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JADE for Tensor-Valued Observations
Joni Virta, Bing Li, Klaus Nordhausen and Hannu Oja

Abstract—Independent component analysis is a standard tool
in modern data analysis and numerous different techniques for
applying it exist. The standard methods however quickly lose
their effectiveness when the data are made up of structures
of higher order than vectors, namely matrices or tensors (for
example, images or videos), being unable to handle the high
amounts of noise. Recently, an extension of the classic fourth
order blind identification (FOBI) specifically suited for tensor-
valued observations was proposed and showed to outperform
its vector version for tensor data. In this paper we extend
another popular independent component analysis method, the
joint approximate diagonalization of eigen-matrices (JADE), for
tensor observations. In addition to the theoretical background we
also provide the asymptotic properties of the proposed estimator
and use both simulations and real data to show its usefulness
and superiority over its competitors.

Index Terms—Independent component analysis, multilinear
algebra, kurtosis, limiting normality, minimum distance index.

I. INTRODUCTION

The following presentation relies on multilinear algebra and

before the actual ideas can be described we first review some

key properties of tensors and matrices needed later.

A tensor of rth order X ∈ R
p1×···×pr can be seen as a higher

order analogy of vectors and matrices. Whereas a matrix can

be viewed either as a collection of rows or that of columns, a

tensor of rth order has in total r modes. The m-mode vectors

of a tensor are given by letting the mth index vary while

keeping all other indices fixed, m = 1, . . . , r. A tensor X ∈
R

p1×···×pr thus contains ρm := Πr
s 6=mps m-mode vectors of

length pm. The opposite construct, fixing a single index im
and varying the others, then gives what we call the m-mode

faces of a tensor. The number of m-mode faces then totals pm
and each is a tensor of size p1×· · ·×pm−1×pm+1×· · ·×pr.

For representing tensor contraction, or summation, we use

the Einstein summation convention in which a twice-appearing

index in a product implies summation over the range of the

index. For example, for a tensor X = {xi1i2i3} we have

xi1i2jxi1i2k :=

p1
∑

i1=1

p2
∑

i2=1

xi1i2jxi1i2k.

Two special cases of tensor contraction prove especially useful

for us. The product X ⊙m A of tensor X ∈ R
p1×···×pr with

a matrix A ∈ R
pm×pm , m = 1, . . . , r, is defined as the

p1 × · · · × pr-dimensional tensor with the elements

(X⊙m A)i1...ir = xi1...im−1jmim+1...iraimjm . (1)
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That is, the multiplication X⊙m A linearly transforms X from

the direction of the mth mode without changing the size of the

tensor. The operation can alternatively be viewed as applying

the linear transformation given by A separately to each m-

mode vector of the tensor. The second useful product, X⊙−m

Y, of two tensors of the same size, X,Y ∈ R
p1×···×pr is

defined as the pm× pm-dimensional matrix with the elements

(X⊙−m Y)jk = xi1...im−1jim+1...iryi1...im−1kim+1...ir . (2)

The special case X⊙−m X provides higher order counterparts

for the products of a vector x ∈ R
p1 or a matrix X ∈ R

p1×p2

with itself, such as xxT , XXT or XT X, and proves useful in

defining the “covariance matrix” of a tensor.

Finally, define the vectorization vec(X) ∈ R
p1···pr of a

tensor X ∈ R
p1×···×pr as the stacking of the elements

xi1...ir in such a way that the leftmost index goes through

its cycle the quickest and the rightmost index the slowest.

Then it holds for a tensor X ∈ R
p1×···×pr and matrices

A1 ∈ R
p1×p1 , . . . ,Ar ∈ R

pr×pr that

vec(X⊙1 A1 · · · ⊙r Ar) = (Ar ⊗ · · · ⊗ A1)vec(X),

where ⊗ is the Kronecker product.

In this paper we assume that the tensor-valued i.i.d. random

elements Xi ∈ R
p1×···×pr , i = 1, . . . , n, are observed from the

recently suggested [1] tensor independent component model:

X = µ+ Z⊙1 Ω1 · · · ⊙r Ωr, (3)

where Ω1 ∈ R
p1×p1 , . . . ,Ωr ∈ R

pr×pr are full rank mix-

ing matrices, µ ∈ R
p1×···×pr is the location center, and

Z ∈ R
p1×···×pr is an unobserved random tensor. The model

(3) is further equipped with the following assumptions.

Assumption 1. The components of Z are mutually indepen-

dent.

Assumption 2. The components of Z are standardized in the

sense that E[vec(Z)] = 0 and Cov[vec(Z)] = I.

Assumption 3. For each m = 1, . . . , r, at most one m-mode

face of Z consists entirely of Gaussian components.

Assumption 2 implies that E[X] = µ and that

Cov[vec(X)] = (ΩrΩ
T
r )⊗ · · · ⊗ (Ω1Ω

T
1 )

has the so-called Kronecker structure. Assumption 3 is a

tensor analogy for the usual vector independent component

model assumption on maximally one Gaussian component

and without it some column blocks of some of the matrices

Ω1, . . . ,Ωr could be identifiable only up to a rotation. After

the above assumptions we can still freely change the signs and

orders of the columns of all Ω1, . . . ,Ωr, or multiply any Ωs

by a constant and divide any Ωt by the same constant, but

ar
X

iv
:1

60
3.

05
40

6v
1 

 [
m

at
h.

ST
] 

 1
7 

M
ar

 2
01

6



2

this indeterminacy is acceptable in practice. The model along

with its assumptions now provides a natural extension for the

standard independent component model which is obtained as

a special case when r = 1.

