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Abstract— This paper deals with robust minimum-time con-
trol of a class of asymptotically null-controllable with bounded
input planar systems. A hybrid controller is proposed to
robustly achieve global finite time stability of a set of points
wherein the plant state is zero. The resulting controller provides
time optimal response from initial conditions in a certain subset
of the state space, and finite time convergence elsewhere. Finally,
the effectiveness of the proposed methods is demonstrated in
two numerical examples.

I. INTRODUCTION

The problem of minimum-time control consists of trans-
ferring the state of a dynamical system from one point
to another in the shortest amount of time, while possi-
bly ensuring the satisfaction of certain constraints. Such a
problem, due to its relevance in numerous applications, has
attracted the attention of researchers since the 17th century.
The first minimum-time control problem can be traced back
to 1697 when Johann Bernoulli formulated in the Acta
Eruditorum the well-known brachistochrone problem. Since
then, minimum-time control has received much attention and
different scenarios have been considered; see [6], [7], [1],
[9]. A key result in this context is Pontryagin’s Maximum
Principle [9], which provides necessary conditions for a
constrained control to be an open-loop optimal control.

Due to their importance in engineering applications, par-
ticular attention has been devoted to finding solutions to
minimum-time control problems characterized by single in-
put second-order linear time-invariant plants (LTI) with an
input constraint, i.e.,

Tp1 = G11Tp1 + G12Tp2 + b1u
Tp2 = A21Tp1 + A22Tp2 + bous
e [~ M, M]

where M > 0. In this setting, minimum-time transferring
from any initial condition to a given point, without loss
of generality, the origin, can be accomplished by a con-
trol input taking values in {—M, M} if and only if the
plant is asymptotically null-controllable with bounded input,
i.e., if its eigenvalues are contained in the closed left-half
plane; [11], [9]. Furthermore, if one further restricts the
attention to the case of plants with either real or purely
imaginary eigenvalues, then, a (discontinuous) state-feedback
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k: R? — {—M, M} such that solutions to the resulting
closed-loop system converge, from any initial condition, and
in minimum-time, to the origin can be explicitly obtained;
see [3], [1]. Although following this approach provides
a viable solution to the optimal control problem of the
considered class of plants, the adoption of a discontinuous
law may induce a lack of robustness for the resulting closed-
loop system. Indeed, it is well-known that discontinuous
controllers are very sensitive to (small) measurement noise
which renders their implementation in practice somewhat
delicate; see [2], [4], [S] just to cite a few. This drawback is
well known by the community and for this reason researchers
have provided different approaches to avoid the use of
discontinuous laws in an attempt to achieve a trade-off
between robustness and optimality; [10], [8], [3].

In this paper we pursue a different approach. By relying
on the framework for hybrid systems in [4], we design
a hybrid feedback controller ensuring robust minimum-
time convergence from certain points of the state space. In
particular, by restricting the attention to a class of planar
systems for which a closed-form expression of a static time-
optimal feedback controller is available, we propose a hybrid
controller ensuring time-optimal convergence to a set given
by the origin of the plant (when projected to the plant
state space) for a set of initial conditions for the closed-
loop system and finite time convergence elsewhere. The
applicability of the proposed construction is shown in two
examples of practical interests: the double integrator and the
harmonic oscillator.

The remainder of the paper is organized as follows.
Section I-A presents some preliminaries on hybrid systems.
Section II-A presents some background on time-optimal
control. Section IL.B is dedicated to the problem statement.
Section III is devoted to the main results of our paper. Finally,
Section IV shows the effectiveness of the results presented
in two case studies.

Notation: The set N is the set of strictly positive integers, Ng =
N U {0}, R>( represents the set of non-negative real scalars, and
C_ is the set of complex numbers with negative real part. For a
vector z € R", |z| denotes the Euclidean norm, while z; denotes
its i-th entry, and 1,, denotes the vector in R™ whose entries are
equal to one. Given two vectors z,y, we denote (z,y) = [z’ ¥’
Given a vector x € R"™ and a closed set A, the distance of = to
A is defined as |z|4 = infyca |z — y|. Given a set S, we denote
S the closure of S. Given I C R, the set £i>.(I) C R is the set
of Lebesgue-measurable and locally essentially bounded functions
from I to R. Given a matrix A € R™*", o(A) denotes the spectrum
of A. Given a function f: X — Y, rge f denotes the range of f.



