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JADE for Tensor-Valued Observations

Joni Virta, Bing Li, Klaus Nordhausen and Hannu Oja

Abstract—Independent component analysis is a standard tool
in modern data analysis and numerous different techniques for
applying it exist. The standard methods however quickly lose
their effectiveness when the data are made up of structures
of higher order than vectors, namely matrices or tensors (for
example, images or videos), being unable to handle the high
amounts of noise. Recently, an extension of the classic fourth
order blind identification (FOBI) specifically suited for tensor-
valued observations was proposed and showed to outperform
its vector version for tensor data. In this paper we extend
another popular independent component analysis method, the
joint approximate diagonalization of eigen-matrices (JADE), for
tensor observations. In addition to the theoretical background we
also provide the asymptotic properties of the proposed estimator
and use both simulations and real data to show its usefulness
and superiority over its competitors.

Index Terms—Independent component analysis, multilinear
algebra, kurtosis, limiting normality, minimum distance index.

I. INTRODUCTION

The following presentation relies on multilinear algebra and
before the actual ideas can be described we first review some
key properties of tensors and matrices needed later.

A tensor of rth order X € RP**"*Pr can be seen as a higher
order analogy of vectors and matrices. Whereas a matrix can
be viewed either as a collection of rows or that of columns, a
tensor of rth order has in total » modes. The m-mode vectors
of a tensor are given by letting the mth index vary while
keeping all other indices fixed, m = 1,...,r. A tensor X €
RP1XXPr thus contains p,, := H:?émps m-mode vectors of
length p,,. The opposite construct, fixing a single index i,
and varying the others, then gives what we call the m-mode
faces of a tensor. The number of m-mode faces then totals p,,
and each is a tensor of size p; X -+ X Dyy—1 X Pimg1 X+ - X Py

For representing tensor contraction, or summation, we use
the Einstein summation convention in which a twice-appearing
index in a product implies summation over the range of the
index. For example, for a tensor X = {x;,4,:, } wWe have

P11 P2

LiyigjLiyigk = E E LiyigjLiyigk-

i1=1142=1

Two special cases of tensor contraction prove especially useful
for us. The product X ®,, A of tensor X € RP1* " *Pr with

a matrix A € RP»*Pm_ m = 1,...,r, is defined as the
p1 X - -+ X p.-dimensional tensor with the elements
X Om A, i = Tiyein Gmimir i Qiggm- (1)
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That is, the multiplication X ®,,, A linearly transforms X from
the direction of the mth mode without changing the size of the
tensor. The operation can alternatively be viewed as applying
the linear transformation given by A separately to each m-
mode vector of the tensor. The second useful product, X©®_,,
Y, of two tensors of the same size, X, Y € RPt* " *Pr g
defined as the p,,, X p,,-dimensional matrix with the elements

(X O_m Y)jk: = Tiy i 1Jimt1- e Yi1 e —1 kg1 i 2)

The special case X ®_,,, X provides higher order counterparts
for the products of a vector x € RP* or a matrix X € RP1*P2
with itself, such as xx7, XX7 or XTX, and proves useful in
defining the “covariance matrix” of a tensor.

Finally, define the vectorization vec(X) € RP1"'Pr of a
tensor X € RP1XXPr a5 the stacking of the elements
Ti,..4, 10 such a way that the leftmost index goes through
its cycle the quickest and the rightmost index the slowest.
Then it holds for a tensor X € RP1*"*Pr and matrices
A, e RPrXP1 A, € RP*Pr that

vee(X©®1 A1 Or Ar) = (A, Q-+ - ® Ay)vee(X),

where ® is the Kronecker product.

In this paper we assume that the tensor-valued i.i.d. random
elements X; € RP1>*"XPr 4 =1 ... n,are observed from the
recently suggested [[L] tensor independent component model:

X:N+Z®1ﬂl"'®rﬂra (3)

where €1 € RPr>Pr Q. € RP-*Pr are full rank mix-
ing matrices, pu € RP1**Pr jg the location center, and
Z ¢ RP1**Pr g an unobserved random tensor. The model
(3) is further equipped with the following assumptions.

Assumption 1. The components of Z are mutually indepen-
dent.

Assumption 2. The components of Z are standardized in the
sense that E[vec(Z)] = 0 and Cov[vec(Z)] =L

Assumption 3. For each m = 1,...,r, at most one m-mode
face of Z consists entirely of Gaussian components.

Assumption [2| implies that E[X] = p and that
Covlvec(X)] = (2,97) @ - & (2,27

has the so-called Kronecker structure. Assumption [3] is a
tensor analogy for the usual vector independent component
model assumption on maximally one Gaussian component
and without it some column blocks of some of the matrices
Qq,...,€, could be identifiable only up to a rotation. After
the above assumptions we can still freely change the signs and
orders of the columns of all 2;,...,€2,, or multiply any €2
by a constant and divide any €2; by the same constant, but



this indeterminacy is acceptable in practice. The model along
with its assumptions now provides a natural extension for the
standard independent component model which is obtained as
a special case when r = 1.

