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Abstract: This paper investigates a service level agreements (SLAs)-based resource allocation problem in a server cluster. The
objective is to maximise the total profit, which is the total revenue minus the operational cost of the server cluster. The total
revenue depends on the average request response time, whereas the operating cost depends on the total energy consumption
of the server cluster. A joint optimisation framework is proposed, comprised of request dispatching, dynamic voltage and
frequency scaling (DVFS) for individual cores of the servers, as well as server- and core-level consolidations. Each DVFS-
enabled core in the server cluster is modelled by using a continuous-time Markov decision process (CTMDP). A near-optimal
solution comprised of a central manager and distributed local agents is presented. Each local agent employs linear
programming-based CTMDP solving method to solve the DVFS problem for the corresponding core. On the other hand, the
central manager solves the request dispatch problem and finds the optimal number of ON cores and servers, thereby achieving
a desirable tradeoff between service response time and power consumption. To reduce the computational overhead, a two-tier
hierarchical solution is utilized. Experimental results demonstrate the outstanding performance of the proposed algorithm over

the baseline algorithms.

1 Introduction

Nowadays cloud computing has emerged as a new computing
paradigm that enables ubiquitous, convenient, on-demand network
access to a large amount of remote, distributed, shared computing
resources [1, 2]. In cloud computing, various kinds of computing
resources are provided to users as services and the users have
access to computing resources (e.g. networks, servers, storage,
applications, and services) based on their needs from anywhere on
earth [3]. The cloud computing has been known as software as a
service, infrastructure as a service, and platform as a service [4-6].

In the cloud computing paradigm, there are basically two
parties, the cloud service providers (CSPs) and the clients, who act
their own parts through providing and usage of computing
resources. While enjoying the convenient on-demand access to
computing resources or services, the clients need to pay for such
accesses. CSPs can make profits by providing services and
charging the clients. Clients can avoid the costs associated with ‘in-
house’ provisioning of computing resources and have access to a
larger pool of computing resources than they can possibly own by
themselves. There are many different aspects to evaluate the cloud
computing service quality, which can be optimised with various
methods. For example, the computing resource and fairness of the
allocation are taken into account in a framework based on game
theory [7]. An online mechanism based on auction is proposed to
determine the resource allocation by considering both the
incentives of clients and the incentives of the CSPs [8]. Wang et al.
[9] advocates a joint optimisation framework to integrate virtual
machine assignment and traffic engineering for achieving energy
efficiency. To consider various aspects of cloud service and ensure
the quality of service delivery, the clients need guarantees from
CSPs, which are brokered between the CSPs and the clients as
service level agreements (SLAs) specifying the quality of the
delivered services from CSPs to clients. Usually, SLAs cover
guaranteed amounts of computing power, storage space, and

IET Cyber-Phys. Syst., Theory Appl.

network bandwidth, and also availability and security aspects of
the provided services.

The backbones of the cloud computing paradigm are supported
by data centres and server clusters with massive computing
resources, which are monitored and maintained by CSPs [10-12].
In order to meet SLAs on the quality of delivered services, CSPs
often over-provisioning their computing resources being prepared
for the worst scenarios, when demands of services are gusty [11].
Although over-provisioning of computing resources can guarantee
the quality of services, it increases the operation incurred costs of
the data centres or server clusters. For example, as the ever-
increasing energy consumption of CSPs emerges as a significant
problem, energy efficient frameworks for resource allocation in
cloud computing become imperatively essential to prevent server
overheating and reduce carbon emissions [13, 14]. Under such
circumstances, optimal provisioning of the cloud computing
resources and effective allocation has become an active research
topic. The aim is to reduce the operation incurred cost of the
servers (and also the environment impacts) while satisfying the
brokered SLAs between CSPs and clients. The authors in [15-18]
have conducted research on this topic by formulating and solving
the optimal request dispatch and resource allocation in the cloud
computing paradigm. In the past decade, the more general
problems of resource allocation and management have been
actively investigated, for example, in electronic commerce
scenarios as in [19], in autonomic computing scenarios as in [20,
21], in grid computing scenarios as in [22, 23], and in clusters of
servers scenarios as in [24].

