General Video Game Rule Generation

Ahmed Khalifa Michael Cerny Green

Tandon School of Engineering Tandon School of Engineering

New York University
Brooklyn, New York 11201
Email: ahmed.khalifa@nyu.edu

New York University

Email: mcg520@nyu.edu

Abstract—We introduce the General Video Game Rule Gen-
eration problem, and the eponymous software framework which
will be used in a new track of the General Video Game Al
(GVGAI) competition. The problem is, given a game level as
input, to generate the rules of a game that fits that level. This
can be seen as the inverse of the General Video Game Level
Generation problem. Conceptualizing these two problems as
separate helps breaking the very hard problem of generating
complete games into smaller, more manageable subproblems.
The proposed framework builds on the GVGAI software and
thus asks the rule generator for rules defined in the Video
Game Description Language. We describe the API, and three
different rule generators: a random, a constructive and a search-
based generator. Early results indicate that the constructive
generator generates playable and somewhat interesting game
rules but has a limited expressive range, whereas the search-
based generator generates remarkably diverse rulesets, but with
an uneven quality.

I. INTRODUCTION

A number of game-based Al competitions are run annually
at academic conferences focused on Al and games, such as
CIG. Most of these conferences are focused on playing games;
competitors submit controllers that are evaluated on how well
they play games. At the same time, procedural content genera-
tion (PCG) is an active area for Artificial Intelligence in Games
research [1]. One such competition is the Level Generation
Track of the Mario Al Championship, where competitors
submitted level generators which were judged based on their
ability to generate levels for the game [2]; another example
is the Level Generation Track of the General Video Game
Al Competition, where competitors submit controllers that are
tested on their ability to generate levels for any game within
a particular domain [3].

However, no competition has so far focused on generating
rules for video games, despite this being an active research
topic. We believe that in order to make progress in video game
rule generation, there must be a benchmark. This benchmark
would allow researchers to compare their results and improve
them by having access to previous work. We also believe it
is important to start somewhat smaller than the full game
generation problem, and focus on a well-delimited partial
problem, in the light of the somewhat disappointing results
of previous work attempting to generate levels and rules at
the same time [4]. In this paper, we introduce the General
Video Game Rule Generation (GVG-RG) Framework. This
framework is intended to be used as a benchmark for rule

Brooklyn, New York 11201

Diego Perez-Liebana Julian Togelius
University of Essex Tandon School of Engineering

Colchester, United Kingdom New York University

Email: dperez@essex.ac.uk Brooklyn, New York 11201

Email: julian@togelius.com

generation. Our framework uses VGDL to describe games,
with the difference being that we will limit generation to only
that of game rules and termination conditions. This paper in-
troduces the GVG-RG track of the GVGAI Competition, as we
believe competitions are the best way to encourage students,
academics, and industry researchers to use the framework.

This paper is structured as follows: Sections II and III
explains the required background to understand this paper,
followed by section IV explaining our framework (GVG-
RG). Section V explains the competition and how it will be
organized. Section VI explains three sample rule generators
provided with the framework, followed by the results from
each generator in section VII. Finally, section VIII concludes
the paper and talk about future works.

II. BACKGROUND

Many different types of game content can be procedurally
generated, ranging from textures to quests to level to game
rules. For example: SpeedTree [5] is one of the most famous
tools used to generate different trees and green areas with very
high quality', and widely used in commercial games. There are
also numerous games that feature level generation, character
generation, planet generation, etc. Overall, there are many
types of content where PCG methods have proven effective
and are in wide use.

This is not the case with rule generation. Generating rules
requires defining a way to describe them. Game descrip-
tion languages are a descriptive languages that is used to
define certain type/category of games. There are game de-
scription languages suited for defining board games [6], [7],
card games [8], videogames [9], puzzle games [10], strategy
games [11], and so on. Having a more focused language
helps the generator find good games. For example: using a
description language for board games will help the generator
to focus on finding good game rules instead of trying to
understand the meaning of the game board.

Rule generation can be divided into two main categories:
board games and video games. The earliest attempts were
with Board games, which is not surprising as board games
have been around for thousands of years. One of the earli-
est attempts to tackle rule generation is METAGAME [12].

Thttp://www.speedtree.com/academy-award.php

METAGAME is a research project by Pell to generate chess-
like games. The generated games are symmetric, which means
both players have the same pieces and use the same rules. The
game generator does not use simulations but instead follows
a certain grammar to generate playable games.

Pell’s system doesn’t mind if the generated games are
balanced or not. Balanced games are games that do not give
advantage for a player over the other. Hom and Marks [13]
improved over METAGAME by adding game simulations.
Each generated game is played with Al against itself for a
fixed amount of times, striving for a 50/50 win rate.

