
Aligning Deos and RTEMS with the FACE Safety Base
Operating System Profile

Gedare Bloom
Howard University
Washington, D.C.

gedare@scs.howard.edu

Joel Sherrill
OAR Corporation

Huntsville, AL
joel.sherrill@oarcorp.com

Gary Gilliland
DDC-I, Inc.
Phoenix, AZ

ggilliland@ddci.com

ABSTRACT

The Open Group Future Airborne Capability Environment
(FACETM) Consortium has developed a reference architec-
ture and standard for real-time embedded avionics systems.
The FACE Technical Standard defines required capabilities
for real-time operating systems (RTOS), portable compo-
nents, and a shared data model to facilitate information
exchange between components. FACE RTOS requirements
are based on ARINC 653 and POSIX 1003.1b with tailor-
ing to address the safety and security needs of avionics sys-
tems. Deos is a safety-certified RTOS that supports AR-
INC 653 but not POSIX. In contrast, RTEMS is an open
source RTOS that supports POSIX but not ARINC 653.
Integrating a paravirtualized RTEMS with Deos combines
the strengths of both and provides a path to conformance
with the FACE Safety Base operating system profile. This
paper presents the FACE operating system profiles and dis-
cusses the technical challenges of the paravirtualization and
integration effort.

CCS Concepts

•Computer systems organization → Real-time oper-
ating systems; •Software and its engineering→Real-
time systems software;

Keywords

RTEMS, Deos, POSIX, FACE, paravirtualization, avionics

1. INTRODUCTION
The Open Group Future Airborne Capability Environ-

ment (FACETM) is a collaboration of US government and
industry to define an open avionics platform suitable for use
in both military and commercial aircraft. The Consortium
has developed a technical standard and conformance process
as well as implementation and business practice guidance.
The FACE Technical Standard (Edition 2.1 [8]) defines the
infrastructure and application structure required to ensure

EWiLi ’16, October 6th, 2016, Pittsburgh, USA.

Copyright retained by the authors.

application portability across platforms. This includes re-
quirements that impact the operating system, programming
languages, graphics support, and information interchange
between application components.

The FACE Technical Standard defines four operating sys-
tem profiles, which are a combination of the ARINC 653 [4]
and POSIX [3] standards. The profiles are designed to be
amenable to different levels of safety and security certifica-
tion. The capabilities provided by the RTOS are tailored
to meet the requirements of avionics systems. ARINC 653
support is required in three of the four operating system
profiles. When initially defined, no existing RTOS provided
all of the capabilities required to be FACE conformant.

Applications may either be written to the ARINC 653
APIs or to one of the four POSIX profiles. In three of the
POSIX profiles, the ARINC 653 services for health, sampling
ports, and queueing ports are required to be available for use
by POSIX applications while in the fourth profile, this ca-
pability is optional. Logically, this is two separate execution
environments hosted on an underlying operating system that
provides virtualized time and space isolation. There is no
requirement that both environments be the same operating
system, which led to our approach of using Deos together
with RTEMS to meet FACE conformance requirements.

DDC-I and OAR Corporation were tracking the FACE
Consortium effort, but both Deos and RTEMS had signif-
icant capabilities missing for conformance. Deos met the
FACE ARINC 653 RTOS requirements but did not meet
any of the POSIX requirements. RTEMS nearly completely
met the POSIX requirements for the single process Safety
Base profile but had no ARINC 653 support. After analysis
in conjunction with discussions, we decided that executing
a paravirtualized RTEMS in a Deos partition was a feasible
and affordable path to FACE Safety Base conformance that
offered a unique value proposition to end users. Combin-
ing Deos and RTEMS capabilities meets most of the FACE
operating system profile requirements. Purely POSIX appli-
cations can run under RTEMS, while ARINC 653 tasks can
run under Deos. For applications that require tasks with
both POSIX and ARINC 653 services we provide a novel
approach that supports tasks in Deos that request POSIX
services from an RTEMS task. The POSIX service is satis-
fied by RTEMS as if it were a library in another partition.
In this manner, application developers do not need to split
their application into tasks specifically to run under RTEMS
or Deos, and instead can rely on Deos and RTEMS to work
together to satisfy the POSIX and ARINC 653 interface re-
quirements.