In this work, we aim at solving the optimisation problem of
cloud computing resource allocation with SLA. We are considering
a multi-server, multi-client cloud computing framework. The
server cluster contains possibly heterogeneous servers and the
clients generate service requests for processing in the server
cluster. The clients can be any software applications, which have
computation, storage, and communication requirements to be
satisfied by the server cluster. Moreover, according to the SLAs,
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Fig. 1 Architecture of the request dispatching and DVFS problem in the
cloud computing system

the clients have constraints on the response time of their service
requests and pre-defined utility functions are used to express such
constraints. The potentially heterogeneous servers in the server
cluster are comprised of numbers of cores, which could be again
heterogeneous. The CSP of the server cluster earns revenue from
charging the clients. The cost to the CSP is the operating cost of
the ON servers. Then the profit made by the CSP is the revenue
minus the cost.

Different from prior works, in this work we are using a joint
optimisation framework, in which techniques such as the optimal
request dispatching, the dynamic voltage and frequency scaling
(DVES) in each core, as well as server- and core-level
consolidations, are employed in the optimisation. In our
formulation, each DVFS-enabled core is modelled as a continuous-
time Markov decision process (CTMDP), where we choose clock
frequency (and hence, the corresponding power supply voltage) as
the action for service request processing, because we can achieve a
tradeoff between shorter execution time of service requests and
lower power consumption of the cores by the appropriate
frequency control.

We present a near-optimal solution to the cloud computing
resource allocation problem. Our solution algorithm consists of a
central resource manager and several distributed local agents. The
distributed local agents are employed to parallelise the solutions for
single cores and decrease the optimisation time of the overall cloud
computing resource allocation problem, thereby significantly
increasing the solution scalability. In our solution, a distributed
local agent needs to solve the DVFS problem for the local core,
which are implemented by a linear programming-based Markov
decision process solving method [25] that judiciously selects the
most appropriate clock frequency (and therefore voltage) based on
the number of waiting requests. On the other hand, the central
manager solves the request dispatch problem based on the
optimisation results from the distributed local agents. In order to
reduce the computational overhead, the central manager is realised
as a two-tier hierarchical controller, in which the first control tier
associates each client with a selected set of servers, i.e. service
requests generated from the client can only be dispatched to cores
of the chosen set of servers. In the second control tier, the request
dispatch problem is solved based on the results of the first tier.
Finally, the central manager performs core- and server-level
consolidations by finding the optimal numbers of ON cores and
ON servers for request processing. In this way, we aim at achieving
a desirable balance between the static and dynamic power
consumptions of the server cluster [26, 27]. Experimental results
demonstrate that the proposed near-optimal hierarchical resource
allocation and consolidation algorithm can consistently achieve
better performance compared with the baseline algorithms.

The remainder of this paper is organised as follows. Section 2
presents the overall system modelling. Section 3 formulates the
cloud computing resource allocation problem. Section 4 provides
the near-optimal solution including the distributed local agents,

central manager, and resource consolidation. Section 5 presents the
experimental results and Section 6 concludes the paper.

2 Cloud computing system model
2.1 System modelling: overall

The target resource allocation system consists of a set of N clients,
a server cluster of M potentially heterogencous servers, and a
central resource management node, as shown in Fig. 1. The central
resource manager is the information exchange point between the
clients and the server cluster and has the control over the whole
system.

In the cloud computing system, a client is indexed with i
(1 <i<N) and a server is indexed with j (1 < j < M). Each jth
server in the server cluster consists of K potentially heterogeneous
cores, which are indexed with k. Clients generate service requests
to be processed by potentially multiple cores in more than one
servers in the server cluster. The service requests generated from
the ith client will be assigned to the kth core in the jth server with
probability p;j, which are the optimisation variables in the request
dispatch and DVFS optimisation framework.

We assume that the service requests generated by each ith client
follow a Poisson process with an average generating rate of A,
which can be predicted based on the client's past behaviour pattern.
This assumption enables an analytical form of the response time.
According to the properties of the Poisson distribution and the
above assumption, service requests generated from the ith client
and dispatched to the kth core in the jth server also follow a
Poisson process with an average rate of p;j - 4; [28]. The average
service request arrival rate of the kth core in the jth server is then

given by Y1 | Dijk * e

2.2 CTMDP service queue (SQ) modelling

The SQ in each core can be modelled as a CTMDP, which is a
controllable continuous-time Markov process satisfying the
Markovian property [25]. The CTMDP is a more detailed and
accurate model than the generalised processor sharing model [29].
A CTMDP can be constructed and represented by a set of states S
and a finite set of actions A. The state transition rates are
determined by actions a € A. The controller is charged by a cost
rate function c(s,a) when it is at state s € S and action a € A is
chosen. A policy 7 = {(s,a)ls € S,a € A} is a set of state—action
pairs for all states of the CTMDP. We use notation z(s) =a to
specify that action a is chosen for state s according to policy 7. We
assume the stationary policy class. We would like to derive the
optimal policy that minimises the total expected cost.