A. Preliminaries on Hybrid Systems

In this paper, we adopt the framework for hybrid systems
in [4]. Next, we give some basic notions on hybrid systems
and we refer the reader to [4] for more details on hybrid
systems.

A hybrid dynamical system H with state x € R™ is a tuple
(C, f,D,g), where C, D C R™ are, respectively, the flow set
and the jump set, while f: R — R"™ and g: R™ — R" are,
respectively, the flow map and the jump map. The flow map
f describes the continuous evolution (flow) of #, while the
jump map g describes how instantaneous changes (jumps)
occur. The flow set C indicates the set wherein continuous
evolution is allowed, while the jump set D indicates the set
wherein instantaneous changes may take place. A hybrid time
domain is a subset of R>q X Ny. Given a hybrid time domain
E, we denote sup E' = (sup, E,sup; ), where sup, F' and
sup, E' are, respectively, the supremum of the projection of
E onto R>( and the supremum of the projection of E onto
Np. A solution H is any hybrid arc defined over a hybrid
time domain that satisfies the dynamics of H. A solution is
said to be complete if its domain is unbounded. A solution is
maximal if it is not the truncation of another solution. Given
a set S, we denote Sy(S) the set of all maximal solutions
¢ to H with ¢(0,0) € S. Given a set S C R"™, we say that
S is strongly forward invariant for #, if each ¢ € Sy /(5) is
complete and one has rge¢ C S. Given H = (C, f, D, g),
we say that ‘H satisfies the hybrid basic conditions ([4]) if:
C and D are closed, and f: C — R™ and g: D — R"™ are
continuous.

Definition 1: Consider a hybrid system H on R", a com-
pact set A C R™, and an open neighborhood S of A. The
set A is said to be

o stable for H if for every e > 0 there exists § > 0
such that for every ¢ € Sy(A + JB), one has that
|p(t,7)|a < € for every (t, ) € dom ¢.

Definition 2: Consider a hybrid system H on R", a com-
pact set A C R™, an open neighborhood N of A, and a
function 7: N — Rxq, called the settling-time function.
The set A is said to be

e finite time attractive for H if for each ¢ € Sy(N),
sup{t + j: (t,4) € dom g} > T((0,0)) and

Ifb(t Da=0

lim
(t,j)€dom ¢: t+351T (b(

e finite time stable for H if it is stable and finite time
attractive for H;

o globally finite time stable for H if it is stable and finite
time attractive for H and N' = R™.

II. PROBLEM STATEMENT

A. Background on minimum-time control of planar linear
systems with bounded inputs

Consider the following planar single input LTI plant

Tp = Azp + bu )

where x, € R? is the plant’s state, u € U = [-M, M] is
the control input, where M € Rxq, and A € R?*? b € R?
are given matrices. Define

U={ue L3 (0,00)): ut) eU Vtedomu}

Given z,0 € R2, consider the following (minimum-time)
optimal control problem:

ty
min J(u) :/ dt
0

uel
S.t.
Tp(t) = Axp(t) + bu(t) foralmost all ¢ € [0, ¢]
2p(0) = xpo, 2p(ty) = 0, ty € Rxo )
)
Definition 3: Let xz,0 € R? and be (x; u*) a solution
pair to (1), with domz; = [0,#%] and u* € U. We say that
the pair (zj,u*) is an optlmal pair for the optimal control
problem (2) if z73(0) = x,0 and
@) ap(t;) =0;
@) J(u*) = Inig{l J(w).
ue
Moreover, we say that u* € U is an optimal control for (2)
if the corresponding solution If” from g to (1) is such that
(2%, u*) is an optimal pair for' (2).

p7
Consider now the following result, which gathers some

important results from [9] and that provides guidelines on
how to generate optimal controls for (2), though specialized
to case of single input planar LTI plants.

Theorem 1: Let A € R?*2 and b € R? such that (4,b)
is controllable, o(A) C C_, and let x,0 € R2. Then, the
following properties hold:

(i) there exists % > 0, and a unique optimal control u* € U
with domu* = [0, %] that solves (2);
(#7) the optimal control u* € U is piecewise constant and
such that rgeu* C {—M, M},
(7i1) if the eigenvalues of A are real, then the optimal control
u* € U that solves (2) can change sign at most one time.