Although the generated games are balanced from Hom and
Marks’ research, the search space is limited to chess-like
games. Browne [7] introduced a simple description language
that can describe different board games ranging from Tic-Tac-
Toe to Go. Browne used an evolutionary technique to evolve
new board games using a system called Ludi. Once the games
were generated, Ludi used simulation to evaluate them. One
of the generated games (Yavalath) is sold commercially and
considered one of the top 100 best abstract games in 2011 [14].

Video game rule generation has not been as successful as
board game rule generation. A primary cause of this is the real-
time aspect of video games compared to turn based games.
Current research has not produced a general purpose Al agent
capable of playing all games in the GVGAI game set [15]. It
is more difficult to use simulation-based evaluation of video
games than board games for various reasons, including the
discrepancy between optimal play and human-like play [16].

Togelius and Schmidhuber [17] generated arcade games,
using 2D matrices to represent their interaction rules and
score changes. The generated games were evaluated based on
Koster’s Theory of Fun [18] where a good game is defined
as one that the player can learn from. These generated arcade
games were mostly simple chasing games due to the small
search space. Smith and Mateas [19], [20] did research on
generating games as well, using Answer Set Programming
(ASP) to define the search space. Instead of searching for new
games, the game designer described the constraints required
in the game, where a constraint solver proceeded to carve the
search space to only include games with these constrains. The
generated games were similar to the games in Togelius and
Schmidhuber work [17].

Cook’s research revolves around automatic designing of
video games using ANGELINA?, a computer system designed
to generate different types of games. ANGELINA passed
through many phases, starting as a simple arcade game gen-
erator [21] like Togelius and Schmidhuber’s work [17], and
later able to generate full 3D games [22] for Ludumdare?.

Video Game Description Language [9], [23] (VGDL) is a
language used to define a variety of games from Sokoban to
Space Invaders. In 2015, Nielsen et al. [4] used (VGDL) to
generate new games, using evolutionary search where games
were evaluated using relative algorithm performance [24].

Zhttp://www.gamesbyangelina.org/
3Ludumdare is a 48-hours game jam where the competitors has to design
and develop a game around a certain theme.

Within the genetic engine, the initial population contained
random generated games, human-designed games, and mutated
versions of the two. The generated games are considered
challenging but not as good as human-designed ones.

III. VIDEO GAME DESCRIPTION LANGUAGE

Video Game Description Language [9] (VGDL) is a lan-
guage used to represent 2D arcade games (Pacman), action
games (Space Invaders), and puzzle games (Sokoban). VGDL
games consists of 2 main parts: game description and level
description. The game description is responsible for holding
information about game objects, behaviors, interactions and
termination conditions. The game description consists of 4
main parts:

« Sprite Set: a list of all game objects called game sprites.
Each sprite has a type, which defines its behavior. For
example, in Pacman a ghost is considered to be a Ran-
domPathAltChaser which means it chases normal pacman
but flees from pacman after eating a power pellet.

« Interaction Set: a list of all game interactions. Interac-
tions only occur upon collision between two sprites. For
example, In Pacman, if the player collides with a pellet,
the latter will be destroyed and the score increases.

o Termination Set: a list of conditions. These conditions
define how to win or lose the game. These conditions can
be dependent on sprites or on a countdown timer.

o Level Mapping: a table of characters and sprite names.
This table is used to decode the level description.

The level description contains a 2D matrix of characters where
each character is decoded using the Level Mapping.

The General Video Game (GVG) framework is a Java imple-
mentation of VGDL. The framework was originally designed
for the General Video Game Al (GVG-AI) competition [25].
GVG-AI competition is a general Al competition where com-
petitors design Al agents that can play different unseen games
efficiently. Each agent is provided with 40ms to decide the
next action. Multiple competition tracks were introduced later
to the framework such as Level Generation [3], Learning, and
Multiplayer Planning [26]. In this paper, we will introduce the
rule generation track (more details in Section V).

IV. GVG-RG FRAMEWORK

The framework follows the same design philosophy of the
level generation framework [3]. The framework allows the
users to create their generators and test them against different
VGDL games. The framework provides the generator with
sprite level description (SLDescription) object and in return, it
expects the game interactions and termination conditions. The
generator could provide the framework with an optional sprite
set structure hashmap object.

The SLDescription contains information about the current
game sprites and the current level. This object provides the
generator with functions to retrieve the game sprite informa-
tion such as name, type, and related sprites. For example: the
avatar in Zelda game is named avatar, is of type ShootAvatar
(it can move in all 4 directions and shoots bullets), and has

sword as related sprite (the avatar can shoot sword sprite). The
SLDescription object provides the generator with the current
level in form of 2D string array. Each string is a comma
separated list of the names of all the sprites in that location.
In addition, the SLDescription object can be used to simulate
any game by providing it with interactions and termination
conditions.

The sprite set structure hashmap maps between a string
and an array of strings. The main advantage of providing the
hashmap is to group multiple sprites under a single label. For
example: In Space Invaders, all aliens can be grouped under
the label “Harmful”.

