
General Video Game Rule Generation

Ahmed Khalifa

Tandon School of Engineering

New York University

Brooklyn, New York 11201

Email: ahmed.khalifa@nyu.edu

Michael Cerny Green

Tandon School of Engineering

New York University

Brooklyn, New York 11201

Email: mcg520@nyu.edu

Diego Perez-Liebana

University of Essex

Colchester, United Kingdom

Email: dperez@essex.ac.uk

Julian Togelius

Tandon School of Engineering

New York University

Brooklyn, New York 11201

Email: julian@togelius.com

Abstract—We introduce the General Video Game Rule Gen-
eration problem, and the eponymous software framework which
will be used in a new track of the General Video Game AI
(GVGAI) competition. The problem is, given a game level as
input, to generate the rules of a game that fits that level. This
can be seen as the inverse of the General Video Game Level
Generation problem. Conceptualizing these two problems as
separate helps breaking the very hard problem of generating
complete games into smaller, more manageable subproblems.
The proposed framework builds on the GVGAI software and
thus asks the rule generator for rules defined in the Video
Game Description Language. We describe the API, and three
different rule generators: a random, a constructive and a search-
based generator. Early results indicate that the constructive
generator generates playable and somewhat interesting game
rules but has a limited expressive range, whereas the search-
based generator generates remarkably diverse rulesets, but with
an uneven quality.

I. INTRODUCTION

A number of game-based AI competitions are run annually

at academic conferences focused on AI and games, such as

CIG. Most of these conferences are focused on playing games;

competitors submit controllers that are evaluated on how well

they play games. At the same time, procedural content genera-

tion (PCG) is an active area for Artificial Intelligence in Games

research [1]. One such competition is the Level Generation

Track of the Mario AI Championship, where competitors

submitted level generators which were judged based on their

ability to generate levels for the game [2]; another example

is the Level Generation Track of the General Video Game

AI Competition, where competitors submit controllers that are

tested on their ability to generate levels for any game within

a particular domain [3].

However, no competition has so far focused on generating

rules for video games, despite this being an active research

topic. We believe that in order to make progress in video game

rule generation, there must be a benchmark. This benchmark

would allow researchers to compare their results and improve

them by having access to previous work. We also believe it

is important to start somewhat smaller than the full game

generation problem, and focus on a well-delimited partial

problem, in the light of the somewhat disappointing results

of previous work attempting to generate levels and rules at

the same time [4]. In this paper, we introduce the General

Video Game Rule Generation (GVG-RG) Framework. This

framework is intended to be used as a benchmark for rule

generation. Our framework uses VGDL to describe games,

with the difference being that we will limit generation to only

that of game rules and termination conditions. This paper in-

troduces the GVG-RG track of the GVGAI Competition, as we

believe competitions are the best way to encourage students,

academics, and industry researchers to use the framework.

This paper is structured as follows: Sections II and III

explains the required background to understand this paper,

followed by section IV explaining our framework (GVG-

RG). Section V explains the competition and how it will be

organized. Section VI explains three sample rule generators

provided with the framework, followed by the results from

each generator in section VII. Finally, section VIII concludes

the paper and talk about future works.

II. BACKGROUND

Many different types of game content can be procedurally

generated, ranging from textures to quests to level to game

rules. For example: SpeedTree [5] is one of the most famous

tools used to generate different trees and green areas with very

high quality1, and widely used in commercial games. There are

also numerous games that feature level generation, character

generation, planet generation, etc. Overall, there are many

types of content where PCG methods have proven effective

and are in wide use.

This is not the case with rule generation. Generating rules

requires defining a way to describe them. Game descrip-

tion languages are a descriptive languages that is used to

define certain type/category of games. There are game de-

scription languages suited for defining board games [6], [7],

card games [8], videogames [9], puzzle games [10], strategy

games [11], and so on. Having a more focused language

helps the generator find good games. For example: using a

description language for board games will help the generator

to focus on finding good game rules instead of trying to

understand the meaning of the game board.

Rule generation can be divided into two main categories:

board games and video games. The earliest attempts were

with Board games, which is not surprising as board games

have been around for thousands of years. One of the earli-

est attempts to tackle rule generation is METAGAME [12].