SIGBED Review 15 Vol. 15, Num. 1, February 2018



Figure 1: FACE Architecture with Deos and RTEMS in the Operating System Segment (OSS). Other seg-
ments shown: Portable Components Segment (PCS), Platform-Specific Services Segment (PSSS) Transport
Services Segment (TSS), I/O Services Segment (IOSS).

In this paper, we provide an overview of the FACE oper-
ating system profile requirements, a discussion of the techni-
cal capabilities missing from Deos and RTEMS to meet the
Safety Base profile, and the activities required to integrate
the two RTOSes capabilities and jointly meet the profile re-
quirements.

2. BACKGROUND
The FACE Reference Architecture is defined in terms of

five segments. Figure 1 shows how these segments interface
with each other. The Portable Component Segment con-
tains portable business logic as components that are poten-
tially applicable to multiple avionics systems. These com-
ponents communicate solely using the Transport Services
Segment (TSS). The TSS is a critical segment in the FACE
Reference Architecture because all application information
exchanges are defined in terms of the FACE Shared Data
Model and transferred using TSS services. The Platform-
Specific Services Segment (PSSS) contains components that
include platform specific business logic and device interfaces.
PSSS components may interface with both the TSS and I/O
Services Segment (IOSS). The IOSS is comprised of software
components that provide a bridge between operating system
device drivers to the PSSS. The IOSS is accessed only by
PSSS components and does not use the TSS.

All of the FACE architectural segments are built on top
of the Operating System Segment (OSS), which includes the
operating system, programming language run-times, frame-
works, and health services. However, the foundation for all
architectural segments and the deployed platform is the real-
time operating system (RTOS) software within the OSS. As
shown in Figure 1, the OSS is the only segment that con-
nects with every other segment in the FACE architecture.

2.1 FACE Operating System Profiles
The FACE Technical Standard Edition 2.1 [8] defines four

operating system profiles. These profiles were carefully de-
signed to reflect the RTOS services and capabilities that had
been through avionics and medical safety and security cer-
tifications at various levels of criticality. All of these profiles
are subsets of the full POSIX 1003.1b standard, which in-
cludes approximately 1300 methods. The FACE operating
system profiles are as follows with the smaller profiles being
proper subsets of the larger profiles:

• Security - a single process profile that includes 136
POSIX methods and requires ARINC 653. This pro-
file was designed for an application such as an infor-
mation gateway. Applications written to this profile
do not exit; they execute forever. As such, methods to
delete, close, or destroy operating system objects are
not included.

• Safety Base - a single process profile which includes
246 POSIX methods and requires ARINC 653. This
profile also does not include methods used to delete or
close operating system objects.

• Safety Extended - a multiprocess, multithreaded pro-
file which includes 335 POSIX methods and requires
ARINC 653. This profile also does not include meth-
ods used to delete or close operating system objects.

• General Purpose - a multiprocess, multithreaded pro-
file which includes 812 POSIX methods. ARINC 653
support is optional. This profile addresses the needs
of applications which do not have safety certification
requirements and require richer POSIX support. This

SIGBED Review 16 Vol. 15, Num. 1, February 2018



Figure 2: System Architecture Across User-Kernel Modes.

profile includes methods used to delete or close oper-
ating system objects, and is also the only profile to
include stdin, stdout, and stderr.

POSIX partitions hosted on ARINC 653 RTOSes have ac-
cess to the ARINC 653 health services as well as sampling
and queueing ports. POSIX partitions may use shared mem-
ory, ARINC 653 ports, or TCP/IP to communicate with
applications in other partitions.

