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Abstract—With the advances in the next generation sequencing technology, huge amounts of data have been and get generated in

biology. A bottleneck in dealing with such datasets lies in developing effective algorithms for extracting useful information from them.

Algorithms for finding patterns in biological data pave the way for extracting crucial information from the voluminous datasets. In this

paper we focus on a fundamental pattern, namely, the closest l-mers. Given a set of m biological strings S1, S2, . . . , Sm and an integer

l, the problem of interest is that of finding an l-mer from each string such that the distance among them is the least. I.e., we want to find

m l-mers X1, X2, . . . , Xm such that Xi is an l-mer in Si (for 1 ≤ i ≤ m) and the Hamming distance among these m l-mers is the least

(from among all such possible l-mers). This problem has many applications. An application of great importance is motif search.

Algorithms for finding the closest l-mers have been used in solving the (l, d)-motif search problem (see e.g., [1], [2]). In this paper novel

exact and approximate algorithms are proposed for this problem for the case of m > 2. In particular, a comprehensive experimental

evaluation is performed for m = 3, along with a further empirical study of m = 4 and 5. We also extend our solution to Euclidean

distance measurement metric if the sequences contain real numbers.

Index Terms—Closest l-mers; Closest triplet; Efficient algorithms; Randomized algorithms; Time series motifs; (l, d)-motifs

F

1 INTRODUCTION

Large amounts of data get generated in every area of sci-
ence and engineering. This is especially true in the biological
domain. Currently, the bottleneck is not in generating data
but is in processing these data. Efficient big data analytics
algorithms are called for. A powerful analytics paradigm
is patterns finding. In this paper we study an important
pattern that can be used to solve many other problems
including motif search. Specifically, we investigate the prob-
lem of finding the closest l-mers in an input of strings.
The biological strings could be DNA sequences, protein
sequences, etc. Algorithms for finding the closest l-mers
have been used to solve the (l, d)-motif search problem, see
for example [1], [2].

The pattern finding problem of interest can be
stated as follows. The input are m biological sequences
S1, S2, . . . , Sm, each of length n, and an integer l. The
problem is to find m l-mers X1, X2, . . . , Xm such that Xi

is in Si (for 1 ≤ i ≤ m) and the Hamming distance among
these l-mers is the least (from out of all such l-mers). X
is an l-mer in a sequence S if X is a subsequence of S of
length l. Each input sequence can be thought of as a string of
characters from a finite alphabet Σ. For instance, each input
sequence could be a DNA sequence or a protein sequence.
We refer to this pattern finding problem as the closest l-mers
problem (CLP). If Xi = xi

1x
i
2x

i
3 . . . x

i
l , for 1 ≤ i ≤ m, are any

l-mers, then the Hamming distance among them is defined
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The longest common substring (LCS) problem could be
viewed as a dual version of CLP. While CLP finds l-mers
that are the closest for a given l, LCS finds the length of
the longest common substring. Some relevant papers are:
[4], [5]. Another related problem is finding the closest pair
of points (CP problem). CLP could be viewed as a special
case of CP. A number of papers have been written on this
problem (see e.g., [6], [7], [8], [9]).

A special case of the CLP when m = 2 has been studied
in the literature before. For instance, [1] show that this prob-
lem can be solved in O(n2) time for m = 2, where n is the
length of each of the two input sequences. Note that a trivial
algorithm to solve this problem will examine each pair of l-
mers A and B where A comes from the first sequence and
B comes from the second sequence, compute the Hamming
distance between A and B, and output the pair of l-mers
with the least distance. This brute force algorithm runs in
time O(n2l). The O(n2)-time algorithm has been used in
solving the (l, d)-motif search problem (see e.g., [1], [2]).
Time series motif mining could be viewed as a special case
of CLP, and many algorithms have been recently used to
solve this problem, such as FFT technique in [10] and O(n2)
methods in [1], [11] [12], and embedding-based approach in
[13].

The case of m > 2 is very important as well. For instance,
in the case of (l, d)-motif search, an algorithm for the case
of m > 2 can be used in the algorithms of [1], [2] in which
case the performance of these algorithms will improve. Also,
for the time series motif mining problem, m being more
than 2 can provide deeper insights. The problem of time
series motif mining can be thought of as that of detecting
two events (that occur in two different times) that are very
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similar to each other. Equally (and perhaps more) important
will be the problem of detecting m (> 2) events that are very
similar among themselves.

In this paper we present novel algorithms for solving
the CLP when m > 2. For m = 3, we refer to this special
case of the CLP as the closest triplet problem. Specifically,
we offer three different algorithms. Two of these are exact
and the third one is approximate. An algorithm is exact if
it always outputs the closest l-mers. On the other hand, an
approximate algorithm may not output the closest l-mers
all the time. In general it outputs l-mers whose distance is
very nearly the same as that of the closest l-mers. There
is a closely related problem that l-mers could come from
the same sequence, and we also extend our algorithms to
address this problem, by putting one additional constraint
that the l-mers should not overlap. In addition to closest
triplet problem, we also extend our algorithms to 4 and 5
input sequences, and provide our experimental results.