V. RULE GENERATION COMPETITION

The rule generation competition will run in the similar
manner to the level generation competition [3]. The main
difference instead of generating a level for a certain game, the
aim is to generate a new game for a certain level. Instead of
generating the whole game, the competitors are required only
to generate the interaction set and the termination conditions
while fixing the sprite set. This limitation decreases the
generative space size, leading to generating better games.

The competitors will submit their code in form of zip file
contain their generator code to the server. All rule generators
are expected to return the interactions and the termination
conditions within a fixed amount of time (in this paper, each
generator was allowed 5 hours to generate one game) on a
reference computer. The specification of the computer will be
posted later on the competition website* (in this paper, we
used a recent Mac book pro°. If the generator takes more than
the provided time, it will be disqualified and its results will
be ignored. There is no restriction on the language used for
the generator but we will only provide a Java interface.

The competitors will submit their generators code before the
competition day to allow the system to generate the new games
by the competition day. The generated games will be judged
by humans on the competition day. The system will pick two
random generated games and show them to the judges. Each
judge will play each game as many times as required, then
pick which game feels better to them. The system will ask
the judge to briefly describe the picked game. All the results
will be submitted to an SQL server and the most preferred
generator will win the competition.

VI. METHODS

We implemented three different sample rule generators to
give the competitors a smooth start using the framework. Each
of these generator uses a different technique to generate a new
game. The following subsections describe these generators in
detail.

“http://www.gvgai.net/
52.9 GHz Intel Core i5 with 8 GB 1867 MHz DDR3

A. Random Rule Generator

Random rule generator is the simplest of all. The main idea
is to generate random interactions and termination conditions
that the framework can run with no errors.

The generator follows these steps to generate game:

1) Pick a random number of interactions based on the
number of sprites in the game.

2) Repeat the following steps till the required amount of
interactions has been reached:

a) Pick two random sprites found in the current level
including the end of screen (EOS).

b) Pick a random integer value for scoreChange.

¢) Pick a random interaction from all the available
interactions. These interactions must compile with
no errors with the current selected sprites.

3) After generating all the interactions, the system gener-
ates two termination conditions:

+ Winning Condition: can be either a time out con-
dition or a sprite counter condition. The time out
condition fires after a randomly selected amount of
time, while the sprite counter condition fires when
the number of a randomly selected sprite (excluding
the avatar) reaches 0.

« Losing Condition: fires when the avatar dies.

B. Constructive Rule Generator

The constructive rule generator uses common game knowl-
edge to generate games. For example: If there is an Non
Playable Character (NPC) chasing another object, there is
a high chance that the NPC will kill it upon collision. For
example: Ghosts in Pacman chase Pacman to kill it. Using
this knowledge, we can construct better games than random
ones in a small amount of time.

Before generating the game, the constructive generator uses
an instance of the LevelAnalyzer class to understand the cur-
rent level. The LevelAnalyzer class is a helper class provided
with the framework that calculates statistics of the game sprites
based on the current level. It provides functions to get specific
sprites based on their map coverage percentage and/or have
a certain type. For example: We can get background sprites
by asking the LevelAnalyzer to get us Immovable sprites with
100% map coverage.

The constructive generator use the LevelAnalyzer object to
identify different sprite categories:

o Wall sprites: are immovable sprites that surround the
current level and cover at most 50% of the entire level.
If it doesn’t exist, the end of screen (EOS) is considered
the wall sprite.

o Score sprites and Spike sprites: are immovable sprites
that covers at most 10% of the entire level.

o Avatar sprite: is the sprite controlled by the player and
exists in the current level.

The generator selects one sprite for each category then it
follows the following steps to generate a new game:

1) Get Resource Interactions: collectResource interac-
tions are placed between avatar and all sprites with type
Resource.

2) Get Immovable Interactions: Interactions for score
sprite and spike sprite added. Score sprite is collected
by the avatar and gives the avatar 1 score point. Spike
sprite has 50% chance to be either harmful or collectible.
A harmful sprite kills the avatar upon collision, while a
collectible sprite gives the avatar 2 score points.

3) Get NPCs Interactions: The NPC interactions are
different based on their type:

e Fleeing NPC: is collected by the chaser sprite and
adds 1 point score.

e Bomber NPC: Kkills the avatar sprite upon colli-
sion. A Bomber NPC also spawns sprites. Spawned
sprites have 50% chance to be collected by the
avatar for 1 score point or kill the avatar upon
collision.

e Chaser NPC: kills the chased sprite upon collision.
If the chased sprite is not the avatar sprite, there is
a 50% chance to duplicate itself.

o Random NPC: has 50% chance to kill the avatar or
get killed by it for 1 score point.

4) Get Spawner Interactions: The generator decides with
50% either the spawned sprites will kill the avatar sprite
upon collision or get collected by the avatar sprite for 1
score point.

5) Get Portal Interactions: If a portal is of type “Door”,
the avatar can kill it upon collision. Otherwise, the avatar
is teleported towards the portal destination.

