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ABSTRACT

Large-scale deep neural networks (DNNs) are both compute and

memory intensive. As the size of DNNs continues to grow, it is

critical to improve the energy e�ciency and performance while

maintaining accuracy. For DNNs, the model size is an important fac-

tor a�ecting performance, scalability and energy e�ciency. Weight

pruning achieves good compression ratios but su�ers from three

drawbacks: 1) the irregular network structure after pruning, which

a�ects performance and throughput; 2) the increased training com-

plexity; and 3) the lack of rigirous guarantee of compression ratio

and inference accuracy.

To overcome these limitations, this paper proposes C��CNN,

a principled approach to represent weights and process neural

networks using block-circulant matrices. C��CNN utilizes the Fast

Fourier Transform (FFT)-based fast multiplication, simultaneously

reducing the computational complexity (both in inference and

training) from O(n2) to O(n logn) and the storage complexity from

O(n2) to O(n), with negligible accuracy loss. Compared to other

approaches, C��CNN is distinct due to its mathematical rigor: the

DNNs based on C��CNN can converge to the same “e�ectiveness”

as DNNs without compression. We propose the C��CNN architec-

ture, a universal DNN inference engine that can be implemented in

various hardware/software platforms with con�gurable network

architecture (e.g., layer type, size, scales, etc.). In C��CNN archi-

tecture: 1) Due to the recursive property, FFT can be used as the

key computing kernel, which ensures universal and small-footprint

implementations. 2) The compressed but regular network structure

avoids the pitfalls of the network pruning and facilitates high per-

formance and throughput with highly pipelined and parallel design.

To demonstrate the performance and energy e�ciency, we test C���

CNN in FPGA, ASIC and embedded processors. Our results show

that C��CNN architecture achieves very high energy e�ciency and
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performance with a small hardware footprint. Based on the FPGA

implementation and ASIC synthesis results, C��CNN achieves 6

- 102X energy e�ciency improvements compared with the best

state-of-the-art results.
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1 INTRODUCTION

From the end of the �rst decade of the 21st century, neural networks

have been experiencing a phenomenal resurgence thanks to the big

data and the signi�cant advances in processing speeds. Large-scale

deep neural networks (DNNs) have been able to deliver impressive

results in many challenging problems. For instance, DNNs have

led to breakthroughs in object recognition accuracy on the Ima-

geNet dataset [1], even achieving human-level performance for face

recognition [2]. Such promising results triggered the revolution of

several traditional and emerging real-world applications, such as

self-driving systems [3], automatic machine translations [4], drug

discovery and toxicology [5]. As a result, both academia and in-

dustry show the rising interests with signi�cant resources devoted

to investigation, improvement, and promotion of deep learning

methods and systems.

One of the key enablers of the unprecedented success of deep

learning is the availability of very large models. Modern DNNs

typically consist of multiple cascaded layers, and at least millions

to hundreds of millions of parameters (i.e., weights) for the entire

model [6–9]. The larger-scale neural networks tend to enable the

extraction of more complex high-level features, and therefore, lead
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where X ∈ RW ×H×C , Y ∈ R(W −r+1)×(H−r+1)×P , F ∈ Rr×r×C×P

represent the input, output, and weight “tensors" of the CONV

layer, respectively. Here,W and H are the spatial dimensions of

the input maps, C is the number of input maps, r is the size of the

convolutional kernel, and P is the number of output maps.

We generalize the concept of “block-circulant structure" to the

rank-4 tensor (F ) in the CONV layer, i.e., all the slices of the form

F (·, ·, i, j ) are circulant matrices.Next, we reformulate the inference

and training algorithms of the CONV layer to matrix operations.We

use the inference process as an example, and the training process

can be formulated in a similar way.

Software tools such as Ca�e provide an e�cient methodology of

transforming tensor-based operations in the CONV layer to matrix-

based operations [56, 57], in order to enhance the implementation

e�ciency (GPUs are optimized for matrix operations.) Fig. 6 illus-

trates the application of the method to reformulate Eqn. (6) to the

matrix multiplication Y = XF, where X ∈ R(W −r+1) (H−r+1)×Cr
2
,

Y ∈ R
(W −r+1) (H−r+1)×P , and F ∈ R

Cr 2×P .

Figure 6: Reformulation of Eqn. (6) tomatrixmultiplication.

Recall that the slice of F (·, ·, i, j ) is a circulant matrix. Then

according to the reshaping principle between F and F, we have:

fa+C (i−1)+Cr (j−1),b = fC (i−1)+Cr (j−1),b−a ,∀a,b (7)

which means F is actually a block-circulant matrix. Hence the fast

multiplication approach for block circulant matrix, as the “FFT→

component-wise multiplication →IFFT" procedure, can now be

applied to accelerate Y = XF, thereby resulting in the acceleration

of (6). With the use of the proposed approach, the computational

complexity for (6) is reduced from O(WHr2CP ) to O(WHQ logQ),

where Q = max(r2C, P ).