Applications: The CLP has many applications. From among
these, the (l, d)-motif search is an important problem since
motifs can be used to identify transcription factors and
their binding sites, composite regulatory patterns, similarity
between families of proteins, etc. The (l, d)-motif search
(LDMS) problem is stated as follows: Input are n sequences
S1, S2, . . . , Sn and integers l and d. The task is to find all the
strings M of length l such that M occurs in each of the input
sequences within a Hamming distance of d. Each such string
M is called an (l, d)-motif. This problem is known to beNP-
hard. The WINNOWER algorithm of [1] uses the O(n2)-
time closest l-mers algorithm as a crucial step in solving
the LDMS problem. In this algorithm they construct a graph
G(V,E) where there is a node corresponding to every l-mer
in every input sequence. Two nodes are connected by an
edge if the Hamming distance between them is no more
than 2d. Followed by the construction of this graph, the
algorithm proceeds to look for large cliques in this graph.
Each such clique is a candidate for an (l, d)-motif. We can
speed up this algorithm as follows: While creating edges in
the graph, for every three l-mers x, y, z we form a triangle
connecting them if d(x, y) + d(y, z) + d(z, x) ≤ 6d. No
other edges will be included in G. We can find all such
triplets efficiently using the CLP algorithms we present in
this paper. We can extend this idea further by considering
more than three l-mers. The closest l-mers algorithm has
also been used in the PMSPrune algorithm of [2] for solving
the LDMS problem.

Another important application is that of finding time se-
ries motifs. The problem of finding time series motifs can be
stated as follows: We are given a sequence S of real numbers
and an integer l. The goal is to identify two subsequences
of S of length l each that are the most similar (similarity
can be defined in various ways, such as Hamming distance,
Euclidean distance, etc.) to each other (from among all
pairs of subsequences of length l each) [14]. These most
similar subsequences are referred to as time series motifs.
Yet another application lies in industrial processing. The
problem of Control Loop Performance Monitoring (CLPM)
is that of identifying related processes [15]. For example,
one of the processes might be deviating from its expected
behavior and this may be caused by another process. We

may want to identify this process. This problem is typically
solved by analyzing the time series data from each of the
processes and looking for similar subseries. Clearly, there
could be (much) more than 2 processes.

A Generalization: When CLP is defined for biological se-
quences the distance of interest is the Hamming distance.
On the other hand, time series data are sequences of real
numbers. The distance between two l-mers has to be mod-
ified. Several possibilities such as Euclidean distance and
Pearson’s correlation coefficient have been explored in the
literature (see e.g., [12], [14], [16]).

When we extend the CLP for m > 2, we have to
revisit the notion of distance. When the input has biological
sequences, we can continue to used Hamming distance as
defined above. If the input consists of time series data,
many possibilities arise. Consider the case of m = 3.
Let X,Y , and Z be any three l-mers. Then, one possible
distance among these three is the pairwise-sum distance
d(X,Y, Z) = d(X,Y ) + d(Y, Z) + d(Z,X) where d(X,Y )
is the Euclidean distance between X and Y . Hamming
distance could be also calculated in a pairwise-sum manner.
Thus we refer to the previous definition of Hamming dis-
tance as direct Hamming distance of a tuple. Other distance
metrics are also possible.

Paper Organization: The rest of this paper is organized as
follows. In Section 2 we first review existing algorithms for
CLP when m = 2. This special case is called the closest pair of
subsequence problem. Next in Section 3, we propose two exact
algorithms. The first algorithm uses O(n2) multiplications
and O(n3) addition operations, and uses O(n2) memory.
We call this algorithm Exact-0. The second algorithm has a
run time of O(n3), but only uses O(1) memory. We call the
second algorithm Exact-1. Another version of the second
algorithm takes O(n) memory but reduces the running
time to O(n3 − n2l). Note that the second version only
applies to pairwise-sum distances. In the subsequent section
we present our approximate algorithm, called Approx. We
show that the run time of this algorithm is O(n2 + nKl)
with a high probability. Here K is a parameter to be chosen
in the algorithm. In Section 5 we present our experimental
results for m = 3. We have used both biological and time
series data, and employed direct Hamming distance and
pairwise-sum Euclidean distance, respectively. Additional
experiments are performed for m = 4 and 5 cases in
Section 6, to show the robustness of our proposed exact and
approximate algorithms. Section 7 provides some conclud-
ing remarks and future directions.

2 BACKGROUND KNOWLEDGE

In this section we provide a summary of some basic tech-
niques that have been used to solve the CLP when m = 2.
An important algorithm in this context is the O(n2) al-
gorithm proposed by [1]. The early abandoning technique
proposed by [14] is also relevant.

2.1 The O(n2) Time Algorithm of [1]

For solving the closest pair of l-mers problem, Pevzner and
Sze exploit the overlaps during the process of computing
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pairwise distances. This eliminates the dependence of the
run time on l [1]. Let S = s1, s2, . . . , sn be any given
sequence data and let l be the length of the subsequences
we are interested in. The problem of finding the closest pair
of subsequences in S can be decomposed to (n − l + 1)
subproblems. Let these subproblems be referred to as Pi,
for 1 ≤ i ≤ (n − l + 1). Each Pi computes the distance
between the following pairs of subsequences of length l:
([sj , sj+1, . . . , sj+l−1], [si+j−1, si+j , . . . , si+j+l−2]), for 1 ≤
j ≤ (n− l + 1). Note that in these distance calculations, we
can ignore any pair if the elements sn′ (for n′ > n) appear in
any of the two subsequences. Let the distance between the
pair ((sj , sj+1, . . . , sj+l−1), (si+j−1, si+j , . . . , si+j+l−2)) be
dij , for 1 ≤ j ≤ (n− l + 1).