Given a CTMDP with n states, we define its parameterised
generator matrix G(a) by an n X n matrix. Each entry o, ¢(a) in
G(a) is the transition rate from state s to state s’ when action a is
chosen, calculated as

5" s’
6.?,.?’(“) = Tls.s’EZ;’

for s # s/, 1)

where 7, ¢(a) is the average transition time from state s to state s’
when action a is chosen. & ¢(a) = 1 if s’ is one of the destination
states of state s under action a, and & ¢(a) = 0 otherwise. More
details can be found in [25, 30] about CTMDP.

Fig. 2 models the SQ in each kth core in the jth server
(I1<j<M,1<k<Kj) as a stationary CTMDP. The state set is
$=1{0,1,2,...,0}, where Q is the maximum length of the queue.
The action set is A = { fiins - --» fmax }» Where an action is a specific
execution frequency of the core. If a service request coming from a
client is dispatched to this SQ, the state of the SQ is increased by
one unless the SQ is full already. Independent of the action chosen,
the SQ transits from state s to state s+ 1 with the rate of
Zﬁvzlp,-_,-k - J;. After a service request has been processed by the

core, the index of the SQ state is autonomously decremented by
one. The transition rate yj(a) from state s to state s — 1, as shown
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in Fig. 2, is determined by the action (execution frequency) a
chosen by the core. A higher execution frequency will result in a
shorter average request service time, and thereby, a larger transition
rate uj(a), and vice versa.

The average response time of a service request in the kth core of
the jth server, denoted by R k> 1 the sum of the average waiting
time in the SQ and the average request processing time. R.,-k
depends on the policy 7 chosen in the core and the dispatching
probability Pt = (Piji Pajir --» Pnjk),  denoted by
R /k(ﬂjk, P ,k) with reasons shown in the following. Let
Dojis> Prjks --+» PQjic denote the steady-state probabilities of the
CTMDP states 0 to Q, respectively, which can be derived from the
policy mj; and the arrival rate va, | Dijk + 4 using standard queueing
theory method [31]. Based on the Little's law [31], R

vector

ik 1s given by

D Z?:oi)sjk ° 8
Rip=oy— - 2
Qi Pijk i

Power consumption of each core is comprised of two parts: a
dynamic power consumption part for the core is active (i.e. when it
is processing service requests) and a static power consumption part
as long as the core is turned ON (i.e. no matter whether the core is
active or idle.) The dynamic power consumption Py, y is a
superlinear function of the execution frequency a of the core,
denoted by Pgy, x(a) [32-34]. A higher execution frequency will
result in larger dynamic power consumption. Given the policy zj
for the kth core in the jth server, the execution frequency a = 7 (s)
is chosen at each state 1 <s < Q (Please note that the dynamic
power consumption is zero when s=0.). Then the average

. . ~C . .
dynamic power consumption Py, j is given by

()

P;y.jk Z Psjk Pd\ Jk ”]k(s)) (3)

Hence, similar to Rjk, the average dynamic power consumption
Py i also depends on zj; and pj, denoted by Py, x(7jr pir). On
the other hand, the static power consumption of each kth core in the
jth server is a constant value as long as the central manager keeps
the core ON. We use f’?,n,-k to denote the static power consumption
in the sense that it is an average value. The effect of power
consumption is captured by the cost rate function, due to the fact

that power consumption is directly related to the energy cost. More
details of the cost rate function can be found in Section 4.

3 Problem formulation

We use U;(R) to denote the non-increasing utility function of the ith
client as a function of the average response time R. We use x; as a
pseudo-Boolean integer to indicate whether the jth server is ON
(xj=1) or OFF (x;=0). When the jth server is turned ON, it
incurs an (average) idle power consumption of Pj; j- We use yj as
another pseudo-Boolean integer to represent if the kth core in the
Jjth server is ON (yj = 1) or OFF (yj = 0). As the cores are within
servers, when x; = 0, we have y; =0 for all 1 <k < K;. For the
optimisation problem, we use p;i’s, mi’s, x;’s, and yu’s as
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optimisation variables. The rest of the parameters are either
constants or associative to these optimisation variables.