Alternatively, the model can be seen as an extension of the
general location-scatter model for tensor-valued data, which
is equivalent to (3) with only Assumption [2] and is often,
for r = 1,2, combined with the assumption on Gaussianity
or sphericity of vec(Z). Under the location-scatter model the
covariance matrix of vec(X) again has the above Kronecker
structure. In addition to requiring less parameters to estimate
than a full p;---p, X p1---p, covariance matrix, the as-
sumption on Kronecker structure is a natural choice in many
applications, see e.g. [2]. For the estimation of covariance
parameters under the assumption on Kronecker structure in
the matrix case, r = 2, see [3], [4l], [S]. For the general tensor
Gaussian distribution and the estimation of its parameters see
l6l, [71.

The extension of dimension reduction methods from vector
to matrix or tensor observations is in signal processing usually
approached via different tensor decompositions such as the
CP-decomposition and the Tucker decomposition. A review
of them along with a plethora of references for applications
is given in [8]], see also [9] for more applications. For exam-
ples of particular dimension reduction methods incorporating
matrix or tensor predictors, see e.g. [10]], [L1], [[1]] for indepen-
dent component analysis, [12], [13], [14], [15] for sufficient
dimension reduction and [16], [17] for principal components
analysis-based techniques. More references are also given in
(2], 1.

In tensor independent component analysis the objective is
to estimate, based on the sample Xi, ..., X,,, some unmixing
matrices ®1, ..., ®, such that X®; ®; - - -©, ®,. has mutually
independent components. A naive method for accomplishing
this would be to vectorize the observations and resort to some
standard method of independent component analysis, but in
doing so the resulting estimate lacks the desired Kronecker
structure. In addition, vectorizing and using standard tools
meant for vector-valued data requires the stronger, component-
wise version of Assumption [3] inflates the number of param-
eters and can make the dimension of the data too large for
standard methods to handle. To circumvent this, [10f], [L1], [l1]
proposed estimating an unmixing matrix separately for each of
the modes and [[1] presented an extension of the classic fourth
order blind identification (FOBI) [18]] for tensor observations
called TFOBL

In the vector independent component model, x = p + Qz,
the standardized vector x,; := Cov[x]~/?(x — E[x]) equals
Uz for some orthogonal matrix U, see e.g. [19]. In FOBI the
rotation U is then found using the eigendecomposition of the
matrix of fourth moments B := E[xyx.,x4x2%]. This same
approach is taken in TFOBI by performing both steps of the
procedure, the standardization and the rotation, on all » modes
of X. Assuming centered X, in [1l] the m-mode covariance

matrices,
Tn(X) i =p EXO X, m=1,...,r, (4

are first used to standardize the observations as X, =

X o 7% @, =72 The tensor Z is then found by

rotating X,; from all » modes and the rotation matrices can be
found from the eigendecompositions of the m-mode matrices
of fourth moments:

Bm = Pr_nlE [(Xst O_m Xst)(Xst O_m Xst)} .

Another widely used independent component analysis
method for vector-valued data, called the joint approximate di-
agonalization of eigen-matrices (JADE) [20], also uses fourth
moments to estimate the required final rotation but utilizes
them in the form of cumulant matrices (assuming E(x) = 0)

CY(x) :=E [z2; - xx" | — Elz;z;]E [xx"] (5)
—Efz; X|E[z; x"| = Elz; x| E [z;-x"].

The final rotation from x,; to z is in JADE obtained by jointly
diagonalizing the matrices

CY(Xgt) = E [wo1,ist,; - XstXty] — 6,1 —EY —E7',  (6)

where E*/ is a matrix with a single one as element (7, j) and
zeroes elsewhere and d;; is the Kronecker delta. Compared
to FOBI which only uses p(p + 1)/2 sums of fourth joint
moments of Xy JADE thus has a clear advantage in using all
possible fourth joint cumulants of x,; in the estimation of the
rotation matrix.

Because of the well-known fact that JADE outperforms
FOBI in most cases it is natural to expect that the extension
of JADE to tensor-valued data would similarly be superior to
TFOBI. This is indeed the case, and in the following sections
we formulate the tensor joint diagonalization of eigen-matrices
(TJADE) which is obtained from JADE by applying very
much the same extensions as required when moving from
FOBI to TFOBI. We first briefly discuss the standard vector-
valued independent component model and review the theory
and assumptions behind the original JADE in Section [II} The
corresponding aspects of TIADE are presented in Section [II|
and the asymptotical properties of both methods in Section [[V]
Simulations comparing TJADE to TFOBI and both the original
JADE and original FOBI are presented in Section [V] along
with a real data example and we close in Section with
some discussion. The proofs can be found in Appendix [A]

II. ORIGINAL JADE

The original JADE assumes that the vector-valued obser-
vations are generated by the vector independent component
model

=1 n

; )

where the mixing matrix 2 € RP*P has full rank, p € RP
and the i.i.d. random vectors z; € RP have mutually indepen-
dent components standardized to have zero means and unit
variances. To ensure the existence of the JADE solution we
have to further assume that at most one of the independent
components has zero excess kurtosis [19].