3.3 Outline of Theoretical Proof

With the substantial reduction of weight storage and computational

complexities, we attempt to prove that the proposed block-circulant

matrix-based framework will consistently yield the similar overall

accuracy compared with DNNs without compression. Only testing

on existing benchmarks is insu�cient given the rapid emergence

of new application domains, DNN models, and data-sets. The theo-

retical proof will make the proposed method theoretically rigorous

and distinct from prior work.

In the theory of neural networks, the “e�ectiveness" is de�ned

using the universal approximation property, which states that a

neural network should be able to approximate any continuous

or measurable function with arbitrary accuracy provided that an

enough large number of parameters are available. This property

provides the theoretical guarantee of using neural networks to

solve machine learning problems, since machine learning tasks can

be formulated as �nding a proper approximation of an unknown,

high-dimensional function. Therefore, the goal is to prove the uni-

versal approximation property of block circulant matrix-based neural

networks, and more generally, for arbitrary structured matrices

satisfying the low displacement rank γ . The detailed proofs for

the block circulant matrix-based networks and general structured

matrix-based ones are provided in the technical reports [42, 43].

The proof of the universal approximation property for block

circulant matrix-based neural networks is brie�y outlined as fol-

lows: Our objective is to prove that any continuous or measurable

function can be approximated with arbitrary accuracy using a block-

circulant matrix-based network. Equivalently, we aim to prove that

the function space achieved by block-circulant matrix-based neural

networks is dense in the space of continuous or measurable func-

tions with the same inputs. An important property of the activation

function, i.e., the component-wise discriminatory property, is proved.

Based on this property, the above objective is proved using proof

by contradiction and Hahn-Banach Theorem [58].

We have further derived an approximation error bound of O(1/n)

when the number of neurons in the layer n is limited, with details

shown in [43]. It implies that the approximation error will reduce

with an increasing n, i.e., an increasing number of neurons/inputs

in the network. As a result, we can guarantee the universal “e�ec-

tiveness" of the proposed framework on di�erent DNN types and

sizes, application domains, and hardware/software platforms.

3.4 Compression Ratio and Test Accuracy

In this section, we apply C��CNN to di�erent DNN models in soft-

ware and investigate the weight compression ratio and accuracy. Fig.

7 (a) and (b) show the weight storage (model size) reduction in FC

layer and test accuracy on various image recognition datasets and

DCNN models: MNIST (LeNet-5), CIFAR-10, SVHN, STL-10, and

ImageNet (using AlexNet structure) [6, 59–62]). Here, 16-bit weight

quantization is adopted for model size reduction. The baselines are

the original DCNNmodels with unstructured weight matrices using

32-bit �oating point representations. We see that block-circulant

weight matrices enable 400×-4000+× reduction in weight storage

(model size) in corresponding FC layers. This parameter reduction

in FC layers is also observed in [54]. The entire DCNN model size

(excluding softmax layer) is reduced by 30-50× when only applying

block-circulant matrices to the FC layer (and quantization to the

overall network). Regarding accuracy, the loss is negligible and

sometimes the compressed models even outperform the baseline

models.

Fig. 7 (c) illustrates the further application of block-circulant

weight matrices to the CONV layers on MNIST (LeNet-5), SVHN,

CIFAR-10, and ImageNet (AlexNet structure) datasets, when the

accuracy degradation is constrained to be 1-2% by optimizing the

block size. Again 16-bit weight quantization is adopted, and softmax

layer is excluded. The 16-bit quantization also contributes to 2× re-

duction in model size. In comparison, the reductions of the number
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of parameters in [34, 35] are 12× for LeNet-5 (on MNIST dataset)

and 9× for AlexNet. Moreover, another crucial property of C��CNN

is that the parameter storage after compression is regular, whereas

[34, 35] result in irregular weight storage patterns. The irregular-

ity requires additional index per weight and signi�cantly impacts

the available parallelism degree. From the results, we clearly see

the signi�cant bene�t and potential of C��CNN: it could produce

highly compressed models with regular structure. C��CNN yields

more reductions in parameters compared with the state-of-the-art

results for LeNet-5 and AlexNet. In fact, the actual gain could even

be higher due to the indexing requirements of [34, 35].

We have also performed testing on other DNN models such as

DBN, and found that C��CNN can achieve similar or even higher

compression ratio, demonstrating the wide application of block-

circulant matrices. Moreover, a 5× to 9× acceleration in training can

be observed for DBNs, which is less phenomenal than the model

reduction ratio. This is because GPUs are less optimized for FFT

operation than matrix-vector multiplications.