We formulate the overall request dispatch, DVFS, and
consolidation problem for the server cluster over a time period 7 as
a profit maximisation problem as follows:

Find the optimal p;;’s, mj’s, x;’s, and yj’s.

Maximise

N
T- Z J; - U(R;) — Price - T -
i=1

“
M
X Z x] m’] + z yjk st jk +Pd\ jk(ﬂ:]k’ P]k))
J=

— K - .
where R; = 2?’1: ' 2l Pijk - Ri(mje, pji) 1s the average response
time of the service requests of the ith client.

Subject to
€{0,1}, for Vje({L,2, ..M}, (5)
vk €1{0,1}, for Vje({l,2,...,.M} and Vke 6
(...}, ©
OSp,»jkgl, for Vi, j,k, @)
MK
Z pie=1, for Vie{l,2,..,N}, 8)
==
N
> pije b < il Fana)s for ik, ©)
=1
Z{Vzlpijk'ﬂ,-
> S T for  Vj,k, (10)
Yk /’ljk(.fmax) J
IS
szy, for Vje{l,2,...M}, (11

J

where Price is the unit energy price during the current time period.
Besides the above constraints, the constraints in the CTMDP
formulation for each core should also be satisfied.

The details of the above formulation are as follows. The first
term in the objective function (4) denotes the total revenue
obtained from processing the service requests, and the second term
corresponds to the total energy cost for operating the server cluster
in consideration. Constraints (5)—(7) specify the ranges or domains
of these variables. Constraint (8) ensures that all service requests
generated by a client are processed by some certain core.
Constraint (9) specifies the upper limit of the average service
request arrival rate to a core, i.e. the arrival rate should be smaller
than the maximum average service processing rate of that core
when the core is running at the maximum execution frequency.
Constraints (10) and (11) specify the ON cores and servers,
respectively, based on the amounts of allocated resources.

The overall request dispatch, DVFS, and consolidation problem
is integrated with a set of CTMDP optimisation subproblems (i.e.
finding the optimal DVFS policy for each core based on the
CTMDP model of the core.). The overall problem is then a mixed
integer non-linear programming problem, which cannot be solved
using conventional convex optimisation methods since the
objective function is neither convex nor concave even if the
optimal values of Boolean variables x;’s and yy’s are given.
Moreover, the number of optimisation variables, especially that of
Piji’s, grows superlinearly with the increase of M and N, which will
significantly increase the solution complexity. This is another
important issue that should be addressed by the proposed
optimisation algorithm.
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Fig. 3 Flow chart of the centralised resource management algorithm with
a set of distributed local agents

4 Optimisation methods

As stated before, the joint optimisation problem of request
dispatch, DVFS, and consolidation presented in the previous
section is a hard problem due to the non-convexity of the objective
function, the existence of Boolean variables, and the inclusion of a
set of CTMDP optimisation subproblems within the original
problem formulation. In addition, the superlinear increase in the
number of optimisation variables with the increase in M and N is
another important concern. Simple problem solvers cannot solve
this problem except for the case of very small input sizes by
executing exhaustive search or by using heuristic optimisation
methods such as simulated annealing or genetic algorithm. In this
section, we present a near-optimal solution for the joint
optimisation problem with low computational complexity, properly
addressing all the above-mentioned issues.

If we use a linear-form decreasing utility function in the
optimisation problem, i.e. U(R) = f; — @; - R, which is similar to
work in [16], then the objective function (4) can be transformed
into the objective function (12) as shown in the following:

N

M K B
T di-\Bi=ais Y0 D b Rimies i)
=1 ety

—Price - T - (12)

x 2 (XJ Piaj+ Z Vit * (Pt + Pay 7 o)) |-

In our proposed two-tier near-optimal solution, we use a distributed
decision-making process instead of a centralised one, due to the
relatively high complexity of a centralised solution. By using
distributed decision making, we can increase the parallelism of the
solution and thereby reducing the computation time significantly
with only limited amount of communication efforts. In other
words, it significantly increases the scalability of the solution. The
distributed decision making is based on the following observation.

