies f∗ does not
suffice as the distributed policy is characterized by the attempt
probabilities pe. The optimal link attempt probabilities p∗, that
solve (10), yield a distributed stationary policy, that is both
peak and average age optimal. We call this policy πD.

The following result characterizes the optimal link attempt
probabilities p∗ in terms of the optimal link age A∗e .

Theorem 1: The attempt probabilities p∗ =
(p∗e|e ∈ E), that solve (8), are given by

p∗e =
weA

∗
e

weA∗e +
∑
e′:e∈Ne′

we′A∗e′
, (9)

for all e ∈ E, where A∗e =
[
γep
∗
e

∏
e′∈Ne

(1− p∗e′)
]−1

is
the optimal peak/average age of link e.

Proof: Substituting FD, from (6), in (8) we get

Minimize
p∈[0,1]|E|,f∈R|E|

∑
e∈E

we
γefe

subject to fe = pe
∏
e′∈Ne

(1− pe′) ∀ e ∈ E

fe ≥ 0 for all e ∈ E

(10)

Now, substituting qe = 1− pe, the optimization problem (10)
reduces to

Minimize
p≥0,q≥0

∑
e∈E

we
γepe

∏
e′∈Ne

qe′

subject to pe + qe ≤ 1 ∀e ∈ E
(11)

This is a convex program in standard form, and can be solved
using KKT conditions to obtain Theorem 1. The details are
given in Appendix B.

Preliminary results on age optimization for a ALOHA type
network model were presented in [16] for a network in which
only one link can be activated at any given time. As a heuristic,
it was argued in [16] that the attempt rates should be

pe =
1/
√
γe∑

e′∈E 1/
√
γe′

. (12)

However, Theorem 1 shows that the attempt probability

p∗e =
A∗e∑

e′∈E A
∗
e′
, (13)

is both peak and average age optimal. This gives us a more
precise answer to the question posed in [16]. Our result,
however, holds under the more general pairwise interference
constraints, and non-equal weights we > 0.

A. Distributed Computation of πD
Although, Theorem 1 gives a characterization of the optimal

attempt probabilities, in terms of the optimal link age A∗e , it
does not provide for a simple method to computation.

We now provide for an alternate characterization of the
network age minimization problem (8). In particular, we show
that p∗ can be obtained by a simpler convex optimization
problem, than the one in (11). We will also see that this simpler
problem is akin to distributed computation of the policy πD.

Theorem 2: The age minimization problem (8) is
equivalent to the convex optimization problem:

Maximize
λe≥0

∑
e∈E

λe +
∑

e′:e∈Ne′

λe′

H

(
λe

λe +
∑
e′:e∈Ne′

λe′

)

+
∑
e∈E

λe

[
1 + log

(
we
λe

)]
, G(λ),

(14)

where H (p) = p log
(

1
p

)
+ (1− p) log

(
1

1−p

)
is the

entropy function. If λ∗ is the optimal solution to this
problem, then the optimal attempt probabilities p∗ are
given by

p∗e =
λ∗e

λ∗e +
∑
e′:e∈Ne′

λ∗e′
, (15)

for all e ∈ E.

Proof: See Appendix C.
We first note that the variable λe is a proxy for the weighted

age weAe of link e, and the solution λ∗e corresponds to optimal
weighted age weA∗e . This can also be intuited from (15), which
is same as (9).

The objective function G(λ) in (14) is a concave function;
since the problem is convex. Therefore, a simple projected
gradient ascent is guaranteed to converge to the optimal
λ∗ [21]. The gradient of the function G (λ) is given by

∂G (λ)

∂λe
= log

(
we
λe

)
+log

(
1+

θe
λe

)
+
∑

e′:e∈∈Ne′

log

(
1 +

λe′

θe′

)
,

for all e ∈ E, where θe =
∑
e′:e∈Ne′

λe′ . Note that the
gradient ∂G(λ)

∂λe
depends only on λe and λe′ , for e′ that are

‘extended neighbors’ of e. This space dependence of ∂G(λ)
∂λe

on λ makes the projected gradient descent algorithm akin to
distributed implementation.



We give the projected gradient descent algorithm for dis-
tributively computing policy πD in Algorithm 1. In it, we
divide time into frames, each frame of F ≥ 1 slots. For
simplicity, we assume symmetric interference, i.e., e interferes
with e′ if and only if e′ interferes with e which is same as the
condition Ne = {e′ ∈ E | e ∈ Ne′} for all links e.