Remark 1: Having assumed that o(A) C C_ rules out
the case of exponentially unstable plants, for which problem
(2) cannot be solved globally due to U being bounded; see
[12]. Moreover, having assumed (A, b) to be controllable ((1)
being single input) rules out the existence of singular control
in the solution to (2); see [7].

Theorem 1 formally states the well-known bang-bang
principle for minimum-time optimal control, i.e., the optimal
control switches between the two extrema of the admissible
input set U. Due to this behavior, it is convenient to define
the following objects.

Definition 4: Let Z be a compact interval and v: Z — R
be a piecewise constant function. We denote ng(v) € Ny
the number of switchings of v. More precisely, ns(v) is the
smallest nonnegative integer such that

ns(v)

Z U XT, (t)

Notice that, due to the right-hand side of (1) being linear, and u* being
Lebesgue-measurable, for each z,0 € R? given an optimal control, the
corresponding optimal pair is univocally determined.

Viel



where Zy, 14, . .., I, () are some bounded pairwise disjoint
intervals such that UZ;%J )7, = 1T, Xs is the indicator
function of the generic set S, and v, fork = 0,1,...,n,(v),
is a real number.

Definition 5: Let x,0 € R? be given, and let (z},u*) be
the corresponding (unique) optimal pair. We denote £*(x,0)
as the (optimal) number of switchings of u*, i.e., for each
Tpo € R2, L*(xpo) = ns(u*).

Given the assumptions in Theorem 1, it turns out that
the class of planar systems covered by Theorem 1 can be
(modulo a linear invertible change of variables) written in
the following (reachability) form:

. (0 1 (0
CCp— —ay —ay Ip 1 u
————— ~—~—

A b

3)

with ajas > 0. This class of systems encompasses several
systems of relevant interest like, just to cite a few, the double
integrator (a2 = a; = 0) and the harmonic oscillator with
angular speed w > 0 (a2 = 0,a; = w?). Therefore, in the
sequel, without loss of generality, we explicitly refer to the
class of plants in (3).

Although optimal control problems are naturally formal-
ized (and solved) as open-loop control problems, having
available a state dependent (closed-loop) expression of the
optimal control, as defined next, is of primary importance in
practice. In fact, open-loop solutions are unlikely to be robust
with respect to mismatches on the plant initial condition or
to arbitrarily small (even vanishing in finite time) external
perturbations.

Definition 6: The function x: R" — U is said to be a
state feedback optimal controller for (2) if for each x,q € R2,
there exists a ty > 0, and a unique solution [0,¢f] > ¢ —
@*(t) to

Ip = Axy + br(zp)

such that (¢*, k o ¢*) is an optimal pair for (2).

Remark 2: As pointed out in Theorem 1, the optimal
control takes values only in the set {—M, M }. Therefore, the
optimal feedback k is necessarily a discontinuous function.

A notable characteristic of minimum-time control of lin-
ear LTI plants is that whenever an optimal control exists,
provided that the eigenvalues of A are either real or purely
imaginary, one can explicitly construct a state-feedback
optimal control out of it. In particular the derivation of
optimal feedback controllers, for all possible realizations of
the plant (3), are thoroughly presented and discussed in [1],
[6]. Specifically, from the constructions presented in [1], [6],
[3], it turns out that, given a specific realization of the plant
(3), and provided that the eigenvalues of A are either real
or purely imaginary, then a closed form for a state-feedback
optimal controller for (3) exists. In particular, as shown next,
the state-feedback optimal controller is univocally identified
by a continuous function s: R2 — R that we call the
switching surface generator, which is defined as follows

Definition 7 (Switching surface generator): The function
s is a switching surface generator if:

(i) there exist continuous functions a;: R — R, for ¢ =
1,2, such that s can be written either as

s(x) = 22+ ag(xq) (4a)

or as

s(z) = x1 + ag(x2) (4b)

(7¢) the functions «;: R — R, for ¢ = 1,2, are such that
a1(0) = az(0) = 0, and for each p € R, pay(p) < 0
and pas(p) > 0
More specifically, given s: R? — R satisfying the above
properties, if one defines the following nonempty sets
S = {x e R?: 5(z) = 0}
S, = {z € R%: s(z) > 0}
S_ = {r e R*: s(x) <0}
where S is called the switching surface, then, to generate

optimal trajectories from each point of the state space, x can
be defined as follows:?

5)

M ifz, €S8,
M ifz,eS.

