
1696 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 4, APRIL 2017
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Virtualized Small Cell Networks With
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Zheng Chang, Member, IEEE, Zhu Han, Fellow, IEEE, and Tapani Ristaniemi, Senior Member, IEEE

Abstract— Wireless network virtualization is envisioned as a
promising framework to provide efficient and customized services
for next-generation wireless networks. In wireless virtualized
networks (WVNs), limited radio resources are shared among
different services providers for providing services to different
users with heterogeneous demands. In this paper, we propose a
resource allocation scheme for an orthogonal frequency division
multiplexing-based WVN, where one small cell base station
equipped with a large number of antennas serves the users
with different service requirements. In particular, with the
objective to obtain the energy efficiency in the uplink, a joint
power, subcarrier, and antenna allocation problem is presented
considering availability of both perfect and imperfect channel
state information. Subsequently, relaxation and variable transfor-
mation are applied to develop the efficient algorithm to solve the
formulated non-convex and combinational optimization problem.
Extensive simulation studies demonstrate the advantages of our
presented system architecture and proposed schemes.

Index Terms— Wireless network virtualization, resource
allocation, large scale multiple antenna system, energy efficiency,
small cell.

I. INTRODUCTION

T
HE AIM of 5G is to provide ubiquitous connectivity
for any kind of devices and any kind of applications

that may benefit from being connected, which may require
1000-fold more capacity, extreme low-latency (under 1 ms),
and low energy consumption (90% reduction) for trillions
of devices [1]. To realize the vision of essentially unlim-
ited access to information and sharing of data anywhere
and anytime for anyone and anything, the recent emerging
mobile platforms, such as Software Defined Network (SDN)
and Network Function Virtualization (NFV), bring us novel
views on the current cellular wireless networks, which urge to
rethink the current network infrastructure. The recent advances
also open the way to expand SDN/NFV concepts to Radio
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Access Networks (RANs), creating thus the Wireless Virtu-
alized Networks (WVNs) framework where the execution of
RAN functions is moved from dedicated telecom hardware to
commoditized IT platforms owned by multiple Infrastructure
Providers (InPs). In the context of WVN, both infrastructure
and radio resources can be abstracted, sliced and shared [2],
and a mobile network operator can rent the radio resources
in a virtualized manner. Consequently, the overall expenses
of wireless network deployment and operation can be signifi-
cantly reduced as well [3]. In short, WVN can be considered as
the technology in which physical wireless network infrastruc-
ture and physical radio resources are abstracted and sliced into
virtual wireless resources, and shared by multiple parties with
a certain degree of isolation between them.

Although the WVN has the envisioned potential to improve
the utilization of wireless resource for the future 5G net-
works, how to operate it in an efficient manner is still under
investigation. Moreover, how to successfully merge or com-
bine the other recent advances with the WVN requires
dedicated efforts. With wireless virtualization, the wireless
network infrastructure can be decoupled for different ser-
vices providers, from the services that they provides. Hence,
differentiated services can coexist on the same physical
infrastructure and their utilities can be maximized accordingly.
After the physical resources are abstracted and virtualized,
they can be divided into multiple virtual slices and then
allocate to different operators or virtual networks. By vir-
tualizing the uplink and downlink resources into slices, the
network can operate in a dynamic and reconfigurable manner
to fulfill the diverse requirements of the users in different
slices.

Meanwhile, on the way towards the gigabytes transmission,
it can be expected that the number of antennas at the Base
Station (BS) becomes relative large. The resulted large scale
multiple antenna system or so call massive Multi-input Multi-
output (MIMO) system, will consist of hundreds of deployed
antennas at the BS [1]. The increase of number of antennas at
the BS can inevitably bring capacity gain to the system in order
to provide high speed service rates to a large number of users.
On the other hand, the large scale multiple antenna system also
faces many challenges, of which the Energy Efficiency (EE)
issues emerges as a significant one [4]. As the number of
antennas goes large, the relevant energy consumption also
increments if all the antennas are active all the time. Thus, how
to efficiently operate the BS with a large number of antennas
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to reduce the energy cost while maintaining the quality of high
speed services induces a careful design from the EE point of
view.

The investigations on wireless networks virtualization have
attracted many interests recently. Liang and Yu [3], [5] provide
the overview on the general framework for wireless virtu-
alization and propose a virtual resource allocation scheme
for virtualized networks, respectively. A wireless resource
slicing scheme has been presented in [6], which can flexibly
partition fragmented frequency spectrum into different slices
that share the RF front end and antenna. By such, it is
shown that the proposed idea can provide a general and clean
abstraction to exploit fragmented spectrum in dense deployed
WiFi networks. Kamel et al. [8] propose a virtualization
framework for LTE systems, where the eNB and physical
resources are allocated to the service providers by a central
entity called hypervior. It can be found that there are several
main challenges that WNV faces, including capacity limita-
tion, complete isolation among different coexisted services and
signaling overhead [9]. Tseliou et al. [9] take into account
these challenges and propose a solution for the multiple
operator networks where baseband modules of distributed BSs
cooperate to reallocate radio resources based on the traffic
dynamics. Moreover, insightful discussion on the additional
signaling overhead is presented. In [10], the performances
of different mobile network sharing schemes, ranging from
simple approaches in traditional networks to complex meth-
ods that require virtualized infrastructure, are investigated.
Utilizing the game theoretic approaches, the authors present a
stochastic game framework in [11] to model the interactions
between service providers and InPs. Zhu and Zhang present
different power and spectrum allocation schemes for the WVN
by using game theory. Considering a Cloud-RAN based small
cell network with wireless virtualization, Zhang et al. [13]
present an user-cell association scheme to achieve the target
of energy saving and interference limitation. Ibrahim et al. [14]
present a tractable analytical model for virtualized down-
link cellular networks using tools from stochastic geometry.
In [15], the virtual resource allocation problem in virtualized
small cell networks with full-duplex self-backhaul has been
studied.