1http://www.speedtree.com/academy-award.php



METAGAME is a research project by Pell to generate chess-

like games. The generated games are symmetric, which means

both players have the same pieces and use the same rules. The

game generator does not use simulations but instead follows

a certain grammar to generate playable games.

Pell’s system doesn’t mind if the generated games are

balanced or not. Balanced games are games that do not give

advantage for a player over the other. Hom and Marks [13]

improved over METAGAME by adding game simulations.

Each generated game is played with AI against itself for a

fixed amount of times, striving for a 50/50 win rate.

Although the generated games are balanced from Hom and

Marks’ research, the search space is limited to chess-like

games. Browne [7] introduced a simple description language

that can describe different board games ranging from Tic-Tac-

Toe to Go. Browne used an evolutionary technique to evolve

new board games using a system called Ludi. Once the games

were generated, Ludi used simulation to evaluate them. One

of the generated games (Yavalath) is sold commercially and

considered one of the top 100 best abstract games in 2011 [14].

Video game rule generation has not been as successful as

board game rule generation. A primary cause of this is the real-

time aspect of video games compared to turn based games.

Current research has not produced a general purpose AI agent

capable of playing all games in the GVGAI game set [15]. It

is more difficult to use simulation-based evaluation of video

games than board games for various reasons, including the

discrepancy between optimal play and human-like play [16].

Togelius and Schmidhuber [17] generated arcade games,

using 2D matrices to represent their interaction rules and

score changes. The generated games were evaluated based on

Koster’s Theory of Fun [18] where a good game is defined

as one that the player can learn from. These generated arcade

games were mostly simple chasing games due to the small

search space. Smith and Mateas [19], [20] did research on

generating games as well, using Answer Set Programming

(ASP) to define the search space. Instead of searching for new

games, the game designer described the constraints required

in the game, where a constraint solver proceeded to carve the

search space to only include games with these constrains. The

generated games were similar to the games in Togelius and

Schmidhuber work [17].

Cook’s research revolves around automatic designing of

video games using ANGELINA2, a computer system designed

to generate different types of games. ANGELINA passed

through many phases, starting as a simple arcade game gen-

erator [21] like Togelius and Schmidhuber’s work [17], and

later able to generate full 3D games [22] for Ludumdare3.

Video Game Description Language [9], [23] (VGDL) is a

language used to define a variety of games from Sokoban to

Space Invaders. In 2015, Nielsen et al. [4] used (VGDL) to

generate new games, using evolutionary search where games

were evaluated using relative algorithm performance [24].

2http://www.gamesbyangelina.org/
3Ludumdare is a 48-hours game jam where the competitors has to design

and develop a game around a certain theme.

Within the genetic engine, the initial population contained

random generated games, human-designed games, and mutated

versions of the two. The generated games are considered

challenging but not as good as human-designed ones.

III. VIDEO GAME DESCRIPTION LANGUAGE

Video Game Description Language [9] (VGDL) is a lan-

guage used to represent 2D arcade games (Pacman), action

games (Space Invaders), and puzzle games (Sokoban). VGDL

games consists of 2 main parts: game description and level

description. The game description is responsible for holding

information about game objects, behaviors, interactions and

termination conditions. The game description consists of 4
main parts:

• Sprite Set: a list of all game objects called game sprites.

Each sprite has a type, which defines its behavior. For

example, in Pacman a ghost is considered to be a Ran-

domPathAltChaser which means it chases normal pacman

but flees from pacman after eating a power pellet.

• Interaction Set: a list of all game interactions. Interac-

tions only occur upon collision between two sprites. For

example, In Pacman, if the player collides with a pellet,

the latter will be destroyed and the score increases.

• Termination Set: a list of conditions. These conditions

define how to win or lose the game. These conditions can

be dependent on sprites or on a countdown timer.

• Level Mapping: a table of characters and sprite names.

This table is used to decode the level description.

The level description contains a 2D matrix of characters where

each character is decoded using the Level Mapping.