6) Get Movable Interactions: The generator decides with
50% chance if the moving sprites are collected by the
avatar for 1 point score or kills the avatar sprite.

7) Get Wall Interactions: The generator decides with
50% if the walls should be normal walls or fire walls.
Normal walls block all moving sprites from passing
through them, while fire walls kill all moving sprites
upon collision.

8) Get Avatar Interactions: This step only happens if the
avatar can shoot bullets. The generator adds interactions
between harmful sprites and the avatar’s bullets. Harmful
sprites are any sprite that can kill the avatar. Harmful
sprites are killed upon collision with avatar bullets.

9) Get Termination Conditions: The generator adds two
termination conditions:

o Winning Condition: The generator chooses an appli-
cable condition from the following list: the avatar
reaches a door sprite, all harmful sprites are dead,
all fleeing NPCs are dead, all collectible sprite are
dead (collectible sprites are immovable sprites that
add score points), or time runs out.

o Losing Condition: if avatar dies, the game is lost.

C. Search Based Rule Generator

The search based rule generator uses Feasible-Infeasible
2 Population Genetic Algorithm (FI2Pop) [27] to search for

new games. FI2Pop is a genetic algorithm which keeps track
of two populations (Feasible and Infeasible population). The
infeasible population tries to satisfy multiple constraints, while
the feasible population tries to improve the overall fitness. At
any time, if a chromosome failed to satisfy the constraints it
is moved to the infeasible population, and if any chromosome
satisfies all constrains, it will be moved to the feasible popu-
lation.

Before evolution begins, an initial population of 50 chromo-
somes is created from a mix of games generated by the random
rule generator and the constructive rule generator. Based on
preliminary experiments, The population consists of a mix of
40% random rules and 20% constructive rules. The rest of the
population (40%) is created by mutating over the constructive
generated games. Mutation will be discussed in depth later in
this section. After initialization, each chromosome undergoes
cleansing where duplicated rules are stripped out of the
ruleset. The newly created population is then evaluated for
fitness. A chromosome is feasible if it tests positively on three
conditions:

o The chromosome’s ruleset does not generate any errors
in the GVG-AI engine. Errors are classified as anything
that prevents the engine from simulation.

¢ A do-nothing agent which makes no moves will survive
the first 40 steps (1.6 seconds) of playtime.

e The number of bad frames simulated during random,
agent, and smart agent is calculated. Bad frames are
defined as frames in which game sprites are drawn outside
the boundaries of the screen. If > 30% of the frames are
bad frames, then this chromosome is infeasible.

The feasibility of the chromosome is calculated as:

10.3%(1—)

n

(n
where n. and n,, are the number of errors and warnings
generated by the GVG-AI engine respectively, ng,, is the
number of frames that do-nothing survives, n;y is the number
of bad frames found during the play-throughs, and n; is the
maximum number of frames allowed in this game (used for
normalization).

If a chromosome passes the feasibility test, then its true
fitness is evaluated. This is done using relative algorithm
performance [24]. We use three agents: a smart agent which
uses Open Loop MCTS (OLETS), the winner of the GVG-
Al competition in 2014 [25], a baseline agent which uses
Monte Carlo Tree Search (MCTS), and a random agent which
randomly selects its next move. Each agent is allowed 3
independent play-throughs, with the results averaged.

The smart agent plays first and its step count is recorded
for the best game it plays. The baseline and the random agent
then play the game for as many steps as the smart agent. The
three agents’ scores and win rates are averaged across their
play-throughs. A score value is then calculated for each agent
according to the following equation:

O = 0.9 % Ayin + 0.1 x Sigmoid(x) 2)

+0.2x% Ndna

=03
! e+ 1 40

+0.2x%

Ne + 1

where A, is the averaged win count and x is the average
game score. To calculate the final score value, we take the
difference between the smart and the baseline agent, and
multiply it with the difference between the baseline and the
random agent:

- O’r'andmn) (3)

Throughout all play-throughs, we keep track of the number
of distinct triggered interactions. After the play-throughs are
complete, we divide it by the number of rules in the ruleset.

Sfinal - (Osmart - Obassline) * (Obassline

Rﬁnzque (4)
total

where Rypnique is the number of unique interactions fired
during the play-throughs and R,,., is the total number of
interactions in the current chromosome. The average game
length over all play-throughs is tracked. This is done to
penalize games that are shorter than 500 frames (20 seconds),
as these games are not long enough to be considered playable.
The overall fitness is calculated in the following formula:

Srules =

fc = Sfina,l * Srules * SgameLen,gth (5)

After being evaluated for fitness, the chromosomes under-go
rank selection inside their respective populations in order to
create the next generation. If selected, two children are created
from clones of the parents. The children then have a 90%
chance to undergo crossover. If crossover does not occur, these
children then have a chance undergo mutation. If not selected
for mutation, these children are simply cloned into the new
population. We use one point crossover between chromosomes
where a random section of each child’s ruleset is swapped.