At the same time, EE in a multiple antenna sys-
tem has received increasing attentions as well [17]–[19].
Reference [17] has studied the mutual information quantity
optimization problem of the MIMO system, showing that
increasing number of used antenna leads to the spectrum
efficiency increment. As a matter of fact, although the use of
MIMO can improve the system spectrum efficiency, the use
of a large number of antennas brings significant problem to
the EE design. Therefore, for the massive MIMO system,
the number of selected antennas should be decided in an
optimized manner. The authors focus the performance of
transmitting and receiving antenna selection when estimation
error exists [18]. In [19], two antenna selection algorithms are
presented. Jumba et al. [20] combine the concept of massive
MIMO and WVN, and then present resource allocation scheme
to maximize the throughput performance for such an advanced
framework.

As we can see, the small cell network with massive MIMO
emerges as as one of the key components of next-generation
cellular networks to improve spectrum efficiency. Despite the
potential vision of small cell networks with massive MIMO,
many research challenges still need to be addressed. One of the
main research challenges is resource allocation, which plays
a significant role in traditional wireless networks. As WNV
directs a potential route towards efficient resource allocation
operation by resources abstraction and virtualization, it can
offer us a novel view on managing massive antennas in a
small cell networks. By such, the resource can be divided into
multiple virtual slices and then allocate to different operators
so that a dynamic and reconfigurable operation can be achieved
to fulfill the diverse requirements of the users in different
slices. In this work, our goal is to investigate the problem of
resource allocation for achieving uplink EE considering small
cell network virtualization. Compared to the aforementioned
works, our contributions can be summarized as follows,

• We present the WVN architecture, where a small cell BS
(SBS) with a large number of antennas serves a number
of users via resource slicing. In the proposed virtualized
networks, a joint resource allocation optimization prob-
lem for uplink transmission containing power, subcarrier
and antenna allocation is formulated with the objective to
maximize the EE while maintaining the service quality of
each slice.

• To solve formulated mixed combinatorial and non-convex
optimization problem, we apply the nonlinear fractional
programming method and transfer the original problem
into a subtractive form. Then the constraints of the trans-
formed form can be further relaxed and addressed in the
dual domain. In addition to the consideration of perfect
knowledge of Channel State Information (CSI), we also
take the practical issue that imperfect CSI knowledge is
available into account into consideration when executing
resource allocation decision. By such, the robustness of
the proposed scheme can be enhanced.

• The effectiveness of the proposed scheme is demonstrated
through extensive simulations. It is shown that by uti-
lizing the WVN in the small cell networks with the
proposed virtual resource allocation algorithm, superior
performance can be obtained.

The rest of this paper is organized as follows. Section II
describes the system model and assumptions. We present the
problem formulation in Section III and propose a resource
allocation algorithm in Section IV. The performance evaluation
is illustrated in Section V through simulation study, and we
finally conclude this work in Section VI.

II. SYSTEM MODEL

A. Wireless Virtualized Networks

Virtualization has recently moved from traditional server
virtualization to wireless virtualization. In stead of virtualizing
the computing resources in server virtualization, in the WNV
technologies, physical wireless network infrastructure and
radio resources can be abstracted and sliced into virtual
wireless network resources holding certain corresponding



1698 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 65, NO. 4, APRIL 2017

Fig. 1. Wireless Network Virtualization

functionalities, and shared by multiple parties through
isolating each other [9]. Therefore, the physical resources of
the InPs need to be abstracted to isolated virtual resources.
Then, the virtual resources can be offered to different Network
Service Providers (NSPs), who concentrate on providing
services to the users. In Fig. 1, a simple illustration of
wireless virtualization is presented. Following the general
frameworks of WVN [3], [7], [9], in order to offer service
to the users, the NSPs in Fig. 1 will ask the InPs about
the radio resources. Then, the physical resources, including
spectrum, and infrastructures from different InPs will be
handled by the physical network controller. The resources can
then be abstracted, virtualized and sliced to different virtual
resources and provided to different NSPs according to their
demands. The virtualization is done by the Mobile Virtual
Network Operator (MVNO), of which the rule is to lease and
virtualize the physical networks into virtual network based
on the requests of NSPs. End users logically connect to the
virtual network through which they subscribe to the service,
while they physically connect to the cellular network.

In order for the NSPs to provide services to the end-users,
attracted and virtualized resources are provided to different
NSPs in terms of resource slices. Each resource slice contains
a certain amount of radio resources, such as power, frequency
spectrum, antennas and related hardware in Fig. 1. The amount
of resources that can be allocated to one slice should be based
on the Quality of Service (QoS) requirements of the service it
needs to provide and the total system utility. To maximize the
total utility of all MVNOs, the resource allocation schemes for
WVN should be developed to dynamically allocate the virtual
resources from the physical substrate wireless networks and
then provide services to different users.

The whole virtualization process can be realized in the
following way. First, virtual slices can be used to model
the virtual resources, similar to the physical resource block
in LTE. However, the details of the slices, such as time and
frequency, can be negotiated by the MVNO and NSP. For
slicing, the MVNO generates a certain number of resource
slices for the NSPs based on current network status. Then,
the MVNO defines the properties (e.g., virtualized resources)
for each slices based on the agreements with NSPs and
delivers slices to the corresponding NSPs. After that, each NSP
allocates appropriate number of resources to each subscriber

Fig. 2. System Model

based on its QoS (e.g., energy efficiency or delay) and data rate
demand, and the MVNO receives such scheduling information
about the next potential served users from NSPs. The isolation
is done in the way that the MVNO converts the properties
of each resource slice to data rate requirements or physical
resource requirements and prepares the corresponding physical
resources for each user. Finally, the MVNO or the InP allocates
physical resources (e.g., BS, radio resource) to each end user
based on the current network status.