Alternatively, the model can be seen as an extension of the

general location-scatter model for tensor-valued data, which

is equivalent to (3) with only Assumption 2 and is often,

for r = 1, 2, combined with the assumption on Gaussianity

or sphericity of vec(Z). Under the location-scatter model the

covariance matrix of vec(X) again has the above Kronecker

structure. In addition to requiring less parameters to estimate

than a full p1 · · · pr × p1 · · · pr covariance matrix, the as-

sumption on Kronecker structure is a natural choice in many

applications, see e.g. [2]. For the estimation of covariance

parameters under the assumption on Kronecker structure in

the matrix case, r = 2, see [3], [4], [5]. For the general tensor

Gaussian distribution and the estimation of its parameters see

[6], [7].

The extension of dimension reduction methods from vector

to matrix or tensor observations is in signal processing usually

approached via different tensor decompositions such as the

CP-decomposition and the Tucker decomposition. A review

of them along with a plethora of references for applications

is given in [8], see also [9] for more applications. For exam-

ples of particular dimension reduction methods incorporating

matrix or tensor predictors, see e.g. [10], [11], [1] for indepen-

dent component analysis, [12], [13], [14], [15] for sufficient

dimension reduction and [16], [17] for principal components

analysis-based techniques. More references are also given in

[12], [1].

In tensor independent component analysis the objective is

to estimate, based on the sample X1, . . . ,Xn, some unmixing

matrices Φ1, . . . ,Φr such that X⊙1Φ1 · · ·⊙rΦr has mutually

independent components. A naı̈ve method for accomplishing

this would be to vectorize the observations and resort to some

standard method of independent component analysis, but in

doing so the resulting estimate lacks the desired Kronecker

structure. In addition, vectorizing and using standard tools

meant for vector-valued data requires the stronger, component-

wise version of Assumption 3, inflates the number of param-

eters and can make the dimension of the data too large for

standard methods to handle. To circumvent this, [10], [11], [1]

proposed estimating an unmixing matrix separately for each of

the modes and [1] presented an extension of the classic fourth

order blind identification (FOBI) [18] for tensor observations

called TFOBI.

In the vector independent component model, x = µ +Ωz,

the standardized vector xst := Cov[x]−1/2(x − E[x]) equals

Uz for some orthogonal matrix U, see e.g. [19]. In FOBI the

rotation U is then found using the eigendecomposition of the

matrix of fourth moments B := E[xstx
T
stxstx

T
st]. This same

approach is taken in TFOBI by performing both steps of the

procedure, the standardization and the rotation, on all r modes

of X. Assuming centered X, in [1] the m-mode covariance

matrices,

Σm(X) := ρ−1
m E [X⊙−m X] , m = 1, . . . , r, (4)

are first used to standardize the observations as Xst :=

X ⊙1 Σ
−1/2
1 · · · ⊙r Σ

−1/2
r . The tensor Z is then found by

rotating Xst from all r modes and the rotation matrices can be

found from the eigendecompositions of the m-mode matrices

of fourth moments:

Bm := ρ−1
m E [(Xst ⊙−m Xst)(Xst ⊙−m Xst)] .

Another widely used independent component analysis

method for vector-valued data, called the joint approximate di-

agonalization of eigen-matrices (JADE) [20], also uses fourth

moments to estimate the required final rotation but utilizes

them in the form of cumulant matrices (assuming E(x) = 0)

Cij(x) := E
[

xixj · xxT
]

− E[xixj ]E
[

xxT
]

(5)

− E [xi · x]E
[

xj · xT
]

− E [xj · x]E
[

xi · xT
]

.

The final rotation from xst to z is in JADE obtained by jointly

diagonalizing the matrices

Cij(xst) = E
[

xst,ixst,j · xstxTst
]

− δijI− Eij − Eji, (6)

where Eij is a matrix with a single one as element (i, j) and

zeroes elsewhere and δij is the Kronecker delta. Compared

to FOBI which only uses p(p + 1)/2 sums of fourth joint

moments of xst JADE thus has a clear advantage in using all

possible fourth joint cumulants of xst in the estimation of the

rotation matrix.

Because of the well-known fact that JADE outperforms

FOBI in most cases it is natural to expect that the extension

of JADE to tensor-valued data would similarly be superior to

TFOBI. This is indeed the case, and in the following sections

we formulate the tensor joint diagonalization of eigen-matrices

(TJADE) which is obtained from JADE by applying very

much the same extensions as required when moving from

FOBI to TFOBI. We first briefly discuss the standard vector-

valued independent component model and review the theory

and assumptions behind the original JADE in Section II. The

corresponding aspects of TJADE are presented in Section III

and the asymptotical properties of both methods in Section IV.

Simulations comparing TJADE to TFOBI and both the original

JADE and original FOBI are presented in Section V along

with a real data example and we close in Section VI with

some discussion. The proofs can be found in Appendix A.

II. ORIGINAL JADE

The original JADE assumes that the vector-valued obser-

vations are generated by the vector independent component

model

xi = µ+Ωzi, i = 1, . . . , n, (7)

where the mixing matrix Ω ∈ R
p×p has full rank, µ ∈ R

p

and the i.i.d. random vectors zi ∈ R
p have mutually indepen-

dent components standardized to have zero means and unit

variances. To ensure the existence of the JADE solution we

have to further assume that at most one of the independent

components has zero excess kurtosis [19].