Mutation for interaction and termination sets is more com-
plicated than crossover. There are 3 types of mutation, and
each type contains two sub-types.

e Insertion is divided into insertion of a new parameter into

an existing rule, and insertion of an entirely new rule.

e Deletion is divided into deletion of a parameter from an

existing rule, and deletion of an entire rule.

e Modify is divided into modification of an existing rule

parameter, and modification of the rule itself.

Chromosomes have a 10% chance to be mutated upon,
and undergo up to two mutations. Within a single round of
mutation, a chromosome has a 50% chance to mutate on
their interaction set, and a 50% chance to otherwise mutate
on their termination set. 2% elitism (1 chromosome) was
used to preserve the best games. After timeout, the ruleset
of the chromosome with the highest fitness is returned as the
generated ruleset.

VII. RESULTS

We tested our generators against 3 different games:

o Aliens: is a port of Space Invaders. The goal is to shoot
all the aliens before killing the player.

o Boulderdash: is a port of Boulderdash. The goal is to
collect at least 10 diamonds before heading towards the
exit while avoiding enemies.

Fig. 1: The VGDL experimental levels in order from top to
bottom right: Aliens, Boulderdash, and Solarfox.

« Solarfox: is a port of Solarfox. The goal is to collect all
the diamonds without hitting walls or enemy bullets.

These games are selected because they vary in their sprite set
and their level design. For example: The avatar is FlakAvatar
in Aliens, ShootAvatar in Boulderdash, and OngoingAvatar
in Solarfox. Figure 1 shows the levels used for each of the
above games. The levels are distinguishable from each other.
For example: Aliens have a very few sprites in the level
compared to Boulderdash, while Solarfox has a very small
level dimensions. The following subsections shows some of
generated games using our generators.

Figure 2 shows the distribution of the similarity between the
generated games by all generators. There are 1000 constructive
and random games, and 350 search-based games (due to time
constraints). The similarity is calculated by comparing the
distance between interactions and termination conditions from
one game with all the other games and picking the minimum
distance. All comparisons are done in the same manner: for
a given interaction or termination condition, all parts will be
compared to all other parts of other interaction or termination
conditions in every other game. Parts that are identical are
given a score of 0, and parts that are not are given a score of 1.
At the end of this process, the game will have a score that will
be scaled to be between 0 and 1. The constructive generator
has the most similar games compared to the random or the
search based generators, while the search based generator
covers the highest area. The random generator covers a small
portion of space due to the limit of the number of the generated
interactions which is discussed in the next subsection.

A. Random Game Generation

This section shows the three generated games using the
Random Rule Generator. All interactions and termination
conditions are selected randomly. There can only be a max of
5 interactions to minimize the number of useless interactions.

Listing 1 shows the generated interactions and termination
conditions for Aliens. The only way to win the game is to

60 20
—— Random
—— Constructive
50 — Genetic
15
2 40 2z
]]
2 2
5 5
=] Q
z 3 Z10
5 5
]]
8 8
g2 &
5
10
0 0
-02 00 02 04 06 08 1.0 12 02 00 02 04

Similarity

(a) Aliens

Similarity

(b) Boulderdash

~—— Random —— Random
~—— Constructive 35 —— Constructive
—— Genetic —— Genetic

30

Probability Density
M
3

5
0
08 1.0 12 14 -0.2 0.0 02 04 0.6 08 1.0 12
Similarity
(¢) Solarfox

Fig. 2: Probability density of the similarity metric between the generated games. “0” means the games are identical, while “1”

means the games are totally different.

wait till the timer is out. If the avatar tries to go outside the
screen bounds, all sprites (including the avatar) will freeze
till timeout. The player wins the game by waiting for 1200
frames.

TerminationSet

Timeout limit=1200 win=True

SpriteCounter stype=avatar limit=0 win=False
InteractionSet

EOS base > stepBack scoreChange=1

avatar EOS > turnAround

base portalSlow > flipDirection scoreChange=—2

EOS avatar > flipDirection scoreChange=—1

EOS avatar > undoAll scoreChange=1

Listing 1: A randomly generated Aliens interaction set and
termination conditions.

Listing 2 shows the generated interactions and termination
conditions for Boulderdash. None of the interactions ever
trigger except for the first one where it adds health point to
bats upon collision with any wall. The player wins the game
by waiting for 800 frames.

B. Constructive Game Generation

This section shows the generated games by the Constructive
Rule Generator. All the generated games by the constructive
are highly similar due to the predefined interactions for each
sprite category.

Listing 4 shows the generated interactions and termination
conditions for Aliens. The generated game is similar to the
original game with two main differences. The first difference is
all bullets reflect when they reach EOS. The second difference
is enemies never go down towards the avatar. The player wins
when all the aliens die.