B. System Assumption

An example of our considered system model is presented
in Fig. 2. The physical networks including the hardware
(e.g., antennas, etc.), frequency spectrum and other types
of radio resources, which are essential for offering wireless
access services and are provided by the InPs. Based on the
aforementioned virtualization process, the MVNO is able to
create different resource slice containing selected antennas and
spectrum. In our considered system, the physical network is
Orthogonal Frequency Division Multiplexing (OFDM)-based,
and it contains a Small cell Base Station (SBS) with M � 1
antennas and N subcarriers, which is typical in a mmWave-
based small cell. In the considered wireless virtualized network
architecture in Fig. 2, we can see that there is a centralized
controller located in mobile virtual network operator (MVNO),
and it can obtain the feedbacks of each users and carry out
the scheduling decision among different service operators.
Moreover, from [17], we can observe the number of bits
needed for feedback falls off rapidly as the number of antennas
increases. Therefore, for the considered system with a large
number of antennas, the feedback overhead is considered as
sufficiently low. In order to provide the services to the users,
the resources will be slicing into S pieces and the set of all
slices is denoted as S. Each slice s ∈ S has a set of users
with single antenna denoted as Us . The number of users in
each slice is Us = |Us |. As for each slice, the provided
services are varied and the QoS requirements are different.
Thus, we consider there is a minimum data rate or QoS
requirement r rsv

s for each slice. Then, the total number of
U =

∑
s∈S Us and we assume that M � U , which is

practical for the small cell networks with a large scale of
multiple antennas. We consider that for each slice, a set of
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subcarriers is allocated, and we denote ω ∈ CU×N as the
subcarrier-slice assignment indicator matrix, where each row
vector ωus = [ωus ,1, ωus ,2, ..., ωus ,n, ..., ωus ,N ], and we have

ωus ,n =
{

1, if subcarrier n is allocated to the user us ;

0, otherwise.
(1)

Further, we also define an antenna allocation matrix
α ∈ CU×N , in which αus ,n is the number of antennas allocated
to the user us in slice s on subcarrier n and for each slice s.
Meanwhile, the number of allocated antennas for each slice
should be controlled to preserve the fairness between slices
and to improve the energy efficiency [4]. Thus, we define a
set of reserved antenna for each slice as {αmin

s , ..., αmax
s }. Note

that the set of reserved antenna is a discrete set and the selected
antenna is also a integer. Later we will show how to transfer it
to the continous counterpart and address the antenna selection
problem accordingly.

III. PROBLEM FORMULATION

In this section, we present the problem formulation. In par-
ticular, we consider the resource allocation in the uplink (UL)
and formulate a joint optimization of subcarrier, power and
antenna for each slice in the virtualized small cell networks.

A. Channel Model

Let hus ,n,βus ,n be the channel coefficient of user us in slice
s on subcarrier n and antenna βus ,n . Then, for the allocated
αus ,n antennas, we have the corresponding channel coefficient
hus ,n ∈ C 1×αus ,n , which is modeled as independent identically
distributed (i.i.d.) complex Gaussian random variables with
zero mean and unit variance .1 We denote dus as the path loss
factor from the SBS to user us . We also denote that Pus ,n as
the transmit power from the user us to the BS in slice s on
subcarrier n.

When considering the imperfect knowledge of CSI,
we denote ĥus ,n,m as the estimated channel coefficient on
antenna m, which can be expressed

ĥus ,n,m = hus ,n,m + zus ,n,m , (2)

where zus ,n,m is the channel estimation error and we assume
that zus ,n,m ∼ N (0, σ 2

z ).
Accordingly, in the perfect CSI case, the received signal on

UL at the BS after from user us on subcarrier n is

yus ,n =
√

Pus ,ndus bus ,nhus ,nxus ,n + eus ,n, (3)

where xus ,n is the transmitted signal and eus ,n is the channel
n noise. bus ,n is the precoding vector and the maximum ratio
transmission design is applied, i.e., bus ,n = hus ,n

‖hus ,n‖ . eus ,n is

1We consider this work can be applied to the case where CSI information
can be obtained or known. For the mobility case of which the CSI can not be
perfectly obtained, we consider our problem can be addressed by restricting
the outage probability. In fact, in such a case, there are several ways for the
BS/operator to obtain the knowledge of the (at least approximated) location of
the mobility user, e.g., via GPS or location updates in cellular network. Based
on such information, the path loss and slow fading effect can be approximated.
Although the fast fading effect cannot be perfectly known, the problem can
be addressed by putting a constraint on the outage probability.

the additive Gaussian noise and follows N (0, σ 2). Similarly,
considering the imperfect CSI case, we have the received
signal as

ŷus ,n =
√

Pus ,ndus b
im
us ,n

ĥus ,nxus ,n + eus ,n . (4)

where b
im
us ,n

is the precoding vector. In a massive MIMO sys-
tem, with the increase of the number of antennas, the channel
hardening effect emerges [16], [17]. In other words, the mutual
information fluctuation decreases rapidly relative to its mean.
Therefore, in order to obtain the expected data rate of the
considered system with imperfect CSI, we first study the
mutual information distributions with/without antenna selec-
tion. To this end, based on the above definitions, we can obtain
the mutual information distribution of the users us without
antenna selection as follows [17],

IM I ∼ N

(
log2(1 + Mγus ,n),

(log2e)2

M

)
, (5)

where N represents standard normal distribution and
γus ,n = dus Pus ,n/σ 2 is the SNR and σ 2 is the channel
noise variance. Moreover, when considering imperfect CSI,
the mutual information distribution of the users us without
antenna selection can be

I im
M I ∼ N

(
log2

(
1 + Mρus ,n

)
,
(log2 e)2

M

)
, (6)

where ρus ,n represents the SNR with the imperfect CSI
and channel noise on subcarrier n in slice s, i.e., ρus ,n =

dus Pus ,n

σ 2+dus Pus ,nσ 2
z

. The derivation of (6) is given in Appendix A.

As the number of antennas grows, the channel quickly
“hardens”, in the sense that the mutual information fluctu-
ation decreases rapidly relative to its mean. This form of
channel hardening is generally welcome for voice and other
traffic that is sensitive to channel fluctuations and delay.
In [17], the implementation, scheduling and rate feedback of
the channel hardening result are discussed. It can be found
that the number of bits needed for rate feedback and the
outage probability decreases as the number of receive antennas
increases. Therefore, we aim to find if there is a similar
channel hardening phenomenon in the considered antenna
selection system. Then, similar to the analysis in (5) and (6),
mutual information distributions of users us with antenna
selection when considering perfect CSI and imperfect CSI are
presented in Lemma 1 and Lemma 2, respectively.