Assuming next that the data are centered, that is, E[x] = 0,
we standardize the vectors as Xg; = >~ /2x. The standardized
vectors can be shown to satisfy x;; = Uz for some orthogonal
matrix U, see for example [19]. To estimate U, JADE uses the

X; = p+ Qz;,

geeey



cumulant matrices C*/ (X4;), i,j = 1,...,p, in (6). Under the
independent component model the cumulant matrices can be
shown to satisfy, for all 4,5 =1,...,p,

p
CY(xy) =U <Z Uikujk"kakk> LIS (8)

k=1

where k) = E(z}) — 3, the excess kurtosis of the kth
component, and u,;, are the components of U. The expression
in () is the eigendecomposition of C(x,;) and thus any
single matrix C*/(x,;) could be used to find U. However, to
use all the information available in the fourth joint cumulants,
JADE simultaneously (approximately) diagonalizes them all,
that is, finds U7 as

UT = argmax Z Z |diag(UCY (x,)UD) [ (9)
U UTU=1 5

Optimization problems of type (9) are so-called joint diago-
nalization problems for which many algorithms exist, see [21]]
for discussion and one particular algorithm.

In [19], a thorough analysis of the statistical properties of
JADE is given and it is shown there that the JADE estimator
is an independent component functional, that is, the resulting
components are invariant up to sign-change and permutation
under affine transformations to the original data.

III. TENSOR JOINT APPROXIMATE DIAGONALIZATION OF
EIGEN-MATRICES

In formulating TJADE we assume that the data are gen-
erated by the tensor independent component model (3) and
satisfy Assumptions and [3| Assuming E[X] = 0, we next
go separately through the tensor analogies of the standardiza-
tion and rotation steps of the original JADE.

A. Standardization step

We take the same approach for standardization of X as in
[1], that is, use the m-mode covariance matrices, 31, ..., 2,
to standardize X simultaneously from all » modes. This gives
us the standardized tensor

X :=X0 5720, 5,12
where, for the asymptotics, we assume that the standardization
functionals 2;11/ 2, m = 1,...,r, are chosen to be symmetric,
see e.g. [22]. Estimates ﬁ)l, e ﬁ)r of the m-mode covariance
matrices are obtained by applying (@) to the empirical distri-
bution of X. The next step towards Z is guided by Theorem
5.3.1 in [[1]] which states that

Xg=7-Z0:Uy--- 0, U, (10)
for some orthogonal matrices U; € RP1*P1 . UT € RprXpr
and for 7 = (IT™, prl2) V|, ®- - © H " where || ||

is the Frobenius norm.

B. Rotation step

We extend the cumulant matrices by noting that the opera-
tion ®_,,, provides an m-mode analogy for the outer product
of vectors. By writing the random quantity z;x; - xx in (§)
with outer products either as e/ xx”'e; -xx” or as xxTeieJTxxT
two straightforward tensor m-mode analogies for the matrix of
fourth cumulants C*, 4,5 = 1,...,ppm, in @) are then given
by
e (XO_nm X)]
e (XO_nX)]

—m X)

(1)

—m X)EY (X 0_,, X)]
—m XOEY (X O, X)]
—m X)EY(X* ©O_p, X)]
— P B [(X* 0 X)EY (X Oy XY)]

(12)

with m = 1,...,7, where X* is an independent copy of X.
Theoretically, a third way to generalize the idea is obtained by
considering xx”'e e} xx’. However, that would be redundant
as the resulting set of matrices for¢,7 = 1,...,p,, is the same
as with (T2) and the individual matrices can be obtained by just
reversing ¢ and j in (I2). Naturally, for vector observations,
r =1, both and are equivalent.

Define next for the model (@) its kurtosis tensor K €
RPYXProas (K);,..q, = Elz} ;] — 3 and its m-mode
average kurtosis vector as &(™) := (Rgm) Fcz(fz)), where
/%,(Cm) is the average of the excess kurtoses of the random vari-
ables in the kth m-mode face of the tensor Z, k = 1,..., pp,.
The following theorem then shows that (TT) and (12) actually
serve in TJADE the same purpose as their vector counterpart
in JADE.