TerminationSet

Timeout limit=800 win=True

SpriteCounter stype=avatar limit=0 win=False
InteractionSet

bat wall > addHealthPointsToMax

diamond exitdoor > addHealthPoints scoreChange=0

background wall > undoAll

wall dirt > undoAll scoreChange=—2

scorpion background > attractGaze

Listing 2: A randomly generated Boulderdash interaction set
and termination conditions.

Listing 3 shows the generated interactions and termination
conditions for Solarfox. The only way to get points is by
colliding with the top enemy. The avatar needs to catch the
top enemy as fast as possible before getting outside the game
level. The player wins the game after 1000 frames.

TerminationSet
SpriteCounter stype=harmful limit=0 win=True
SpriteCounter stype=avatar limit=0 win=False
InteractionSet
portalSlow avatar > killSprite scoreChange=1
avatar alienGreen > killSprite
bomb avatar > killSprite scoreChange=I
avatar alienBlue > killSprite
avatar bomb > killSprite
avatar alienBlue > killSprite
avatar bomb > killSprite
avatar EOS > stepBack
sam EOS > flipDirection
bomb EOS > flipDirection
alienGreen EOS > turnAround
alienBlue EOS > turnAround
alienGreen sam > killSprite scoreChange=1
sam alienGreen > killSprite
alienBlue sam > killSprite scoreChange=1
sam alienBlue > killSprite
bomb sam > killSprite scoreChange=I1
sam bomb > killSprite
alienBlue sam > killSprite scoreChange=1
sam alienBlue > killSprite
bomb sam > killSprite scoreChange=I
sam bomb > killSprite

TerminationSet
Timeout limit=1000 win=True
SpriteCounter stype=avatar limit=0 win=False
InteractionSet
wall diamond > teleportToExit scoreChange=1
top avatar > cloneSprite scoreChange=1
wall diamond > bounceForward scoreChange=2
enemyground EOS > removeScore
avatar diamond > pullWithIt

Listing 4: A constructive generated Aliens interaction set and
termination conditions.

Listing 5 shows the generated interactions and termination
conditions for Boulderdash. The goal is to reach the exit door
while avoiding chaser enemies (scorpions). The player can get
points by collecting bats or catching the falling boulders before
they get out of the screen.

Listing 3: A randomly generated Solarfox interaction set and
termination conditions.

TerminationSet
SpriteCounter stype=exitdoor limit=0 win=True
SpriteCounter stype=avatar limit=0 win=False
InteractionSet
diamond avatar > collectResource
avatar scorpion > killSprite
bat avatar > killSprite scoreChange=1
exitdoor avatar > killSprite
boulder avatar > killSprite scoreChange=1
avatar wall > stepBack
pickaxe wall > turnAround
boulder wall > turnAround
scorpion wall > wrapAround
bat wall > wrapAround

scorpion pickaxe > killSprite scoreChange=1
pickaxe scorpion > killSprite

Listing 5: A constructive generated Boulderdash interaction
set and termination conditions.

Listing 6 shows the generated interactions and termination
conditions for Solarfox. The new game is an easier version of
the original game. The avatar needs to collect all the diamonds
while avoiding being hit by any of the enemies (the top enemy
or the bottom enemy). The avatar wins after 700 time steps.

TerminationSet

Timeout limit=700 win=True

SpriteCounter stype=avatar limit=0 win=False
InteractionSet

diamond avatar > killSprite scoreChange=1

avatar top > killSprite

avatar bottom > killSprite

avatar upshot > killSprite

downshot avatar > killSprite scoreChange=1

avatar EOS > stepBack

diamond EOS > turnAround

top EOS > turnAround

bottom EOS > turnAround

upshot EOS > turnAround

downshot EOS > turnAround

Aliens Boulderdash Solarfox
Search vs Rnd 2/8 77 11/15
Search vs Const 0/14 8/14 6/18
Const vs Rnd 9/10 10/11 4/5

TABLE I: Comparison between our rule generators where
“Search” is the search-based generator, “Rnd” is random
generator, or “Const” is constructive generator. The first value
is the number of times the user preferred the first game over the
second. The second value is the total number of comparisons.

Listing 9 shows the generated interactions and termination
conditions for Solarfox. In this game, the avatar scores by
collecting diamonds and colliding with the top and bottom
enemies while avoid getting hit by their fireballs (upshot and
downshot). The avatar wins after 800 frames.

Listing 6: A constructive generated Solarfox interaction set
and termination conditions.

C. Search-Based Game Generation

This section shows the generated games by the Search
Based Rule Generator. Overall, the generated games are more
diverse than Constructive Generator.

Listing 7 shows the generated interactions and termination
conditions for Aliens. In this game, the avatar is always losing
points as long as the avatar is in the level. The avatar stops
losing points and its score is reseted to 0 upon collision with
EOS. The avatar wins after 1084 steps.