Lemma 1: When assuming full CSI is known, for a large M

and selected antenna αus ,n , an approximation of the distribu-

tion of the mutual information of user us on subcarrier n is

given as follows,

Ius ,n ∼ FN

(
log2

(
1 +

(
1 + ln

M

αus ,n

)
γus ,nαus ,n

)
,

(log2e)2γ 2
us ,n

αus ,n(2 − αus ,n

M
)

(
1 +

(
1 + ln M

αus ,n

)
γus ,nαus ,n

)2

)
, (7)

where FN represents the folded normal distribution.

Proof: The proof of Lemma 1 is shown in
Appendix B.
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Obviously, if αus ,n = M (M is sufficiently large), the
expected value of the distribution expression is as the same
as the one in (5), and the variance is approximately the
same. From Lemma 1 and its proof, we can see that it is
not necessary to obtain the channel gain of each antenna.
Rather, the approximation of mutual information depends on
the number of antennas at BS, the selected number of antennas
and transmit SNR. Therefore, adding antenna selection does
not affect the channel’s hardening. Then we can also derive
the mutual information when considering the imperfect CSI.

Lemma 2: In the considered system, a numerically approx-

imation of the mutual information I im
us ,n

considering imperfect

CSI is as follows:

I im
us ,n

∼ FN

(
log2

(
1 +

(
1 + ln

M

αus ,n

)
ρus ,nαus ,n

)
,

(log2 e)2ρ2
us ,n

αus ,n(2 − αus ,n

M
)

(1 + (1 + ln M
αus ,n

)ρus ,nαus ,n)
2

)
. (8)

Proof: The proof of Lemma 2 is similar to the one of
Lemma 1 and we omit here.

According to the mutual information distribution, we can
obtain the expected data rate of the user us in the following
theorem.

Theorem 1: The expected data rate of the user us

with or without perfect CSI can be given as

Rus ,n =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log2

(
1 +

(
1 + ln M

αus ,n

)
γus ,nαus ,n

)
,

if perfect CSI;

log2

(
1 +

(
1 + ln M

αus ,n

)
ρus ,nαus ,n

)
,

if imperfect CSI.

(9)

Proof: The proof can be simply derived from Lemma 1

and Lemma 2.
To this end, by denoting NC as the set of all the subcarriers,

we can formulate the expected data rate of all the slices in S

as follows,

C (P,α,ω) =
∑

s∈S

∑

us∈Us

∑

n∈NC

ωus ,n Rus ,n . (10)

B. Energy Consumption Model

In this work, we use the power consumption model
in [26] and [28], of which the total power consumption consists
of the transmit power and the circuit power consumption. Here,
we use Pc to represent the constant circuit power consumption
per antenna chain which includes the power dissipations in the
converters, filter, mixer, and frequency synthesizer which is
independent of the actual transmitted power. We also denote
κ as power amplifier efficiency parameter and P0 as the basic
operating power consumed at the BS independent of the num-
ber of transmit antennas, e.g., baseband power consumption.
Correspondingly, the total power consumption of all the slices
can be expressed as

ϒ(P,α,ω) =
∑

s∈S

∑

us∈Us

∑

n∈NC

ωus ,nκ Pus ,n + P0

+ max
us ,n

{ωus ,nαus ,n}Pc. (11)

Note that the physical meaning of the term maxs,us {ωus ,nαus ,n}
is that an antenna is activated and consumes power even it is
used only by some of the users. Therefore, several users can
share same antenna at the BS.

C. Energy Efficiency Objective

Based on the above analysis, we are able to formulate the
Problem 1, of the which the objective is to maximize EE of
the considered system.

P1 : max
P,α,ω

E(P,α,ω) = C (P,α,ω)

ϒ(P,α,ω)
, (12)

s.t.

C1 :
∑

s∈S

∑

us∈Us

ωus ,n ≤ 1, ωus ,n ∈ {0, 1},

C2 :
∑

us∈Us

∑

n∈NC

ωus ,n Rus ,n > r rsv
s ,

C3 :
∑

n∈NC

ωus ,n Pus ,n ≤ Pmax
us

,

C4 :
∑

us∈Us

∑

n∈NC

ωus ,nαus ,n ∈ {αmin
s , . . . , αmax

s }. (13)

The formulated objective in (12) is under the constraints
in (13). In (13), C1 is to ensure the exclusive sub-carrier
allocation; C2 is able to guarantee the minimum required
rate for each slice; C3 puts the constraint on the transmit
power limitation for each user. In C4, αmin

s and αmax
s are

the minimum number of reserved antennas and the maxi-
mum allowable number of allocated antennas for slice s,
respectively.

As one can observe, P1 has a non-convex structure with
combinatorial properties and finding the optimal solution of
P1 involves high computational complexity. Next, we propose
an efficient algorithm to solve this problem by applying the
nonlinear fractional programming technique, variable transfor-
mations and constraint relaxation.

IV. ENERGY EFFICIENT RESOURCE ALLOCATION

A. Problem Transformation

The fractional objective function in (12) can be classified as
a nonlinear fractional program [22]. For the sake of notational
simplicity, F is defined as the set of feasible solutions of
the optimization problem P1. Without loss of generality, for
∀{P,α,ω} ∈ F we define the maximum EE q∗ as

q∗ = E(P∗,α∗,ω∗) = max
P,α,ω

C (P,α,ω)

ϒ(P,α,ω)
, (14)

where P
∗,α∗,ω∗ are the optimal solutions for P,α,ω, respec-

tively. We can introduce the following Theorem on the
optimal q∗.

Theorem 2: q can reach its optimal value q∗ if and only if

P2 : max
P,α,ω

C (P,α,ω) − qϒ(P,α,ω) = 0. (15)

Proof: The proof is derived from [22].
Theorem 2 reveals that for an optimization problem with

an objective function in fractional form, e.g. (12), there is an
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Algorithm 1 Iterative Algorithm for Obtaining q∗

1: Set maximum tolerance δ;
2: while (not convergence) do

3: Solve the problem (16) for a given q and obtain antenna,
power and subcarrier allocation {P′,α′,ω′};

4: if C (P′,α′,ω′) − qϒ(P′,α′,ω′) ≤ δ then

5: Convergence = true;
6: return {P∗,α∗,ω∗} = {P′,α′,ω′} and obtain q∗ by

(14);
7: else

8: Convergence = false;
9: return Obtain q = C (P′,α′,ω′)

ϒ(P′,α′,ω′) ;
10: end if

11: end while

equivalent objective function in a subtractive form. As a result,
we are able to focus on the equivalent objective function and
find the solution. In order to obtain q∗, an iterative algorithm
with guaranteed convergence [22] can be applied and it can be
found in Algorithm 1. In Algorithm 1, obtaining the optimal
solution of power, subcarrier, and antenna allocation involves
finding the optimal value of q in (14). For given q , we are
able to reach a solution of power, subcarrier, and antenna
allocation. As we can see from Theorem 2, for a given
solution of {P,α,ω}, we can find the solution of q by 16. Then
iterative method is applied to optimal solution of {P,α,ω}
and q .

