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Abstract

Nematic liquid crystals composed of rod-like molecules have an orientational elasticity that ac-
counts for the energetics of the molecular orientation. This elasticity can be described by a unit vector
field; the unit vector constraint interacts with even fairly simple boundary conditions to cause discli-
nation defects. Disclinations are entirely a topological consequence of the kinematic constraint, and
occur irrespective of the particular energetic model. Because disclinations are topological defects,
they cannot be regularized by adding higher gradients, as in phase-field models of interface defects.
On the contrary, the higher gradient terms would cause even greater singularities in the energy. In this
paper, we formulate an integral-based nonlocal regularized energy for nematic liquid crystals. Our
model penalizes disclination cores and thereby enforces a finite width, while the integral regulariza-
tion ensures that the defect core energy is bounded and finite. The regularization at the same time
tends to the standard gradient-based energies away from the disclination, as well as building in the
head-tail symmetry. We characterize the formulation in its ability to describe disclinations of various
strengths, and then apply it to examine: (1) the stability and decomposition of various disclinations,
and the competition between bend and splay energies in determining the relative stability of inte-

ger and half-integer disclinations (2) the coalescence of a +
1

2
and −1

2
disclination pair; we find the

disclinations do not move at the same velocities towards each other, suggesting that the asymmetry
of the director field plays a dominant role despite the equal-and-opposite topological strengths of the
disclinations.
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1 Introduction

Nematic liquid crystals are composed of rod-like molecules that have no positional ordering but tend
to align along the same direction. There is therefore an energetic penalty – an orientational elasticity
– for spatial variations in the direction. In a continuum mesoscale description, the kinematics of the
orientational ordering can be described by a unit vector field n– the director field – that tracks the average
ordering of the molecules. The orientational elasticity is then described by an energy that depends on∇n
in a very nonlinear way [Ste04, KL07, CL00]. There are two key challenges associated with using ∇n.
First, the director is constrained to be a unit vector field because it represents directions, i.e. |n| = 1.
Second, the head-tail symmetry of nonpolar liquid crystal molecules imposes the constraint that the
energy is invariant under the transformation n↔ −n.

These constraints make the model severely nonlinear. In addition, the constraints – in combination with
boundary conditions – can lead to the formation of topological defects. Fig. 1 shows classical examples.
The +1 disclination forms when the boundary conditions set the director on the boundaries. At some
point in the interior, the director field must be discontinuous if it satisfies the unit constraint; in this
ideal case, the disclination is at the center by symmetry. There is no way to set up the director field

to be continuous everywhere with the given boundary conditions. The +
1

2
disclination forms when the

boundary conditions are as shown in the figure. In addition to the discontinuity at the center, the head-tail
symmetry also leads to a discontinuous line (in 2D) if it is represented by a director vector field n. If we
assume that the vectors on the right edge all point upwards and follow the vectors anti-clockwise in the
upper half and clockwise in the lower half, we find that the vectors point in opposite directions on either
side of the line (x1 < 0, x2 = 0).
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Figure 1: Left: A +1 disclination with a discontinuous director field at the center. Right: A +
1

2
disclination with a discontinuous director field at the center, and a change in sense along any line
running out from the disclination.

The topological nature of disclinations and their connection to boundary conditions is in contrast to in-
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terfaces, cracks, and other defects that are not topological. In the latter, boundary conditions certainly
play an important role, but through the energy rather than geometry; i.e., whether a defect forms or not
depends on the energetics of the particular model. An important consequence of this distinction is that
phase-field models are readily constructed for the latter class of defects, because adding gradient contri-
butions to the energy (accounting for surface energies) smooths out the discontinuities. In contrast, there
is no such simple approach for disclinations which are driven by the boundary. Adding gradient contri-
butions to the energy cannot smooth out the defect; on the contrary, the presence of higher derivatives
makes the energy more singular at a disclination.

A proposed approach for disclinations is by Ericksen [Eri91], in which he introduces a new scalar order
parameter in addition to the director field. The scalar order parameter is used to track the disclination
cores and evolves using a separate equation. Another approach in this spirit of introducing another field
to track defects is [AD14, PAD15], where a tensor order parameter is introduced, and a geometrically-
motivated evolution equation is posed. In contrast to these, we regularize the energy, but do not introduce
a new field variable nor an associated evolution equation.

The most widely-applied regularized model that is used to model disclinations is the Q-tensor model
[MN14]. Briefly, the order parameter is a tensor Q that is related to the tensor dyad n ⊗ n1 away from
a defect, and at a defect the material is no longer uniaxial and cannot be described by a single director.
At the defect core, the eigenvectors of Q aim to capture some key information about the orientational
distribution function [MN14]. Core effects are introduced by energetic contributions in terms of the
gradients of Q. Q-tensor models, however, also make certain predictions that are significantly at odds
with the director-based models. In the static setting, consider 2 infinite parallel plates with tangential
anchoring and normal anchoring on the top and bottom respectively. As observed by [PMGK94], there
are regimes in which the Q-tensor model predicts a loss of uniaxiality throughout the domain, i.e., the
entire domain is defect-like. In contrast, the simple 1-constant director-based model has a solution with a
linear variation of the angle from top to bottom. Similarly contrasting predictions are observed with the
Q-tensor model in various geometries and boundary conditions, e.g. [BGJRV03, CLB+09, BVD04]. In
the dynamic setting, Ericksen and Leslie provided a physical model based on conservation laws – mass,
linear momentum, and angular momentum – for the evolution of the director [Ste04]. In contrast, the
evolution principles for Q in the Q-tensor model are typically based on non-equilibrium thermodynamics,
for instance either (1) a Rayleigh dissipation principle, e.g. [SMV04], or (2) ideas from kinetic theory,
e.g. [KLGCC08, YFMW09], but the issue of the closure assumption for the moments of the orientation
distribution function is a further assumption. In our view, these evolution principles for Q are not as
fundamental as the principle of angular momentum balance.