The General Video Game (GVG) framework is a Java imple-

mentation of VGDL. The framework was originally designed

for the General Video Game AI (GVG-AI) competition [25].

GVG-AI competition is a general AI competition where com-

petitors design AI agents that can play different unseen games

efficiently. Each agent is provided with 40ms to decide the

next action. Multiple competition tracks were introduced later

to the framework such as Level Generation [3], Learning, and

Multiplayer Planning [26]. In this paper, we will introduce the

rule generation track (more details in Section V).

IV. GVG-RG FRAMEWORK

The framework follows the same design philosophy of the

level generation framework [3]. The framework allows the

users to create their generators and test them against different

VGDL games. The framework provides the generator with

sprite level description (SLDescription) object and in return, it

expects the game interactions and termination conditions. The

generator could provide the framework with an optional sprite

set structure hashmap object.

The SLDescription contains information about the current

game sprites and the current level. This object provides the

generator with functions to retrieve the game sprite informa-

tion such as name, type, and related sprites. For example: the

avatar in Zelda game is named avatar, is of type ShootAvatar

(it can move in all 4 directions and shoots bullets), and has



sword as related sprite (the avatar can shoot sword sprite). The

SLDescription object provides the generator with the current

level in form of 2D string array. Each string is a comma

separated list of the names of all the sprites in that location.

In addition, the SLDescription object can be used to simulate

any game by providing it with interactions and termination

conditions.

The sprite set structure hashmap maps between a string

and an array of strings. The main advantage of providing the

hashmap is to group multiple sprites under a single label. For

example: In Space Invaders, all aliens can be grouped under

the label “Harmful”.

V. RULE GENERATION COMPETITION

The rule generation competition will run in the similar

manner to the level generation competition [3]. The main

difference instead of generating a level for a certain game, the

aim is to generate a new game for a certain level. Instead of

generating the whole game, the competitors are required only

to generate the interaction set and the termination conditions

while fixing the sprite set. This limitation decreases the

generative space size, leading to generating better games.

The competitors will submit their code in form of zip file

contain their generator code to the server. All rule generators

are expected to return the interactions and the termination

conditions within a fixed amount of time (in this paper, each

generator was allowed 5 hours to generate one game) on a

reference computer. The specification of the computer will be

posted later on the competition website4 (in this paper, we

used a recent Mac book pro5. If the generator takes more than

the provided time, it will be disqualified and its results will

be ignored. There is no restriction on the language used for

the generator but we will only provide a Java interface.

The competitors will submit their generators code before the

competition day to allow the system to generate the new games

by the competition day. The generated games will be judged

by humans on the competition day. The system will pick two

random generated games and show them to the judges. Each

judge will play each game as many times as required, then

pick which game feels better to them. The system will ask

the judge to briefly describe the picked game. All the results

will be submitted to an SQL server and the most preferred

generator will win the competition.

VI. METHODS

We implemented three different sample rule generators to

give the competitors a smooth start using the framework. Each

of these generator uses a different technique to generate a new

game. The following subsections describe these generators in

detail.

4http://www.gvgai.net/
52.9 GHz Intel Core i5 with 8 GB 1867 MHz DDR3

A. Random Rule Generator

Random rule generator is the simplest of all. The main idea

is to generate random interactions and termination conditions

that the framework can run with no errors.

The generator follows these steps to generate game:

1) Pick a random number of interactions based on the

number of sprites in the game.

2) Repeat the following steps till the required amount of

interactions has been reached:

a) Pick two random sprites found in the current level

including the end of screen (EOS).

b) Pick a random integer value for scoreChange.

c) Pick a random interaction from all the available

interactions. These interactions must compile with

no errors with the current selected sprites.

3) After generating all the interactions, the system gener-

ates two termination conditions:

• Winning Condition: can be either a time out con-

dition or a sprite counter condition. The time out

condition fires after a randomly selected amount of

time, while the sprite counter condition fires when

the number of a randomly selected sprite (excluding

the avatar) reaches 0.

• Losing Condition: fires when the avatar dies.