During the iteration, in order to achieve q∗, we need to
address the following problem (P2) with q:

max
P,α,ω

C (P,α,ω) − qϒ(P,α,ω), (16)

s.t.

C1 − C3. (17)

To this end, we can address the fractional programming
problem in a subtractive form. However, it can also be
found that (P2) is still a non-convex problem due to the
integer programming involved. Tackling the mixed convex and
combinatorial optimization problem requires a prohibitively
high complexity. Another solution which can balance the
computational complexity and optimality can be obtained
when addressing such a problem in the dual domain. For the
formulated optimization problem, as the convexity does not
hold (e.g., mixed integer programming), addressing it in dual
domain may result in a duality gap between primal and dual
problem. As discussed and proved in [21] and [23], in the
considered multi-carrier systems, the duality gap of such a
non-convex resource allocation problem satisfying the time-
sharing condition is negligible as the number of subcarriers
becomes sufficiently large e.g., 64. To address the problem,
we relax ωus ,n to be a real variable in the range of [0, 1]
instead of a Boolean. Then, ωus ,n can be interpreted as a
time sharing factor for utilizing subcarriers. As one can see,
the optimization problem obviously is able to satisfy the time-
sharing condition, it can be solved by using the dual method
and the solution is asymptotically optimal [23], [24].

B. Proposed Solution

Based on above analysis, we can define two new variables,
φus ,n and ϕus ,n as follows,

φus ,n = ωus ,n Pus ,n,

ϕus ,n = ωus ,nαus ,n . (18)

Now, instead of finding the solution of αus ,n , we can address
ϕus ,n to solve the problem of antenna selection. Then, P2 can
be reformed as

P3 : max
φ,ϕ,ω

C̃(φ,ϕ,ω) − qϒ̃(φ,ϕ,ω), (19)

s.t.

C̃1 :
∑

s∈S

∑

us∈Us

ωus ,n ≤ 1, ωus ,n ∈ [0, 1],

C̃2 :
∑

us∈Us

R̃us > r rsv
s ,

C̃3 :
∑

n∈NC

φus ,n ≤ Pmax
us

.

C̃4 : αmin
s ≤

∑

us∈Us

∑

n∈NC

ϕus ,n ≤ αmax
s . (20)

In (19), φ and ϕ are the vectors of φus ,n and ϕus ,n ,
respectively. According to (10) and (18), C̃ (φ,ϕ,ω) is given as

C̃ (φ,ϕ,ω) =
∑

s∈S

∑

us∈Us

∑

n∈N

ωus ,n R̃us ,n, (21)

where R̃us ,n can be expressed as

R̃us ,n =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

log2

(
1 +

(
1 + ln Mωus ,n

ϕus ,n

)
γus ,n

ϕus ,n

ωus ,n

)
,

if perfect CSI;

log2

(
1 +

(
1 + ln Mωus ,n

ϕus ,n

)
ρus ,n

ϕus ,n

ωus ,n

)
,

if imperfect CSI.

(22)

Similarly, ϒ̃(φ,ϕ,ω) is

ϒ̃(P,α,ω) =
∑

s∈S

∑

us∈Us

∑

n∈NC

κφus ,n

+ P0 + max
us ,n

ϕus ,n Pc. (23)

Since P3 is a convex optimization problem with involves
continuous variables and convex objective function, we can
solve it in the dual domain. The Lagrange function of P3 can
be given as

L(φ,ϕ,ω,λ,µ) = C̃ (φ,ϕ,ω) − qϒ̃(φ,ϕ,ω)

−
∑

us∈Us

λus

⎛
⎝

∑

n∈N

φus ,n − Pmax
us

⎞
⎠

−
∑

s∈S

µs

(
r rsv

s −
∑

us∈Us

R̃us

)
. (24)

where λus and µs are the Lagrange multipliers for C2 and C3,
respectively. λ and µ are corresponding vectors for λns and µs ,
respectively. Then the dual function is

min
λ,µ

max
φ,ϕ,ω

L(φ,ϕ,ω,λ,µ). (25)
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By using the Lagrange dual decomposition, the dual
problem (25) can be decomposed into two layers, minimization
of (24) which is the inner problem and maximization of (25)
which is the outer problem. The dual problem can be solved by
addressing both problems iteratively, where in each iteration,
the optimal antenna selection, power allocation and subchannel
allocation can be obtained by using the Karush-Kuhn-
Tucker (KKT) conditions for a fixed set of Lagrange
multipliers, and the outer problem is solved using the
(sub)gradient method [25]. First, by applying the KKT condi-
tions and given allocated subcarrier, we can obtain the power
allocation as

Pus ,n =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[αus ,ndus µ̄s −λ̄us σ
2 ln 2+αus ,ndus µ̄s ln M

αus ,n

αus ,ndus λ̄us ln 2
(

1+ln M
αus ,n

)
]+

,

if perfect CSI;

�,

otherwise,

(26)

where µ̄s = 1 + µs , λ̄us = qκ + λus , and � is given in (27),
as shown at the bottom of this page, where

�1 = dus σ
2λ̄us σ

2
z ,

�2 = σ

√
αus ,nλ̄us ,

�3 = αus ,ndus σ
2
z . (28)

Similarly, the optimal number of antennas ϕus ,n can be
obtained by addressing the following equation numerically