The issues above motivate the current work. We propose a nonlocal (integral) regularization of the energy
that accounts for core effects in a natural way, yet retains the many attractive features of a director field
based model. First, the regularization introduces a length scale that enables us to describe disclinations
with a finite width; second, using integrals rather than derivatives enables us to have disclinations of
finite energy even when the director field is topologically constrained to be singular; third, we do not
need to relax the unit vector constraint as some other models require; and finally, retaining the director
field description enables the use of angular momentum principles to prescribe the evolution.

We note that it is particularly important not to relax the unit vector constraint; it is based on the direction
corresponding to the orientation of the molecules, and hence relaxing the constraint to allow for non-
unit vectors is not physically meaningful. Therefore, a regularization based on relaxing the unit-vector

1This ensures the head-tail symmetry is captured.
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constraint is not particularly physical, even if it is computationally convenient.

We emphasize 3 important features of the proposed integral regularization of the energy:

• For homogeneous – i.e. linearly varying – director fields, we should recover the classical energy;

• Only a constant director field must have zero energy; any other spatial variation of the director field
must cost energy;

• It should not require continuity of the field

The first requirement ensures that we recover the standard Ericksen-Leslie model when we are far from
disclinations or in disclination-free configurations. The second requirement ensures that our solutions are
not “polluted” by unphysical zero-energy soft modes; except for rigid motions, the energy must increase
when deformed. The third requirement ensures that disclinations can be modeled.

Our integral model is motivated largely by the peridynamic model of fracture, in which integral operators
are used to approximate standard elasticity operators, thereby allowing fields to be discontinuous as is
essential for fracture [Sil00, SL10].

We have ignored the coupling to fluid flow in this work. It is conceptually straightforward to replace the
classical energy by our regularized energy to construct a model with director evolution coupled to flow.

1.1 Organization

The paper is organized as follows.

• In Section 2, we briefly outline the key features of the energetics of the classical model of liquid
crystals. This is primarily to show the analogies and contrasts with our proposed model.

• In Section 3, we describe the proposed nonlocal regularized energy without gradients. Specifically,
we (1) motivate the connection between integral operators and gradient operators, (2) formulate the
nonlocal analog of the classical energy, (3) discuss the evolution equation and boundary conditions,
and (4) extend the energy to account for head-to-tail symmetry.

• In Section 4, we incorporate the effects of different moduli for bend and splay.

• In Section 5, we examine the structure of disclinations, and the role of bend and splay in the
stability of integer vs. half-integer disclinations.

• In Section 6, we examine the coalescence of a +
1

2
disclination and −1

2
disclination coming to-

gether.

1.2 Notation, Definitions and Values of Model Parameters

Boldface denotes vectors and tensors. We have used Einstein convention, i.e. repeated indices imply
summation over those indices, except when noted.
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Hats appended to functions refer to their value at x̂, ˆ̂x, . . ., i.e. for a field f(x), we write f̂ ≡ f(x̂),
ˆ̂
f ≡

f(ˆ̂x), . . ..

γ1 ≡ α3 − α2 ≥ 0 is the rotational or twist viscosity of the director. It sets the relaxation time of the
director field. We set γ1 = 1 in our model system. α3 and α2 are the Leslie viscosities [Ste04].

δ is a characteristic defect lengthscale, that we set to 5. Numerical calculations use a grid spacing of at
least 1.

Cδ(|x− x̂|) is the nonlocal weight function; we assume the form

Cδ(|x− x̂|) =

{ 1

δ2
if |x− x̂| < δ

0 if |x− x̂| ≥ δ
(1.1)

The normalization is appropriate for 2D.

2 Classical Model of Nematic Liquid Crystals

We briefly summarize the key features of classical nematic director dynamics to enable us to point out
the key differences and similarities with our proposed nonlocal model. The classical model of nematic
liquid crystals was formulated by Frank, and Ericksen and Leslie, and is very well described in [Ste04].
For simplicity, we neglect in this paper the effect of flow, i.e., we assume that the only dynamics is due
to director reorientation. In addition, we use the standard assumption that the inertia associated with
director reorientation is negligible.

The Frank free energy density w is in general a function of the local values of n and ∇n. The energy

of the body Ω is E [n] =

∫
Ω

w(n,∇n) dΩ. We fix n or set εiklni,jnlν̂j = 0 on the boundary ∂Ω, and

|n| = 1.

In the simplified 1-constant approximation, w =
K

2
|∇n|2.

The classical approach relies on angular momentum balance [Ste04] to derive the evolution equation for
n. Equivalently, we can derive this using a gradient descent approach. We prefer the latter method here
because it is easier to adapt to the nonlocal energy because we do not have to first identify a nonlocal
torque, but can instead do so from the final form of the equation.