Observation 1: When the values of p;;’s, x;’s, and y;’s are given,
maximising the objective function (12) in a centralised way is
equivalent to minimising the following objective function at each
kth core in the jth server with x; = 1 and yj = 1

N
2 {ai . /11' - Dijk * Rjk(ﬂjkvpjk) + Price - P;y,jk(ﬂjkvpjk)} . (13)
i=1

Based on the above observation, we propose a near-optimal
solution for the resource allocation problem, comprised of a
centralised resource management algorithm and a set of distributed
local agents. The flow chart of the proposed algorithm is shown in
Fig. 3. In this algorithm, each local agent solves the CTMDP

4

optimisation subproblem (i.e. the DVFS problem) for the
corresponding core, to find the optimal policy 7. The optimal 7
should achieve a desirable tradeoff between the average response
time and power consumption. Furthermore, we effectively use
lookup tables to reduce the online computation overhead of each
local agent. The central management algorithm, on the other hand,
solves the request dispatch problem and finds the optimal p;j
values, which determines the most appropriate server(s) and core(s)
for request dispatch. In order to reduce the computation overhead,
the central management algorithm is a two-tier hierarchical
solution, in which the first control tier associates each client with a
selected set of servers, i.e. service requests generated from the
client can only be dispatched to cores of the chosen set of servers.
In the second control tier of the central management algorithm, the
request dispatch problem is finally solved based on the results of
the first tier. In this way, the computation complexity of the central
management algorithm can be significantly reduced through
reducing the number of optimisation variables, with negligible
performance degradation.

Finally, the central management algorithm also performs server-
level and core-level consolidations, i.e. finding the optimal values
of x;’s and yy’s, in the outer loop of the algorithm in order to
achieve a desirable balance between the static and dynamic power
components in the server cluster. We elaborate the details of the
near-optimal solution in the following three subsections.

4.1 Local agents

We consider the local agent of the kth core in the jth server (x; = 1
and yy = 1) given the p;; values. We denote this local agent as the
(j, k)-agent. The local agent finds the optimal policy in order to
minimise the objective function (13). We properly set the cost rate
function in the CTMDP such that the objective function (13) is
minimised when we solve the CTMDP subproblem. Based on the
Little's theorem [31], we have the following theorem.

Theorem 1: Suppose that the cost function in the CTMDP is given
by c(s,a) = w, - Isl + w, - Pgy (@) when the system is in state s € S
and we choose an action (i.e. execution frequency level) a € A,
where |s| is the number of service requests waiting or being
processed in the SQ, and w,, w; are relative weights greater than or
equal to Zero. We minimise

Wi (Zl- 1 Pijk /1) /k(”]k, P,k) +w,- Pd) ]k(lrjk, pjk) when  we
solve the CTMDP subproblem.

Proof: We consider the CTMDP operation in the time interval from
time 0 to 7. By finding the optimal policy, we are essentially
minimising the integral of the cost function c¢(s,a) in this time
interval with respect to time ¢. Suppose that 7" is a large enough
value. Then according to the Little's law [31], the integral of [s]|

N .
equals T(Z \Pijk i) R pj), where X;_ pix- 4 is the
average request arrival rate of the core of interest. On the other
hand, the integral of Pj, y(a) equals to T - Py, (7. pi), where

[_’Zy_ (7 px) is the average dynamic power consumption of the
core. Combining these two observations, we have proved Theorem
1.o

Based on Theorem 1, we set the cost rate function in the
CTMDP optimisation to be

N
Z[:]ai'pijk'/li
N
Die Pijk - Ai

By employing this cost rate function, we minimise the objective
function (13) when we solve the CTMDP optimisation subproblem,
which will result in an optimal tradeoff between the average
response time and power consumption.

The CTMDP optimisation subproblem is formulated as a linear
programming problem as follows:

c(s,a) = - Isl + Price - Py, y(a). (14)
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min (Z D f@- ys(a)) (15)
a

where f(a) denotes the frequency that the system enters state s and
action a is chosen in that state. y,(a) is the expected cost when the
system is in state s and action a is chosen. y,(a) is calculated as

7,(@) = 7(a) - (s, @), (16)

where 7a) = 1/Y¢.0,¢(a) is the expected duration of time
when the system will stay in state s when action « is chosen, and
o, ¢(a) is the average transition rate from state s to state s’ when
action a is chosen, as defined in (1).