Assuming next that the data are centered, that is, E[x] = 0,

we standardize the vectors as xst = Σ
−1/2x. The standardized

vectors can be shown to satisfy xst = Uz for some orthogonal

matrix U, see for example [19]. To estimate U, JADE uses the
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cumulant matrices Cij(xst), i, j = 1, . . . , p, in (6). Under the

independent component model the cumulant matrices can be

shown to satisfy, for all i, j = 1, . . . , p,

Cij(xst) = U

(

p
∑

k=1

uikujkκkEkk

)

UT , (8)

where κk := E(z4k) − 3, the excess kurtosis of the kth

component, and uab are the components of U. The expression

in (8) is the eigendecomposition of Cij(xst) and thus any

single matrix Cij(xst) could be used to find U. However, to

use all the information available in the fourth joint cumulants,

JADE simultaneously (approximately) diagonalizes them all,

that is, finds UT as

UT = argmax
U: UT U=I

p
∑

i=1

p
∑

j=1

‖diag(UCij(xst)U
T )‖2. (9)

Optimization problems of type (9) are so-called joint diago-

nalization problems for which many algorithms exist, see [21]

for discussion and one particular algorithm.

In [19], a thorough analysis of the statistical properties of

JADE is given and it is shown there that the JADE estimator

is an independent component functional, that is, the resulting

components are invariant up to sign-change and permutation

under affine transformations to the original data.

III. TENSOR JOINT APPROXIMATE DIAGONALIZATION OF

EIGEN-MATRICES

In formulating TJADE we assume that the data are gen-

erated by the tensor independent component model (3) and

satisfy Assumptions 1, 2 and 3. Assuming E[X] = 0, we next

go separately through the tensor analogies of the standardiza-

tion and rotation steps of the original JADE.

A. Standardization step

We take the same approach for standardization of X as in

[1], that is, use the m-mode covariance matrices, Σ1, . . . ,Σr,

to standardize X simultaneously from all r modes. This gives

us the standardized tensor

Xst := X⊙1 Σ
−1/2
1 · · · ⊙r Σ

−1/2
r .

where, for the asymptotics, we assume that the standardization

functionals Σ
−1/2
m , m = 1, . . . , r, are chosen to be symmetric,

see e.g. [22]. Estimates Σ̂1, . . . , Σ̂r of the m-mode covariance

matrices are obtained by applying (4) to the empirical distri-

bution of X. The next step towards Z is guided by Theorem

5.3.1 in [1] which states that

Xst = τ · Z⊙1 U1 · · · ⊙r Ur, (10)

for some orthogonal matrices U1 ∈ R
p1×p1 , . . . ,Ur ∈ R

pr×pr

and for τ = (
∏m

i=1 p
1/2
m )r−1‖Ωr⊗· · ·⊗Ω1‖1−r

F , where ‖·‖F
is the Frobenius norm.

B. Rotation step

We extend the cumulant matrices by noting that the opera-

tion ⊙−m provides an m-mode analogy for the outer product

of vectors. By writing the random quantity xixj · xxT in (5)

with outer products either as eTi xxT ej ·xxT or as xxT eie
T
j xxT

two straightforward tensor m-mode analogies for the matrix of

fourth cumulants Cij , i, j = 1, . . . , pm, in (5) are then given

by

C
ij
1,m(X) = ρ−1

m E
[

eTi (X⊙−m X)ej · (X⊙−m X)
]

− ρ−1
m E

[

eTi (X
∗ ⊙−m X∗)ej · (X⊙−m X)

]

− ρ−1
m E

[

eTi (X
∗ ⊙−m X)ej · (X∗ ⊙−m X)

]

− ρ−1
m E

[

eTi (X
∗ ⊙−m X)ej · (X⊙−m X∗)

]

,

(11)

and

C
ij
2,m(X) = ρ−1

m E
[

(X⊙−m X)Eij(X⊙−m X)
]

− ρ−1
m E

[

(X∗ ⊙−m X∗)Eij(X⊙−m X)
]

− ρ−1
m E

[

(X∗ ⊙−m X)Eij(X∗ ⊙−m X)
]

− ρ−1
m E

[

(X∗ ⊙−m X)Eij(X⊙−m X∗)
]

,

(12)

with m = 1, . . . , r, where X∗ is an independent copy of X.

Theoretically, a third way to generalize the idea is obtained by

considering xxT ejeTi xxT . However, that would be redundant

as the resulting set of matrices for i, j = 1, . . . , pm is the same

as with (12) and the individual matrices can be obtained by just

reversing i and j in (12). Naturally, for vector observations,

r = 1, both (11) and (12) are equivalent.

Define next for the model (3) its kurtosis tensor κ ∈
R

p1×···×pr as (κ)i1...ir := E[z4i1...ir ] − 3 and its m-mode

average kurtosis vector as κ̄(m) := (κ̄
(m)
1 , . . . , κ̄

(m)
pm

), where

κ̄
(m)
k is the average of the excess kurtoses of the random vari-

ables in the kth m-mode face of the tensor Z, k = 1, . . . , pm.

The following theorem then shows that (11) and (12) actually

serve in TJADE the same purpose as their vector counterpart

in JADE.

Theorem 1. If τ , U1, . . . , Ur are as defined in (10), then, for

c = 1, 2 and m = 1, . . . , r, the matrices of fourth cumulants

C
ij
c,m, i, j = 1, . . . , p satisfy

C
ij
c,m(Xst) = τ4 · Um

(

pm
∑

k=1

u
(m)
ik u

(m)
jk κ̄

(m)
k E

kk

)

U
T
m.