At first glance, the FACE profiles appear to duplicate
those defined by POSIX.13 [1], but there are significant dif-
ferences. For example, all FACE POSIX profiles include
networking while only two of the four defined by POSIX.13
include it. The largest difference is that the FACE profiles
were defined based on industry experience with avionics and
other safety qualification. This leads to methods considered
unsafe for multi-threaded programming like strtok() being
included in all profiles defined in POSIX.13-1998 but only in
the FACE General Purpose Profile. Even the largest FACE
profile, the General Purpose Profile, only includes 812 of
the over 1300 APIs in the full POSIX.1 standard. Thus
POSIX.13 and FACE are similar yet differ in purpose and
content.

2.2 Deos and RTEMS
RTEMS [7] and Deos [5] both have over twenty years of

history in the hard real-time safety critical RTOS domain
and have evolved to support standardized and non-standard
yet commonly used RTOS services. Deos is used in high-end
military and avionics safety-critical systems. RTEMS has
been deployed in many embedded applications and is best
known for its use in the space and physics communities.

DDC-I’s Deos is a time and space partitioned DO-178
Level A certifiable commercial off-the-shelf (COTS) RTOS
which addresses the high robustness and formal certifica-
tion requirements of avionics and safety critical applications
with full support for ARINC Specification 653 Part 1 and
Part 4. Deos meets all ARINC 653 requirements for FACE,
which is unsurprising since the FACE Technical Standard
Security and Safety profiles are based on years of industry
experience in developing real-time embedded applications.
However, Deos does not have the necessary POSIX support

to satisfy the conformance requirements for the Safety Base
OS profile.

RTEMS is an open source single process, multithreaded
RTOS with robust POSIX 1003.1b support. As a mature,
community-developed software system, RTEMS has wide
support for about fifteen processor architectures and over
175 board support packages. With user selectable scheduling
algorithms, it supports SMP on PowerPC, ARM, SPARC,
and x86 and has been tested on systems up to 24 cores.
RTEMS includes multiple file systems including in-memory,
FAT, JFFS2 and a custom RTEMS File System (RFS) for
real-time predictable performance. It also includes FreeBSD
TCP/IP and USB support. RTEMS does not have ARINC-
653 support so it cannot alone satisfy the Safety Base OS
profile, and yet when initially evaluated, RTEMS was miss-
ing fewer than 10 of the 246 POSIX methods required by
this profile.

Interestingly, evaluated against the multiprocess FACE
General Purpose OS profile RTEMS does surprisingly well,
supporting approximately 90% of the methods required. Re-
quired capabilities like fork()/exec() and process groups
are beyond the single process target profile for RTEMS.
However, many of the methods required by the FACE pro-
files are not thread concurrency and synchronization related,
but instead are part of the Standard C Library. RTEMS uses
the Newlib C Library, which is also used by Cygwin. Most
of the missing methods do not require a multiprocessing op-
erating system. Newlib does not support <fenv.h> or long
double complex math, and these account for most of the
missing methods that RTEMS could support.

3. ACHIEVING FACE CONFORMANCE
In order to meet the requirements of the Safety Base

OS profile, we chose to paravirtualize RTEMS for efficient
execution within a Deos partition, or container, that pro-
vides the required POSIX services. Applications therefore
will be partitioned by Deos with ARINC-653 tasks, native
tasks scheduled according to the rate monotonic algorithm
(RMA), and POSIX application threads or services that are
accessed through calls into the RTEMS partition. Figure 2
depicts this partitioning and the placement of the user-kernel

SIGBED Review 17 Vol. 15, Num. 1, February 2018



Figure 3: Scheduling of threads across ARINC-653 partitions (provided by Deos), RTEMS POSIX environ-
ment, and other rate monotonic (RMA) tasks inside Deos. At the start of each RTEMS partition a time
budget exceeded exception is delivered from Deos to RTEMS and used by RTEMS to update time accounting.
The elapsed time between RTEMS partitions is calculated by subtracting the RTEMS time budget from the
inter-partition scheduling gap (w1 −w0).

boundary in the combined system. Some of the required
POSIX services were missing from RTEMS, and we have
started to add those services as well. Beyond conformance
this effort is also aiming to promote a positive user expe-
rience by integrating the development environments of the
two RTOSes.