The gradient dynamics has the form γ1〈ṅ, δn〉 = − d

dε
E [n+ εδn]

∣∣∣∣
ε=0

. To preserve |n| = 1, the

variations in n must have the form δni = εijknjpk, where pk is arbitrary. The dynamical equation is then:

γ1ṅ× n = −
(
∂w

∂n
− div

∂w

∂∇n

)
× n⇒ γ1ṅ = −

(
∂w

∂n
− div

∂w

∂∇n

)
+ λn (2.1)

where λ is the Lagrange multiplier conjugate to the constraint |n| = 1. Enforcing n ·n = 1⇒ ṅ ·n = 0
to eliminate λ gives the dynamical equation:

γ1ṅ = −
(
∂w

∂n
− div

∂w

∂∇n

)
+

(
n · ∂w

∂n
− n · div ∂w

∂∇n

)
n (2.2)
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The dissipation associated with this dynamics is:

−dE
dt

= −
∫
x∈Ω

(
∂w

∂n
− div

∂w

∂∇n

)
· ṅ dΩ

=
1

γ1

∫
x∈Ω

∣∣∣∣(∂w∂n − div
∂w

∂∇n

)∣∣∣∣2 − (n · ∂w∂n − n · div ∂w

∂∇n

)2

dΩ ≥ 0

(2.3)

The dissipation is strictly non-negative2.

Equilibrium configurations are obtained by setting ṅ = 0. In the 1-constant energy, this gives εiklni,jjnl =
0.

Alternatively, we can parametrize n = (sin θ(x), cos θ(x)) which automatically satisfies the unit vector
constraint3. Then, n1,i = cos(θ)θ,i and n2,i = − sin(θ)θ,i, giving for 1-constant energy:

E[θ] =
K

2

∫
Ω

θ,iθ,i dΩ (2.4)

The equilibrium configuration is described by θ,ii = 0 in Ω, with boundary conditions θ = θ0 or θ,iνi = 0
at each point on the boundary ∂Ω. The description in terms of θ has the advantage that the unit vector
constraint is exactly satisfied at all times for numerical solutions that discretize in time and use finite time
steps. The description in terms of n will require a careful projection scheme at each time step to bring
the director back to the unit sphere. Our approach for the nonlocal energy will be to formulate in terms
of a unit vector field n, but use θ for the numerical solution.

The head-tail symmetry is important to describe half-integer disclinations: even away from the core,
there is a line (in 2D) across which the sense changes by π. Using either θ or a vector field for n does
not allow us to do this easily with the classical energy, but will be possible with the proposed nonlocal
regularization.

3 Nonlocal Regularized Free Energy Without Gradients

Our nonlocal regularized energy is motivated by the peridynamic model for fracture [Sil00, SL10] with
some key differences. Peridynamics has provided an important model for fracture calculations because
of the key feature that spatial derivatives are not required in the theory, hence allowing for discontinuous
displacement fields.

3.1 A Motivating One-Dimensional Example

Consider the operator D̃ that acts on a function f as defined:

D̃f(x) =
3

2δ3

∫ x+δ

x−δ
(f(x)− f(x̂)) (x− x̂) dx̂ (3.1)

2 Gradient dynamics with a unit vector constraint is not necessarily dissipative. The Landau-Lifshitz-Gilbert (LLG) dy-

namics in micromagnetism (e.g., [AKST14]) is given by 〈ṅ,p〉 = − d

dε
E [n+ εδn]

∣∣∣∣
ε=0

with δni = εijknjpk, where pk

is arbitrary, in the undamped case. The inner product above is not the same as the Ericksen-Leslie dynamics, and it can be
shown that the energy in the undamped LLG dynamics is conserved.

3This is in 2D, but the extension to 3D is straightforward.
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When f(x) = Ax + B, we evaluate D̃f(x) = A. For linear functions, D̃f matches the derivative.

Consider the Taylor expansion f(x) − f(x̂) = (x − x̂)f ′(x) + 1

2
(x − x̂)2f ′′(x) + . . .. Then, D̃f(x) =

f ′(x) + C3δ
2f ′′′(x) + . . ., where the even derivatives vanish by symmetry. Therefore, the operator D̃

provides an approximation to the derivative when δ and the higher derivatives are sufficiently small.
However, when f is not smooth such as at a discontinuity or other singularity where the derivatives are
not well-defined, the original integral expression continues to be well-defined.

Physically, the operator can be understood as averaging the slope of f over a neighborhood of x of size

δ, i.e., averaging
f(x)− f(x̂)

x− x̂
. However, to avoid singularities from the denominator, we use the weight

(x− x̂)2 in the process of averaging. When the slope is constant, i.e. a linear function, we recover exactly
the derivative; when the function is slowly varying, we get higher-order regularizing terms; and when the
function does not have well-defined derivatives, we obtain a finite value that is physically related to the
average slope in the neighborhood.

While D̃f provides an attractive alternative to the derivative df/dx, there is one key drawback. The
derivative df/dx = 0 only when f = const. and not otherwise. However, while D̃f = 0 when f =
const., it can also be 0 for other functions; in fact, any non-constant function that is antisymmetric about
x will have the slopes exactly cancel out to give an average value of 0. Therefore, one can have spurious
soft modes with zero energy that have no physical basis.

To get around this, we first observe that the free energy density consists of terms that are all components
of the gradient raised to the second power [Ste04]. In the specific case of the 1-constant energy, the
energy density is simply the gradient squared. In one dimension, this would require us to approximate(
df

dx

)2

. Motivated by the discussion immediately above, the operator

D̃2f(x) ∼
∫ x+δ

x−δ

(
f(x)− f(x̂)

x− x̂

)2

dx̂ (3.2)

would provide a nonlocal regularized approximation up to normalization. The integrand is always non-
negative, thereby not allowing any cancellations. For D̃2f(x) to evaluate to 0, the integrand must be 0
everywhere, ensuring that f = const. is the only possibility.

3.2 Nonlocal Regularization in Three Dimensions

Following ideas from peridynamics [Sil00], we write the nonlocal analog to the Frank energy as:

E[n] =
K

2

∫
x∈Ω

∫
x̂∈Ω

1

2
Cδ(x, x̂) (n̂i − ni)

x̂j − xj
|x̂− x|

(n̂i − ni)
x̂j − xj
|x̂− x|

dVx̂ dVx (3.3)

where Cδ is a function that is symmetric in the arguments.