K(xp) = —M ifz, € SN (Reo x R) (6)
M ifz, €SN (Rep x R)
0 ifz,=0

which univocally determines x in R? due to SUS, US_ =
R2. For example, in the case of the double integrator, one

has that 1
s(x) = x1 + ——|xa|x2

2M
as

where oy obviously satisfies all the items in Definition 7;
see, [1], [7]. In particular, from the analysis showcased in
[1], it turns out that the following fact holds:

Fact 1: Let x be defined as in (6), ¢ € R?, and ¢ be the
unique maximal solution to

&p = Axy + be(zp)

with ¢(0) = £. Then, the following properties hold:

(1) if £ € S_, then there exists T > 0, such that ¢(T) €

SN (Reo x R) and, for all t € [0,T), ¢(t) € S_;

if £ € Sy, then there exists T > 0, such that ¢(T') €

SN (Rsp x R) and, for all t € [0,T), ¢(t) € Sy;

if £ € SN (R<p x R), then there exists T > 0 such

that, for all ¢t € [0, T, ¢(t) € Sy N (R-o x R);

if £ € SN (Rsp x R), then there exists 7' > 0 such

that, for all t € [0,7], ¢(t) € S_ N (Rso x R).
Although the feedback controller (6) provides a viable

solution to (2), being a discontinuous controller, it is particu-

larly not robust to the presence of measurement noise, which

2As a matter of fact, whenever the matrix A in (3) has real nonzero
distinct eigenvalues, i.e., a% — 4ay1 > 0, the deﬁnitign of k in (6) holds
up to a linear invertible change of coordinates zp = T'zp. In this case, the
optimal feedback « can be defined for each x), € R? as r(xp) = R(Tzp),
where %: R? — {—M, M} is defined as in (6). However, to keep the
presentation simple, we assume & to be directly defined as in (6) in the ;-
coordinates.



may result in unwanted behaviors like chattering away from
the origin; see [2].

B. Hybrid robust minimum-time control

We propose a hybrid controller allowing to solve the
considered minimum-time control problem robustly. The
proposed hybrid controller has state n € {—M, M}, input
v € R?, and output ¢ € {—M, M}, and is given by

n = fxmv)  (v,n) €Ck
Hrxq " = gx(n,v)  (v,n) € Dk @)
¢ =

where Cx C R? x {—M, M}, Dk C R? x {-M, M},
fi: {=-M,M} x R> — R, gg: {—-M,M} x R?* —
{—M, M} need to be designed. By interconnecting it to the
plant (3) through v = x, and u = (, it leads to the closed-

loop system
/(=)

H{ n:b* _ 9(x)

where z = (z,,7); for each z € Ck, f(z) = (Az, +

bn), fx(x)); and for each z € Dk, g(z) = (zp,9x(x)).
Defining the set

A={0} x {-M,M} C R* x {—M, M} 9)

r € Ckg

z € D ®)

the problem to solve consists of designing the data of H,
namely (Ck, fx, Dk, gx) such that

1) For each { = (§,,&,;) € Ck U Dk, and each ¢ €
Sy (€), there exists j* € Ny such that ¢(T* (&), j*) €
A;

2) the data of H satisfies the hybrid basic conditions.

III. MAIN RESULTS

Consider the following general result that is exploited
in this section. For the sake of exposition, we assume
completeness of maximal solutions. The general case follows
similarly.

Proposition 1: Let H = (C, f, D, g) be a generic hybrid
system with state in R™ defined as in Section I-A, A C R™
be compact, N' C R™ be an open neighborhood of A, and
T : N = R be locally bounded. Assume that A is forward
invariant and finite-time attractive for ‘H with settling-time
function 7 and that maximal solutions to A are complete. If
‘H satisfies the hybrid basic conditions, then A is finite time
stable.

Proof: To prove the claim, one only needs to show
stability of the set A. To this end, observe that A being
compact and finite time attractive, it follows that every ¢ €
S#/(N) is bounded. Therefore, according to [4, Proposition
7.5], we show that the set A is stable by showing that for
some positive real scalar p, A is uniformly pre-attractive
from A + uB>. Let

j=sup{p € Ryg: A+ uB C N}
3A compact set A is uniformly pre-attractive for H from F if for each

€ > 0, there exists 7' > 0 such that ¢ € Sy (F) is bounded, and for each
(t,j) € dom o, t+j > T implies |$(t, j)|.a < &; see [4].

and for any finite x € (0, fi] define
sup T(()