3.1 Paravirtualizing RTEMS for Deos
Figure 3 shows how Deos schedules the POSIX applica-

tions in the RTEMS partition concurrently to the ARINC-
653 and other native tasks. The beauty of this design is
that core attributes of both RTOSes are preserved. Deos
is unmodified and retains its Level A certifiability. RTEMS
remains an open source RTOS with all of its capabilities
intact. Moreover, each RTOS can be used independently
just as they can now. In fact, within limits, bare metal
RTEMS can host FACE conformant applications that can
be easily migrated to the fully conformant Deos/RTEMS
environment.

RTEMS paravirtualization support had to be provided for
Deos as well as a Deos run-time adapter layer. The par-
avirtualization support allows RTEMS to execute in user
space (i.e. no privileged or sensitive instructions) and pro-
vides critical sections, proper memory layout, and interac-
tions with the Deos kernel for timing and I/O. Since Deos
and RTEMS both use the GNU tools for cross development
and the Executable and Link Format (ELF) object format, it
was straightforward to compile an RTEMS executable which
could be loaded by the Deos loader. Initially implemented on
the x86 architecture, the Deos adapter layer currently maps
video memory for framebuffer output and a COM port for
serial I/O to the RTEMS partition.

One of the design choices was whether or not the RTEMS
IDLE thread should yield the time window back to Deos. In
an SMP system, a single core going idle does not imply that
all cores are idle, and detecting when all cores go idle may be
impractical to detect on an SMP Deos partition. Even on a
uniprocess system, it is possible that a periodic task should
release a job during the current partition execution window.
Thus, RTEMS partitions consume the entire allotted execu-
tion time. This results in the partition always ending with

a time budget exceeded exception. As we discuss next, this
exception also simplifies the time management across the
RTEMS and Deos layers.

A critical issue to the correctness of the integration of
the two RTOSes is the handling of time. RTEMS normally
executes in bare metal environments, is fully aware of the
passage of time, and goes to great pains to manage time
correctly. In a time and space partitioned environment, an
RTEMS partition will be unaware of how much time has
passed while it was not executing. Partitions in an ARINC
653 environment execute in an order specified by the sys-
tem integrator with no concept of the passage of time while
they are not running. This lack of global time knowledge in
RTEMS leads to the following problems:

1. Time keeping mechanisms rely on periodic clock tick
interrupts.

2. Accurate timestamps require knowledge of length of
time since last clock tick.

3. Obtaining precise interval timeouts (e.g. delay for fifty
milliseconds)

4. Maintaining the time of day.

5. Keeping CPU usage statistics for each thread that ex-
ecutes.

6. Tracking wall time for rate monotonic periods each
periodic task.

To deal with these problems, RTEMS needs a few sim-
ple mechanisms to account for the accurate passage of time.
The approach we are taking is to consume all of the budgeted
time given to the RTEMS partition, which will cause a“time
budget exceeded exception” to be delivered at the start of
each new scheduling window for the partition. This excep-
tion is where the passage of time is tracked. During RTEMS
initialization, the Deos adapter clock tick device driver ob-
tains an initial uptime. The exception handler obtains the
uptime from Deos and calculates the length of time that this
RTEMS partition was not executing. As a side effect of this

SIGBED Review 18 Vol. 15, Num. 1, February 2018



design choice, RTEMS threads that block for any service
will not unblock during the same scheduling window. The
RTEMS clock driver obtains the Deos uptime at any point
to track passage of time during RTEMS execution.

One challenge introduced by the time management ap-
proach is that variable lengths of time elapse when RTEMS
is not executing, and that elapsed time could cause more
than one clock tick to expire. Hence, we are carefully study-
ing the effects of variable length ticks and multiple ticks on
the kernel services of RTEMS.