What motivates this expression? The classical gradient is the vector pointing in the direction in which
the increase of η is maximum. Our expression examines the change in n between x and every point x̂ in
Ω, and weights the direction x̂−x by the change in that direction; the larger the increase, the greater the
weight for that direction. So the direction of largest increase features most prominently in the average.

It is natural for points x̂ that are closer to x to play a larger role in the averaging, and this weighting is
introduced by the function Cδ(x, x̂). This introduces a lengthscale, denoted δ, into our model that is not
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present in the classical Frank free energy. In this paper, we will restrict ourselves to isotropic and spatially
homogeneous systems, and hence we will write Cδ(|x − x̂|). Further, we use Cδ to introduce a cut-off

distance, i.e. Cδ(|x− x̂|) = 0 when |x− x̂| > δ. Finally, for conciseness, we absorb
x̂j − xj
|x̂− x|

· x̂j − xj
|x̂− x|

in (3.3) within Cδ by redefining it appropriately, but retaining the same symbol for convenience. Putting
this together, we can write:

E[n] =
K

2

∫
x∈Ω

∫
x̂∈Ω

1

2
Cδ(|x− x̂|) · (n̂− n)2 dVx̂ dVx (3.4)

We now consider a physical interpretation of (3.4). From a physical perspective, the classical Frank
model states that there is an energetic cost to molecules not being aligned with each other. Loosely,
it penalizes changes in the molecular orientations at “adjacent” material points, and in the limit this
becomes the gradient. Our model compares the molecular orientation at a point x with the molecular
orientation at every point x̂ contained in Ω. To leading order, the energy contained in the interaction

between molecules at these points is
1

2
Cδ(|x − x̂|) (n(x)− n(x̂))2, where Cδ(x, x̂) is analogous to a

spring constant and depends on the distance between the points. The total free energy simply sums over

all pairs of molecules in Ω, with an additional factor of
1

2
to correct for double-counting of bonds. While

molecular interactions are typically very local, in homogeneous non-defect regions we can think of the
molecular interactions as being renormalized.

From the perspective of the classical model of nematic liquid crystals, our model introduces a new length-
scale δ. This sets a material lengthscale, and corresponds to the scaling of the core radius of a disclination
defect. There is a close analogy to the relation between classical elasticity – which has no lengthscale –
and gradient or peridynamics models of elasticity which introduce lengthscales [SL10]; in the latter class
of models, defects such as interfaces and dislocations then can inherit this lengthscale as a “core radius”.
In a calculation with application to a real material, the lengthscale introduced could be taken to scale with
the defect size. An appropriate choice could be the lengthscale parameter that appears in the Q-tensor
models.

3.3 Accounting for Head-Tail Symmetry

Typical nematic liquid crystal molecules are non-polar and have head-tail symmetry. That is, chang-
ing n ↔ −n should not change any physical quantities. This is particularly important in half-integer
disclinations, e.g. Fig. 1, where there is a plane – or line in 2D – across which the sense of the director
changes. If represented by a unit vector field, the vector flips head-to-tail; if represented by θ in 2D, there
is discontinuity of π. These discontinuities should not contribute to the energy or equilibrium equation.
However, the energy in (3.4) is sensitive to such a transformation. We now discuss how to modify the
energy to reflect the physics.

Consider two directors that are within δ. The minimum energy configuration is n1 · n2 = 1 (they are
parallel). The highest energy configuration is n1 · n2 = 0 (they are normal). We further want that the
configuration n1 · n2 = −1 (they are anti-parallel) is a minimum energy state, with the same energy
as the parallel state. Some choices of energy that satisfies this are −|n1 · n2| ≡ −| cos(θ1 − θ2)|,
−(n1 · n2)

2 ≡ − cos2(θ1 − θ2), etc.

Consider now the integrand from (3.4). We can write (n−n̂)2 = 2−2n ·n̂ = 2−2 cos(θ− θ̂). Since it is
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an energy, we can ignore constants and write the energy as−2n ·n̂ = −2 cos(θ− θ̂). From the discussion
in the previous paragraph, it is clear that this does not behave well when n and n̂ are anti-parallel, and
shows the problem with (3.4).

Based on these physical considerations, we replace the integrand in nonlocal energy density by−
∣∣2− (n− n̂)2

∣∣ =
−2 |n · n̂|. That is, we propose the following nonlocal regularized free energy:

E[n] =
K

2

∫
x∈Ω

∫
x̂∈Ω

1

2
Cδ(|x− x̂|) · −

∣∣2− (n− n̂)2
∣∣ dVx̂︸ ︷︷ ︸

free energy density at x

dVx (3.5)

This recovers the classical model when the anti-parallel nature is not an issue because it is quadratic in
n−n̂. It is obvious that our proposed expression does not impose any continuity requirements on n. The
energy density – and therefore the total energy – is bounded and well-defined even if n has all kinds of
discontinuities, as long as n itself remains bounded; this is automatic due to the unit vector constraint. It
is also obvious that the energy density is non-zero except for constant fields if we restrict Cδ(|x−x̂|) ≥ 0
because the integrand is non-negative.

We begin with an energy that is quadratic in the nonlocal gradient operator. However, this does not respect
head-tail symmetry when we use a vector field n. To get around this, we modify the nonlocal gradient
operator directly following ideas from Maier-Saupe theory and related models such as the Gay-Berne
and Lebwohl-Lasher models, e.g. [HDCK12], Chapter 4 in [PB94], [LL72], [PP01], [A+93], from a vast
body of work. This closely follows more sophisticated approaches proposed by [BB15] and [ZZA+] who
use non-convexity in the gradient of the director to achieve similar ends.