[1]’s algorithm makes use of the overlaps in consecutive
pairs. We use the Euclidean distance metric as an example
here but it is easy to extend our discussion to Hamming
distance as well. Since (dij)

2 = (sj−si+j)
2+ . . .+(sj+l−1−

si+j+l−1))
2, the next pair’s squared distance could be ex-

pressed as (dij+1)
2 = (sj+1 − si+j+1)

2 + . . . + (sj+l −
si+j+l)

2 = (dij)
2 − (sj − si+j)

2 + (sj+l − si+j+l)
2.

Clearly, the computation of (di1)
2 takes O(l) time. Note

that (dij)
2 can be obtained from (dij−1)

2 in an additional
O(1) time (for j > 1). Thus the problem Pi can be solved se-
quentially in a total of O(n) time (for any specific value of i,
1 ≤ i ≤ (n− l+1)). Since there are a total of n subproblems,
the total running time is O(n2), which is independent of l.
In cases of even moderately large dimensions, e.g., l = 100,
the speedup over brute-force could be as large as 100 times,
which is a non-trivial improvement.

2.2 Early-abandoning Methods in [14]

In [14], the authors proposed an enhanced version of the
brute-force algorithm for finding the time series motifs. The
techniques they use improve the run time by a large factor,
and one of them is the early-abandoning method. Early-
abandoning method takes advantage of the fact that the
distance is computed as a summation of l elements, or
∑l

i=1 d(Aj+i, Ak+i), sequentially. If in the middle of the
process when the partial sum exceeds the current best-so-far,
which is an upper bound of the closest distance, then we can
immediately stop the computation of the distance between
the current pair. This method is very useful in practice and
will be also employed in our approximate algorithm.

3 THE EXACT ALGORITHMS

When m = 3 we can solve the CLP in O(n3l) time in a
straight forward way. The idea is to compute the distance
among every triplet of l-mers. For each triplet the time spent
is O(l) and there are O(n3) triplets.

3.1 Exact-0 Algorithm for Pairwise-sum Distances

We can solve the CLP for m = 3 in O(n3) time using
the algorithm of [1] as a subroutine. This algorithm will
work as follows: 1) Use the algorithm of [1] to compute
pairwise distances in O(n2) time. Store all of these distances.
Followed by this, compute the distance for each possible
triplet of l-mers. Note that the distance for any triplet can
be computed in O(1) time (since the pairwise distances

are available). For instance if (X,Y, Z) is the triplet under
concern, its distance is d(X,Y ) + d(Y, Z) + d(Z,X) and the
distances d(X,Y ), d(Y, Z), and d(Z,X) have already been
computed and are available. Since there are O(n3) triplets,
the total addition operations will be O(n3). Note that for
this algorithm we need O(n2) space. We get the following
Theorem:

Theorem 3.1. We can use Exact-0 algorithm to solve the
CLP for m = 3 using O(n2) multiplications and O(n3)
addition operations, as well as O(n2) space. 2

3.2 Exact-1 Algorithm

If the input size n is large, the O(n2) memory cost may be
prohibitive. For example, when n = 40× 103, using double
precision storage, the algorithm would require roughly 10
GB of memory. This is quite large. Besides, as memory usage
increases, the memory accessing cost will become dominant
and make the algorithm take longer time to finish.

Motivated by this, we have developed a memory ef-
ficient algorithm that solves this problem in O(n3) time
with only a constant memory requirement. In the case of
pairwise-sum distance measurement, O(n2l) time could be
saved at the cost of O(n) memory. We thus have two
versions: The first version takes O(n3) time and uses O(1)
memory; the second version takes O(n3 − n2l) time and
employs O(n) memory. The second version is very useful
when l is not far less than n. For instance, if l = 0.3n, then
30% of the total running time could be reduced.

3.2.1 Version 1: O(1) Memory

The key idea to reduce the memory cost from O(n2) to
O(1), is by exploiting the overlaps like in [1]. Rather than
using [1]’s algorithm as a subroutine to compute all pairwise
distances in the first step, we split the entire procedure
into subproblems Pik such that each subproblem represents
a unique alignment (i, k) and outputs distances of the
triplets (a, a+ i, a+ i+ k), a ∈ [1, n]. Clearly, consecutively
outputting the distance as a shifts, would cost O(n) time
for each subproblem, and there’ are a total of O(n2) sub-
problems. So the total running time for this algorithm is
O(n3). Besides, since only one set of distances (for pairwise-
sum distance, three pairwise distances are stored; for direct
distance, one triplet distance is stored) needs to be stored in
memory, the memory cost becomes O(1) during the entire
process. This can be seen as an enhanced version of [1]’s
algorithm. We arrive at the following Theorem:

Theorem 3.2. The CLP can be solved in O(n3) time using
O(1) space applying Exact-1 algorithm version 1. 2

3.2.2 Version 2: O(n) Memory

Both Exact-0 and Exact-1 constant memory version are two
extreme cases and we are seeking one in the middle by using
an affordable amount of memory to reduce the computation
time. This could be achieved in the case of pairwise-sum
distance metric, because the pairwise distances that have
been calculated could be partially stored instead of fully
storing (as in Exact-0).