Theorem 1. If 7, Uy, ...,
c=12and m=1,...
Clcma 7]_1

U, are as defined in (I0), then, for
, T, the matrices of fourth cumulants

.., p satisfy

A b

According to Theorem l U s1mu1taneous1y diagonalizes
all matrices CY,,(Xst), 4,7 = 1,...,pm, regardless of ¢,
giving two stralghtforward ways of estimating the m-mode
rotation U,,, using (O) with C*(x,;) replaced by Ci{m(Xst)
for the chosen value of c. However, in estimating an individual
matrix Ci{m(Xst) in (TI) or (I2) we have to estimate four
matrices in total, the last two of which are costly to estimate
because of the independent copies X*. Using the method of
the proof of Theorem [T] one can show that, analogously to the
vector-valued case,

Cij,m (XSt)

e e,

=B, — &, (0ijpml + EY + EY) BT

where Bij = Pm 'E [ (Xst O—m Xst)ej : (Xst O—m Xst)]
and 2, = p,'E X ©_ Xst] = 721, which provides a



natural estimator for 72. Similarly

Cy,. (X)) =By, — 2, (0,1 + pnEY + E) BT,
where BY, = prlE [(Xo ©—m Xt )EY (Xgp O Xot)]
and =,,, is as above.

Natural estimates for the previous matrices are provided by

~ e .. N .. AT

Co =BY &, (5ol +EY +EE,, (13
and

i 0ij e ij iy &l

Cy,, =By, — B, (6;1+pnEY +E)E,, (14
where i, = 1,...,pm, and the estimates Bljm, B” and 2,,
are obtained by applying the definitions of Blljm, B;{m and
=,, to the empirical distribution of X, includlng an empirical

standardization by ﬁlfl/ 2, N Sy 172 Choosing then either
of the sets, c = 1, 2, the rotation matrix UZ;L, m=1,...,r1is
found by simultaneous (approximate) diagonalization as

Pm Pm

Ul = argmax Y ) " |diag(UCY,, (X )UT)[I>. (15
U: UTU=1;27 j—
The corresponding estimates fJ =1,...,r, are obtained

by replacing in (T3) the matrlces C
mates C”
Comblmng the standardization and the rotation, the final

m(X st) with their esti-

TJADE algorithm for a sample, X; € RP1*"*Pr § =1 ... n,
consists of the following steps.

1) Center X; and estimate 21, ceey ﬁ]

2) Standardize: X; < X; ®1 2 12, - O 2_1/2

3) Choose ¢ and estimate the r rotations U
diagonalizing for each m = 1,.
sets Cém, L,i=1,...,pm.
4) Rotate: X; + X; 0, UT .. 0, UL,
Using Lemma 5.1.1 from [1]] the final result can be ertten
as the product X; ©; ®; - - - ®, ®,., where &, := UL 3 Sl
m=1,...,r,is the m-mode TIADE estimate.

g ,fJ,T by
, 7 simultaneously the

Remark 1. Technically, there is no reason why we could not
use different c for estimating different rotations U,,. However,
the asymptotic properties of the different approaches are in
the next section shown to be equivalent and thus the choice
of c is for large enough samples irrelevant.

For a vector valued x € RP and a full-rank matrix
A € RP*P| (AX)y; = Uxg for some orthogonal U [22].
Unfortunately, the analogous relation in the tensor setting,

(X®1 Al"'®1‘ Ar)st :Xst O1 Ul"'®r Ur (16)

for some orthogonal Uy, ..., U,, holds only for orthogonal
Ay, ...,A,. This lack of m-gffine equivariance of %,,(X),
m =1,...,r, is discussed in [1] along with a conjecture that
in the general tensor case, > 1, no standardization functional
exists which would lead into the property (I6). In practice this
means that outside the model (3) a change (other than rotation
or reflection) in the coordinate system leads into different
estimated components. However, the TIADE estimator is still
Fisher consistent by Theorem [I}

IV. ASYMPTOTIC PROPERTIES

The asymptotical properties of JADE were considered in
23], [19]], [24] and are in [19], [24] based on the fact that
the JADE functional is affine equivariant, allowing them to
consider only the case of no mixing, {2 = L. In the following
we consider the analogous case of €2, = L,...,Q, =1
for TJADE. However, because of the lack of full affine
equivariance, the results generalize only to orthogonal mixing
from all 7 modes.

For a tensor X € RP1**Pr define its m-flattening X,,) €
RPm*Pm ag the horizontal stacking of all m-mode vectors of
the tensor into a matrix in a predefined order, see [23] for
a rigorous definition. If the stacking order is assumed to be
cyclical in the dimensions in the sense of [25] we have for
X*:=X®; A;--- O A, the identity

S ® Am—l)T

a7)
The reason why m-flattening is particularly useful for us is that
it allows us to write the m-mode product of a tensor with itself
as an ordinary matrix product, namely X©_,, X = X(m)X(m),
regardless of the stacking order. This, combined with the fact
that the matrices C”m(X) depend on X only via the previous
product, implies that it is sufficient to derive the asymptotics
for the case r = 2 only. The results for tensors of order r > 2
are then obtained by applying the case » = 2 for each of
the m-flattened matrices X(y),...,Xy. Similarly, even for
the case » = 2 we only need to consider the 1-mode TJADE
estimate 'i'l (matrix multiplication from left) as the results
for &, follow by simply transposing X or, in the language of
tensors, flattening X from the second mode. Interestingly, we
also have no need to specify the used set of cumulant matrices
¢, as the two choices, ¢ = 1 and ¢ = 2, are shown to lead into
asymptotically equivalent estimators.