We could, in principle, use many other expressions that resolve the head-tail issue, e.g. −2(n · n̂)2 for
the free energy density. But these would not recover the classical model in the limit.

3.4 Equilibrium and Evolution Equations

The equilibrium equation is obtained from setting the functional derivative of the energy from (3.5) to

0. That is,
d

dε
E [n+ εδn]

∣∣∣∣
ε=0

= 0. To satisfy the unit vector constraint on n, we use the variation

δni = εijknjpk where p is an arbitrary vector field. This gives:

0 =
K

2

∫
x∈Ω

∫
x̂∈Ω

Cδ(|x− x̂|) · sign(2− (n− n̂)2) · εijk (ni − n̂i) (njpk − n̂j p̂k) dVx̂ dVx

=
K

2

∫
x∈Ω

∫
x̂∈Ω

Cδ(|x− x̂|) · sign(2− (n− n̂)2) · εijk (ni − n̂i)njpk dVx̂ dVx

− K

2

∫
x∈Ω

∫
x̂∈Ω

Cδ(|x− x̂|) · sign(2− (n− n̂)2) · εijk (ni − n̂i) n̂j p̂k dVx̂ dVx

= K

∫
x∈Ω

pk

∫
x̂∈Ω

Cδ(|x− x̂|) · sign(2− (n− n̂)2) · εijk (ni − n̂i)nj dVx̂ dVx

(3.6)

where we have relabeled x↔ x̂ to combine integrals in the second line.

Using that pk is an arbitrary field, we eliminate the integration over x:

εijknj

∫
x̂∈Ω

Cδ(|x− x̂|) · sign(2− (n− n̂)2) · (nk − n̂k) dVx̂ = 0 (3.7)
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We compare this with the statement of equilibrium in the classical 1-constant model: εijknjnk,ll = 0.

In 2D, an orientational description n = (sin θ(x), cos θ(x)) gives:

E[θ] =
K

2

∫
x∈Ω

∫
x̂∈Ω

1

2
Cδ(|x− x̂|)

(
1− | cos(θ̂ − θ)|

)
dVx̂ dVx (3.8)

for the energy, and equilibrium configurations are described by:

K

∫
x̂∈Ω

Cδ(|x− x̂|) sign
[
cos(θ − θ̂)

]
sin(θ̂ − θ) dVx̂ = 0 (3.9)

As in the classical case, we deduce the evolution equation using γ1〈ṅ, δn〉 = − d

dε
E [n+ εδn]

∣∣∣∣
ε=0

using the variation δni = εijknjpk, where p is arbitrary. This gives us:

γ1ṅ× n =

(
K

∫
x̂∈Ω

Cδ(|x− x̂|) · sign(2− (n− n̂)2) · (n− n̂) dVx̂ dVx

)
× n

⇒ γ1ṅ = K

∫
x̂∈Ω

Cδ(|x− x̂|) · sign(2− (n− n̂)2) · (n− n̂) dVx̂ dVx + λn

(3.10)

Enforcing n · n = 1⇒ ṅ · n = 0 to eliminate λ gives:

γ1ṅ = (I − n⊗ n) ·K
∫
x̂∈Ω

Cδ(|x− x̂|) · sign(2− (n− n̂)2) · (n− n̂) dVx̂ dVx (3.11)

The corresponding 2D orientational description is:

−K
∫
x̂∈Ω

Cδ(|x− x̂|) sign
[
cos(θ − θ̂)

]
sin(θ̂ − θ) dVx̂ = θ̇ (3.12)

The dissipation associated with the nonlocal model can be computed:

−dE
dt

=
K

2

∫
x∈Ω

∫
x̂∈Ω

Cδ(|x− x̂|) · sign
(
2− (n− n̂)2

)
· (n− n̂) ·

(
ṅ− ˙̂n

)
dVx̂ dVx

= K

∫
x∈Ω

ṅ ·
∫
x̂∈Ω

Cδ(|x− x̂|) · sign
(
2− (n− n̂)2

)
· (n− n̂) dVx̂ dVx

=
1

γ1

∫
x∈Ω

A · (I − n⊗ n) ·A dVx

(3.13)

where A := K

∫
x̂∈Ω

Cδ(|x − x̂|) · sign
(
2− (n− n̂)2

)
· (n− n̂) dVx̂. Since I − n ⊗ n is positive

semi-definite, it follows that the dissipation is always non-negative.

3.5 Boundary Conditions

As in the peridynamic model of elasticity, boundary conditions cannot be applied in the classical sense.
Roughly, imposing conditions on the boundary – a set of measure 0 in the integral – provides an in-
finitesimal contribution to the integral. However, a physically-natural solution to this issue is to instead
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impose conditions over a layer of finite thickness – with thickness of order δ – on the boundary. Given
that in our model molecules interact over a finite range, it is natural to provide boundary conditions with
more structure than holding them fixed on a low-dimensional set (the boundary). For instance, to impose
that the nematic molecules have a specific orientation on the boundary, we hold the orientation fixed for
all molecules within the boundary layer region. That is, θ(x) = θ0 ∀x ∈ Ωbl where Ωbl is a portion
of the Ω with finite volume. In this paper, this is the only type of boundary condition that we use, but
other boundary conditions can be similarly smeared-out following the techniques used in peridynamics
[Sil00, SL10, DB06].

4 Bend and Splay: Extension Beyond the 1-Constant Energy

In the classical 1-constant model, a single modulus K defines the energy in the bend, splay, and twist
modes. The more general Frank free energy has different moduli for each of these modes. We examine the
same issue in the nonlocal regularized energy. We restrict ourselves to 2D and therefore only distinguish
between bend and splay, but an extension to 3D that also incorporates twist is conceptually analogous.
Appendix A discusses briefly an alternative strategy.