Link e, sets its attempt probability to pe(m), in frame
m ≥ 1. The source of link e tracks and updates two variables,
namely, λe(m) and θe(m). We use Πε to denote the projection
on the set [ε,+∞), for a ε > 0. As seen in Steps 5 and 7 in
Algorithm 1, variables λe(m) and θe(m) need to be exchanged
only between the neighboring links.

Algorithm 1 Distributed Computation of Policy πD
1: pe(m): attempt probability of link e, in frame m
2: λe(m), θe(m): dual variables, in frame m
3: Start: Set λe(0) = 1 and θe(0) = |Ne| for all e ∈ E. Set
pe(0) = 1/2 and m = 0.

4: for each frame m do
5: Send: θe(m) to all e′ ∈ Ne
6: Compute λe(m+ 1):

λe(m+ 1)← Πε

[
λe(m) + ηm

{
log

(
we

λe(m)

)

+ log

(
1 +

θe(m)

λe(m)

)
+
∑
e′∈Ne

log

(
1 +

λe′(m)

θe′(m)

)}]
7: Send: λe(m+ 1) to all e′ ∈ Ne
8: Update θe(m+ 1):

θe(m+ 1)←
∑
e′∈Ne

λe′(m+ 1)

9: Update pe(m+ 1):

pe(m+ 1)← λe(m+ 1)

λe(m+ 1) + θe(m+ 1)

10: m← m+ 1
11: end for

IV. CONCLUSION

We considered age minimization in a wireless network, with
pairwise interference constraints, time varying channels, and
single-hop flows. We considered a simple class of distributed
scheduling policies, in which each link attempts transmission
with probability pe. We showed an interesting relationship
between the optimal attempt probability for a link, and the
optimal age of the link and it’s neighboring links. We then
showed that the optimal link attempt probabilities can be
obtained by solving a convex optimization problem, which
can be done distributively using the projected gradient ascent
algorithm.
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APPENDIX

A. Proof of Lemma 1

Consider a distributed stationary policy with link activation
frequencies fe > 0 for each e ∈ E. For a link e, let Te(i)
be the ith instance when link e was successfully activated,
i.e., the ith instance when Ûe(t) = 1. Let Xe(i) = Te(i) −
Te(i−1) to be the ith inter-(successful) activation time for link
e. Since all the processes involved, namely Se(t) and Ue(t),
are i.i.d. across time t, Xe(i) is geometrically distributed with
rate equal to P

[
Ûe(t) = 1

]
= γefe, i.e., P [Xe(i) = k] =

γefe (1− γefe)k−1, for all k ∈ {1, 2, . . .}.
We now compute the average age Aave

e for link e. Note that
the age Ae(t) over slots t ∈ {Te(i)+1, . . . Te(i+1)} increases
from 1 to Xe(i) in steps of 1. Therefore,

∑Te(i+1)
t=Te(i)+1Ae(t) =



∑Xe(i)
m=1 m for all i. Then, using renewal theory [22], we can

derive the average age to be

Aave
e = lim sup

T→∞

1

T

T∑
t=1

Ae(t) = lim
N→∞

∑N
i=1

∑Xe(i)
m=1 m∑m

i=1Xe(i)
,

= lim
N→∞

∑N
i=1

1
2Xe(i) (Xe(i) + 1)∑N

i=1Xe(i)
,

=
1

2

E [Xe(i) (Xe(i) + 1)]

E [Xe(i)]
a.s.. (16)

Computing the moments of Xe(i) we get Aave
e = 1

γefe
a.s..

For peak age, note that the ith peak is equal to the ith inter-
(successful) activation time Xe(i), i.e., Ae (Te(i)) = Xe(i).
Therefore, we have

Ap
e = lim sup

T→∞

1

N (T )

N (t)∑
i=1

Ae (Te(i)) = lim
N→∞

1

N

N∑
i=1

Xe(i),

which is equal to E [Xe(1)] = 1
γefe

a.s.. This proves the result.

B. Proof of Theorem 1

Consider the Lagrangian dual

L(p,q,λ) =
∑
e∈E

we
γepe

∏
e′∈Ne

qe′
+
∑
e∈E

λe (pe + qe − 1) .