B. Constructive Rule Generator

The constructive rule generator uses common game knowl-

edge to generate games. For example: If there is an Non

Playable Character (NPC) chasing another object, there is

a high chance that the NPC will kill it upon collision. For

example: Ghosts in Pacman chase Pacman to kill it. Using

this knowledge, we can construct better games than random

ones in a small amount of time.

Before generating the game, the constructive generator uses

an instance of the LevelAnalyzer class to understand the cur-

rent level. The LevelAnalyzer class is a helper class provided

with the framework that calculates statistics of the game sprites

based on the current level. It provides functions to get specific

sprites based on their map coverage percentage and/or have

a certain type. For example: We can get background sprites

by asking the LevelAnalyzer to get us Immovable sprites with

100% map coverage.

The constructive generator use the LevelAnalyzer object to

identify different sprite categories:

• Wall sprites: are immovable sprites that surround the

current level and cover at most 50% of the entire level.

If it doesn’t exist, the end of screen (EOS) is considered

the wall sprite.

• Score sprites and Spike sprites: are immovable sprites

that covers at most 10% of the entire level.

• Avatar sprite: is the sprite controlled by the player and

exists in the current level.

The generator selects one sprite for each category then it

follows the following steps to generate a new game:



1) Get Resource Interactions: collectResource interac-

tions are placed between avatar and all sprites with type

Resource.

2) Get Immovable Interactions: Interactions for score

sprite and spike sprite added. Score sprite is collected

by the avatar and gives the avatar 1 score point. Spike

sprite has 50% chance to be either harmful or collectible.

A harmful sprite kills the avatar upon collision, while a

collectible sprite gives the avatar 2 score points.

3) Get NPCs Interactions: The NPC interactions are

different based on their type:

• Fleeing NPC: is collected by the chaser sprite and

adds 1 point score.

• Bomber NPC: kills the avatar sprite upon colli-

sion. A Bomber NPC also spawns sprites. Spawned

sprites have 50% chance to be collected by the

avatar for 1 score point or kill the avatar upon

collision.

• Chaser NPC: kills the chased sprite upon collision.

If the chased sprite is not the avatar sprite, there is

a 50% chance to duplicate itself.

• Random NPC: has 50% chance to kill the avatar or

get killed by it for 1 score point.

4) Get Spawner Interactions: The generator decides with

50% either the spawned sprites will kill the avatar sprite

upon collision or get collected by the avatar sprite for 1
score point.

5) Get Portal Interactions: If a portal is of type “Door”,

the avatar can kill it upon collision. Otherwise, the avatar

is teleported towards the portal destination.

6) Get Movable Interactions: The generator decides with

50% chance if the moving sprites are collected by the

avatar for 1 point score or kills the avatar sprite.

7) Get Wall Interactions: The generator decides with

50% if the walls should be normal walls or fire walls.

Normal walls block all moving sprites from passing

through them, while fire walls kill all moving sprites

upon collision.

8) Get Avatar Interactions: This step only happens if the

avatar can shoot bullets. The generator adds interactions

between harmful sprites and the avatar’s bullets. Harmful

sprites are any sprite that can kill the avatar. Harmful

sprites are killed upon collision with avatar bullets.

9) Get Termination Conditions: The generator adds two

termination conditions:

• Winning Condition: The generator chooses an appli-

cable condition from the following list: the avatar

reaches a door sprite, all harmful sprites are dead,

all fleeing NPCs are dead, all collectible sprite are

dead (collectible sprites are immovable sprites that

add score points), or time runs out.

• Losing Condition: if avatar dies, the game is lost.

C. Search Based Rule Generator

The search based rule generator uses Feasible-Infeasible

2 Population Genetic Algorithm (FI2Pop) [27] to search for

new games. FI2Pop is a genetic algorithm which keeps track

of two populations (Feasible and Infeasible population). The

infeasible population tries to satisfy multiple constraints, while

the feasible population tries to improve the overall fitness. At

any time, if a chromosome failed to satisfy the constraints it

is moved to the infeasible population, and if any chromosome

satisfies all constrains, it will be moved to the feasible popu-

lation.