According to Theorem 1, UT
m simultaneously diagonalizes

all matrices Cij
c,m(Xst), i, j = 1, . . . , pm, regardless of c,

giving two straightforward ways of estimating the m-mode

rotation Um using (9) with Cij(xst) replaced by Cij
c,m(Xst)

for the chosen value of c. However, in estimating an individual

matrix Cij
c,m(Xst) in (11) or (12) we have to estimate four

matrices in total, the last two of which are costly to estimate

because of the independent copies X∗. Using the method of

the proof of Theorem 1 one can show that, analogously to the

vector-valued case,

C
ij
1,m(Xst) = B

ij
1,m −Ξm

(

δijρmI + Eij + Eji
)

Ξ
T
m,

where B
ij
1,m := ρ−1

m E
[

eTi (Xst ⊙−m Xst)e
j · (Xst ⊙−m Xst)

]

and Ξm := ρ−1
m E [Xst ⊙−m Xst] = τ2I, which provides a
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natural estimator for τ2. Similarly

C
ij
2,m(Xst) = B

ij
2,m −Ξm

(

δijI + ρmEij + Eji
)

Ξ
T
m,

where B
ij
2,m := ρ−1

m E
[

(Xst ⊙−m Xst)E
ij(Xst ⊙−m Xst)

]

and Ξm is as above.

Natural estimates for the previous matrices are provided by

Ĉ
ij
1,m := B̂

ij
1,m − Ξ̂m

(

δijρmI + Eij + Eji
)

Ξ̂
T

m, (13)

and

Ĉ
ij
2,m := B̂

ij
2,m − Ξ̂m

(

δijI + ρmEij + Eji
)

Ξ̂
T

m, (14)

where i, j = 1, . . . , pm, and the estimates B̂
ij
1,m, B̂

ij
2,m and Ξ̂m

are obtained by applying the definitions of B
ij
1,m, B

ij
2,m and

Ξm to the empirical distribution of X, including an empirical

standardization by Σ̂
−1/2
1 , . . . , Σ̂

−1/2
r . Choosing then either

of the sets, c = 1, 2, the rotation matrix UT
m, m = 1, . . . , r is

found by simultaneous (approximate) diagonalization as

UT
m = argmax

U: UT U=I

pm
∑

i=1

pm
∑

j=1

‖diag(UCij
c,m(Xst)U

T )‖2. (15)

The corresponding estimates ÛT
m, m = 1, . . . , r, are obtained

by replacing in (15) the matrices Cij
c,m(Xst) with their esti-

mates Ĉij
c,m .

Combining the standardization and the rotation, the final

TJADE algorithm for a sample, Xi ∈ R
p1×···×pr , i = 1, . . . , n,

consists of the following steps.

1) Center Xi and estimate Σ̂1, . . . , Σ̂r.

2) Standardize: Xi ← Xi ⊙1 Σ̂
−1/2
1 · · · ⊙r Σ̂

−1/2
r .

3) Choose c and estimate the r rotations ÛT
1 , . . . , Û

T
r by

diagonalizing for each m = 1, . . . , r simultaneously the

sets Ĉij
c,m, i, j = 1, . . . , pm.

4) Rotate: Xi ← Xi ⊙1 ÛT
1 · · · ⊙r ÛT

r .

Using Lemma 5.1.1 from [1] the final result can be written

as the product Xi⊙1 Φ̂1 · · · ⊙r Φ̂r, where Φ̂m := ÛT
mΣ̂

−1/2
m ,

m = 1, . . . , r, is the m-mode TJADE estimate.

Remark 1. Technically, there is no reason why we could not

use different c for estimating different rotations Um. However,

the asymptotic properties of the different approaches are in

the next section shown to be equivalent and thus the choice

of c is for large enough samples irrelevant.

For a vector valued x ∈ R
p and a full-rank matrix

A ∈ R
p×p, (Ax)st = Uxst for some orthogonal U [22].

Unfortunately, the analogous relation in the tensor setting,

(X⊙1 A1 · · · ⊙r Ar)st = Xst ⊙1 U1 · · · ⊙r Ur (16)

for some orthogonal U1, . . . ,Ur, holds only for orthogonal

A1, . . . ,Ar. This lack of m-affine equivariance of Σm(X),
m = 1, . . . , r, is discussed in [1] along with a conjecture that

in the general tensor case, r > 1, no standardization functional

exists which would lead into the property (16). In practice this

means that outside the model (3) a change (other than rotation

or reflection) in the coordinate system leads into different

estimated components. However, the TJADE estimator is still

Fisher consistent by Theorem 1.

IV. ASYMPTOTIC PROPERTIES

The asymptotical properties of JADE were considered in

[23], [19], [24] and are in [19], [24] based on the fact that

the JADE functional is affine equivariant, allowing them to

consider only the case of no mixing, Ω = I. In the following

we consider the analogous case of Ω1 = I, . . . ,Ωr = I

for TJADE. However, because of the lack of full affine

equivariance, the results generalize only to orthogonal mixing

from all r modes.

For a tensor X ∈ R
p1×···×pr define its m-flattening X(m) ∈

R
pm×ρm as the horizontal stacking of all m-mode vectors of

the tensor into a matrix in a predefined order, see [25] for

a rigorous definition. If the stacking order is assumed to be

cyclical in the dimensions in the sense of [25] we have for

X∗ := X⊙1 A1 · · · ⊙r Ar the identity

X∗
(m) = AmX(m) (Am+1 ⊗ · · · ⊗ Ar ⊗ A1 ⊗ · · · ⊗ Am−1)

T
.