CeA+uB

T(p) =

which is finite due to 7 being locally bounded and A being
compact. Pick ¢ € Sy (A + uB) and observe that, since A
is finite time attractive and forward invariant, each (¢,j) €
dom ¢ with ¢ + j > 7(u) implies that ¢(t, j) € A. Thus, A
is uniformly pre-attractive from A + uB and this concludes
the proof. [ ]

A. A robust finite-time controller

Given the plant (3), assume that a minimum-time state
feedback controller x is given, and let s: R?> — R be the
corresponding switching surface generator. In particular, for
each initial condition x,9 € R?, we denote J*(z,0) as the
smallest (minimum) time for the (unique) maximal solution
¢ to &, = Az, + br(xp) to reach the origin from .

To define the data of the controller Hg, we mimic
the bang-bang working principle of the feedback optimal
controller . Specifically, we enforce the state 7 of the
controller Hx to be constant during flows and toggle its
value whenever a jump occurs. This leads to the following
definitions for the flow map and for the jump map of Hx

fK(nv I;D) =0 V(n, Ip) € Ck

1
gr(map) = —n  (n,mp) € D (19)

With the aim of defining the flow set C'x and the jump set
Dy of Hg, let us define the following sets:

Cy =k (M) = {z e R?: x(x) = M}

C.y=rY~M)={zecR? k(zx)=-M} an

In particular, from the definition of x in (6)

Car = 8- U (SN (Rso x R))
C_y = S+ @] (Sﬁ (RSQ X R))

Moreover, still from the definition of x and Fact 1, it follows
that the optimal feedback switches from —M to M whenever
the switching surface is crossed in the first and fourth quad-
rant, and it switches from M to —M whenever the switching
surface is crossed in the second an the third quadrant.
Therefore, we define Dk to enforce a jump whenever the
following condition holds:

ze(SNCu)x{—-M}HU((SNC_py)x{M})=: Dy
—— ———
Di M DISL{
12)
In particular, it follows that
Di[w =S8N (RZO X R)
Diyr =8N (R<o X R)
Moreover, to fully capture the mechanism of the static
minimum-time feedback, one needs to define Dg so to also
include points in (S— x {—M})U(S; x {M}). However, by
directly defining Dy as D3, U(S— x {—M})U(S; x{M}),
S_ and &4 being open, would prevent from the possibility
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Fig. 1: The sets C_ ¢ (left, orange), Z_ 5, (left, green), m
(right, orange), Zs (right, green), D_q (left, black), and
Dy (right, black).

of obtaining a closed-loop system satisfying the hybrid basic
conditions. To overcome this problem, define

D, = (SN (Reo x R) x {~M}DU(S N (Rzo x R) x {M})

D; M DM

gl let Z_ps and Ty l&two closed subsets, respectively, of
S_N(R<o x R) and S4 N (R>p x R) such that
(E-N\Tom) x {=M}U((S+\Im) x {M})ND. = A

(13)
where A is defined in (9). Then, we define the jump set of
Hy as follows

D= ((§-\Z-nm) x {=M}) U ((S4 \ Znm) x {M})

Dm
(14)
which, due to the assumptions on Z_ 5, and Zyy, is such that
Dg D D‘;(
Remark 3: Observe that due to the definition of the data
of H given in (10), (15), (14), and of A in (9); one has that

9(Dk \ A) € Ck \ Dk

which prevents from the existence of purely discrete solu-
tions to A from points in (Cx U Dk ) \ A. Such a property
directly follows from the definition of the set D in (14).

To define the flow set, since our goal is to guarantee that
Cx UDg =R? x {—M, M}, we select

Cg =R2 x {—M,M}\DK :(C_M UI_M) X {—M}U
(Car UZar) x {M}

15)
See Fig. 1 for a pictorial representation of the above defined
sets for the case of the double integrator, see also Section I'V.
Now we are in a position to state a first result character-
izing some properties of the hybrid system H defined in (8)
when restrained to a certain subset of the state space. Before
that, we define the following notion.
Definition 8: Let £ € CUD. We say that ¢ is viable for H
if there exists € > 0, and an absolutely continuous function
z:[0,€] = R? x {—M, M} such that 2(0) = ¢ and

z(t) e C, 2(t) = f(2(¢)) for almost allt € [0, €]
Whenever the above property does not hold, we say that
& is not viable for H meaning that no flow is allowed from

£
Remark 4: Notice that, as pointed out by (13), Dx D A.