4 CIRCNN ARCHITECTURE

Based on block-circulant matrix-based algorithms, we propose C���

CNN architecture, — a universal DNN inference engine that can be

implemented in various hardware/software platforms with con�g-

urable network architecture (e.g., layer type, size, scales, etc.).

Applying C��CNN to neural network accelerators enables no-

table architectural innovations. 1) Due to its recursive property and

its intrinsic role in C��CNN, FFT is implemented as the basic com-

puting block (Section 4.1). It ensures universal and small-footprint

implementations. 2) Pipelining and parallelism optimizations (Sec-

tion 4.3). Taking advantage of the compressed but regular network

structures, we aggressively apply inter-level and intra-level pipelin-

ing in the basic computing block. Moreover, we can conduct joint-

optimizations considering parallelization degree, performance and

power consumption. 3) Platform-speci�c optimizations focusing on

weight storage and memory management.(Section 4.4).

4.1 Recursive Property of FFT: the Key to
Universal and Small Footprint Design

In C��CNN, the “FFT→component-wise multiplication→IFFT" in

Fig. 8 is a universal procedure used in both FC and CONV layers,

for both inference and training processes, and for di�erent DNN

models. We consider FFT as the key computing kernel in C��CNN

architecture due to its recursive property. It is known that FFT

can be highly e�cient with O(n logn) computational complexity,

and hardware implementation of FFT has been investigated in [63–

66, 66–68]. The recursive property states that the calculation of

a size-n FFT (with n inputs and n outputs) can be implemented

using two FFTs with size n/2 plus one additional level of butter�y

calculation, as shown in Fig. 9. It can be further decomposed to four

FFTs with size n/4 with two additional levels.

The recursive property of FFT is the key to ensure a universal

and recon�gurable design which could handle di�erent DNN types,

sizes, scales, etc. It is because: 1) A large-scale FFT can be calculated

by recursively executing on the same computing block and some

additional calculations; and 2) IFFT can be implemented using the

same structure as FFT with di�erent preprocessing procedure and

parameters [63]. It also ensures the design with small footprint,

because: 1) Multiple small-scale FFT blocks can be multiplexed and

calculate a large-scale FFT with certain parallelism degree; and 2)

The additional component-wise multiplication has O(n) complexity

and relatively small hardware footprint.

Actual hardware systems, such as FPGA or ASIC designs, pose

constraints on parallel implementation due to hardware footprint

and logic block/interconnect resource limitations. As a result, we

de�ne the basic computing block with a parallelization degree p

and depth d (of butter�y computations), as shown in Fig. 10. A

butter�y computation in FFT comprises cascade connection of com-

plex number-based multiplications and additions [69, 70]. The basic

computing block is responsible for implementing the major com-

putational tasks (FFT and IFFTs). An FFT operation (with recon�g-

urable size) is done by decomposition and iterative execution on

the basic computing blocks.

Compared with conventional FFT calculation, we simplify the

FFT computing based on the following observation: Our inputs

of the deep learning system are from actual applications and are

real values without imaginary parts. Therefore, the FFT result of

each level will be a symmetric sequence except for the base com-

ponent [63]. As an example shown in the basic computing block

shown in Fig. 10, the partial FFT outcomes at each layer of butter�y

computations will be symmetric, and therefore, the outcomes in

the red circles do not need to be calculated and stored as partial

outcomes. This observation can signi�cantly reduce the amount of

computations, storage of partial results, and memory tra�c.

4.2 Overall Architecture

The overall C��CNN architecture is shown in Fig. 11, which in-

cludes the basic computing block, the peripheral computing block,

the control subsystem, the memory subsystem, and I/O subsystem

(I/O bu�ers). The basic computing block is responsible for the ma-

jor FFT and IFFT computations. The peripheral computing block is

responsible for performing component-wise multiplication, ReLU

activation, pooling etc., which require lower (linear) computational

complexity and hardware footprint. The implementations of ReLU

activation and pooling are through comparators and have no in-

herent di�erence compared with prior work [24, 26]. The control

subsystem orchestrates the actual FFT/IFFT calculations on the

basic computing block and peripheral computing block. Due to the

di�erent sizes of CONV layer, FC layer and di�erent types of deep

learning applications, the di�erent setting of FFT/IFFT calculations

is con�gured by the control subsystem. The memory subsystem

is composed of ROM, which is utilized to store the coe�cients in

FFT/IFFT calculations (i.e., theW i
n values including both real and

imaginary parts); and RAM, which is used to store weights, e.g., the

FFT results FFT(wi j ). For ASIC design, a memory hierarchy may

be utilized and carefully designed to ensure good performance.