(17)

The reason why m-flattening is particularly useful for us is that

it allows us to write the m-mode product of a tensor with itself

as an ordinary matrix product, namely X⊙−mX = X(m)X
T
(m),

regardless of the stacking order. This, combined with the fact

that the matrices Cij
c,m(X) depend on X only via the previous

product, implies that it is sufficient to derive the asymptotics

for the case r = 2 only. The results for tensors of order r > 2
are then obtained by applying the case r = 2 for each of

the m-flattened matrices X(1), . . . ,X(r). Similarly, even for

the case r = 2 we only need to consider the 1-mode TJADE

estimate Φ̂1 (matrix multiplication from left) as the results

for Φ̂2 follow by simply transposing X or, in the language of

tensors, flattening X from the second mode. Interestingly, we

also have no need to specify the used set of cumulant matrices

c, as the two choices, c = 1 and c = 2, are shown to lead into

asymptotically equivalent estimators.

We next provide the asymptotic expressions for the elements

of the TJADE estimate Φ̂1 =: Φ̂ in the case of a matrix-

valued sample Xi ∈ R
p1×p2 , i = 1, . . . , n. The asymptotic

properties of Φ̂ can be shown to depend on row means of

various moments of Z, particularly on the elements of κ̄(1)

but also on the following

β̄
(1)

:=
1

p2

p2
∑

l=1

(

E[z41l], . . . ,E[z
4
p1l]
)

T ,

ω̄(1) :=
1

p2

p2
∑

l=1

(

Var[z31l], . . . ,Var[z3p1l]
)

T .

Define further the covariance of two rows of kurtoses as

ρkk′ =
1

p2

p2
∑

l=1

(βklβk′l)− β̄(1)
k β̄

(1)
k′ ,

where βkl := E[z4kl]. To construct an asymptotic expression

for Φ̂ in Theorem 2 we need the terms
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ŝkk′ :=
1

p2

p2
∑

l=1

(

1

n

n
∑

i=1

zi,klzi,k′l

)

,

q̂kk′ :=
1

p2

p2
∑

l=1

(

1

n

n
∑

i=1

(

z3i,kl − E[z3kl]
)

zi,k′l

)

,

r̂kk′ :=
1

p2

p2
∑

l=1

p2
∑

l′=1
l′ 6=l

(

1

n

n
∑

i=1

z2i,klzi,kl′zi,k′l′

)

,

the joint limiting normality of which is easy to show, assuming

the eighth moments of Z exist.

Theorem 2. Let Z1, . . . ,Zn be a random sample from a distri-

bution with finite eighth moments and satisfying Assumptions

1, 2 and 4 (see below). Then there exists a sequence of TJADE

estimates such that Φ̂→P I and

√
n(φ̂kk − 1) = −1

2

√
n(ŝkk − 1) + oP (1),

√
nφ̂kk′ =

√
nψ̂kk′ +

√
nψ̂k′k − dkk′

√
nŝkk′

(κ̄
(1)
k )2 + (κ̄

(1)
k′ )2

+ oP (1),

where k 6= k′, ψ̂kk′ := κ̄
(1)
k (r̂kk′ + q̂kk′) and dkk′ := (p2 +

2)(κ̄
(1)
k − κ̄

(1)
k′ ) + (κ̄

(1)
k )2.

Using the expressions of Theorem 2 the asymptotic vari-

ances of the elements of Φ̂ can now be computed.

Corollary 1. Under the assumptions of Theorem 2 the limiting

distribution of
√
n vec(Φ̂−I) is multivariate normal with mean

vector 0 and the following asymptotic variances.

ASV (φ̂kk) =
β̄
(1)
k − 1

4p2
,

ASV (φ̂kk′) =
ζk + ζk′ + (κ̄

(1)
k′ )4 − 2κ̄

(1)
k κ̄

(1)
k′ ρkk′

p2((κ̄
(1)
k )2 + (κ̄

(1)
k′ )2)2

, k 6= k′,

where ζk := (κ̄
(1)
k )2[ω̄

(1)
k −(β̄

(1)
k )2]+(κ̄

(1)
k )2(κ̄

(1)
k −2)(p2−1).

It is easily seen that the expressions in Corollary 1 revert

to the forms of Corollary 4 in [19] when r = 1, that is, we

observe just a vector x. In this case κ̄(1) contains just the

element-wise kurtoses of the elements of z. Of the popular

ICA methods, FastICA, FOBI and JADE, it is well-known that

only for FOBI does the asymptotic behavior of φ̂kk′ depend

on components other than zk and zk′ . The analogous result

holds also for TFOBI and TJADE in the sense that in TFOBI

the asymptotic behavior of φ̂
(m)
kk′ depends on the whole tensor

Z [1] and in TJADE only on the kth and k′th m-mode faces

of Z.

The denominators in Theorem 2 imply that for the existence

of the limiting distributions we need the following assumption.

Assumption 4. For each m = 1, . . . , r, at most one of the

components of κ̄(m) is zero.

Assumption 4 for TJADE is much less restrictive than the

assumption needed for TFOBI, for each m = 1, .., r the

components of κ̄(m)are distinct [1], and the one needed for

vector JADE, at most one element of κ is zero [19]. More

specifically, in TJADE, and in tensor independent component

analysis in general, several individual elements of Z are

allowed to be Gaussian, as long as Assumption 3 is not

violated. Conveniently located, a majority of the elements of

Z can thus be Gaussian.

The analytical comparison of TJADE and TFOBI via the

asymptotic variances involves in general case rather compli-

cated expressions and thus we resort to simulations for their

comparison in the next section.

V. SIMULATIONS AND EXAMPLES

In the following all computations were done in R 3.1.2 [26]

especially using the R-packages JADE [27], Rcpp [28], [29]

and ggplot2 [30]. For the approximate joint diagonalization,

an algorithm based on Jacobi rotations was used, see e.g [21].