We next provide the asymptotic expressions for the elements
of the TJADE estimate ‘i>1 =: ® in the case of a matrix-
valued sample X; € RP**P2§ = 1 ... n. The asymptotic
properties of & can be shown to depend on row means of
various moments of Z, particularly on the elements of )
but also on the following

P2

_ (1) 1

B9 = LS (Eed )
P2
1 P2

o .= = Z (Var[z3], ..., Var[z plz]) g
P2

Define further the covariance of two rows of kurtoses as

1 & (1) 3(1
i =— Y (BuBr1) — BB,
P2
where Bri := E[z}]. To construct an asymptotic expression

for ® in Theorem [2| we need the terms



Sk = Z(

=1

I &K [1
. 3 3
Ak’ = — Z n Z (Zi,kl - E[Zkl]) Zik'l |
P2 i=1
P2 P2
22
1=110=1 i=1
VAl
the joint limiting normality of which is easy to show, assuming
the eighth moments of Z exist.

Theorem 2. Let Z1, ... ,Z,, be a random sample from a distri-
bution with finite eighth moments and satisfying Assumptions
[] Bland{|(see below). Then there exists a sequence of TIADE
estimates such that ® — p I and

o 1 R
Vin(orr — 1) = —*\/ﬁ(skk —1) +op(1),
Vitir + Vb — dig /nden
f¢]€k - (1) (1) +
(Fy, )% + (Rp)?
where k # kl 'Q[AJkk/ = ngl)(fkk/ + (jkk’) and dkk’ = (p2 -+
2)(ry) — Ru)) + (R
Using the expressions of Theorem P] the asymptotic vari-
ances of the elements of ® can now be computed.

E Zi,klZi k’l)

i=1

'fkk’ :—

OP(l)v

Corollary 1. Under the assumptions of Theorem 2| D\ the limiting
distribution of\/ﬁvec(i’ I) is multivariate normal with mean
vector 0 and the following asymptotic variances.

. 7](61) ~1
A Kk -
SV (d)kk) 4p2 )
2 G+ G + ()t — 268 R0 pra /
ASV (o) = DO . k#K,
pa((R)2 + (R())2)?
where G, == (R{))? [0 — (L)) + (B2 (R —2) (p2 - 1).

It is easily seen that the expressions in Corollary || revert
to the forms of Corollary 4 in [19] when r = 1, that is, we
observe just a vector X. In this case &(!) contains just the
element-wise kurtoses of the elements of z. Of the popular
ICA methods, FastICA, FOBI and JADE, it is well:known that
only for FOBI does the asymptotic behavior of ¢ depend
on components other than z; and zy/. The analogous result
holds also for TFOBI and TJADE in the sense that in TFOBI
the asymptotic behavior of ¢f,($,) depends on the whole tensor
Z [1]] and in TJADE only on the kth and k’th m-mode faces
of Z.

The denominators in Theorem [2]imply that for the existence
of the limiting distributions we need the following assumption.

Assumption 4. For each m = 1,...,
components of B\ is zero.

r, at most one of the

Assumption 4| for TIADE is much less restrictive than the
assumption needed for TFOBI, for each m = 1,...r the
components of 7(Mare distinct [[1], and the one needed for
vector JADE, at most one element of k is zero [19]]. More

specifically, in TJADE, and in tensor independent component
analysis in general, several individual elements of Z are
allowed to be Gaussian, as long as Assumption [3] is not
violated. Conveniently located, a majority of the elements of
Z can thus be Gaussian.

The analytical comparison of TIADE and TFOBI via the
asymptotic variances involves in general case rather compli-
cated expressions and thus we resort to simulations for their
comparison in the next section.

V. SIMULATIONS AND EXAMPLES

In the following all computations were done in R 3.1.2 [26]
especially using the R-packages JADE [27]], Rcpp [28l], [29]]
and ggplot2 [30]. For the approximate joint diagonalization,
an algorithm based on Jacobi rotations was used, see e.g [21].
Testing the algorithms in various settings showed that both
¢ =1 and ¢ = 2 yield almost identical results with respect to
the MDI-values (see below) but the former is computationally
more efficient and thus the TJADE solution in the simulations
is computed with the choice ¢ = 1.