Before evolution begins, an initial population of 50 chromo-

somes is created from a mix of games generated by the random

rule generator and the constructive rule generator. Based on

preliminary experiments, The population consists of a mix of

40% random rules and 20% constructive rules. The rest of the

population (40%) is created by mutating over the constructive

generated games. Mutation will be discussed in depth later in

this section. After initialization, each chromosome undergoes

cleansing where duplicated rules are stripped out of the

ruleset. The newly created population is then evaluated for

fitness. A chromosome is feasible if it tests positively on three

conditions:

• The chromosome’s ruleset does not generate any errors

in the GVG-AI engine. Errors are classified as anything

that prevents the engine from simulation.

• A do-nothing agent which makes no moves will survive

the first 40 steps (1.6 seconds) of playtime.

• The number of bad frames simulated during random,

agent, and smart agent is calculated. Bad frames are

defined as frames in which game sprites are drawn outside

the boundaries of the screen. If > 30% of the frames are

bad frames, then this chromosome is infeasible.

The feasibility of the chromosome is calculated as:

fc = 0.3∗
1

ne + 1
+0.2∗

ndna

40
+0.2∗

1

nw + 1
+0.3∗(1−

nbf

nf

)

(1)

where ne and nw are the number of errors and warnings

generated by the GVG-AI engine respectively, ndna is the

number of frames that do-nothing survives, nbf is the number

of bad frames found during the play-throughs, and nf is the

maximum number of frames allowed in this game (used for

normalization).

If a chromosome passes the feasibility test, then its true

fitness is evaluated. This is done using relative algorithm

performance [24]. We use three agents: a smart agent which

uses Open Loop MCTS (OLETS), the winner of the GVG-

AI competition in 2014 [25], a baseline agent which uses

Monte Carlo Tree Search (MCTS), and a random agent which

randomly selects its next move. Each agent is allowed 3

independent play-throughs, with the results averaged.

The smart agent plays first and its step count is recorded

for the best game it plays. The baseline and the random agent

then play the game for as many steps as the smart agent. The

three agents’ scores and win rates are averaged across their

play-throughs. A score value is then calculated for each agent

according to the following equation:

O = 0.9 ∗Awin + 0.1 ∗ Sigmoid(x) (2)







s c o r p i o n p i c k a x e > k i l l S p r i t e sco reChange =1

p i c k a x e s c o r p i o n > k i l l S p r i t e

Listing 5: A constructive generated Boulderdash interaction

set and termination conditions.

Listing 6 shows the generated interactions and termination

conditions for Solarfox. The new game is an easier version of

the original game. The avatar needs to collect all the diamonds

while avoiding being hit by any of the enemies (the top enemy

or the bottom enemy). The avatar wins after 700 time steps.

T e r m i n a t i o n S e t

Timeout l i m i t =700 win=True

S p r i t e C o u n t e r s t y p e = a v a t a r l i m i t =0 win= F a l s e

I n t e r a c t i o n S e t

diamond a v a t a r > k i l l S p r i t e sco reChange =1

a v a t a r t o p > k i l l S p r i t e

a v a t a r bot tom > k i l l S p r i t e

a v a t a r u p s h o t > k i l l S p r i t e

downshot a v a t a r > k i l l S p r i t e sco reChange =1

a v a t a r EOS > s t e p B a c k

diamond EOS > t u rnAround

t o p EOS > t u rnAround

bot tom EOS > t u rnAround

u p s h o t EOS > t u rnAround

downshot EOS > t u rnAround

Listing 6: A constructive generated Solarfox interaction set

and termination conditions.

C. Search-Based Game Generation

This section shows the generated games by the Search

Based Rule Generator. Overall, the generated games are more

diverse than Constructive Generator.

Listing 7 shows the generated interactions and termination

conditions for Aliens. In this game, the avatar is always losing

points as long as the avatar is in the level. The avatar stops

losing points and its score is reseted to 0 upon collision with

EOS. The avatar wins after 1084 steps.