Testing the algorithms in various settings showed that both

c = 1 and c = 2 yield almost identical results with respect to

the MDI-values (see below) but the former is computationally

more efficient and thus the TJADE solution in the simulations

is computed with the choice c = 1.

A. Efficiency comparisons

We compared the separation performance of TJADE with

its nearest competitor, TFOBI, and also with regular FOBI and

JADE as applied to vectorized tensor data, called here VFOBI

and VJADE. Note that VFOBI and VJADE do not use the prior

information on the data structure and are therefore expected to

be worse than TFOBI and TJADE. The simulation setting was

the same as in [1]: we simulated n independent 3× 4 matrix

observations with individual elements coming from a diverse

array of distributions. The excess kurtoses of the distributions

used were -1.2, -0.6, 0, 1, 2, 3, 4, 5, 6, 8, 10 and 15 and the

exact distributions used are given in Appendix A.

We generated 2000 repetitions for each of the sample sizes,

n = 1000, 2000, 4000, 8000, 16000, 32000, and for each sam-

ple the same data was mixed using three different distributions

for the elements of the 1-mode and 2-mode mixing matrices,

A and B. In the first case the mixing matrices were random

orthogonal matrices of sizes 3 × 3 and 4 × 4 distributed

uniformly with respect to the Haar measure. In the second

and third case the elements of both matrices were generated

independently from N (0, 1) and Uniform(−1, 1) distributions,

respectively.

The mixed data were then subjected to each of the four

different methods which produced the four unmixing matrix

estimates, Φ̂V F , (Φ̂2,MF ⊗ Φ̂1,MF ), Φ̂V J and (Φ̂2,MJ ⊗
Φ̂1,MJ). To allow comparing we took the Kronecker product

of the 2-mode and 1-mode unmixing matrices of TFOBI and

TJADE meaning that all the four previous matrices estimate

the inverse of the same matrix (B ⊗ A), up to scaling, sign-

change and permutation of its columns.

The actual comparison was done by first computing the

minimum distance index (MDI) [31] of the estimates

D(Φ̂Ω) =
1√
p− 1

inf
C∈C
‖CΦ̂Ω− I‖F ,

where Φ̂ ∈ R
p×p is the estimated unmixing matrix, Ω ∈ R

p×p

is the true mixing matrix and C is the set of all p×p matrices
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having a single non-zero element in each row and column.

MDI thus measures how far away Φ̂Ω is from the set C. The

index varies from 0 to 1 with 0 indicating that the separation

worked perfectly. In our simulation we further transformed

the MDI-values as n(p − 1)MDI2 which in vector-valued

independent component analysis converges in distribution to a

random variable with finite mean and variance [31].

The mean transformed MDI-values for different sample

sizes, methods and mixing matrices are shown in Figure 1. The

lines for both FOBI and JADE are for all mixings identical

since both methods are affine equivariant. For TFOBI and

TJADE the separation is best under orthogonal mixing, the

results for normal and uniform mixing being a bit worse.

But the main implication of the plot is that none of the

other methods can really compete with TJADE in matrix

independent component analysis. Interestingly, also regular

JADE combined with vectorization is better than TFOBI.

B. Assumption comparisons

As our second simulation study we compared the four

methods of the previous simulation via their assumptions. For

this we constructed three simulation settings of 3×3×2 tensors

with independent elements having either Gaussian (N), Laplace

(L), exponential (E), or continuous uniform (U) distributions

standardized to have zero means and unit variances. The

distributions of the tensors are shown in the following by the

two 3× 3× 1 faces of each setting:

Setting 1 :





N L E

L L E

E E E









U U U

U L L

U L E





Setting 2 :





N L L

L L L

L L L









U U U

U L L

U L L





Setting 3 :





E E N

E E N

N N N









N N N

N N N

N N N





It is easy to see that none of the above settings satisfies

the assumptions of VFOBI as all of them have at least two

identical components. Only setting 1 satifies the assumption of

TFOBI on distinct kurtosis means in all modes and settings 1

and 2 satisfy the assumption on maximally one component

having zero excess kurtosis required by VJADE. All three

settings satisfy Assumption 4 on maximally one zero kurtosis

mean in each mode required by TJADE.

We simulated 2000 repetitions of all three settings for

different sample sizes using identity mixing and the resulting

transformed MDI-values of the four methods are depicted in

Figure 2. The above reasoning about the violation of assump-

tions is clearly visible in the plots. The mean transformed

MDI-values of the different methods break one-by-one when

the setting changes from 1 to 2 to 3 leaving TJADE as the

only method able to handle all three settings. Interestingly,

VJADE failed to converge 4601 times out of the 36000 total

repetitions across all settings, the majority of failures occurring

in the third setting.

The plot for setting 1 further indicates that there exist

cases where TFOBI beats VJADE, proving that, though very

efficient, the JADE methodology itself is not the only factor in

the superior performance of TJADE; the tensor structure also

plays an important role.

C. Real data example

Extreme kurtosis can be shown to be associated with multi-

modal distributions and thus independent component analysis

is commonly used as preprocessing step in classification to

obtain directions of interest. In this spirit we consider the

semeion1 data set, available in the UCI Machine Learning

Repository [32] as a classification problem. The data consist

of 1593 binary 16 × 16 pixel images of hand-written digits.

For this example we chose only the images representing the

digits 0, 1 and 7, having respective group sizes of 161, 162

and 158. The objective is to find a few components separating

the three digits.

Subjecting the data to TJADE gives the results depicted in

Figure 3. The left-hand side plot shows the scatter plot of the

two resulting components with the lowest kurtoses using the

individual digit images as plot markers. Clearly the two found

directions are sufficient to separate all three groups of digits.