A. Efficiency comparisons

We compared the separation performance of TJIADE with
its nearest competitor, TFOBI, and also with regular FOBI and
JADE as applied to vectorized tensor data, called here VFOBI
and VJADE. Note that VFOBI and VJADE do not use the prior
information on the data structure and are therefore expected to
be worse than TFOBI and TJADE. The simulation setting was
the same as in [1]]: we simulated n independent 3 x 4 matrix
observations with individual elements coming from a diverse
array of distributions. The excess kurtoses of the distributions
used were -1.2, -0.6, 0, 1, 2, 3,4, 5, 6, 8, 10 and 15 and the
exact distributions used are given in Appendix [A]

We generated 2000 repetitions for each of the sample sizes,
n = 1000, 2000, 4000, 8000, 16000, 32000, and for each sam-
ple the same data was mixed using three different distributions
for the elements of the 1-mode and 2-mode mixing matrices,
A and B. In the first case the mixing matrices were random
orthogonal matrices of sizes 3 x 3 and 4 x 4 distributed
uniformly with respect to the Haar measure. In the second
and third case the elements of both matrices were generated
independently from A/(0, 1) and Uniform(—1, 1) distributions,
respectively.

The mixed data were then subjected to each of the four
different methods which produced the four unmixing matrix
estimates, Py, (Borr @ @1 0p), Pyy and (o @
<i>17 wm.)- To allow comparing we took the Kronecker product
of the 2-mode and 1-mode unmixing matrices of TFOBI and
TJADE meaning that all the four previous matrices estimate
the inverse of the same matrix (B ® A), up to scaling, sign-
change and permutation of its columns.

The actual comparison was done by first computing the
minimum distance index (MDI) [31] of the estimates

D(®Q) = inf [C®Q —1||p,

p—1cec
where ® € RP*P is the estimated unmixing matrix, & € RP*P
is the true mixing matrix and C is the set of all p x p matrices



having a single non-zero element in each row and column.
MDI thus measures how far away ®Q is from the set C. The
index varies from O to 1 with O indicating that the separation
worked perfectly. In our simulation we further transformed
the MDI-values as n(p — 1)MDI? which in vector-valued
independent component analysis converges in distribution to a
random variable with finite mean and variance [31].

The mean transformed MDI-values for different sample
sizes, methods and mixing matrices are shown in Figure[I} The
lines for both FOBI and JADE are for all mixings identical
since both methods are affine equivariant. For TFOBI and
TJADE the separation is best under orthogonal mixing, the
results for normal and uniform mixing being a bit worse.
But the main implication of the plot is that none of the
other methods can really compete with TJADE in matrix
independent component analysis. Interestingly, also regular
JADE combined with vectorization is better than TFOBI.

B. Assumption comparisons

As our second simulation study we compared the four
methods of the previous simulation via their assumptions. For
this we constructed three simulation settings of 3 x 3 x 2 tensors
with independent elements having either Gaussian (N), Laplace
(L), exponential (E), or continuous uniform (U) distributions
standardized to have zero means and unit variances. The
distributions of the tensors are shown in the following by the
two 3 x 3 x 1 faces of each setting:

Setting 1 :

Setting 2 :

Setting 3 :

ZHH 2=z 3=
bz I o I e e e 5 N e
ZzZ2Z e HE
Z=z2Z2Z gcaac cacag
Zz22Z2 0 ac e a
Zz2Z B ac =g

It is easy to see that none of the above settings satisfies
the assumptions of VFOBI as all of them have at least two
identical components. Only setting 1 satifies the assumption of
TFOBI on distinct kurtosis means in all modes and settings 1
and 2 satisfy the assumption on maximally one component
having zero excess kurtosis required by VJADE. All three
settings satisfy Assumption [ on maximally one zero kurtosis
mean in each mode required by TJADE.

We simulated 2000 repetitions of all three settings for
different sample sizes using identity mixing and the resulting
transformed MDI-values of the four methods are depicted in
Figure [2] The above reasoning about the violation of assump-
tions is clearly visible in the plots. The mean transformed
MDI-values of the different methods break one-by-one when
the setting changes from 1 to 2 to 3 leaving TJADE as the
only method able to handle all three settings. Interestingly,
VJADE failed to converge 4601 times out of the 36000 total
repetitions across all settings, the majority of failures occurring
in the third setting.

The plot for setting 1 further indicates that there exist
cases where TFOBI beats VJADE, proving that, though very
efficient, the JADE methodology itself is not the only factor in
the superior performance of TJADE; the tensor structure also
plays an important role.

C. Real data example

Extreme kurtosis can be shown to be associated with multi-
modal distributions and thus independent component analysis
is commonly used as preprocessing step in classification to
obtain directions of interest. In this spirit we consider the
semeiorﬂ data set, available in the UCI Machine Learning
Repository [32] as a classification problem. The data consist
of 1593 binary 16 x 16 pixel images of hand-written digits.
For this example we chose only the images representing the
digits 0, 1 and 7, having respective group sizes of 161, 162
and 158. The objective is to find a few components separating
the three digits.