(17)
The problem (11) satisfies Slater’s conditions, and thus, the
KKT conditions are both necessary and sufficient. Setting
partial derivatives of L with respect to pe and qe to zero,
we obtain

peλe = weAe, and qeλe =
∑

e′:e∈Ne′

we′Ae′ , (18)

for all e ∈ E, where Ae = 1
γepe

∏
e′∈Ne

qe′
is the age of

link e. Equations (18) imply that λe cannot be zero. By
complementary slackness criteria we must have pe + qe = 1.
This, with (18), gives pe = weAe

weAe+
∑

e′:e∈N
e′
we′Ae′

and λe =

weAe +
∑
e′:e∈Ne′

we′Ae′ . This proves the result.

C. Proof of Theorem 2

The age minimization problem, given in (10), can be written
as by substituting qe = 1− pe:

Minimize
f≥0,p≥0,q≥0

∑
e∈E

we
γefe

subject to fe ≤ pe
∏
e′∈Ne

qe′ ∀ e ∈ E

pe + qe ≤ 1 ∀ e ∈ E

(19)

Now, substituting Pe = log pe, Qe = log qe, and he = log fe,
the problem reduces to

Minimize
h,P,Q

∑
e∈E

we
γe

exp {−he}

subject to he − Pe −
∑
e′∈Ne

Qe′ ≤ 0 ∀ e ∈ E

log (exp {Pe}+ exp {Qe}) ≤ 0 ∀ e ∈ E

(20)

This follows by first making the the substitution pe = ePe ,
qe = eQe , and fe = ehe , and then taking log in each of
the constraints. This is a standard technique in geometric
programming [21]. However, unlike geometric programming,
we don’t need to apply log function to the objective as it is
already convex, and also separable in variables he.

The problem (20) is convex [21], and satisfies slater’s
conditions. As a consequence, the duality gap is zero, and
the problem (20) is equivalent to its Lagrangian dual problem.

Define the Lagrangian function of the optimization prob-
lem (20) to be

L (h,P,Q,λ,ν) =
∑
e∈E

we
γe
e−he +

∑
e∈E

νe log
(
ePe + eQe

)
+
∑
e∈E

λe
(
he − Pe −

∑
e′∈Ne

Qe′
)
, (21)

for λ ≥ 0 and ν ≥ 0. The dual problem for (20) is given by

Maximize
λ≥0,ν≥0

g (λ,ν) , (22)

where g (λ,ν) is the dual objective function defines as

g (λ,ν) =Minimize
h,P,Q

L (h,P,Q,λ,ν) . (23)

We will now show that the the optimization problem in
Theorem 2 is in fact the dual problem (22).

First note that the Lagrangian function L (h,P,Q,λ,ν) is
strictly convex in h, P, and Q [21]. Thus, first order conditions
∇h,P,QL = 0 yield the optimal h, P, and Q. Setting these
partial derivatives to 0, we get

λe =
νee

Pe

ePe + eQe
,
∑

e′:e∈Ne′

λe′ =
νee

Qe

ePe + eQe
, and λe =

we
γe
e−he ,

(24)
for all e ∈ E. Adding and dividing the first two equations
in (24) also yields

νe = λe +
∑

e′:e∈Ne′

λe′ , and Pe −Qe = log

(
λe∑

e′:e∈Ne′
λe′

)
,

(25)
respectively, for all e. Substituting (24) and (25) in L, in (21),
we recover g(λ,µ) = G(λ), the objective function in (14),
and therefore, the dual problem (22) is same as the optimiza-
tion problem in Theorem 2. This proves the first part.

We now show that if λ∗ is the solution to this problem,
then the optimal attempt probability is given by (15). Let f∗,
p∗, q∗ be the solution to (19), h∗, P∗, Q∗ be the solution
to (20), and λ∗ be the solution to the problem in Theorem 2.

Note that, for each link e ∈ E, we must have f∗e =
p∗e
∏
e′∈Ne

q∗e and p∗e + q∗e = 1; as otherwise the objective
function can be reduced by increasing f∗e and/or p∗e . Since
p∗e = eP

∗
e and q∗e = eQ

∗
e , we have eP

∗
e +eQ

∗
e = 1. Substituting

this in (24), and using (25), we obtain

p∗e = eP
∗
e =

λ∗e
λ∗e +

∑
e′:e∈Ne′

λ∗e′
, (26)

which proves the result.