The same conclusion can be drawn from the corresponding

density estimators and rug plots on the right-hand side of

Figure 3. As a next step, some low-dimensional classification

algorithm could be applied to the extracted components to

create a classification rule.

VI. DISCUSSION

In this paper we proposed TJADE, an extension of the

classic JADE suited for tensor-valued observations. Based on

the same idea of diagonalizing multiple cumulant matrices as

JADE, TJADE was shown to be very effective in solving the

independent component problem. In the course of the paper

we first reviewed the theory and the algorithm behind JADE

and then formulated TJADE analogously giving two different,

although asymptotically equivalent, ways of estimating the

needed rotations. The asymptotic behaviors of the elements

of the TJADE-estimates under orthogonal mixing were next

provided allowing theoretical comparison to other methods. Fi-

nally, simulation studies comparing TJADE to TFOBI, and the

naı̈ve approaches combining vectorization with either FOBI

or JADE showed that TJADE is superior to all the previous

competitors in tensor independent component analysis.

As the investigation of ICA methods for non-vector-valued

objects is still in an early stage, much further research is

needed. Below we outline some ideas planned to follow this

work.

As the number of matrices to jointly diagonalize in esti-

mating the m-mode rotation in TJADE grows proportional to

the square of the corresponding dimension pm, an extension

like k-JADE [33] is worth considering also for TJADE.

And as a competing alternative also a tensor version of the

1Semeion Research Center of Sciences of Communication, via Sersale
117, 00128 Rome, Italy; Tattile Via Gaetano Donizetti, 1-3-5,25030 Mairano
(Brescia), Italy.
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Fig. 2. Means of transformed MDI-values for different combinations of setting, sample-size and method. Moving from left to right, all other methods but
TJADE break down one-by-one.

FastICA algorithm [34] will be investigated. This opens many

possibilities allowing choosing both the non-linearity function

g and the norm used in the maximization problem, see [35].

APPENDIX

The distributions used in the first simulation of

Section V are, starting from the upper left corner of

the matrix and moving down and right, Uniform(−
√
3,
√
3),

Triangular(−
√
6,
√
6, 0), N (0, 1), t10, Gamma(3,

√
3),

Laplace(0, 1/
√
2), χ2

3, Gamma(1.2,
√
1.2), Exp(1), χ2

1.5, χ2
1.2

and InverseGaussian(1, 1). The distributions were further

shifted to have zero means and unit variances.

The proof of Theorem 1. Consider first the case c = 1 and the
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Fig. 3. Results of applying TJADE on the semeion data. The plot on the left-hand side shows the scatter plot of the two components having the lowest
kurtoses found by TJADE with the individual images as markers. The three digits clearly form three groups in the plane. The density plots along with the
rugs on the right-hand side imply the same. The lower rug corresponds to the component with the lowest kurtosis (min kurtosis 1) and the coloring of the
groups in the rugs is the same as in the scatter plot.

four terms in (11) separately fixing the choice of m. Denoting

the first term of (11) by B
ij
1,m(X), then according to Lemma

5.4.1 in [1] we have

B
ij
1,m(Xst)

=
τ4

ρm
UmE

[

(u
(m)
i )T Z(m)Z

T
(m)u

(m)
j · Z(m)Z

T
(m)

]

UT
m,

where Z(m) is the flattened matrix defined in Section IV and

(u
(m)
i )T is the ith row of Um. Using the standard properties of

expected value and independent random variables the (k, k′)
element of the inner expectation can be shown to be for k 6=
k′ equal to u

(m)
ik u

(m)
jk′ + u

(m)
jk u

(m)
ik′ and for k = k′ equal to

δijρm+u
(m)
ik u

(m)
jk (κ̄

(m)
k +2). Using these to construct a matrix

form for the expectation we have

B
ij
1,m(Xst) = τ4Um

(

p
∑

k=1

u
(m)
ik u

(m)
jk κ̄

(m)
k Ekk

)

UT
m

+ τ4δijρmI + τ4Eij + τ4Eji.

The second, third and fourth terms in (11) then serve to remove

the extra constant terms above. That they indeed cancel one-

by-one the final terms can easily be shown by examining them

in the above manner using the independence of X and X∗. This

concludes the proof for c = 1 and the corresponding result for

c = 2 can be proven in precisely the same manner.

The proof of Theorem 2. The consistency of the TJADE es-

timator is proven similarly as the consistency of the TFOBI

estimator in the proof of Theorem 5.2.1 in [1].

In the following we assume that r = 2 and we are interested

in the asymptotical behavior of the 1-mode unmixing matrix.

As discussed in Section IV, for the general case of arbitrary

r and m-mode unmixing matrix, it suffices to m-flatten the

tensor and replace in the following Σ̂
−1/2
1 with Σ̂

−1/2
m , Σ̂

−1/2
2

with Σ̂
−1/2
m+1 ⊗ · · · ⊗ Σ̂

−1/2
r ⊗ Σ̂

−1/2
1 ⊗ · · · ⊗ Σ̂

−1/2
m−1 , p2 with

ρm and use the corresponding row mean quantities.

For the asymptotic expressions of the diagonal elements of√
n(Φ̂−I) it suffices to use the same arguments as in the proof

of Theorem 5.2.1 in [1] and for the off-diagonal elements we

aim to use Lemma 2 from [19].