We use 16-bit �xed point numbers for input and weight repre-

sentations, which is common and widely accepted to be enough

accurate for DNNs [23, 24, 26, 71]. Furthermore, it is pointed out

[35, 37] that inaccuracy caused by quantization is largely indepen-

dent of inaccuracy caused by compression and the quantization

inaccuracy will not accumulate signi�cantly for deep layers.
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5.3 Embedded ARM-based Processors

Because ARM-based embedded processors are the most widely

used embedded processors in smartphones, embedded and IoT de-

vices, we implement the proposed block-circulant matrix-based

DNN inference framework on a smartphone using ARM Cortex

A9 processor cores, and provide some sample results. The aim is

to demonstrate the potential of real-time implementation of deep

learning systems on embedded processors, thereby signi�cantly

enhancing the wide adoption of (large-scale) deep learning systems

in personal, embedded, and IoT devices. In the implementation of

LeNet-5 DCNN model on the MNIST data set, the proposed em-

bedded processor-based implementation achieves a performance of

0.9ms/image with 96% accuracy, which is slightly faster compared

with IBM TrueNorth in the high-accuracy mode [80] (1000 Im-

ages/s). The energy e�ciency is slightly lower but at the same level

due to the peripheral devices in a smartphone. When comparing

with a GPU-based implementation using NVIDIA Tesla C2075 GPU

with 2,333 Images/s, the energy e�ciency is signi�cantly higher

because the GPU consumes 202.5W power consumption, while the

embedded processor only consumes around 1W. It is very interest-

ing that when comparing on the fully-connected layer of AlexNet,

our smartphone-based implementation of C��CNN even achieves

higher throughput (667 Layers/s vs. 573 Layers/s) compared with

NVIDIA Tesla GPU. This is because the bene�ts of computational

complexity reduction become more signi�cant when the model size

becomes larger.

5.4 Summary and Discussions

Energy E�ciency and Performance: Overall, C��CNN architec-

ture achieves a signi�cant gain in energy e�ciency and perfor-

mance compared with the best state-of-the-arts on di�erent plat-

forms including FPGAs, ASIC designs, and embedded processors.

The key reasons of such improvements include the fundamental

algorithmic improvements, weight storage reduction, a signi�cant

reduction of o�-chip DRAM accessing, and the highly e�cient

implementation of the basic computing block for FFT/IFFT calcu-

lations. The fundamental algorithmic improvements accounts for

the most signi�cant portion of energy e�ciency and performance

improvements around 10×-20×, and the rest accounts for 2×-5×.

In particular, we emphasize that: 1) the hardware resources and

power/energy consumptions associated with memory storage will

be at the same order as the computing blocks and will not be the

absolute dominating factor of the overall hardware deep learning

system; 2) medium to large-scale DNN models can be implemented

in small footprint thanks to the recursive property of FFT/IFFT

calculations. These characteristics are the key to enable highly

e�cient implementations of C��CNN architecture in low-power

FPGAs/ASICs and the elimination of complex control logics and

high-power-consumption clock networks.

Recon�gurability: It is a key property of C��CNN architecture,

allowing it be applied to a wide set of deep learning systems. It

resembles IBM TrueNorth and could signi�cantly reduce the devel-

opment round and promote the wide application of deep learning

systems. Unlike IBM TrueNorth, C��CNN1) does not need a spe-

cialized o�ine training framework and speci�c preprocessing pro-

cedures for certain data sets like CIFAR [79]; and 2) does not result

in any hardware resource waste for small-scale neural networks

and additional chips for large-scale ones. The former property is

because the proposed training algorithms are general, and the latter

is because di�erent scales of DNN models can be conducted on the

same basic computing block using di�erent control signals thanks

to the recursive property of FFT/IFFT. The software interface of

recon�gurability is under development and will be released for

public testing.

Online Learning Capability: The C��CNN architecture de-

scribed mainly focuses on the inference process of deep learning

systems, although its algorithmic framework applies to both in-

ference and training. We focus on inference because it is di�cult

to perform online training in hardware embedded deep learning

systems due to the limited computing power and data set they can

encounter.

6 CONCLUSION

This paper proposes C��CNN, a principled approach to represent

weights and process neural networks using block-circulantmatrices.

C��CNN utilizes the Fast Fourier Transform (FFT)-based fast multi-

plication, simultaneously reducing the computational complexity

(both in inference and training) from O(n2) to O(n logn) and the

storage complexity from O(n2) to O(n), with negligible accuracy

loss. We propose the C��CNN architecture, a universal DNN infer-

ence engine that can be implemented in various hardware/software

platforms with con�gurable network architecture (e.g., layer type,

size, scales, etc.). To demonstrate the performance and energy e�-

ciency, we test C��CNN architecture in FPGA, ASIC and embedded

processors. Our results show that C��CNN architecture achieves

very high energy e�ciency and performance with a small hardware

footprint. Based on the FPGA implementation and ASIC synthesis

results, C��CNN achieves 6 - 102× energy e�ciency improvements

compared with the best state-of-the-art results.
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