Another challenge is that task executions may span sched-
uler windows. For example, in Figure 3 the execution of
TC2 in the figure is entirely within a single time window and
RTEMS can know both the starting and ending execution
time for that thread. However, the execution time for TC3

is at the end of one window and the beginning of the next
with at least one other partition execution between those two
fragments. The exception-based variable clock tick based on
the beginning of time windows does not mark the end of a
time window. To overcome this challenge, RTEMS gets the
uptime in nanoseconds at the start of a window (w1) and
deducts the elapsed time at the start of the previous win-
dow (w0) to determine the inter-partition scheduling gap
(w1 − w0) inclusive of the execution time of the previous
window. To also remove that execution time simply deduct
the budget.

The FACE Technical Standard includes two requirements
related to setting the date and time. First, the RTOS must
support configuring which partitions are allowed to set the
date and time. Second, setting the time must set the date
and time on all partitions in the system. The first require-
ment results in Deos having a configuration parameter to
determine if a partition can set the time. This configuration
information is used to reject attempts to set the time when
a partition does not have sufficient permission. The sec-
ond requirement imposes changes on RTEMS, and possibly
Deos. In the normal bare metal configuration, RTEMS does
not have to pass the date and time set operation to another
RTOS. In the paravirtualized Deos/RTEMS environment,
RTEMS has to reflect the set operation to the Deos kernel.
If Deos allows this partition to set the time, then the other
partitions will be notified of the time change when they ex-
ecute. For RTEMS to know that the underlying Deos time
has changed we consider adding a generation counter to the
Deos time and ensuring that the RTEMS partition checks
this at the beginning of each execution window. This re-
quires an addition to Deos. Alternatively, since RTEMS
knows the elapsed time between windows by the calculation
of (w1 − w0), then RTEMS could also store the previous
underlying Deos wall time and compare that with the cur-
rent Deos wall time plus the inter-partition scheduling gap
to detect that the Deos wall time has been changed while
the RTEMS partition was not executing.

3.2 Missing POSIX Services in RTEMS
The required POSIX services missing from RTEMS, listed

in Table 1, can be broken into two categories. The first cat-
egory includes services that require a memory management
unit (MMU) and virtual memory environment. RTEMS
does not have virtual memory and only has limited sup-
port for MMUs. When hosted in a Deos partition, RTEMS
must integrate with the underlying kernel to provide POSIX
shared memory and memory mapping. The second category

of missing services are those that could be fully supported
in the normal, non-MMU RTEMS execution environment.
These services just have not been demanded yet by the
RTEMS user community.

The FACE Safety Base operating system profile requires
the shm_open() and mmap() methods but does not require
the shm_unlink(), munmap(), mlockall(), munlockall(),
mlock(), munlock(), or mprotect() methods. Deos natively
supports named shared memory and mappable memory re-
gions, which are statically configured by the system inte-
grator. RTEMS is being augmented to provide the POSIX
services by calling through the paravirtualization layer to
access the Deos kernel specific memory management ser-
vices. Although not required, shm_unlink() and munmap()

are natural to provide. The memory locking and protection
APIs may be provided in the future, but since global mem-
ory objects and their accessibility are statically configured
and there is no paging of memory to storage, they provide
little value.

The first missing POSIX APIs added to RTEMS were
pthread_getconcurrency() / pthread_setconcurrency().
These are rarely used methods that specify the desired map-
ping of user threads onto kernel threads. RTEMS imple-
ments a 1:1 mapping. The POSIX standard is very specific
on the implementation when an operating system directly
maps user threads onto kernel threads. The value set by
pthread_setconcurrency() is to be returned by pthread_

getconcurrency() and otherwise have no impact. This was
trivial to implement and is fully supported in the normal
bare metal RTEMS usage.

The next missing service was pthread_setschedprio().
This method is used to set the priority of a thread with-
out the side-effect of yielding the processor to threads of the
same priority. It also provides a simplified interface com-
pared to pthread_setschedparam which supports changing
the scheduling policy and parameters of a thread. RTEMS
already had internal support for altering a thread’s priority
without yielding and pthread_setschedprio() was similar
to the Classic API method rtems_task_set_priority().
This methods was trivial to implement and is fully supported
in the normal bare metal RTEMS usage.