Without out loss of generality, we give an illustration
using the example of finding the closest 3 l-mers from one
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single sequence under pairwise-sum measurement metric,
with a constraint that there are no overlaps for l-mers
in the closest triplet. In the previous O(1) version, for
each alignment < i, k >, the starting cost to compute
d(0, i), d(i, i + k), d(0, i + k) still requires O(l) time each.
And since there are O(n2) alignments, the subproblems’
starting costs accumulate to O(n2l). After starting, all the
remaining distances are calculated in only O(1) time. As
a result, removing the starting cost could save a decent
fraction of the total running time. As noticed, the majority
of starting cost is in the form of d(0, i), i ∈ [l, n − 2l]. Thus
a simple solution is to store these values in memory to
avoid repetition in computing them. This only require O(n)
storage and the running time is reduced to O(n3− n2l) as a
consequence.

Algorithm 1 Exact-1 Algorithm with O(n) Memory

Input: Sequence A = s1, s2, . . . , sn; subsequence At is de-

fined as At = [st, st+1, . . . , st+l−1]; d̂(At1 , At2) denotes
squared Euclidean distance between At1 , At2

Output: A triplet of subsequences that has the least
pairwise-sum Euclidean distance

1: Set best-so-far b =∞
2: for i = 0 to n− l do
3: Compute and store D1[i] = d̂(A0, Ai)
4: end for
5: for k = l to n− l do
6: Obtain d̂1 ← D1[k]
7: for j = l to n− k do
8: Compute d̂2 = d̂(Ak, Ak+j); Obtain d̂3 ← D1[k+ j]

9: tmp =

√

d̂1 +

√

d̂2 +

√

d̂3
10: if tmp < b then
11: update b← tmp and the corresponding indices
12: end if
13: for i = 0 to n− l − k do
14: d̂1 = d̂1 − (si − si+k)

2 + (si+l − si+k+l)
2

15: d̂2 = d̂2−(si+k−si+k+j)
2+(si+k+l−si+k+j+l)

2

16: d̂3 = d̂3 − (si − si+k+j)
2 + (si+l − si+k+j+l)

2

17: tmp =

√

d̂1 +

√

d̂2 +

√

d̂3
18: if tmp < b then
19: update b← tmp and the corresponding indices
20: end if
21: end for
22: end for
23: end for
24: return b and the corresponding indices

Details of this algorithm are given in Algorithm 1. Note
that the problem of finding 3 closest l-mers among 3 sepa-
rate sequences (A,B,C) can be solved using Algorithm 1 by
removing the non-overlapping constraint, and storing 2 sets
of distances d(A0, Bi), d(Ai, B0), i ∈ [0, n]. Each set needs
O(n) memory and hence only O(n) memory is required in
total. We obtain the following Theorem:

Theorem 3.3. We can solve the CLP in O(n3−n2l) time using
O(n) memory applying Exact-1 algorithm version 2. 2

4 AN APPROXIMATE ALGORITHM: APPROX

The brute-force algorithm for m = 3 takes O(n3l) time,
which is very large even for moderately large values of
n and l. The O(n3) algorithms take significantly less time
by removing the l factor. Still it takes hours to compute
the required triplet from a time series or genome sequence
of length 20,000. Therefore it will take days or months to
solve the CLP when n is a million or more. To address this
problem we have developed a fast approximate algorithm,
which has a running time of O(n2 + nKl) with a high
probability, where K is a user defined parameter.

4.1 Description

Our approximate algorithm works in two phases. In the first
phase, the algorithm computes pairwise distances among all
possible l-mers and keeps K edges which have the smallest
distances. An edge here refers to a pair of l-mers. A priority
queue Q is used to identify the best K edges efficiently. To
reduce the number of edges that will be inserted into Q, an
upper bound on the distance between the closest pair of l-
mers is first obtained using random sampling. During initial
random sampling, we pick s edges randomly. In each pick,
each possible edge has an equal probability. We compute the
distance of each edge in the sample and identify the edge
with the least distance. Let the distance of this edge be δs.
We use δs as the threshold for edges for inserting them into
Q.

The K edges that are in Q, after processing all possible
edges, will be used in the second phase. We form candidate
triplets as follows: For each of the edges in Q form triplets
with every l-mer in the input sequence A. From out of
all of these candidate triplets identify and output the one
with the least distance. Algorithm 2 shows the details of the
algorithm for single sequence version (l-mers come from
single sequence). The multi sequences CLP could be easily
solved by removing the overlapping constraint.

4.2 Analysis

We choose a random sample of s pairs of l-mers from the in-
put sequence A. The algorithm takes O(sl) time to calculate
pairwise distances of these pairs. In our implementation we
choose s = Θ(n). We get our threshold value δs by finding
minimum of these distance values. Then we compute the
distance between every pair of l-mers of the input sequence
A. This can be done in O(n2) time. From out of these, we
identify the K least distances. Identification of these K pairs
is done using a priority queue Q. We insert any pair into
Q only if its distance is less than δs. Q will have at most
K pairs at any time. For each pair that enters Q another
pair may have to be deleted. An important question is how
many pairs will enter Q in the worst case. We claim that
the number of pairs that will enter Q is O

(

N
s log n

)

with a
high probability, where N is the number of possible pairs
of l-mers. (Note that N = O

((n
2

))

). This can be proven as
follows.