Subjecting the data to TJADE gives the results depicted in
Figure [3| The left-hand side plot shows the scatter plot of the
two resulting components with the lowest kurtoses using the
individual digit images as plot markers. Clearly the two found
directions are sufficient to separate all three groups of digits.
The same conclusion can be drawn from the corresponding
density estimators and rug plots on the right-hand side of
Figure 3] As a next step, some low-dimensional classification
algorithm could be applied to the extracted components to
create a classification rule.

VI. DISCUSSION

In this paper we proposed TJADE, an extension of the
classic JADE suited for tensor-valued observations. Based on
the same idea of diagonalizing multiple cumulant matrices as
JADE, TJIADE was shown to be very effective in solving the
independent component problem. In the course of the paper
we first reviewed the theory and the algorithm behind JADE
and then formulated TJADE analogously giving two different,
although asymptotically equivalent, ways of estimating the
needed rotations. The asymptotic behaviors of the elements
of the TJADE-estimates under orthogonal mixing were next
provided allowing theoretical comparison to other methods. Fi-
nally, simulation studies comparing TJADE to TFOBI, and the
naive approaches combining vectorization with either FOBI
or JADE showed that TJADE is superior to all the previous
competitors in tensor independent component analysis.

As the investigation of ICA methods for non-vector-valued
objects is still in an early stage, much further research is
needed. Below we outline some ideas planned to follow this
work.

As the number of matrices to jointly diagonalize in esti-
mating the m-mode rotation in TJADE grows proportional to
the square of the corresponding dimension p,,, an extension
like k-JADE [33] is worth considering also for TJADE.
And as a competing alternative also a tensor version of the
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Fig. 1. Plot of sample size versus the transformation n(p — 1)MDI? under combinations of the four different methods and three different distributions for
the mixing matrices.
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Fig. 2. Means of transformed MDI-values for different combinations of setting, sample-size and method. Moving from left to right, all other methods but
TJADE break down one-by-one.

FastICA algorithm will be investigated. This opens many the matrix and moving down and right, Uniform(—+v/3,v/3),
possibilities allowing choosing both the non-linearity function —Triangular(—+/6,1/6,0), N(0,1), ti, Gamma(3,/3),
g and the norm used in the maximization problem, see [35].  Laplace(0,1/v/2), x3, Gamma(1.2,/1.2), Exp(1), x% 5, x5

and InverseGaussian(1l,1). The distributions were further

APPENDIX shifted to have zero means and unit variances.

The distributions used in the first simulation of

Section [V| are, starting from the upper left corner of The proof of Theorem[I| Consider first the case ¢ = 1 and the
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Fig. 3. Results of applying TJADE on the semeion data. The plot on the left-hand side shows the scatter plot of the two components having the lowest
kurtoses found by TJADE with the individual images as markers. The three digits clearly form three groups in the plane. The density plots along with the
rugs on the right-hand side imply the same. The lower rug corresponds to the component with the lowest kurtosis (min_kurtosis_1) and the coloring of the

groups in the rugs is the same as in the scatter plot.

four terms in (IT) separately fixing the choice of m. Denoting
the first term of (TT) by By, (X), then according to Lemma
5.4.1 in [1]] we have

Bij,m<XSt)
4
T m
=T U.E [( )T Ly 20l

Pm

L2 | UL

where Z,,) is the flattened matrix defined in Section and
(u{™)T is the ith row of U,,,. Using the standard properties of
expected value and independent random variables the (k, k')
element of the inner expectation can be shown to be for k #
K equal to ulu'T) + ug’;)u%) and for k = k' equal to
8iiPm +u£,2n)u(;:)( ,gm) +2). Using these to construct a matrix
form for the expectation we have

Bi{m(Xst =7U0,, <Z ugzl)ugzl Ky,

+7 5ijpml + TEY + HE,

)Ekk> u?

The second, third and fourth terms in (]E[) then serve to remove
the extra constant terms above. That they indeed cancel one-
by-one the final terms can easily be shown by examining them
in the above manner using the independence of X and X*. This
concludes the proof for ¢ = 1 and the corresponding result for
¢ = 2 can be proven in precisely the same manner. O

The proof of Theorem 2] The consistency of the TJADE es-
timator is proven similarly as the consistency of the TFOBI
estimator in the proof of Theorem 5.2.1 in [1].

In the following we assume that r = 2 and we are interested
in the asymptotical behavior of the 1-mode unmixing matrix.
As discussed in Section for the general case of arbitrary
r and m-mode unmixing matrix, it suffices to m-flatten the
tensor and replace in the following 2 1/2 with Eml/z, 2;1/2
with 3312 @ .. ®2;1/2®21_1/2 @2 Y2 py with
pm and use the corresponding row mean quantities.