The physical basis for 3 different moduli is seen from Fig. 2. We can differentiate between these modes as
follows. Splay can be differentiated from both bend and twist by noticing that the quantity (n−n̂)·(x−x̂)
is 0 for both bend and twist, but is nonzero – and can be normalized to 1 – for splay. Similarly, bend can
be differentiated from both splay and twist by using the quantity n · (x − x̂), which is 0 for both splay
and twist but is nonzero and normalizable to 1 for bend.

Since we are currently only working in 2D and considering only bend and splay modes, we need only
differentiate these 2 modes here. We write for the modulus K = Ks

(
1−

∣∣∣n · δ̂x∣∣∣) + Kb

∣∣∣n · δ̂x∣∣∣,
where δ̂x ≡ x̂− x

|x̂− x|
. Then, Ks is the coefficient for splay and Kb is the coefficient for bending. When

n · δ̂x = 0, then we have splay, and when n · δ̂x = 1 we have bending.

Using the orientational description for compactness, the energy can now be written:

E[θ] =

∫
x∈Ω

∫
x̂∈Ω

K(θ,x, x̂)

2
· 1
2
Cδ(|x− x̂|)

(
1− | cos(θ̂ − θ)|

)
dVx̂ dVx (4.1)

We can also identify the bending and splay contributions individually:

E[θ] =
1

2
Kb

∫
x∈Ω

∫
x̂∈Ω

1

2
Cδ(|x− x̂|)

∣∣∣n · δ̂x∣∣∣ (1− | cos(θ̂ − θ)|) dVx̂ dVx︸ ︷︷ ︸
bend

+
1

2
Ks

∫
x∈Ω

∫
x̂∈Ω

1

2
Cδ(|x− x̂|)

(
1−

∣∣∣n · δ̂x∣∣∣) (1− | cos(θ̂ − θ)|) dVx̂ dVx︸ ︷︷ ︸
splay

(4.2)

The evolution equation is obtained from a gradient descent based on θ without any constraints:

−
∫
x̂∈Ω

Cδ(|x− x̂|)
(
dK

dθ
·
(
1− | cos(θ̂ − θ)|

)
+K(θ) · sign

[
cos(θ − θ̂)

]
sin(θ̂ − θ)

)
dVx̂ = θ̇

(4.3)
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Figure 2: Bend, Splay and Twist modes. These modes can be differentiated
in our nonlocal model by using the quantities (n − n̂) · (x − x̂) and n ·
(x − x̂). When normalized, these quantities are both 0 for twist, 0 and 1
respectively for bend, and 1 and 0 respectively for splay.

The equilibrium equation is obtained by setting the right side above to 0.

5 Structure and Stability of Individual Disclinations

We use the model to examine the stability and structure of various half-integer and integer disclinations.
We examine these using the 1-constant nonlocal energy as well as the energy that differentiates between
bend and splay.
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5.1 The 1-Constant Nonlocal Energy

In the 1-constant nonlocal energy, we find that only ±1

2
disclinations are stable; disclinations of higher

strength always split into the appropriate number of ±1

2
disclinations. We show some examples of this

below.

In all of these calculations, we use a discretization mesh size of 1 with δ = 5, except where stated
otherwise. We have tested with finer discretizations going down to 0.01 to ensure that our approximation
is accurate. We use a square domain with size 200 × 200. For the starting configuration, we use the
classical formula for a disclination n(x) = (sin(kθ0(x) + α), cos(kθ0(x) + α), where tan θ0 = x2/x1,
and then evolve using the equations presented above. The initial and final configurations are shown in
Fig. 3.

This finding agrees qualitatively with calculations in [MHML05, BKŽ98] which use the Q-tensor and

molecular dynamics methods respectively, in that only ±1

2
defects are stable in the 1-constant energy. It

is consistent also with the heuristic that the energy of a disclination scales with the square of the charge
that it carries [dP95], as well as rigorous work [BPP12].

While the final states are largely in agreement with other aproaches, the dynamics is qualitatively different
in our model compared to the Q-tensor calculations from [MHML05]. They find that a +2 defect first

splits into two +1 defects, and then splits a second time into four +
1

2
defects. In our calculations, all of

the defects split almost instantly into ±1

2
disclinations that are then repelled from each other and move

apart. While their geometry is circular and hence different from our square domain, in both their work
and ours the domain is large enough that it is unlikely that this is the reason for the difference. It is likely
a consequence of the differences between the evolution equations in the Ericksen-Leslie model with our
energy vs. the Q-tensor model.

We also notice that the energy (3.4) has stable±1 disclinations and does not form±1

2
disclinations. How-

ever, this occurs due to the unphysical feature that the lack of head-tail symmetry associates a very high

energy to the line (in 2D) across which the director changes sense that accompanies ±1

2
disclinations.