The missing methods to associate a POSIX clock with a
condition variable proved more complicated to implement.
The pthread_condattr_getclock() and pthread_condattr

_setclock() methods are themselves trivial to implement,
but the implication is that timeouts on a condition variable
can be based on either wall time (e.g. CLOCK_REALTIME) or
absolute time (e.g. CLOCK_MONOTONIC). Most RTEMS time
outs are in terms of intervals that are logically comparable
to the intent of using CLOCK_MONOTONIC. However, the con-
dition variable manager in RTEMS did not support multiple
clocks and support had to be added. Also, the POSIX timer
and clock services had to be reviewed in regards to their
support for multiple clocks and fixed where necessary. Ad-
ditionally, until recently, internally all time events using wall
time had a granularity of one second. Coincidentally, this
restriction was only recently removed as part of improving
time management for SMP systems.

The FACE operating system profiles include the posix

_devctl() method, which is from POSIX 1003.26 [2]. This
method provides a standardized alternative to ioctl(), but
neither GNU/Linux nor FreeBSD implement it. The FACE
Technical Standard only requires that this method support

SIGBED Review 19 Vol. 15, Num. 1, February 2018



POSIX Method Functional Group
shm_open POSIX SHARED MEMORY OBJECTS
mmap POSIX MAPPED FILES
pthread_getconcurrency XSI THREADS EXT
pthread_setconcurrency XSI THREADS EXT
pthread_condattr_getclock POSIX CLOCK SELECTION
pthread_condattr_setclock POSIX CLOCK SELECTION
pthread_setschedprio POSIX THREAD PRIORITY SCHEDULING
posix_devctl IEEE Std 1003.26

Table 1: POSIX services required for FACE Safety Base not implemented in RTEMS at initial review. The
remaining service to be implemented is mmap of shared memory objects.

the use of FIONBIO to allow for non-blocking operations on
sockets. Based on POSIX 1003.26, posix_devctl() was im-
plemented as a wrapper for the already supported ioctl()

method. This results in RTEMS having a POSIX standard
interface to control devices, and more closely aligns RTEMS
with the FACE Safety Base operating system profile.

3.3 Development Tools
No matter how technically capable the run-time environ-

ment is, the user’s experience is driven by how well the
RTEMS POSIX support is integrated with the native Deos
development environment. RTEMS applications will be com-
piled using the normal RTEMS GNU toolset but using the
OpenArbor Eclipse IDE. This IDE now provides templates
for both native Deos and RTEMS POSIX applications. It
supports configuring partition time and space attributes as
well as the partition execution schedule. OpenArbor sup-
ports timeline visualization and inspection of Deos run-time
characteristics. That is, it allows the user to view applica-
tion status at a given point in time. That status includes
several types of information for RTEMS and Deos:

• Processes: Users can view the set of processes that are
active and various attributes of each process, including
the threads it contains and quotas in terms of budgeted
resources versus actual usage (e.g., RAM, semaphores,
mutexes, events, etc.).

• Threads: Users can view the set of threads that are
active on a global basis or on a process by process ba-
sis including various attributes of each thread such as
execution rate, execution time budgeted versus time
actually used in the period being viewed, stack size
budgeted versus stack actually used, exceptions expe-
rienced by the thread, and events logged by the thread.

3.4 Performance
At this time, no performance measurements have been

gathered. However, no modifications have been made to
Deos as part of this integration effort. Therefore, its perfor-
mance will not change.

The paravirtualization of RTEMS does result in minor
changes versus a bare metal configuration. The primary
change from a performance viewpoint is that the interrupt
disable/enable methods cannot use supervisor instructions
and thus must be adapted to user space in the partition.
However, the implementation is very light using atomic syn-
chronization instructions instead of disabling interrupts. Per-
formance should be comparable to the bare metal alterna-
tive of disabling maskable interrupts via special instructions.