T e r m i n a t i o n S e t

Timeout l i m i t =1084 win=True

S p r i t e C o u n t e r s t y p e = a v a t a r l i m i t =0 win= F a l s e

I n t e r a c t i o n S e t

background ba se > a l i g n

background a v a t a r > r e v e r s e D i r e c t i o n sco reChange=−1

EOS a v a t a r > removeScore

a v a t a r background > r e v e r s e D i r e c t i o n sco reChange=−2

bas e p o r t a l S l o w > undoAl l sco reChange=−1

Listing 7: A search based generated Aliens interaction set and

termination conditions.

Listing 8 shows the generated interactions and termination

conditions for Boulderdash. The generated game is a score

based game where the avatar tries to get the highest score

before going for the exit door. The avatar scores by collecting

boulders, diamonds, and bats. The avatar must avoid colliding

with the chaser enemies (scorpion). The avatar gets points

when it kills the scorpions using the pickaxe.

T e r m i n a t i o n S e t

S p r i t e C o u n t e r s t y p e = e x i t d o o r l i m i t =0 win=True

S p r i t e C o u n t e r s t y p e = a v a t a r l i m i t =0 win= F a l s e

I n t e r a c t i o n S e t

a v a t a r w a l l > s t e p B a c k

e x i t d o o r a v a t a r > k i l l S p r i t e

b o u l d e r a v a t a r > k i l l S p r i t e sco reChange =1

b a t w a l l > f l i p D i r e c t i o n

b o u l d e r w a l l > f l i p D i r e c t i o n

s c o r p i o n w a l l > f l i p D i r e c t i o n

p i c k a x e w a l l > f l i p D i r e c t i o n f o r c e O r i e n t a t i o n = a v a t a r

b a t a v a t a r > k i l l S p r i t e sco reChange =1

s c o r p i o n p i c k a x e > k i l l S p r i t e sco reChange =1

diamond a v a t a r > c o l l e c t R e s o u r c e

a v a t a r s c o r p i o n > k i l l S p r i t e

p i c k a x e s c o r p i o n > k i l l S p r i t e

Listing 8: A search based generated Boulderdash interaction

set and termination conditions.

Aliens Boulderdash Solarfox

Search vs Rnd 2/8 7/7 11/15
Search vs Const 0/14 8/14 6/18
Const vs Rnd 9/10 10/11 4/5

TABLE I: Comparison between our rule generators where

“Search” is the search-based generator, “Rnd” is random

generator, or “Const” is constructive generator. The first value

is the number of times the user preferred the first game over the

second. The second value is the total number of comparisons.

Listing 9 shows the generated interactions and termination

conditions for Solarfox. In this game, the avatar scores by

collecting diamonds and colliding with the top and bottom

enemies while avoid getting hit by their fireballs (upshot and

downshot). The avatar wins after 800 frames.

T e r m i n a t i o n S e t

S p r i t e C o u n t e r s t y p e = a v a t a r l i m i t =0 win= F a l s e

Timeout l i m i t =800 win=True

I n t e r a c t i o n S e t

t o p EOS > wrapAround

a v a t a r downshot > k i l l S p r i t e

u p s h o t EOS > wrapAround

t o p a v a t a r > k i l l S p r i t e sco reChange =1

a v a t a r EOS > s t e p B a c k

diamond a v a t a r > k i l l S p r i t e sco reChange =1

bot tom EOS > wrapAround

diamond EOS > wrapAround

a v a t a r u p s h o t > k i l l S p r i t e

bot tom a v a t a r > k i l l S p r i t e sco reChange =1

downshot EOS > wrapAround

Listing 9: A search based generated Solarfox interaction set

and termination conditions.

D. User Study

To verify our results we ran a user study. In this study,

the user is subjected to two generated games with the same

level. These games are selected randomly from any generator.

The user has to play each game for any number of times and

select which game is preferable. The user can choose any of

the following answers: “First game is better”, “Second game is

better”, “Both are good games”, or “Neither of them is good”.

We collected 161 comparisons. Table I shows the results

for the user study by taking only “First game is better” and

“Second game is better” in consideration. The result shows

that all generators are better than the random generator in

all the games except for “Aliens”. In “Aliens”, the random is

only better than the search-based generator. By analyzing the

generated games from the search-based generator, we found

that all the game sprites are frozen (can’t move) until the game

times out. This happens due to the “Bad Frames” constraint

where using a “undoAll” interaction (freezes all sprites) is the

easiest way to satisfy it.