We then examine the detailed structure of the core for ±1

2
defects. For these calculations, we use a

much finer discretization of 0.1 with the same value of δ. In an initial set of calculations, we began
with the classical solution as above, and evolved to find the relaxed configuration. The solutions in our
model are extremely close to the starting classical solution, and the changes are dominated by numerical
discretization errors. So we instead use as initial the classical solution everywhere outside a core region of
radius 2; within this region, we set all directors to point vertically. The director field relaxes to a solution
that is again very similar to the classical solution, but the disclination translates during the relaxation due
to the severe perturbation that we have induced in the initial conditions. We therefore perform a best fit of
the relaxed configuration against the formula for a translated disclination, treating the disclination center
as the parameters to optimize over. Fig. 4 shows the change in the director angle. The difference between
our solution and the classical disclination solution is confined to the core region, and even there is small.
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Figure 3: Top: A +2 disclination constructed using the classical solution (left), and the final con-

figuration of four well-separated +
1

2
disclinations (right). Middle: The similar process for a +3/2

disclination decomposing into three +
1

2
disclinations. Bottom: A −1 disclination decomposing

into two −1

2
disclinations. The vector field is overlaid on the energy density. We observe similar

decompositions in +1,−3/2, and other disclinations stronger than ±1

2
.
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Figure 4: Angular difference between a classical disclination solution and our relaxed disclination

configuration for +
1

2
(left) and −1

2
(right). Outside the core, the classical solution and our relaxed

solution are practically identical. Note the scale: the difference is extremely small.

5.2 Disclinations in the Bend-Splay Energy

In the previous subsection, we see that the nonlocal 1-constant energy has only ±1

2
disclinations. In

experiments, however, it has been noticed that ±1 defects dissociate into two closely-spaced ±1

2
cores

[MPR14]. As described in [YR02], the dissociation of ±1 disclinations is controlled by the ratio of bend
to splay energies. Looking at Fig. 1, we see that the +1 disclination is dominated by bend, whereas

the +
1

2
disclination has a significant amount of both splay and bend. We notice that in our approach to

differentiating between bend and splay based on n · (x− x̂), there will be some level of splay character
in the core region of the classical +1 defect.We examine the behavior of a +1 disclination in our model
at two limits, one with Ks = 10Kb and the other with Ks = 0.1Kb.

We first plot the partitioning of energy between bend and splay in the classical solution with Kb = Ks in
Fig. 5. As we expect, the bending energy is generally dominant, though the splay energy is not vanishing
as explained above.

We then evolve the director field from this initial configuration. In the case when the bending modulus
is large compared to the splay modulus (Kb � Ks), bending is expensive energetically and hence the

system dissociated into two +
1

2
disclinations in which some of the distortion can be accommodated as

splay (Fig. 6, top). In the case when the bending modulus is small compared to the splay modulus (Kb �
Ks), bending is not expensive and hence the system retains roughly the original disclination configuration
thereby reducing the amount of splay (Fig. 6, bottom). Intermediate configurations between these two
limits lead to partially dissociated disclinations that are qualitatively comparable to the observations in
[MPR14] and the theoretical model in [YR02].
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Figure 5: Partitioning of the energy into splay (left) and bend (right) energies with Kb = Ks. The
bending distortion has significantly higher energy. Both are localized around the disclination core.

Figure 6: Top row: Energy partitioning into splay (left) and bend (right) in the final configuration
forKs = 10Kb, i.e., splay is much more expensive than bending. The defect retains a +1 character
to minimize splay distortion. Bottom row: Energy partitioning into splay (left) and bend (right)
in the final configuration for Ks = Kb/10, i.e, bending is much more expensive than splay. The
defect dissociates to reduce the bending distortion and compensates with a higher splay distortion.
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6 Coalescence of +
1

2
and −1

2
Disclinations

We next use our model to examine the evolution of 2 disclinations of equal-and-opposite ±1

2
topological

charge. Two such disclinations will attract each other, causing them to move towards each other and
eventually coalesce to form a disclination-free material. Whether these defects move at the same velocity
towards each other, and hence coalesce at the midpoint between the initial defect positions, has been
an important question. This has been the focus of both experimental and theoretical investigation. A
key experiment observing coalescence of point defects in nematics shows that there is asymmetry in
their motion [CB03]. Closely related situations have been studied numerically and theoretically [SŽ03,
TDY02, SŽ02, BS12, GSV02]; while some of these systems are significantly different from the nematics
studied here, a key broad finding is the significant influence from hydrodynamic effects. We find here
that even without any flow effects, there is asymmetry in defect velocity.

We examine this situation using our simple 1-constant regularized model using ±1

2
disclinations. Fig.

7 shows the initial configuration with two ±1

2
disclinations and the final defect-free configuration. The

force between disclinations falls off very rapidly with distance, and hence there is initially little move-
ment. However, as the disclinations begin to come closer, the force increases, thereby further increasing
the velocity, and so on. Eventually, the disclinations coalesce and leave behind a disclination-free ma-
terial. A movie of the coalescence process is part of the supplementary material, and we quantify the
approach in Fig. 8. While small, there is an unmistakable difference in the velocities of the positive
and negative defects. Given that our 1-constant regularized model contains no complexities such as
flow, or even different moduli for bend and splay, it suggests that this asymmetry in disclination veloc-
ity has its origin in the asymmetry of the director field; flow further enhances this effect when present
[TDY02, SŽ02].

Figure 7: Initial configuration (left) with two ±1

2
defects, and the final defect-free configuration

(right).

A priori, there is no reason for equal-and-opposite topological disclinations to move at the same velocity.
Disclinations are not analogous to electrical point charges which have no internal structure and are there-
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Figure 8: Disclination core positions as a function of time. Red circles are −1

2
and blue squares

are +
1

2
. The disclination cores are located by finding the mesh point with the highest energy

density. The motion appears discontinuous because we only sample over a discrete mesh.