The linear programming problem is solved for variables f(a)’s
while satisfying the following constraints:

DSay= Y Y ful@)-pead for Vs (g

s'#s a
Y2 f@ - n@=1, (18)
fda) >0, for VseS, 19)

where p; ¢(a) denotes the probability that the system will next
come to state s’ if it is currently in state s and action a is chosen.
Constraints (17)—(19) capture the properties of a CTMDP. More
specifically, constraint (17) addresses the balance condition for the
system in the steady state. Constraint (18) normalises the sum of
the steady-state probabilities in all states. Constraint (19) limits
each frequency value to be non-negative. Next we make an
important observation about the CTMDP optimisation subproblem.

Observation II: The CTMDP optimisation subproblem for the
(j, k)-agent is determined (and fixed) with given average request

. N
arrival rate ) ;_, p; - 4 and parameters

N
i Pijk A
N
2o Pijk A

and Price in the cost rate function (in fact, the ratio between

N
Qi Dijk A
N
Qi Pijk " A

and Price will be sufficient).

Please note that the objective function and the constraints of the
CTMDP optimisation subproblem are all linear functions of the
optimisation variables f(a)’s. Hence, we utilise standard linear
programming solver such as the MOSEK [35] to solve the CTMDP
optimisation subproblem. We find the optimal policy 7y
subsequently after deriving the f((a) values, using the method
described in [25].

In order to facilitate the further optimisations in the central
resource manager, we define an equivalent M/M/1 queue for the
CTMDP of the kth core in the jth server with policy zj. The
average service request processing rate of the equivalent M/M/1
queue is given by

N
1
Heg k= D Dijk i+ 57— (20)
“ ;; YT Rl pjk)

which implies that the equivalent M/M/1 queue has the same
average service request response time R jk(zrjk, pjk) as the CTMDP
when the average service request arrival rate is given by
vazl Pijk + 4. Similarly, we assume that the dynamic power

consumption of the core is P, 4, % when processing service

IET Cyber-Phys. Syst., Theory Appl.

requests. Please note that the kth core in the jth server may not be
able to execute exactly with average request processing rate of
Heq ji» bECause it can only execute at a discrete set of frequencies.

In this case, we can derive the Pﬁqﬁ dy, jk value through intrapolation.
From Observation II, we know that the equivalent values g,

and Pg, 4y x only depend on the average request arrival rate
Zf; \ Piji - 4 and the ratio between

N
N
Qs Pijk A

In order to reduce the online computation overhead, we propose to
build a lookup table for each (j, k)-agent in an oftline manner. The
input variables of the lookup table are the average request arrival

rate vaz | Dijk - 4 and the ratio between

and Price .

N
i 1% Piji Ai
N
iz Pijk A
The entries stored in the lookup table are the corresponding

(optimised) g, jx and Pg, gy i values. In this way, each (j, k)-agent
only needs to calculate

and Price.

N

a A
ZP’J" 4 and Z”AIII—M/Prlce
= Y Pijk A

online and index the lookup table to instantaneously determine the
Heg. jk and Peg gy i values.

4.2 Optimal service request dispatch

In the optimal request dispatch problem to be solved by the central
resource manager, we are given the values of x;’s, y;’s as well as
the optimal policies zj’s for all the servers and cores from local
agents. The objective is to find the optimal p;; values so as to
maximise the objective function (12).

The main difficulty in this problem is that both R (7 x, px) and
PZy, jk(ﬂjk, P j-k) are implicit functions of the optimisation variables
Pij’s, as shown in Section 2.2. Hence, first we approximate
Ru(njt, pix) and Py, u(mi. pji) by using explicit functions of p;j’s.
More specifically, we use the equivalent M/M/1 queue defined in
Section 4.1 to approximate the CTMDP for each core. The
approximate average request response time is
1/(;18,,' k= vazlp[jk%,-) for each kth core in the jth server. The
approximate average percentage of time this core is active (i.e. it
has one or more service requests waiting or being processed) is
Zf’:l Piji * Ail Yeq, j according to the M/M/1 queueing principles
[31]. Hence, the approximate average dynamic power consumption
is given by

N
i Pik i, @1
s Feadrve

Then the optimal request dispatch problem becomes as follows:
Find the optimal p;j; values.
Minimise

i z Zilai'/li'Pijk
N

=V g i — Zi:l/l"pijk

. (22)
Pijk .
+Price - 21 kzl l ,ulgq ljk ;q,dy, Jjk
Subject to the following constraints:
5
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Input x; and yj;, values.