By high probability we mean a probability of ≥ (1 −
n−α), where α is a probability parameter typically assumed
to be ≥ 1 (see e.g., [17]). Let G stand for the set of pairs of
l-mers of A with the least distances, where |G| = q. I.e., q
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Algorithm 2 Approx algorithm

Input: A sequence A = s1, s2, . . . , sn, integer l, priority
queue Q of size K

Output: A triplet of l-mers whose members that have the
least distance.

1: Choose randomly s pairs of l-mers (edges) from A

2: Compute the distance for each pair in the sample, and
identify the closest pair in the sample; let this closest
distance be δs

3: for All pairs in A do
4: Compute the distance between each pair of l-mers
5: if Any pair’s distance < δs then
6: Push into Q

7: end if
8: end for
9: Set best triplet-distance as b =∞

10: for each l-mer u do
11: for each pair (v, w) in priority queue do
12: Compute distances of (u, v), (u, w) pairs
13: Set triplet distance TD = distance(u, v) + distance(v,

w) + distance(u, w)
14: if TD < b then
15: b = TD, update corresponding indices to

(u, v, w)
16: end if
17: end for
18: end for
19: return b with associated indices

pairs with the least distances are in G. (The value of q will be
fixed soon). Let the pairs in G be p1, p2, . . . , pq . Probability
that p1 is in the random sample is s

N . Probability that p1 is
not in the sample is 1 − s

N . This means that the probability

that none of G is in the sample is
(

1− s
N

)q
. This probability

is ≤ exp
(

−sq
N

)

using the fact that (1− x)1/x ≤ 1
e when 0 <

x < 1. This probability will be≤ N−α when q ≥ αN
s loge N .

This in turn means that at most αN
s loge N (= O

(

N
s log n

)

)
pairs will ever enter Q with a probability of ≥ 1 − N−α ≥
(1− n−α).

The above analysis implies that the total time spent in

maintaining Q is O
(

N
s log2 n

)

= O
(

n2

s log2 n
)

with a high

probability. Also, steps 1 and 2 in Algorithm 2 take a total of
O(sl) time. Step 4 can be done in O(n2) time. As we have

shown before, steps 5 and 6 take a total of O
(

n2

s log2 n
)

time with a high probability. The for loop of Step 8 takes
O(nKl) time. Therefore, the total run time of Algorithm 2 is

O
(

sl + n2 + n2

s log2 n + nKl
)

with a high probability.

If s = Θ(n), this run time becomes O(n2 + nKl). Thus we
arrive at the following Theorem.

Theorem 4.1. The run time of Approx is O(n2 + nKl) with
a high probability. 2

5 EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed algorithms for
run time and/or accuracy using two existing datasets. Each
dataset is tested using one measurement metric (direct Ham-
ming distance and pairwise-sum Euclidean distance). The

test platform we are using is equipped with Intel Xeon CPU
@ 2.67GHz.

5.1 Genome Dataset

We have performed intensive experiments on human
genome data set [18]. We chose 21 chromosomes and
grouped them into 7 files each having 3 chromosome se-
quences. We have run Exact-1 and Approx algorithms in
order to identify the closest l-mers among three sequences
in each set, and there are 7 sets of genome sequences. For
Approx algorithm, we set the priority queue size as K = n

to store the top n pairs of candidates as a default. We have
used different values for n ranging from 4,000 to 60,000.
The first n elements of the 7 sets of genome sequences are
used to form the input sequences. Direct Hamming distance
is used as the distance metric. For a fixed n and l, we call
such a combination a test group, and the running time is
calculated as an average over the 7 sets (6 runs each set, a
total of 42 runs) of genome sequences for this group. We
report the accuracy of Approx using the Hit Rate, which
measures how many times out of 42 runs, the closest l-mers
are identified.

At first we compare our proposed algorithms with the
(O(n3l) time) brute-force algorithm. The result is given in
Table 1. From the table we see that the brute-force algorithm
performs worse even when n = 4, 000. Thus in later exper-
iments we will not include the brute-force algorithm and
only compare our proposed approaches.

TABLE 1
Running time comparison with the Brute-force algorithm

n = 4, 000 l=100 l=200 l=300 l=400 l=500
Approx 4.2 5.6 7.6 9.4 7.7

Exact 207.0 215.1 212.3 203.0 199.0
Brute-force 8,353.0 19,613.0 28,744.6 37,178.9 44,607.9

The next experiment provides a full evaluation when
n ranges from 4, 000 to 10, 000, with l = 100 to 500.
The running time of Exact-1 and Approx are provided in
Semilog-Y plot for a better illustration in Figure 1. From the
plot, we clearly see that the Approx algorithm outperforms
Exact-1 by more than one order of magnitude for all the 5
different l values. Also, as the dataset size n increases, the
running time difference increases.