Therefore, since g(.A) C A, if points in A are not viable
for H, then A is strongly forward invariant for H, since the
only solution from A4 is purely discrete, complete, and stays
in A.
Lemma I: Let H = (Ck,f,Dk,g) with state x =
(zp,m) € R? x {—M, M} and
f(x) = (Azp + 1, 0)
9(x) = (zp, —n)
where Cx and Dy are defined, respectively, in (15) and
(14). Assume that each £ € Cx N Dk is not viable for H
and define C§; = (C_pr x {=M}) U (Cps x {M}). Then,
the following properties hold:
(i) Each ¢ == (¢p, ¢y) € Sp(A) is unique, complete, and
purely discrete. In particular:

é(t,4) = (0,(=1)7¢,(0,0))  dom¢ = {0} x No

(i1) Let £ = (&,&,) € Cj U Dk and ¢ € Sy(§).
Then, ¢ is complete, unique, eventually discrete, and
in particular for each

Jj=z ‘C*(gp) + XD_ i UDr (5}7)

Ve € Ck
Vo € Dg

it satisfies

where t* := J*(&,) and A is given in (9).

Proof: To prove the above result, first observe that the
set ' U Dy is strongly forward invariant for /. Indeed,
solutions from Cj N Dg C Ck N Dk can only jump due
to points in C'x N Dk not viable for 7 and by construction
g(Dk) C C3 U Dg. Moreover, solutions to H from C}. \
D, according to Fact 1, do not leave C}, and reach Dg in
finite time. Therefore, maximal solutions to # from C'},UD
coincide with maximal solutions to H* = (C%, f, Dk, g).
Hence, in the remainder of the proof, for simplicity, we will
make use of H® to prove our statement.

Item (i) follows from the fact that £ € Cx N Dy is not
viable for H*®, A C Dk, and g(A) C A, showing that A is
forward invariant for H.

To show item (%), first observe that, since each { € Cj- N
D is not viable for #?, thanks to [4, Proposition 2.11],
for every £ € (Y U Dk, there exists a unique maximal
solution ¢ to H* with ¢(0,0) = & Let & = (§,,,) €
(St x {—=M}) U (S- x {M}) with &, # 0, and consider
the unique maximal solution ¢. to

&y = Axp + br(z)p)

with ¢.(0) = &, and for which dom ¢. = [0, J*(§,)] and
dc(T*(&p)) = 0. Let {tj}f;(fp) be the sequence (possibly
empty) of switching times of [0, 7*(&p)] 2 t — k(@c(t)),
and whenever £*(§,) = 0, define t; = J*({,). For



simplicity, assume that x(&,) = &,, analogous considerations
hold for the general case. Define the following hybrid time
domain (see [4] for a definition of hybrid time domain)

L£5(&p)
E= U [tj tj+1] x {j}
7=0
and notice that
supE = (T*,L*(&)) € E

and for each j € {1,2,...,L£*(&)}. [t;,t;41] is nonempty
and with positive length, and x(¢.(t)) is constant for each
[tj tj+1), with j € {1,2,...,L£*(&)}. Now, for each
(t,j) € E, define the following hybrid arc

o) (@e(t), limaye m(ge(s))) if{(t,4), (.5 + 1)} CE
At )= { (Ge(t), k(6 (t))) elsewhere

for which one has ¢(J*(&,), L*(&p)) € A. Then, in light
of the definition of #, it is straightforward to check that ¢
is the unique solution to H® from &. Let 1) be the unique
maximal solution to * from ¢(J*(&p), £*(§,)) € A which,
as shown in item (4), is purely discrete, for eaAch No>j>
sup; B, define ¥ (j) = ¢(0,j —sup; E) and E := {(t,j) €
R> x No: t = sup, E,j > sup; E'} Then, the following

hybrid arc
: (. )
ta = .
o(t, ) { o0)
with

domcp:EUE:EU U

(sup B, j)
No3j>sup; E t

is the unique maximal solution to H° from &, and this
completes the proof. [ ]

Remark 5: The applicability of the above result requires
points in C'x N D g not being viable for 7. On the other hand,
such an assumption can be directly verified by inspection of
the phase portrait obtained with v = £M for the possible
realizations of (3) considered in this paper. In particular, such
a property is easy to check for points in .A.