TerminationSet
SpriteCounter stype=avatar limit=0 win=False
Timeout 1imit=800 win=True

InteractionSet
top EOS > wrapAround
avatar downshot > killSprite
upshot EOS > wrapAround
top avatar > killSprite scoreChange=1
avatar EOS > stepBack
diamond avatar > killSprite scoreChange=1
bottom EOS > wrapAround
diamond EOS > wrapAround
avatar upshot > killSprite
bottom avatar > killSprite scoreChange=1
downshot EOS > wrapAround

TerminationSet
Timeout limit=1084 win=True
SpriteCounter stype=avatar limit=0 win=False
InteractionSet
background base > align
background avatar > reverseDirection scoreChange=—1
EOS avatar > removeScore
avatar background > reverseDirection scoreChange=—2
base portalSlow > undoAll scoreChange=—1

Listing 7: A search based generated Aliens interaction set and
termination conditions.

Listing 8 shows the generated interactions and termination
conditions for Boulderdash. The generated game is a score
based game where the avatar tries to get the highest score
before going for the exit door. The avatar scores by collecting
boulders, diamonds, and bats. The avatar must avoid colliding
with the chaser enemies (scorpion). The avatar gets points
when it kills the scorpions using the pickaxe.

TerminationSet
SpriteCounter stype=exitdoor limit=0 win=True
SpriteCounter stype=avatar limit=0 win=False
InteractionSet
avatar wall > stepBack
exitdoor avatar > killSprite
boulder avatar > killSprite scoreChange=1
bat wall > flipDirection
boulder wall > flipDirection
scorpion wall > flipDirection
pickaxe wall > flipDirection forceOrientation=avatar
bat avatar > killSprite scoreChange=1
scorpion pickaxe > killSprite scoreChange=1
diamond avatar > collectResource
avatar scorpion > killSprite
pickaxe scorpion > killSprite

Listing 8: A search based generated Boulderdash interaction
set and termination conditions.

Listing 9: A search based generated Solarfox interaction set
and termination conditions.

D. User Study

To verify our results we ran a user study. In this study,
the user is subjected to two generated games with the same
level. These games are selected randomly from any generator.
The user has to play each game for any number of times and
select which game is preferable. The user can choose any of
the following answers: “First game is better”, “Second game is
better”, “Both are good games”, or “Neither of them is good”.

We collected 161 comparisons. Table I shows the results
for the user study by taking only “First game is better” and
“Second game is better” in consideration. The result shows
that all generators are better than the random generator in
all the games except for “Aliens”. In “Aliens”, the random is
only better than the search-based generator. By analyzing the
generated games from the search-based generator, we found
that all the game sprites are frozen (can’t move) until the game
times out. This happens due to the “Bad Frames” constraint
where using a “undoAll” interaction (freezes all sprites) is the
easiest way to satisfy it.

Looking at the constructive generator results, we can see
that it beats the search-based in 2 games out of 3 (“Aliens”
and “Solarfox’). The constructive is better in “Aliens” for the
same reason stated before, but “Solarfox” was not expected as
the search based games are as good as the constructive games.
By looking at the generated games from both generators, we
can see that the search based has one game where all sprites
are frozen and can not move. We assume that it is the main
reason behind the bias toward the constructive generator.

VIII. CONCLUSION & FUTURE WORK

This paper discussed the General Video Game Rule Gen-
eration problem, and introduced a software framework for
working on this problem which will also be used as part of
a new track of the GVGAI competition. As the framework is
built on top of the GVGALI software, it benefits from all of the
games, levels, agents, tools and APIs that have been developed
as part of the overall GVGAI meta-project. The usefulness
of this was clearly demonstrated in the experiments in this
paper, which built on levels made for three of the roughly 100
games that have been developed in the GVGAI framework, and
used agents developed as part of the GVGAI competition for
simulation-based testing of the rulesets as part of the search-
based rule generator.

The main contributions of this paper are the formulation of
the problem and presentation of the framework. While the ex-
periments were mostly made to test the framework and gauge
the difficulty of the problem, they are worth discussing in their
own right. The constructive generator, which follows a simple
step-by-step recipe, turns out to be able to produce playable
games of some novelty, but with very limited diversity. The
search-based generator displays a much broader expressive
range, but the fitness function does apparently not guarantee
neither playability nor interestingness.

The most obvious future research direction is to create rule
generators that generate better rules. It stands to reason that
this will eventually be possible within a search-based frame-
work; this is a long-term project of ours, where in previous
work the problems observed in trying to evolve VGDL rules
and levels together [24] inspired the development of more
human-like GVGAI-playing agents [16], and ultimately this
paper.We hope you will help with this. The definition of the
framework and the new competition track is meant to spur
broader participation among the research community.

Once there is a method for generating good rulesets for indi-
vidual levels within this restricted problem, we can start easing
the restrictions: including more levels as inputs, allowing the
generator to generate the sprite set and the level as well, or
perhaps numerical parameters of the game engine. Another
route is to not broaden the scope of the generator, but rather
run different generators in sequence, such as running level
generators on rule generator outputs and vice versa. In either
case, we believe the modularization of the larger game gener-
ation problem into multiple smaller generative problems with
well-defined interfaces allows for many exciting possibilities
for moving forward on the game generation problem.