Clock ticks occur as a side-effect of the Deos time window
exceeded exception and these are processed at the beginning
of each execution window. If this exception occurs during
the middle of an interrupt disable critical section, the clock
tick processing is deferred and performed as part of enabling
interrupts.

Otherwise, the paravirtualization is focused on I/O and
memory layout in the partition, which has no impact on
performance of concurrency and synchronization primitives
for managing threads.

4. RELATED WORK
Closely related is the AIR and AIR-II software architec-

tures that provide an ARINC-653 environment by using the
AIR Partition Management microkernel as the privileged
kernel and adding an application executive (APEX) Layer
to translate APEX calls into POSIX or native RTOS system
calls so that APEX services can be satisfied by COTS RTOS
software to be ARINC-653 compliant. We focus on FACE
compliance, and are also pursuing the use of inter-partition
communication to access required services satisfied by the
RTEMS kernel on behalf of applications executing in a (non-
RTEMS) partition. Also related to this project is the use of
virtualization to implement a separation kernel, an approach
used to support integrated modular avionics by PikeOS and
XtratuM [11]. These systems have not demonstrated FACE
compliance, and they do not put required services in a guest
partition. They do however provide temporal and spatial
isolation similarly to Deos.

Related to the paravirtualization aspects of this project
are VMXHAL [12] and Fiasco.OC [13], both based on the
L4 microkernel. Other virtualization approaches that use a
designated virtual machine to export sensitive services and
manage the hypervisor, e.g. Xen’s dom0, are related as well.
None of these prior approaches in virtualization apply to the
avionics application domain.

Separation kernels are also prevalent in approaches to pro-
vide complementary safety and security mechanisms, the
most prominent being MILS [9]. Since MILS provides strong
security guarantees especially related to confidentiality and
integrity, it is not plausible to export services between par-
titions without substantial effort to certify or monitor the
information flow between them.

An alternative solution to using partitioned services is to
integrate multiple application programming interfaces (APIs)
in the same kernel. This approach is already done to some
extent by most kernels, for example Deos provides for AR-
INC 653 and custom rate monotonic task interfaces, while
RTEMS supports POSIX, Classic, and (now deprecated)

SIGBED Review 20 Vol. 15, Num. 1, February 2018



ITRON APIs [10]. Of particular yet orthogonal relation
to our work, AUTOBEST [14] demonstrates the fusion of
two APIs, AUTOSAR and ARINC 653, to provide a unified
kernel that can support both avionics and automotive appli-
cations. This approach however requires extensive software
engineering at kernel and library levels to realize efficient and
correct integration and implementation of multiple APIs on
a shared code base.

5. CONCLUSION AND FUTURE WORK
At this point, RTEMS applications can be executed in

a Deos partition and most of the FACE operating system
requirements are met. There is still implementation work
underway with current RTEMS-related activities focused
on RTEMS support for POSIX shared memory and mmap
APIs, ensuring that timing in the paravirtualized environ-
ment reflects external reality, and porting beyond x86 ini-
tially to the PowerPC, which is commonly used for avionics.
All improvements to the RTEMS POSIX implementation
have been merged with the RTEMS public git repository. No
specific modifications to Deos have been made at this time,
although we anticipate modifying the Deos Lightweight IP
stack (lwIP) TCP/IP stack [6] to meet FACE operating sys-
tem networking requirements. Most Deos activities have
been focused on integrating RTEMS POSIX application sup-
port into the OpenArbor Eclipse IDE and identifying oppor-
tunities for tighter integration between the RTEMS POSIX
environment and the IDE that could improve the user expe-
rience. There is significant industry interest in the combined
Deos/RTEMS environment as it becomes more aligned with
the FACE Technical Standard. When Deos/RTEMS is com-
pletely aligned with the FACE Safety Base Operating Sys-
tem profile, it will be submitted to a FACE Verification Au-
thority for conformance verification review.