Lemma 1 shows that, under some mild assumptions,
solutions to the closed-loop system # from the set C'j, UD g
converge to the set /A in minimum ordinary time ¢*. The next
result illustrates key properties for the closed-loop system
(8) and characterizes its behavior from the whole state space
CxkUDg =R% x {-M,M}.

Proposition 2: Let H = (Ck, f, Dk, g) with state © =
(zp,m) € R? x {—M, M} and

f(z) = (Azp, +bn,0) Vz e Ck

g(x) = (xp, —n) Ve € Dg
where Cx and Dy are defined, respectively, in (15) and
(14), and define C§; = (C_p x {—M}) U (Cpr x {M}).
Assume that each for each ¢ € Sy (Ck \ Cj), there exists
(T, J) € dom ¢ such that ¢(T, J) € Dg. Moreover, assume

that each point £ € C'x N D is not viable for . Then, the
following properties hold:

(i) For each £ € Cg U Dk, there exists a nontrivial
solution ¢ such that ¢(0,0) = . Moreover, each
¢ € S (Cx U Dg) is complete;

(i7) Let§ € Ok \Cf and ¢ = (¢p, dy) € Sy (§). Then, ¢
is eventually discrete. In particular, there exists 7" > 0
such that [0, 7] x {0} € dom ¢ and for each

J 21+ L(6p(T,0)))
one has (T + J*(¢,(T,0)),7) € dom ¢ implies

(731) The set A in (9) is globally finite time stable for .

Proof: To prove item (i), notice that, since by assump-
tion maximal solutions to H from Cg \ Cj converge to
D in finite time, and by construction g(Dg) C C3 U D,
existence and completeness of maximal solutions to H follow
from item (i) in Lemma 1.

To show item (%), it suffices to observe that by assumption
maximal solutions to H from C'x \ C}; converge in finite time
to Dk, and solutions to H from Dy \ A converge in one
jump in C%, \ Dg. Therefore, one has tails of solutions to
from Cx U Dy are solutions to A from C} \ Dx. Hence,
thanks to Lemma 1, item (4%) is proven.

To conclude the proof, observe that item (¢¢7) follows
directly from item (ii) thanks to Proposition 1, .4 being
strongly forward invariant and globally finite time attractive
for H with locally bounded settling time function, and
maximal solutions to H being complete. [ ]

Remark 6: Similarly to Remark 5, the applicability of the
above result requires points in C'x N Dg not being viable
for H, and that maximal solutions from C \ C3 reach the
set Dy in finite time. Assumptions can be directly verified
by inspection for the possible realizations of (3) considered
in this paper.

Remark 7: The above result states that maximal solutions
to H from R? x {—M, M} converge to the set A in finite-
time and points out that A is globally finite time stable for
the closed-loop system. However, maximal solutions to H
from Cx \ C§ converge to the set A in non-minimum-time.
Nevertheless, notice that

CK\C%:I_M X {_M}UI]W X {M}

where the sets Z_j; and Zj, represent a degree of freedom
in the design of the controller (7); in particular such sets can
be made arbitrarily small. Therefore, the set from which op-
timality is lost can be determined by choosing the parameters
in a convenient way. For this reason, the proposed controller
can be seen as an “almost optimal controller”. More insights
on these aspects are given through numerical examples in
the next section.

IV. CASE STUDIES

We illustrate the effectiveness of the proposed construction
in two specific examples.



Fig. 2: Evolution of the closed-loop system H projected
onto (zp1,p2)-plane from different initial conditions, the
switching surface (dashed-red), and the zero-level set of the
function = — s(x) + 7n(x) (dashed-black).

A. Double Integrator

The optimal control problem (2) is solved for the double
integrator by following the methodology presented in Sec-
tion III-A. In this case, as mentioned earlier, by selecting
M =1, the switching surface generator is defined as follows
R? 5 2 — s(x) = z1 + 3|za|ze. To generate the sets Ck
and Dy in (15) and (14), respectively, define the following
continuous function

lf.I'QZO
if xo0 <0

(1 —e~2%2)

R? 5 x> n(x) = {_(1 )