µ̄s ln M
ϕus ,n

ln 2
(
1 + ϕus ,nϑ

) (
1 + ln M

ϕus ,n

) = Pcq. (29)

where ϑ = min{γus ,n} if perfect CSI is considered, otherwise
ϑ = min{ρus ,n}. Here, the sub-optimality should be considered
for the practical case, i.e., αus ,n = 
ϕus ,n�, which is required
for fulfilling the combinatorial constraint. Eventually, (29)
reveals that BS will use the same number of antennas for
all the users. Such a phenomena makes sense and it can be
interpreted by the following example: Suppose user 1 and
user 2 are using N1 and N2 antennas such that N1 ≤ N2 . From
the second user perspective, the cost for N1 − N2 antennas is
paid already. Therefore, since no extra cost has to be paid,
the second user will use extra antennas until N2 = N1, which
can bring benefit, i.e., throughput, to the system performance.
Finally, for the subcarrier allocation, we take the derivative
of the subproblem objective function (24) with respective

TABLE I

SIMULATION PARAMETERS

to ωus ,n and obtain

�us ,n =
ln

(
1 + ln

(
1 + ϑ M

αus ,n

))

ln 2
−λus Pus ,n − q(κ Pus,n + αus ,n Pc). (30)

In (30), �us ,n = 0 has the physical meaning that user
us with negative scheduled data rate on subcarrier n is not
selected as they can only provide a negative marginal benefit
to the system. On the contrary, if a user enjoys good channel
conditions with a positive data rate on subcarrier n, it can pro-
vide a higher benefit to the whole system. Thus, the allocation
of subcarrier n to user us is based on the following policy

ωus ,n =
{

1, if �us ,n > 0;

0, otherwise.
(31)

To solve the outer problem and obtain the lagrangian
multipliers λ and µ, the gradient method can be applied,

λns (l + 1) = [λns (l) − �λns (Pmax
us

−
∑

n∈N

φus ,n)]+,

µs(l + 1) = [µs(l) − �µs(
∑

us∈Us

R̃us − r rsv
s )]+, (32)

where l is iteration index, [x]+ = max{0, x}, �λns , and �µs

are the step sizes.

V. SIMULATION RESULTS

In this section, the performance of the proposed scheme is
presented and evaluated by simulation. Some key simulation
parameters are from [27] and [28], and are given in Table 1.

First, we show the accuracy of our analytic results
in (7) and (8). It can be found that with different M and SNR,
they all match perfectly. From Fig. 3, we can see that 90% of
the mutual information of full antennas can be achieved with
only a quarter of the antennas selected. In Fig. 4, we find that

� =
−2�1 ln 2 − 2σ 2

z �1 ln 2 − 2σ 2
z �1 ln(2 + M

αus ,n
)

2(d2
us

λ̄us + �3dus ln 2 + �3dus ln(2 + M
αus ,n

))

+
dus σ

2
z ln 2�2

√
1 + ln M

αus ,n

√
4dus µ̄s + 4�3µ̄s + �2

2σ 4
z ln 2 + 4µ̄s�3 ln M

αus ,n
+ �2

2σ 4
z ln(2 + M

αus ,n
)

2(d2
us

λ̄us + �3dus ln 2 + �3dus ln(2 + M
αus ,n

))
, (27)



CHANG et al.: ENERGY EFFICIENT OPTIMIZATION FOR WIRELESS VIRTUALIZED SMALL CELL NETWORKS 1703

Fig. 3. The effect of the number of selected antennas on the mean of the
mutual information.

Fig. 4. The effect of the number of selected antennas on the variance of the
mutual information.

the variance can be very small with large M . Moreover, for
a fixed SNR, when the number of selected antennas is very
small, the channel hardens at a lower rate. But for a large range
of selected antennas, channel hardens at a high rate almost the
same as the case of full antennas. It can be observed that the
asymptotic distribution is also very accurate for even small M .
These simulations are consistent with our derived result in the
lemmas and the relevant discussions.

In addition, we also compare our Proposed Scheme (PS)
with the other advanced schemes to show the effective-
ness of our proposed scheme. Specifically, we compare our
scheme with the one with Random Subcarrier allocation
Scheme (RSS), the one with Proportional Fair subcarrier
allocation Scheme (PFS), the one with Equal Power allo-
cation Scheme (EPS), a Throughput-based resource allo-
cation Scheme (TPS) [20], and the one without Antenna
Selection (nonAS) [29], and Weight Sum resource allocation
Scheme (WSS) [30].

We examine the effect of imperfect CSI estimation on
the system performance in Fig. 5. In this figure, by varying
variance of channel estimation error, i.e., the value of σ 2

z ,
the impact on EE can be observed. From Fig. 5, we can see
that when the increase of estimation error leads to a decrease
of system EE. For example, when σ 2

z is about 0.8, EE is
decreased about 25% compared to the one when perfect CSI
is assumed. Moreover, we also plot the EE performance when
the RSS and TPS are considered instead of the proposed one.

Fig. 5. Comparison of three schemes, EE vs. different variance of imperfect
CSI estimation.

Fig. 6. Comparison of three schemes, EE vs. different transmit power of
user.

We can also observe the same performance degradation due to
the CSI imperfection from the results of Random SA. It can
be also found that our proposed scheme outperform the TPS
and RSS in terms of the EE performance. This is mainly due
to the reason that in TPS, throughput is the major concern and
more transmit power or antennas are used.

In Fig. 6, we validate the effectiveness of our pro-
posed resource allocation scheme by comparing our proposed
scheme with the RSS and PFS. The different values of the
EE are obtained by varying the allowed transmit power at the
user Pus,n . In the proposed scheme, we consider the antenna
allocation and subcarrier allocation. In the RSS scheme,
the proposed antenna selection is used and the subcarriers are
randomly assigned to different users and in the PFS, the sub-
carrier and power is fairly allocated. The EE performance
comparison among these three schemes is presented together
with the cases that imperfect CSI are assumed. In this figure,
we consider σ 2

z = 0.1. As we can see, the maximum EE
can be obtained when Pus,n is about 15dBm when perfect
CSI is assumed. When more power is used at the user, it can
be the case that higher throughput can be obtained, but the
overall EE is degraded due to the cost of energy consumption.
Thus, the optimal power allocation scheme is necessary to
optimize the EE performance. The results in Fig. 6 confirm
the observation in Fig. 5 that the imperfect CSI estimation
decreases the system EE. Moreover, it is shown that our
proposed subcarrier allocation has a better EE performance
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Fig. 7. Impact of antenna selection and transmit power.