Looking at the constructive generator results, we can see

that it beats the search-based in 2 games out of 3 (“Aliens”

and “Solarfox”). The constructive is better in “Aliens” for the

same reason stated before, but “Solarfox” was not expected as

the search based games are as good as the constructive games.

By looking at the generated games from both generators, we

can see that the search based has one game where all sprites

are frozen and can not move. We assume that it is the main

reason behind the bias toward the constructive generator.



VIII. CONCLUSION & FUTURE WORK

This paper discussed the General Video Game Rule Gen-

eration problem, and introduced a software framework for

working on this problem which will also be used as part of

a new track of the GVGAI competition. As the framework is

built on top of the GVGAI software, it benefits from all of the

games, levels, agents, tools and APIs that have been developed

as part of the overall GVGAI meta-project. The usefulness

of this was clearly demonstrated in the experiments in this

paper, which built on levels made for three of the roughly 100
games that have been developed in the GVGAI framework, and

used agents developed as part of the GVGAI competition for

simulation-based testing of the rulesets as part of the search-

based rule generator.

The main contributions of this paper are the formulation of

the problem and presentation of the framework. While the ex-

periments were mostly made to test the framework and gauge

the difficulty of the problem, they are worth discussing in their

own right. The constructive generator, which follows a simple

step-by-step recipe, turns out to be able to produce playable

games of some novelty, but with very limited diversity. The

search-based generator displays a much broader expressive

range, but the fitness function does apparently not guarantee

neither playability nor interestingness.

The most obvious future research direction is to create rule

generators that generate better rules. It stands to reason that

this will eventually be possible within a search-based frame-

work; this is a long-term project of ours, where in previous

work the problems observed in trying to evolve VGDL rules

and levels together [24] inspired the development of more

human-like GVGAI-playing agents [16], and ultimately this

paper.We hope you will help with this. The definition of the

framework and the new competition track is meant to spur

broader participation among the research community.

Once there is a method for generating good rulesets for indi-

vidual levels within this restricted problem, we can start easing

the restrictions: including more levels as inputs, allowing the

generator to generate the sprite set and the level as well, or

perhaps numerical parameters of the game engine. Another

route is to not broaden the scope of the generator, but rather

run different generators in sequence, such as running level

generators on rule generator outputs and vice versa. In either

case, we believe the modularization of the larger game gener-

ation problem into multiple smaller generative problems with

well-defined interfaces allows for many exciting possibilities

for moving forward on the game generation problem.

REFERENCES

[1] N. Shaker, J. Togelius, and M. J. Nelson, Procedural Content Generation

in Games: A Textbook and an Overview of Current Research. Springer,
2016.

[2] N. Shaker, J. Togelius, G. N. Yannakakis, B. Weber, T. Shimizu,
T. Hashiyama, N. Sorenson, P. Pasquier, P. Mawhorter, G. Takahashi
et al., “The 2010 mario ai championship: Level generation track,” IEEE

Transactions on Computational Intelligence and AI in Games, vol. 3,
no. 4, pp. 332–347, 2011.

[3] A. Khalifa, D. Perez-Liebana, S. M. Lucas, and J. Togelius, “General
video game level generation,” in Proceedings of the 2016 on Genetic

and Evolutionary Computation Conference. ACM, 2016, pp. 253–259.
[4] T. S. Nielsen, G. A. Barros, J. Togelius, and M. J. Nelson, “Towards

generating arcade game rules with vgdl,” in Computational Intelligence

and Games (CIG), 2015 IEEE Conference on. IEEE, 2015, pp. 185–
192.

[5] I. Interactive Data Visualization. (2000) Speedtree. [Online]. Available:
http://www.speedtree.com

[6] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth,
“General game playing: Game description language specification,” 2008.

[7] C. Browne and F. Maire, “Evolutionary game design,” IEEE Transac-

tions on Computational Intelligence and AI in Games, vol. 2, no. 1, pp.
1–16, 2010.