Then, we select

I_pm={z Ry xR: s(z) <0,s(x) + 7mn(z) > 0}

Iy ={z € Rxg x R: s(z) > 0,s(x) + mn(z) <0}

(16)

where 7 > 0 is a tuning parameter that can be selected to
shrink the size of the sets Z_,; and Zj,, enlarging the set
of initial conditions for which minimum-time convergence
is guaranteed. On the other hand, notice that by shrinking
the sets Z_ s and Zy;, the response of the resulting closed-
loop system approaches the one of the discontinuous closed-
loop optimal feedback, which may lead to behavior overly
sensitive to measurement noise. Fig. 2 shows some solutions
to the closed-loop system H projected onto (2,1, Zp2)-plane
whenever 7 = 1. To underline the impact on the closed-
loop response of the initialization of the controller state 7, in
Fig. 3, the response of the closed-loop system from (3,2.1,1)
and (—3,2.1,—1) are reported. As shown in the picture,
whenever the controller state 7 is initialized to the “wrong”
value, i.e., —1, the trajectory of the plant state deviates from
the optimal solution, but finite time convergence to the origin
is guaranteed.

To conclude with this example, we show want to show
the influence of the parameter 7 in the definition of the sets

-1.5
Tp1

Fig. 3: Evolution of the closed-loop system H projected
onto (2,1, Tp2)-plane from different initial conditions: zg =
(—3,2.1,1) (green) and zg = (—3,2.1,—1) (blue).
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Fig. 4: Solutions 1 (black) and ¢™ with 7 = 1 (red) and
7 = 0.25 (green) projected onto ordinary time.

Z_p and Zp; defined in (16) on the convergence time of
the closed-loop system. In particular, in Fig. 4, we compare
solutions ¢™ = (¢7 , ¢7) to H from (-0.6,1,—1) € Ck \
('} obtained with different value of 7, with the solution ) =
(Ye,,¥y) (r-independent) to H from (—0.6,1,1) € Cf,
which gives rise to minimum-time convergence. As shown
by the figure, the smaller 7 the smaller the convergence time.
Specifically, numerical experiments show that for 7 = 0.15
minimum-time convergence is practically recovered.

B. Harmonic Oscillator

The optimal control problem (2) is solved for the harmonic
oscillator with unitary angular speed, i.e.,

(4

by following the methodology presented in Section III-A. In
this case, as shown in [3], by selecting M = 1, the switching
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Fig. 5: Evolution of the closed-loop plant state from differ-
ent initial conditions: (—4,—3,1) (magenta), (—3,—0.6,1)
(green), (—3,—0.6,—1) (blue), the switching surface
(dashed-red), and zero-level set of the function z — s(x) +
nn(s) (dashed-black).

surface generator is defined as follows

s(x) = 2 + sign(z1){ |1 — (xl —9 Ele _ 1)2

To generate the sets Cx and Dy in (15) and (14), respec-
tively, in a similar fashion as in the previous example, let us
define the following continuous function

—(1 — e 221)
(1 —e2*1)

R?>5z — xT) =
(@) if 21 < 0

Then, we select
I_pm={z €Rco xR: s(z) <0,s(x)+ mnp(x) >0}
In = {x € R>g x R: s(x) > 0, s(x) + mnp(x) <0}

Fig. 5 shows the evolution of the closed-loop plant state from
different initial conditions whenever 7 = 0.5. The figure
points out that whenever the controller state is initialized to
the “wrong” value, although the resulting trajectory (blue
line) deviates from the optimal one (green line), the differ-
ence in the evolution is somehow restrained, which reflects
on the resulting convergence times. In particular, for such an
initial condition the optimal convergence time is ~ 4.7324,
while for the non-optimal solution it is /&~ 4.7527, a mismatch
of about 0.429%. These considerations are made evident in
Fig. 6, where we compare the solution ¢ = (¢, ;) to
H from (—3,—-0.6, —1) with the solution ¢ = (Y5, %)
to H from (—3,—0.6,1), which leads to minimum-time
convergence.

V. CONCLUSION

This paper proposed a hybrid controller to solve robustly,
and “almost optimally” the minimum-time control problem
for a class of planar systems for which a discontinuous
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Fig. 6: Solutions v (green) and ¢ (blue) projected onto
ordinary time.

state-feedback optimal controller is available. The design
of the controller is performed to achieve global finite time
stability of a compact set wherein the plant state is zero.
Such a property is relevant since it is practically semiglob-
ally (asymptotically) maintained in the presence of small
perturbations. The resulting controller provides time optimal
response from initial conditions in a certain subset of the
state space, and finite time convergence elsewhere.

Future research directions include the extension of the
proposed methodology to more general plants, as well as
to minimum fuel control problem.
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