6. ACKNOWLEDGMENTS
FACE is a registered trademark of The Open Group. Deos

and OpenArbor are registered trademarks of DDC-I, Inc.
RTEMS is a trademark of Online Applications Research
Corporation. This project is supported by the author’s re-
spective employers, however any opinions, findings, and con-
clusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views
of their employer(s). This material is based upon work sup-
ported by the National Science Foundation under Grant No.
CNS 1646317.

7. REFERENCES

[1] Ieee standard for information technology -
standardized application environment profile - posix(r)
realtime application support (aep). IEEE Std
1003.13-1998, pages i–, 1999.

[2] IEEE standard for information technology - portable
operating system interface (POSIX) - part 26: Device
control application program interface (API) [c
language]. IEEE Std 1003.26-2003, pages 0 1–31, 2004.

[3] Standard for information technology portable
operating system interface (POSIX(R)) base
specifications, issue 7. IEEE Std 1003.1, 2013 Edition
(incorporates IEEE Std 1003.1-2008, and IEEE Std
1003.1-2008/Cor 1-2013), pages 1–3906, April 2013.

[4] ARINC Specification 653 P1-4, Avionics Application
Software Standard Interface, Part 1: Required
Services, 2015.

[5] Deos: A time and space partitioned DO-178 Level A
certifiable RTOS, 2016.
http://www.ddci.com/products deos/.

[6] The lightweightip stack (lwIP), 2016.
http://www.nongnu.org/lwip.

[7] RTEMS real time operating system (RTOS), 2016.
https://www.rtems.org/.

[8] Technical standard for Future Airborne Capability
Environment (FACE), edition 2.1, May 2014.
http://www.opengroup.org/face/tech-standard-2.1.

[9] J. Alves-Foss, P. Oman, R. Bradetich, X. He, and
J. Song. Implications of Multi-Core Architectures on
the Development of Multiple Independent Levels of
Security (MILS) Compliant Systems. Technical report,
Oct. 2012.

[10] G. Bloom and J. Sherrill. Scheduling and thread
management with rtems. SIGBED Rev., 11(1):20–25,
Feb. 2014.

[11] A. Crespo, I. Ripoll, M. Masmano, P. Arberet, and
J. Metge. Xtratum an open source hypervisor for tsp
embedded systems in aerospace. Data Systems In
Aerospace DASIA, Istanbul, Turkey, 2009.

[12] L. Mogosanu, M. Carabas, R. Deaconescu,
L. Gheorghe, and V. G. Voiculescu. VMXHAL: A
Versatile Virtualization Framework for Embedded
Systems. Journal of Control Engineering and Applied
Informatics, 18(1):68–77, Mar. 2016.

[13] J. Werner. Improving Virtualization Support in the
Fiasco. OC Microkernel. PhD thesis, tu-berlin, 2012.

[14] A. Zuepke, M. Bommert, and D. Lohmann.
AUTOBEST: a united AUTOSAR-OS and ARINC
653 kernel. In 21st IEEE Real-Time and Embedded
Technology and Applications Symposium, pages
133–144, Apr. 2015.

SIGBED Review 21 Vol. 15, Num. 1, February 2018


	paper7.pdf
	Introduction
	Related Works
	Software Architecture
	Real Time OS
	FreeRTOS Additions
	MPU Extension
	Safety Extensions
	Graceful Task Termination - Killer Task

	IO Virtualization Architecture
	Virtual IO Library
	Virtual IO Task

	Dynamic Linking

	Experimental Results
	Virtual IO Layer
	Virtual IO Layer Timing
	Virtual IO Layer Memory Footprint

	Dynamic Linking

	Conclusions
	Acknowledgments
	References

	paper8.pdf
	Introduction
	Motivation
	I/O scheduling in virtualized environments
	Multi-Core partitioning and virtualization
	Perfomance and security issues introduced by I/O virtualization
	Deadline-aware I/O scheduling
	Real-time issues in SSDs
	Conclusions
	References