[8] J. M. Font, T. Mahlmann, D. Manrique, and J. Togelius, “A card game
description language,” in European Conference on the Applications of

Evolutionary Computation. Springer, 2013, pp. 254–263.
[9] M. Ebner, J. Levine, S. M. Lucas, T. Schaul, T. Thompson, and

J. Togelius, “Towards a video game description language,” 2013.
[10] S. Lavelle. (2013) Puzzlescript! [Online]. Available:

http://www.puzzlescript.net/
[11] T. Mahlmann, J. Togelius, and G. N. Yannakakis, “Towards procedural

strategy game generation: Evolving complementary unit types,” in
European Conference on the Applications of Evolutionary Computation.
Springer, 2011, pp. 93–102.

[12] B. Pell, “Metagame in symmetric chess-like games,” 1992.
[13] V. Hom and J. Marks, “Automatic design of balanced board games,”

in Proceedings of the AAAI Conference on Artificial Intelligence and

Interactive Digital Entertainment (AIIDE), 2007, pp. 25–30.
[14] C. Browne. (2011) Puzzlescript! [Online]. Available:

http://www.cameronius.com/games/yavalath/
[15] P. Bontrager, A. Khalifa, A. Mendes, and J. Togelius, “Matching games

and algorithms for general video game playing,” in Twelfth Artificial

Intelligence and Interactive Digital Entertainment Conference, 2016.
[16] A. Khalifa, A. Isaksen, J. Togelius, and A. Nealen, “Modifying mcts

for human-like general video game playing,” in Proceedings of the 25th

International Joint Conference on Artifical Intelligence, 2016.
[17] J. Togelius and J. Schmidhuber, “An experiment in automatic game

design,” in Computational Intelligence and Games, 2008. CIG’08. IEEE

Symposium On. IEEE, 2008, pp. 111–118.
[18] R. Koster, Theory of fun for game design. ” O’Reilly Media, Inc.”,

2013.
[19] A. M. Smith and M. Mateas, “Variations forever: Flexibly generating

rulesets from a sculptable design space of mini-games,” in Computa-

tional Intelligence and Games (CIG), 2010 IEEE Symposium on. IEEE,
2010, pp. 273–280.

[20] A. M. Smith, M. J. Nelson, and M. Mateas, “Ludocore: A logical game
engine for modeling videogames,” in Computational Intelligence and

Games (CIG), 2010 IEEE Symposium on. IEEE, 2010, pp. 91–98.
[21] M. Cook and S. Colton, “Multi-faceted evolution of simple arcade

games,” in Computational Intelligence and Games (CIG), 2011 IEEE

Conference on. IEEE, 2011, pp. 289–296.
[22] ——, “Ludus ex machina: Building a 3d game designer that competes

alongside humans,” in Proceedings of the 5th international conference

on computational creativity, vol. 380, 2014.
[23] T. Schaul, “An extensible description language for video games,” IEEE

Transactions on Computational Intelligence and AI in Games, vol. 6,
no. 4, pp. 325–331, 2014.

[24] T. S. Nielsen, G. A. Barros, J. Togelius, and M. J. Nelson, “General
video game evaluation using relative algorithm performance profiles,” in
European Conference on the Applications of Evolutionary Computation.
Springer, 2015, pp. 369–380.

[25] D. Perez-Liebana, S. Samothrakis, J. Togelius, T. Schaul, S. M. Lucas,
A. Couëtoux, J. Lee, C.-U. Lim, and T. Thompson, “The 2014 general
video game playing competition,” IEEE Transactions on Computational

Intelligence and AI in Games, vol. 8, no. 3, pp. 229–243, 2016.
[26] R. D. Gaina, D. Pérez-Liébana, and S. M. Lucas, “General video game

for 2 players: Framework and competition.”
[27] S. O. Kimbrough, G. J. Koehler, M. Lu, and D. H. Wood, “On a feasible–

infeasible two-population (fi-2pop) genetic algorithm for constrained
optimization: Distance tracing and no free lunch,” European Journal

of Operational Research, vol. 190, no. 2, pp. 310–327, 2008.