Next we want to investigate how the performance
changes as l varies, for a fixed n. We choose n = 6, 000
and change l from 100 to 500. The running times are shown
in Figure 2. The upper plot shows the running time for
the Approx algorithm and the lower one represents Exact-
1 algorithm. The observation here is that since Approx
algorithm’s running time depends on l, as l increases, the
running time of Approx slightly increases. On the contrary,
Exact-1 algorithm is dimension free. Note that the exact
number of triplets is (n − l)3 rather than the asymptotic
value n3. If l increases, the number of triplets would actually
decrease a little bit, thus the Exact algorithm’s running time
slightly decreases. But still, Approx is much faster than
Exact-1 even when l = 500.

The speedups for all n and l combinations are given in
Figure 3. Speed up is defined as the running time of Exact-
1 divided by the running time of Approx algorithm. As
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can be seen, speedup decreases as l grows, and increases
as n grows, which matches our expectation and theoretical
analysis.

In the last part of time comparison, we are
testing our algorithm on large datasets with
n = 10, 000, 20, 000, 40, 000, 60, 000 and
l = 200, 400, 600, 800, 1, 000. Using this setting,
Approx could output the results within two hours, while
Exact-1 exceeds our experimental limit of 15 hours for
n = 40, 000 and above. The details of running time for large
datasets are given in Table 2.
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Fig. 3. Speed up of Approx algorithm

TABLE 2
Running times for large datasets

l=200 l=400 l=600 l=800 l=1,000
n Approx

10,000 32.2 61.2 92.9 86.0 112.3
20,000 125.3 231.6 275.8 460.1 493.9
40,000 594.2 935.2 1,452.4 1,676.7 2,110.0
60,000 961.0 2,126.5 3,202.2 3,880.6 5,307.8

n Exact-1
10,000 46.4 58.1 66.8 95.9 121.6
20,000 37,777.8 37,771.4 37,500.4 36,252.0 36,567.0
40,000 NA NA NA NA NA
60,000 NA NA NA NA NA

Since time and accuracy are trade-offs for an approx-
imate algorithm, we also investigate the output accuracy
of Approx with a default setting of K = n. The result is
given in Table 3 and Table 4. The hit rate is defined as the
number of times identifying the closest distance, divided by
the total running times. From the table we clearly see that
the accuracy of Approx algorithm is very high. Especially
for larger sequence lengths such as n = 10, 000, most of the
times Approx could achieve very good hit rate for different
l-mer lengths.

TABLE 3
Approx’s hit rate for small n and l values (K = n)

n l=100 l=200 l=300 l=400 l=500
4,000 0.55 0.55 0.69 0.79 0.50
6,000 0.57 0.55 0.48 0.43 0.62
8,000 0.81 0.86 0.76 0.48 0.64
10,000 0.98 0.95 0.86 0.69 0.79

TABLE 4
Approx’s hit rate for large n and l values (K = n)

n l=200 l=400 l=600 l=800 l=1,000
10,000 0.95 0.69 0.98 0.83 0.79
20,000 0.83 0.86 0.81 0.76 0.74

As K value would affect the time and accuracy of the
Approx algorithm, we conduct another experiment to test
how the performance changes as K varies. We vary K

from 0.001n to 10n, and measure both the accuracy and
running time when n = 10, 000 with different l values.
The Hit rate against K value is provided in the first plot
of Figure 4. Figure 5’s left plot illustrates the running time
as K changes. We can easily see that as K increases, both
the hit rate and run time increase, for all different l values.
This is because small K means a small priority queue and
hence the time to maintain Q decreases. As a result, only
storing a small number of candidate pairs could reduce
the chance of identifying the true closest triplet. From the
figures we observe that if K = 0.1n, the total run time could
be reduced by a large factor, while still maintaining a good
accuracy.

5.2 Human Activity Dataset

In this experiment, we evaluate our algorithms under the
pairwise-sum distance measurement using Euclidean dis-
tance, i.e. d(Ai, Aj , Ak) = d(Ai, Aj)+d(Aj , Ak)+d(Ai, Ak).



1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2843364, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 7

log
2
(K/n)

-10 -5 0 5

H
it
 r

a
te

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Genome dataset hit rate vs K

l=200
l=400
l=600
l=800
l=1,000

log
2
(K/n)

-10 -5 0 5

H
it
 r

a
te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Human activity dataset hit rate vs K

l=200
l=400
l=600
l=800
l=1,000

Fig. 4. Hit rate for different K values, n = 10, 000

log
2
(K/n)

-10 -5 0 5

ti
m

e
: 

s
e

c
o

n
d

s

0

100

200

300

400

500

600

700
Genome dataset running time vs K

l=200
l=400
l=600
l=800
l=1,000

log
2
(K/n)

-10 -5 0 5

ti
m

e
: 

s
e

c
o

n
d

s

0

50

100

150

200

250

300

350
Human activity dataset running time vs K

l=200
l=400
l=600
l=800
l=1,000

Fig. 5. Running time for different K values, n = 10, 000

The goal is to identify 3 l-mers from one single sequence A,
such that their pairwise-sum distance is minimum, under
the constraint that they do not overlap with each other.

The dataset we use is from UCI Machine Learning
Repository [19]. For a fair comparison, we have randomly
selected one dataset which happens to be the Heterogeneity
Activity Recognition Data Set [20]. This contains around
1 × 107 real numbers. This dataset includes cellphone ac-
celerometer and gyroscope recorded data for human activ-
ity. There are 6 sensor coordinates in total and each forms a
long sequence of numbers.