The asymmetry in the motion is immediately obvious. We notice that the +
1

2
defect has a higher

velocity. For instance, the +
1

2
defect is clearly closer to the midpoint at later times. Also, the −1

2

defect stays fixed from t = 20000 to t = 28000, while the +
1

2
defect migrates by one grid point in

that time.
The velocity increases as the disclinations approach, as is expected [GSV02].
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fore perfectly anti-symmetric. Rather, the topological charge is simply one average measure – admittedly
an extremely important measure – of the defect structure. The detailed structure of the disclination plays
an important role in the dynamics, and even if different disclinations of the same strength have the same
force acting on them, the detailed structure is essential in setting the dynamics in response to the force.
Returning to the electrical analogy, the net charge is just a particular characterization of a complex charge
distribution, but the dynamics of the charge distribution in response to another charge distribution cannot
be characterized solely in terms of the net charges of both distributions. Rather, the net charge is simply
the lowest-order moment of the distribution. As noted in [GSV02], the configurational (or driving) forces
are equal and opposite on defects of equal and opposite sign in the quasi-static setting, arguing from
symmetry when the boundaries are sufficiently far away. However, this need not translate to equal and
opposite velocities; there is in general no reason for the dissipation (or kinetic) relation associated to the
defects of equal and opposite sign to be the same. As [GSV02] further notes, computing the dissipation
requires a “non-local” calculation, by which they mean that the director field away from the core is also
relevant; this is in accord with the discussion above that the entire director field associated to a defect is
relevant and not just the defect charge.

7 Discussion

We present a nonlocal regularized model that exploits integral operators to achieve a generalization of the
classical Ericksen-Leslie model for nematics. Near disclinations, the model regularizes defect cores, and
as the distortion becomes uniform, it recovers the Ericksen-Leslie model. The use of integral operators
– as opposed to differential operators in the classical approach – enables us to model situations in which
the disclination field is not continuous. As we describe, the integral operators tend to the differential
operators in a physically meaningful way.

Our approach works only with the director field and does not introduce any new quantities, in contrast
to [Eri91] for instance. This has the consequent advantage that no new evolution equations need to be
introduced, and only the evolution equation for the director is used, which is well-established and based
on fundamental principles of angular momentum balance. In this context, we point out the important
recent contribution of [BB15] that modifies the standard OZF energy to have subquadratic scaling at
large values of the director gradient, thereby obtaining finite energy disclinations with a model based
only of the director field; however, this does not introduce a regularizing lengthscale.

Our approach uses in an essential way the important ideas behind peridynamics [Sil00, SL10]. How-
ever, the head-tail asymmetry that is essential in describing liquid crystals does not have an analog in
peridynamics which is tailored to deformation fields.

This is a preliminary step towards the formulation of this class of models. While we have demonstrated it
in the context of nematics, it is readily generalizable to other liquid crystalline material such as smectics.
The key issues that we have dealt with here – namely unit vector fields that have discontinuities – are the
central challenges in this class of materials. In addition, we have not fit the many material parameters
here to specific materials. For instance, the regularization scale δ, the precise form of the kernel Cδ, and
the precise angular dependence of K, can all be tailored to capture specific types of physics; for instance,
if detailed dynamic behavior is to be predicted. We have also restricted ourselves to 2D for simplicity,
but an extension to 3D is conceptually simple. Such an extension would enable the interrogation of more
realistic geometries, as well as enable us to examine twist distortions.
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Our numerical approximations have used finite differences for simplicity. However, powerful numerical
techniques such as discontinuous Galerkin finite elements (DGFEM) can enable the efficiency of adaptive
meshing and finite elements to attack much bigger problems and complex geometries with our model.
While defect tracking can be enormously expensive, results from [DGLZ12, CG11] suggest that DGFEM
offers an efficient approach: it is a conforming approximation for peridynamics, and the results appear
not very sensitive to the errors in tracking the defect.

Our numerical calculation of the coalesence of two disclinations of equal and opposite sign shows an
interesting asymmetry that is not predicted by other approaches. While we have focused on the simplest
possible setting to isolate the effect from other complexities, a systematic study of various configurations
is a potential direction for future research.

Our numerical calculation of the splitting of a +2 disclination shows qualitative differences from predic-
tions by the Q-tensor theory. It is not clear which is closer to reality in terms of experimental observation.
A very significant challenge in doing this experiment is that +2 defects are unstable so it is not clear how
to set up an initial condition with such a configuration. Molecular dynamics may provide answers, but
the issue of timescales is a significant hurdle.
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A An Alternative Approach to the Energetics of Bend and Splay

The classical model of nematic liquid crystals uses the kinematic quantities ∇ · n, n · ∇ × n, and
n × ∇ × n to measure splay, twist, and bend respectively. The energetics of these deformation modes
are simply given by (∇ ·n)2, (n · ∇ ×n)2, and (n×∇×n)2, with appropriate moduli for each mode.
We briefly consider here an alternative approach to nonlocal analogs of these quantities.

The 1-constant energy in (3.3) can be considered the nonlocal analog of ∇n : ∇n, i.e. the double
contraction of the gradient of n. In index notation:

ni,jni,j ∼
∫
x̂∈Ω

(n̂i − ni) (x̂j − xj) (n̂i − ni) (x̂j − xj) dVx̂ (A.1)

where normalizing factors have been neglected for clarity.
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Extending this reasoning, we can write the nonlocal analogs of splay, twist, and bend as follows:

ni,inj,j ∼
∫
x̂∈Ω

(n̂i − ni) (x̂i − xi) (n̂j − nj) (x̂j − xj) dVx̂ (A.2)

niεijknj,knlεlmnnm,n ∼ εijkεlmn

∫
x̂∈Ω

ninl (n̂j − nj) (x̂k − xk) (n̂m − nm) (x̂m − xm) dVx̂

(A.3)

εabknbεkjinj,iεapqnpεqrsnr,s ∼ εabkεkjiεapqεqrs

∫
x̂∈Ω

nbnp (n̂j − nj) (x̂i − xi) (n̂r − nr) (x̂s − xs) dVx̂

(A.4)
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