Fig. 8. EE performance comparison of four resource allocation schemes.

over the RSS and PFS, no matter what transmit power
is used.

The impact of the number of antennas on the EE perfor-
mance is presented in Fig. 7, where we alternate the number of
used antenna at the BS and plot the corresponding performance
comparing with the proposed antenna selection scheme. It can
be observed that activating a fixed number of antennas αus ,n

degrades the system performance in terms of EE. This is due
to the fact that either more power is consumed for operating
the antennas or the number of antennas is not large enough for
contribute to the throughput. On the other hand, in the high
transmit power regime, the performance difference is smaller
comparing to the one in the low transmit power regime. This
is because the data rate requirement in the high transmit power
regime is already satisfied because of the transmit power. Thus,
the proposed scheme tends to advocate the minimum number
of antennas and the performance gain due to antenna allocation
becomes less significant. Moreover, it can be found that after a
certain value, increment of transmit power results in the degra-
dation of system performance, no matter what the number of
antenna is used, which is similar to one observed in Fig. 6.
The observations in Fig. 7 evidence the effectiveness of the
antenna selection scheme and also confirms the necessity of
design of antenna selection and power allocation for obtaining
better EE. Moreover, it can also be found that the optimal
number of selected antenna is between 10 and 50, which also
show that the selection of αmin

s and αmax
s in Table 1 should

have no impact on the final solution.

Fig. 9. Throughput vs. maximum transmit power, for different resource
allocation algorithms.

Fig. 8 illustrates EE versus the maximum allowed transmit
power Pmax

us . It can be seen that when the maximum allowed
transmit power is large enough, e.g., Pmax

us > 14 d Bm., the EE
performance of the proposed scheme approaches a constant
value since the proposed resource allocation algorithm stops
consuming more power or activating more antennas, when the
maximum EE is achieved. Therefore, after that, the transmit
power, allocated subcarrier and number of used antennas will
maintain no matter how the maximum allowed transmit power
increases. For comparison, in Fig. 8, we also plot the EE
performance of three resource allocation schemes. The first
one, WSS scheme, is to assign different weights to different
users and then allocate the resource accordingly, which is
modified from [30]. The second one is that resource allocation
is performed in the same manner as in the proposed scheme,
except that the transmit power is equalled allocated for differ-
ent users and the transmit power is set to Pus,n = Pmax

us /2. The
third one contains the RSS scheme together with equal power
allocation. In other words, the third scheme only optimize
ω instead of {P,α,ω}. Similar phenomenon can be found in
these three baseline schemes except that the EE performance
reach its maximum at different values of Pmax

us . It can be
well observed that our proposed scheme outperform the other
two, which further evidences the superior performance of the
presented scheme as well.

Fig. 9 shows the throughput performance in bps/Hz versus
maximum transmit power. The system performance of the
proposed algorithm is compared with the baseline algorithm,
in which resource allocation is performed in the same manner
as in the proposed one, except that the number of transmit
antennas is fixed. We can see that for the PS scheme and the
other two, the throughput performance approach a constant in
the higher transmit power regime. This is because the proposed
algorithm clips the transmit power to maximize EE. It can
also be found that, as expected, the baseline scheme resource
allocator with more antennas achieves a higher throughput
than the PS, due to the use of more antennas. Comparing
with Fig. 7, the superior throughput performance comes at
the expense of low EE. On the other hand, although proposed
antenna selection scheme can benefit EE of the system, there
are some throughput difference comparing to the scheme that
more antennas are used.
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VI. CONCLUSION AND FUTURE WORK

In this work, the energy efficient optimization for the wire-
less network virtualization with a large scale multiple antenna
BS is studied. In particular, with the objective to obtain the
energy efficiency, joint power, subcarrier, and antenna allo-
cation problems are presented considering availability of both
perfect and imperfect channel state information. Subsequently,
relaxation and variable transformation are applied to develop
energy efficient algorithm to solve the formulated non-convex,
combinational optimization problem. Extensive simulation
studies demonstrate the advantages of our presented system
architecture and proposed schemes. As the future research
direction, it is expected that the distributed and energy efficient
resource allocation scheme can be investigated accordingly for
a wireless virtualized heterogeneous networks consisting of
multiple macro cells and small cells.

APPENDIX A: DERIVATION OF (6)

First, for presentation simplicity, we denote ĥ = ĥus ,n . Let

λ1, λ2, λ3, · · · , λN be the eigenvalues of
ˆhH ĥ
N

. We also have
ρ = ρus ,n , then in a MIMO system with K transmit antennas
and M received antennas, the mutual information is given

I = log2 det(IK + ρ

K
ˆhH ĥ)

= log2 |IK + ρM

K

ˆhH ĥ

M
|

= log2(1 + ρM

K
λ1)(1 + ρM

K
λ2) · · · (1 + ρM

K
λK )

=
K∑

k=1

log2(1 + ρM

K
λk), (33)

where ρ is the transmit SNR without channel gain, and IK is
a unit array. As for the massive MIMO UL system, M → ∞,

we have that
ˆhH ĥ
K

→ IK (strong law of large numbers, [32]).