To perform evaluations, we downsampled the dataset
with an interval of 10 for each sequence, and then applied
a shifting of 0 and 5 to obtain a total of 12 downsampled
sequences. We have performed evaluations on different n

and d values. The first n elements in each sequence have
been pulled out to form a group of data sequences. The
evaluation is based on average performance across 12 data
sequences (5 runs per sequence) in each group, and accord-
ingly the accuracy is reported as the Hit Rate (number of
Hits out of 60 runs). Three algorithms are evaluated on this
dataset, which are Exact-0, Exact-1 and Approx. For Approx,
we still set K = n as a default.

Similar to previous experiment, we first inspect the
running time of all the three algorithms under different
settings of n and l combinations. As shown in Figure 6, three
clusters of curves represent three algorithms, respectively.
Among them, Approx still runs the fastest and Exact-1 is
the most time consuming. Between Approx and Exact-1,
Exact-0 gives a moderate running time at the cost of O(n2)
memory. For datasets up to n = 10, 000, around 600MB
memory is occupied by Exact-0. However, since Exact-0 is
five times faster than Exact-1, it is very competitive on small
to moderate datasets.

Also, the speedup of Approx against both Exact-0 and
Exact-1 are given in Figure 7. In the figure, ”Speedup 1” and
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”Speedup 0” represent Approx’s speedup over Exact-1 and
Exact-0, respectively. The observation is that for small di-
mensions (l), and for large sequence lengths n, much higher
speedup could be achieved using Approx algorithm. For
large l values, the running time of Approx could be almost
the same as Exact-0, such that Exact-0 could be preferred in
these cases as it is an exact algorithm that always outputs the
correct answer. However, as stated above, if n is large, Exact-
0 may no longer be applicable due to the huge memory cost.

In the next test we demonstrate how these three algo-
rithms’ running time varies as l changes. Using the same
setting as in the previous experiment, we pick n = 6, 000
and change l from 100 to 500. Figure 8 plots three curves
representing three the algorithms, respectively. As expected,
for both exact algorithms Exact-0 and Exact-1, the running
time decreases as l increases, because the actual number of
triplets (n − l)3 decreases. For Approx, the running time
increases due to its dependence on l.

The next experiment is performed on larger n and l

values. In particular, n = 10, 000, 20, 000, d ranges from
200 to 2, 000. From Table 5, we see that Approx is more
than 10 times faster than Exact-0 and 100 times faster than
Exact-1 on small l values. For larger l values, Approx is still
more than twice faster than Exact-0 and 20 times faster than
Exact-1.

Besides the running time performance, we also provide
accuracy (# Hits) for all the above tests in Table 6. Due to the
fact that K is set depending on n (K = n in the above tests),



1545-5963 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2018.2843364, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 8

Length of l-mer (l)
200 300 400 500 600 700 800 900 1000

T
im

e
: 

s
e

c
o

n
d

s

0

20

40

60

80

100

120

140

160
Running time vs l-mer length for three algorithms

Approx, n = 6000
Exact-0, n = 6000
Exact-1, n = 6000

Fig. 8. Running time vs l

TABLE 5
Running times on large datasets

n l=200 l=400 l=600 l=800 l=1,000
Approx 21.9 46 55.7 74.3 68.5

10k Exact-0 167.5 139.4 108.2 88.4 69.0
Exact-1 695.9 587.8 489.8 403.5 329.4

n l=400 l=800 l=1,200 l=1,600 l=2,000
Approx 203.6 308.0 497.6 492.0 500.1

20k Exact-0 1,404.0 1,146.8 953.4 725.6 582.6
Exact-1 5,583.9 4,742.6 3,997.6 3,247.1 2,681.1

the accuracy of Approx is consistent for all the different
n values, making this a fair experiment for running time
comparison. (Approx’s running time also depends on K).
As shown in Table 6, using a default K = n, we are able to
obtain a very high accuracy. We get full Hits (out of 60 runs)
for l = 100 and many other settings. One interesting fact
is that as l increases, # Hits decreases slightly. The reason
behind this is that since l increases, there are more elements
contributing to the total distance computation (note that
the distance is a summation of l elements), such that the
randomness increases a lot. So there are higher chances
that the 3 pairs (a, b), (b, c), (a, c) within the closest triplet
(a, b, c) might not exist in the top K closest pairs, but still
making the triplet closest.

TABLE 6
Hit rate for Approx, K = n

n l=100 l=200 l=300 l=400 l=500
4,000 0.98 0.98 0.73 0.88 0.67
6,000 1.00 1.00 0.83 0.87 0.67
8,000 1.00 0.98 0.88 1.00 0.77
10,000 1.00 0.98 0.98 0.67 0.97

n l=200 l=400 l=600 l=800 l=1,000
10,000 0.98 0.95 0.80 0.90 0.62
20,000 1.00 1.00 0.82 0.50 0.75

At the end, we are inspecting how Approx performs if K
changes. The Hit rate and the running time are provided in
the second plots of Figure 4 and Figure 5. The figure shows
similar trends as in the Genome dataset.