REFERENCES

[1] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation
in Games: A Textbook and an Overview of Current Research. Springer,
2016.

[2] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi
et al., “The 2010 mario ai championship: Level generation track,” IEEE
Transactions on Computational Intelligence and Al in Games, vol. 3,
no. 4, pp. 332-347, 2011.

[3]

[4]

[5]

[6]
[7]

[8]

[9]
[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

A. Khalifa, D. Perez-Liebana, S. M. Lucas, and J. Togelius, “General
video game level generation,” in Proceedings of the 2016 on Genetic
and Evolutionary Computation Conference. ACM, 2016, pp. 253-259.
T. S. Nielsen, G. A. Barros, J. Togelius, and M. J. Nelson, “Towards
generating arcade game rules with vgdl,” in Computational Intelligence
and Games (CIG), 2015 IEEE Conference on. 1EEE, 2015, pp. 185-
192.

I. Interactive Data Visualization. (2000) Speedtree. [Online]. Available:
http://www.speedtree.com

N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth,
“General game playing: Game description language specification,” 2008.
C. Browne and F. Maire, “Evolutionary game design,” IEEE Transac-
tions on Computational Intelligence and Al in Games, vol. 2, no. 1, pp.
1-16, 2010.

J. M. Font, T. Mahlmann, D. Manrique, and J. Togelius, “A card game
description language,” in European Conference on the Applications of
Evolutionary Computation. Springer, 2013, pp. 254-263.

M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and
J. Togelius, “Towards a video game description language,” 2013.

S. Lavelle. (2013) Puzzlescript! [Online]. Available:
http://www.puzzlescript.net/

T. Mahlmann, J. Togelius, and G. N. Yannakakis, “Towards procedural
strategy game generation: Evolving complementary unit types,” in
European Conference on the Applications of Evolutionary Computation.
Springer, 2011, pp. 93-102.

B. Pell, “Metagame in symmetric chess-like games,” 1992.

V. Hom and J. Marks, “Automatic design of balanced board games,”
in Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment (AIIDE), 2007, pp. 25-30.
C. Browne. (2011) Puzzlescript! [Online].
http://www.cameronius.com/games/yavalath/

P. Bontrager, A. Khalifa, A. Mendes, and J. Togelius, “Matching games
and algorithms for general video game playing,” in Twelfth Artificial
Intelligence and Interactive Digital Entertainment Conference, 2016.
A. Khalifa, A. Isaksen, J. Togelius, and A. Nealen, “Modifying mcts
for human-like general video game playing,” in Proceedings of the 25th
International Joint Conference on Artifical Intelligence, 2016.

J. Togelius and J. Schmidhuber, “An experiment in automatic game
design,” in Computational Intelligence and Games, 2008. CIG’08. IEEE
Symposium On. 1EEE, 2008, pp. 111-118.
R. Koster, Theory of fun for game design.
2013.

A. M. Smith and M. Mateas, “Variations forever: Flexibly generating
rulesets from a sculptable design space of mini-games,” in Computa-
tional Intelligence and Games (CIG), 2010 IEEE Symposium on. 1EEE,
2010, pp. 273-280.

A. M. Smith, M. J. Nelson, and M. Mateas, “Ludocore: A logical game
engine for modeling videogames,” in Computational Intelligence and
Games (CIG), 2010 IEEE Symposium on. 1EEE, 2010, pp. 91-98.
M. Cook and S. Colton, “Multi-faceted evolution of simple arcade
games,” in Computational Intelligence and Games (CIG), 2011 IEEE
Conference on. 1EEE, 2011, pp. 289-296.

——, “Ludus ex machina: Building a 3d game designer that competes
alongside humans,” in Proceedings of the 5th international conference
on computational creativity, vol. 380, 2014.

T. Schaul, “An extensible description language for video games,” IEEE
Transactions on Computational Intelligence and Al in Games, vol. 6,
no. 4, pp. 325-331, 2014.

T. S. Nielsen, G. A. Barros, J. Togelius, and M. J. Nelson, “General
video game evaluation using relative algorithm performance profiles,” in
European Conference on the Applications of Evolutionary Computation.
Springer, 2015, pp. 369-380.

D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas,
A. Couétoux, J. Lee, C.-U. Lim, and T. Thompson, “The 2014 general
video game playing competition,” IEEE Transactions on Computational
Intelligence and Al in Games, vol. 8, no. 3, pp. 229-243, 2016.

R. D. Gaina, D. Pérez-Liébana, and S. M. Lucas, “General video game
for 2 players: Framework and competition.”

S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a feasible—
infeasible two-population (fi-2pop) genetic algorithm for constrained
optimization: Distance tracing and no free lunch,” European Journal
of Operational Research, vol. 190, no. 2, pp. 310-327, 2008.

Available:

” O’Reilly Media, Inc.”,