Since λ1, λ2, λ3, · · · , λK are continuous functions of
ˆhH ĥ
M

,
it follows that λn → 1 for n = 1, 2, 3, · · · , N . Thus, we let
λn = 1 + λ̃n , with the understanding that N → ∞, λ̃n → 0.
Therefore, we have

K∑

k=1

log2(1 + ρM

K
λk)

= log2(1 + ρM

K
λ1)(1 + ρM

K
λ2) · · · (1 + ρM

K
λK )

= log2(1 + ρM

K
)K

(1 + ρM
K

λ1)(1 + ρM
K

λ2) · · · (1 + ρM
K

λM )

(1 + ρM
K

)K

= log2(1 + ρM

K
)K + log2(

1 + ρM
K

λ1

1 + ρM
K

) + log2(
1 + ρM

K
λ2

1 + ρM
K

)

+ · · · + log2(
1 + ρM

K
λK

1 + ρM
K

)

= M log2(1 + ρM

K
) +

K∑

k=1

log2(
1 + ρM

K
λk

1 + ρM
K

)

= M log2(1 + ρM

K
) +

K∑

k=1

log2(
1 + ρM

K
+ ρM

K
λ̃k

1 + ρM
K

)

= M log2(1 + ρM

K
) +

K∑

k=1

log2(1 +
ρM
K

λ̃k

1 + ρM
K

)

= M log2(1 + ρM

K
) +

ρM
K

log2e

1 + ρM
K

K∑

k=1

λ̃k + O(

K∑

k=1

λ̃2
k). (34)

As M → ∞, we can see that xM = O(yM ) if |xM | ≤ cyM

for some c > 0 and sufficiently large M . Note that the sum

of all eigenvalues
∑K

k λk is the trace of matrix
ˆhH ĥ
M

, and

K∑

k=1

λ̃k =
K∑

k=1

(λk − 1)

= λ1 + λ2 + · · · + λK − K = tr(
ˆhH

K
) − K , (35)

where
∑K

k=1 λ̃k has a zero mean. From [17, Lemma A], we can
see that E[

∑K
k=1 λ̃2

k] = K 2

M
. Therefore, O(

∑K
k=1 λ̃2

k) in (34)
has an expected value µM , which is O( 1

M
) as M → ∞. Thus,

the expected value of (34) is K log2(1 + ρM
K

) + O( 1
M

).
By [17, Lemma A],

∑K
k=1 λ̃k has the variance K

M
, and

the fourth-order moment calculations of the Wishart matrix
show that the variance of

∑K
k=1 λ̃2

k is O( 1
M2 ). Therefore,∑K

k=1 λ̃2
k − µM is Op( 1

M2 ) which is a probabilistic statement.
We have that xM = Op(yM ) if for any ξ > 0, we can find a
certain c > 0 such that P[|xM | > cyM ] < ξ for a sufficiently
large M [33]. From [17, Lemma B], we can also conclude

that
√

M
K

∑K
k=1 λ̃k−→N (0, 1) as M → ∞. Thus,

∑K
k=1 λ̃k

is Op( 1
M

) and is the dominant random term in (34). The
asymptotic distribution of (34) is therefore also normal [33].

Using
ρM
K

1+ ρM
K

= 1 + O( 1
M

), we can see that

K∑

k=1

log2(1 + ρM

K
λk) − K log2(1 + ρM

K
)

= [1 + O(
1

M
)] log2 e

K∑

k=1

λ̃k + O(

K∑

k=1

λ̃2
k)

= log2 e

K∑

k=1

λ̃k, (36)

which equivalents to
√

M

K

∑K
k=1 log2(1 + ρM

K
λk) − K log2(1 + ρM

K
)

log2 e

=
√

M

K

K∑

k=1

λ̃k ∼ N (0, 1). (37)

Therefore,

√
K [

K∑

k=1

log2(1 + ρK

M
λk) − K log2(1 + ρK

M
)]

−→ N (0, M log2
2 e), (38)

namely,
√

M[I − K log2(1 + ρM
K

)] −→ N (0, N log2
2 e),

and correspondingly, I ∼ N (M log2(1 + ρM
K

),
N log2

2 e

M
), and
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E[I ]im = N log2(1 + ρM
K

), when N = 1, we have

E[I ]im = log2(1 + ρM). (39)

APPENDIX B: PROOF OF LEMMA 1

First, for the sake of simplicity, we consider L = αus ,n in
the following. According to [31], the mutual information when
L antennas are selected for receiving can be given as

I = log2

∣∣∣∣∣1 + γ

L∑

l=1

|hl |2
∣∣∣∣∣ . (40)

where γ is transmit SNR. We consider |h1|2 > |h2|2 > ... >

|hl |2 > ... > |hL |2 and |hl |2 is chi-square random variable
with two degrees of freedom. According to [34] and [35],
for the order chi-square random variable with two degrees of
freedom variables z1 > z2 > ... > zl > ... > zM , when
M → ∞ and 1 < L < N

∑L
l zl is asymptotically normal,

and
∑L

l zl ∼ N (L(1 + ln M
L

), L(2 − L
M

)).
Therefore, one can observe that

∑L
l |hl |2 ∼ N (L(1 +

ln M
L

), L(2 − L
M

)). Then we can reform (40) as

I = log2

∣∣∣∣∣1 + γ

L∑

l=1

|hl |2
∣∣∣∣∣

= log2

(
1 +

(
1 + ln

M

L

)
γ L

)
+ log2 |z|, (41)

and z is given as

z = 1 +
γ

(∑L
l |hl |2 − L(1 + ln M

L
)
)

1 + (1 + ln M
L

)γ L
. (42)

According to the distribution of
∑L

l |hl |2, one can obtain

z ∼ (1,
γ 2 L(2 − L

M
)

(1 + (1 + ln M
L

)γ L)2
). (43)

Given the distribution of z, the x = |z| follows the folded
normal distribution. With the assumption that z ∼ (µz, σ

2
z )

where µ = 1 and σ 2
z = (γ 2 L(2 + L

M
))/(1 + (1 + ln M

L
)γ L),

the probability density function of x is

f (x) = 1

2πσz

(
e

x−µz

2σ2
z + e

x+µz

2σ2
z

)
. (44)

It can be noticed that σ 2
z = 0 is almost surely for large M ,

then I can be reformed according to Maclaurin series,

I = log2

(
1 +

(
1 + ln

M

L

)
γ L

)
+ log2(1 + x − 1)

= log2

(
1 +

(
1 + ln

M

L

)
γ L

)

+ (x − 1) log2 e + �((x − 1)2). (45)

�((x − 1)2) is very small and can be negligible so we can
finally arrive at

I ∼FN

(
log2

(
1 +

(
1 + ln

M

αus ,n

)
αus ,nγ

)
,

γ 2(log2 e)2αus ,n(2 − αus ,n

M
)

(
1 +

(
1 + ln M

αus ,n

)
γαus ,n

)2

)
.

(46)

where FN () is the folded normal distribution.
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