5.3 Summary of Experimental Evaluation

In this section we have performed comprehensive evalu-
ations on Genome dataset and Activity dataset. The mea-
surement metrics we used are direct Hamming distance

and pairwise-sum Euclidean distance. For Genome dataset,
two algorithms Exact-1 and Approx are tested; for Activity
dataset, three algorithms Exact-0, Exact-1 and Approx are
compared. The experiments are carried on different n and l

values. Most of the experiments for Approx are using K = n

as a default. We have the following observations:

• The performances are consistent using both measure-
ment metrics on two different datasets, showing our
proposed algorithms are robust.

• Exact-0 algorithm runs faster than Exact-1, at a cost
of O(n2) memory. On small datasets, it is very com-
petitive.

• Exact-1 is performing much better than brute-force,
making it a good candidate for exact algorithm that
always output correct answer.

• Exact algorithms’ running times decrease as l in-
creases, while Approx’s running time increases

• Approx runs much faster than both the exact algo-
rithms, while maintaining a very high accuracy

• Approx’s running time almost increases quadratic or
even less on n, while exact algorithms grow cubic on
n

• As l increases, the accuracy of Approx slightly de-
creases, the running time of Approx slightly in-
creases.

• K can be set to 0.1n to achieve even better speedups
while maintaining a similar accuracy

6 CLOSEST l-MERS IN MORE SEQUENCES

Finding closest l-mers from three different sequences
(namely, closest triplet problem) is a crucial problem in
biological data analysis. There is a further need for develop-
ing efficient algorithms for identifying closest l-mers from
even more sequences. However, as the number of input
sequences increases, the computation time could increase
exponentially (especially for exact algorithms).

In this paper, we extend our exact and approximate
algorithms to the problem of more than three sequences.
In particular, we run our experiments on m = 4 and
m = 5 cases, and report our results in this section. Exact-
1 and Approx are evaluated on the genome dataset, and
the Hamming distance (direct distance, refer to Section 1
for definition) is adopted as the similarity measurement.
To extend Exact-1 (version 1) to handle 4 input sequences,
we simply modify it to check the subsequences starting at
position (a, a + i, a + i + j, a + i + j + k) for a specific
alignment (i, j, k) (recall that for three sequences, we check
the alignment of (i, j)). The same modification is applied
when handling 5 input sequences, but adding one more
variable into the alignment tuple. The Approx algorithm
also works in a similar way as the 3-input-sequences case. It
maintains a priority queue of size K to store the closest pairs
from two input sequences. When collecting the distances,
it checks all the pairs in the queue, against every l-mer
from all the other input sequences. Note that the proposed
algorithms can be easily be extended to more sequences, but
the running time would also increase. Parallelization could
alleviate the time concern by taking advantage of multi-
core systems, and our proposed approaches are also easily
parallelizable.
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In this section, we provide a brief experimental compar-
ison of our proposed exact and approximate algorithms.
When the input has 4 sequences, we set n = 1000 and
vary l from 10 to 50. When there are 5 input sequences,
we set n = 200 and change l from 6 to 10. The average
running time of Exact-1 algorithm and Approx algorithm
are reported in Table 7. Also, the hit rate of our Approx
algorithm is provided in Table 8 to show the accuracy. Note
that K value is set to be n in both of the experiments. We did
not employ Exact-0 in this experiment because of the large
memory cost, making it not applicable in most common
computing platforms.

TABLE 7
Running times for 4 and 5 input sequences

m=4, n=1,000 l=10 l=20 l=30 l=40 l=50
Approx 21.8 59.8 95.5 109.9 154.8
Exact-1 10,707.1 10,478.5 10,298.7 10,102.8 9,958.1

m=5, n=200 l=6 l=7 l=8 l=9 l=10
Approx 13.7 15 16.3 17.4 18.6
Exact-1 6,957.6 6,921.4 6,769.8 6,739.7 6,679.6

TABLE 8
Hit rate for 4 and 5 input sequences

m=4 n=1,000 l=10 l=20 l=30 l=40 l=50
Approx 0.86 0.84 0.79 0.7 0.74

m=5 n=200 l=6 l=7 l=8 l=9 l=10
Approx 1.00 1.00 1.00 0.99 0.91

From the table we can see that the running time of
Approx is much better than that of Exact-1, where the
brute-force cannot finish for even small n and l values. For
example, Exact could take more than 2 hours, and Approx
only takesless than 20 seconds when n = 200, l = 10
for 5 input sequences. This demonstrates that the Approx
algorithm is especially suitable for large number of input
sequences.

7 CONCLUSIONS

In this paper we consider the problem of finding the closest
l-mers when the input has multiple sequences. We offer ex-
act and approximate algorithms, under direct and pairwise-
sum distance measurement metrics. All of our algorithms
have been implemented and evaluated on both real biolog-
ical datasets and time series sequences. Our experimental
results reveal that our exact algorithms are much more
efficient than the brute-force algorithm. Our approximate
algorithm outperforms the exact algorithms with a speedup
of more than 100 keeping a very good accuracy. For the case
of more than three sequences, in particular m = 4 and 5, we
also have tested both of our Exact-1 and Approx algorithms
on the biological datasets. Experimental results show the
strong feasibility of our approximate algorithms that can
handle multiple input sequences of non-trivial lengths. In
future we plan to consider the case of even larger m values.
We will also focus on improving the performance of the
algorithms we have presented in this paper.
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