For the asymptotic expressions of the diagonal elements of
\/ﬁ(i)—l) it suffices to use the same arguments as in the proof
of Theorem 5.2.1 in [1]] and for the off-diagonal elements we
aim to use Lemma 2 from [19].

But first, define the symmetric standardization functionals
L= () =32/ 2 and R = (Fur) == XA]* giving the
standardized 1dent1ty -mixed observations as X, ; = = LZ, R7,
where Zl = Z; — Z. We then have

Vi(lgr = Ok ) = —(1/2)v/n(8kkr — dgrr) 4 op (1),

see [[L], and as simple moment-based estimators we have both
V(L —1) = Op(1) and /n(R — 1) = Op(1), regardless
of whether we really have r = 2 or use flattened tensors of
higher order.

Assume then first that ¢ = 1. The matrices C’fﬁ/, kK =
1,...,p, in (]E[) to be mmultaneous(y diagonalized satisfy
CH' = CHE o p YR (Zy) = iy EM*. Tn the view of



Lemma 2 in [19] this means that the only matrices C7* (Z;),
r,s = 1,...,p having non-zero kth or k’th diagonal ele-
ments are C}% (Z;) and Cklk/ (Z;), respectively, yielding the
following form for the (k, K ), k # k', element of the rotation
U := U7 estimated by (T3).

;cl)fckk/ - Iik/)fCQkk/:/
(—(1)) +(—(1))2 +or(l),
Ry Ry

where CF* is the (r,s) element of CF*. The above expression
then together with the (k, k'), k # k’, element of the left
standardization matrix L gives an asymptotic expression for
the off-diagonal elements of the estimated left TTADE matrix,
see [I1]:

Vit =

Vdur = Vg + vVl + op(1),

reducing the problem of finding the asymptotics of TJADE
into the task of finding the asymptotic behaviors of /n Chkk e

(18)

and /n Ckk, Dropping the subscripts for clarity, note that
C = B — E(pol + 2E°?)ET and starting from B write
it out as
. 1 o~ ps aamma o as oA
B = —) (LI'Z,R*ZTL,) - LZ,R*ZTL",
P2 i

where L' is the ath row of L and R* := RTR. An arbitrary
off-diagonal element of \/n(B** —B%*(Z;)) then has after the
matrix multiplication the form

~ 1 A oA A A ~
§ : A% Ak
\/ﬁ z%/ = pan \/ﬁrefrtuladlaglkslk’dee,gf,st,vu7

defgstuv

19)

where Hg. ,9f,st,ou = (]-/n) Z?:l Zi,degi,gfgi,stgi,vu —p
E(z, dezz,g le stZivu). Next we expand the multiplicands 7
and . i one-by-one such as [y, = (iab — Oab) + Oabs
the ﬁrst term of which is Op(1) when combined with /n
allowing the use of Slutsky’s theorem to the whole multiple
sum and the second term of which produces an expression like
(I9) only with one summation index less.

Starting from left this process then produces the terms
op(1); qp(l); Sar/ligir + 0as /Nl +0p(1); éak\/ﬁlkzk’ +
S/l + op(1); 5ak'(7€§c1/) + p2 + 2)vnlge + (1 —
Sat )P2y/Tilisy + 0p(1) and S (Y + p2 + 2)v/nljy + (1 —
6ak)p2\/ﬁik/k + op(1) finally leaving us with the expression

Z Vi 2 Z 25 aeZiktZi gt + op(1).

Substituting now either a = k or a = £/, expanding Z; o, =
Zi,ab — Zqb and using the quantities defined in Section the
expression in gets the forms \/n7yr + /ngrr + op(1)
and /nry g + /ndes + oP(l) respectively.

Using the above, e.g. \/n. Bkk, gets the form

(20)

(Po+2)V/nlige+ (RS 4o +2)V/nl ot/ g+ +0p(1). "

For the asymptotic behavior of the remaining term ';(pgl +
2R =T one can first use techniques similar to the above

to show for & = (Egrr) that /1 (Epp — Opr) = op(1) for

=
—

k # k'. Consequently an arbitrary off-diagonal element of
VI(E(poI + 2E*)ET — pol — 2E%) is also op(1) implying
that the term actually contributes nothing to the asymptotic
variances of the estimator. Thus \/nC%, = /nB{%, + op(1)
and the result of Theorem [2)is obtained by plugging everything
in into (I8) and using the fact that the standardization func-
tionals are symmetric. The asymptotic variances of Corollary
[[] are then straightforward to obtain, e.g. using the table of
covariances in the proof of Theorem 5.2.1 in [1]].

Although the starting expressions for ¢ = 1 and ¢ = 2 are
different the final expressions for both /n Ck + and \/ﬁéﬁ;ﬁ/
actually match exactly. The corresponding proof for ¢ = 2
is then obtained in exactly likewise manner, expanding the
terms suitably and using Slustky’s theorem, and is thus omitted
here. O
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