But first, define the symmetric standardization functionals

L̂ = (l̂kk′) := Σ̂
−1/2
1 and R̂ = (r̂ll′) := Σ̂

−1/2
2 giving the

standardized identity-mixed observations as Xst,i = L̂Z̃iR̂
T ,

where Z̃i = Zi − Z̄. We then have
√
n(l̂kk′ − δkk′) = −(1/2)√n(ŝkk′ − δkk′) + oP (1),

see [1], and as simple moment-based estimators we have both√
n(L̂ − I) = OP (1) and

√
n(R̂ − I) = OP (1), regardless

of whether we really have r = 2 or use flattened tensors of

higher order.

Assume then first that c = 1. The matrices Ĉkk′

1,1 , k, k′ =
1, . . . , p, in (13) to be simultaneously diagonalized satisfy

Ĉkk′

:= Ĉkk′

1,1 →P Ckk′

1,1 (Zi) = δkk′ κ̄
(1)
k Ekk. In the view of
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Lemma 2 in [19] this means that the only matrices Crs
1,1(Zi),

r, s = 1, . . . , p having non-zero kth or k′th diagonal ele-

ments are Ckk
1,1(Zi) and Ck′k′

1,1 (Zi), respectively, yielding the

following form for the (k, k′), k 6= k′, element of the rotation

Û := ÛT
1 estimated by (15).

√
nûkk′ =

κ̄
(1)
k

√
nĈkk

kk′ − κ̄(1)k′

√
nĈk′k′

kk′

(κ̄
(1)
k )2 + (κ̄

(1)
k′ )2

+ oP (1),

where Ĉkk
rs is the (r, s) element of Ĉkk. The above expression

then together with the (k, k′), k 6= k′, element of the left

standardization matrix L̂ gives an asymptotic expression for

the off-diagonal elements of the estimated left TJADE matrix,

see [1]:

√
nφ̂kk′ =

√
nûkk′ +

√
nl̂kk′ + oP (1), (18)

reducing the problem of finding the asymptotics of TJADE

into the task of finding the asymptotic behaviors of
√
nĈkk

kk′

and
√
nĈk′k′

kk′ . Dropping the subscripts for clarity, note that

Ĉaa = B̂aa − Ξ̂(p2I + 2Eaa)Ξ̂T and starting from B̂aa write

it out as

B̂aa =
1

p2n

n
∑

i=1

(L̂T
a Z̃iR̂

∗Z̃T
i L̂a) · L̂Z̃iR̂

∗Z̃T
i L̂T ,

where L̂T
a is the ath row of L̂ and R̂∗ := R̂T R̂. An arbitrary

off-diagonal element of
√
n(B̂aa−Baa(Zi)) then has after the

matrix multiplication the form

√
nB̂aa

kk′ =
1

p2n

∑

defgstuv

√
nr̂∗ef r̂

∗
tu l̂ad l̂ag l̂ks l̂k′vĤde,gf,st,vu,

(19)

where Ĥde,gf,st,vu = (1/n)
∑n

i=1 z̃i,dez̃i,gf z̃i,stz̃i,vu →P

E(zi,dezi,gfzi,stzi,vu). Next we expand the multiplicands r̂∗··
and l̂·· in (19) one-by-one such as l̂ab = (l̂ab − δab) + δab,

the first term of which is OP (1) when combined with
√
n

allowing the use of Slutsky’s theorem to the whole multiple

sum and the second term of which produces an expression like

(19) only with one summation index less.

Starting from left this process then produces the terms

oP (1); oP (1); δak
√
nl̂kk′ +δak′

√
nl̂k′k+oP (1); δak

√
nl̂kk′ +

δak′

√
nl̂k′k + oP (1); δak′(κ̄

(1)
k′ + p2 + 2)

√
nl̂kk′ + (1 −

δak′)p2
√
nl̂kk′ + oP (1) and δak(κ̄

(1)
k + p2 + 2)

√
nl̂k′k + (1−

δak)p2
√
nl̂k′k + oP (1) finally leaving us with the expression

1

p2

∑

et

1√
n

n
∑

i=1

z̃2i,aez̃i,ktz̃i,k′t + oP (1). (20)

Substituting now either a = k or a = k′, expanding z̃i,ab =
zi,ab − z̄ab and using the quantities defined in Section IV the

expression in (20) gets the forms
√
nr̂kk′ +

√
nq̂kk′ + oP (1)

and
√
nr̂k′k +

√
nq̂k′k + oP (1), respectively.

Using the above, e.g.
√
nB̂kk

kk′ gets the form

(p2+2)
√
nl̂kk′+(κ̄

(1)
k +p2+2)

√
nl̂k′k+

√
nr̂kk′+

√
nq̂kk′+oP (1).

For the asymptotic behavior of the remaining term Ξ̂(p2I+
2Eaa)Ξ̂T one can first use techniques similar to the above

to show for Ξ̂ = (ξ̂kk′) that
√
n(ξ̂kk′ − δkk′) = oP (1) for

k 6= k′. Consequently an arbitrary off-diagonal element of√
n(Ξ̂(p2I + 2Eaa)Ξ̂T − p2I− 2Eaa) is also oP (1) implying

that the term actually contributes nothing to the asymptotic

variances of the estimator. Thus
√
nĈaa

kk′ =
√
nB̂aa

kk′ + oP (1)
and the result of Theorem 2 is obtained by plugging everything

in into (18) and using the fact that the standardization func-

tionals are symmetric. The asymptotic variances of Corollary

1 are then straightforward to obtain, e.g. using the table of

covariances in the proof of Theorem 5.2.1 in [1].

Although the starting expressions for c = 1 and c = 2 are

different the final expressions for both
√
nĈkk

kk′ and
√
nĈk′k′

kk′

actually match exactly. The corresponding proof for c = 2
is then obtained in exactly likewise manner, expanding the

terms suitably and using Slustky’s theorem, and is thus omitted

here.
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