Output the p; j;, values.

Initialize p; j, randomly and normalize.

Do (iteratively run the following procedure):

The central resource manager issues commands to all the
local agents with x; = 1 and y;, = 1 to start to perform
CTMDP optimization.

For each (j, k)-agent with x; = 1 and y;, = 1 (all the
local agents act in parallel):

Perform CTMDP optimization and ﬁnd the optimal
policy mjy (or simply the peq jx and Pgg 4 i Values)
based on the p;j values.

Send optimization results back to the central resource
manager.

End

The central resource manager performs the two-tier
hierarchical request dispatching optimization and finds
the optimal p; . values based on the optimal policies
Tj's (or the Ueq jx and P,

Until the solution converges.

Fig. 4 Algorithm 1: the near-optimal solution with given ON servers and
cores

0<pgp<l, for Vijk (23)
P =0, if yp=0, 24)
M K;
2 ZP’J"_I for Vie {l,2,...,N}, (25)
j=1k=
N
zpijk'/li</4eq«jk’ for Vj.k. (26)

i=1

The optimal service request dispatch problem maximises the sum
of a set of linear fractional functions of the optimisation variables
piji’s. Effective algorithms exist in the literature [36] for finding a
near-optimal solution of this kind of problem effectively. The
fractional programming (FP) algorithm [36] can be applied to solve
this optimisation problem.

However, the complexity in solving the above service request
dispatch problem increases superlinearly with N, M, and K;, which
makes the solution not scalable. In order to address this issue, we
propose a two-tier hierarchical solution for the request dispatch
problem, in which the first tier associates each client with a
selected set of servers, i.e. service requests generated from the
client can only be dispatched to cores of the chosen set of servers.
In the second tier of the central management algorithm, the request
dispatch problem is finally solved, i.e. the p;; values are finally
found, based on the results of the first tier. In this way, the
computation complexity of the central management algorithm can
be significantly reduced through reducing the number of
optimisation variables, with negligible performance degradation.
We discuss these two tiers in the following.

4.2.1 First tier: In the first tier, the central manager associates
each client with a selected set of servers. Service requests that are
generated from this client can only be dispatched to the set of
servers in the subsequent tier. We define pgl”s as the probability
that the service requests generated from client i are dispatched to
an ON server j (with x; =1), where the superscript ‘Cl - S’

q.dy,jk Values) from local agents.

denotes ‘client to server’. In this tier the central manager derives
the optimal pgl S values.

In order to limit the number of optimisation variables, we
assume a straightforward mechanism to dispatch the arriving
requests of each server j to its ON cores. Suppose that the kth core
of server jis turned ON. Then a request that arrives at server j is

dispatched to core £ with probability pS €0 given by
P Co = Heq. jk
jk K;
2= Heq i Iy = 1]
27
/'teq, Jjk

K
2= 1 Heq ji * Yk

where I[y; = 1] is the indicator function which equals to 1 if the
Boolean variable y; =1 is true (i.e. the k’th core of server j is
turned ON.). The probability pS ~Co js proportional to the
equivalent request processing rate eq j of the kth core and is
independent of the optimisation variables psl"s’s in the first tier.

Then the optimisation problem in the first tier is formulated as
follows.

Find the optimal p,vcjl” S values (please note that the number of

optimisation variables has been significantly reduced compared
with the original problem.).

Minimise
f i o A pd p]s -
=lk= Zz i P S co
2
Z p S CO_/}V‘ ( 8)
+Price - =1 LoP
]ZI kZI Heq, jk eq.dy. jk
Subject to the following constraints:
0<pS=S<1, for Vij, (29)
G-S=0, if x=0, (30)
M
Y p§oS=1, for Vie{l.2,...N}, (31)

J=1

N K
Cl-S
Z Dij A < Z Heq, jk' *
=1

i=1

I[y_/-krzl], for Vj. 32)

Similar to the optimal request dispatch problem, in the first tier the
central manager also maximises the sum of a set of linear fractional
functions of optimisation variables pgl =S5 We exploit the FP
algorithm from [36] for solving this optimisation problem.

4.2.2 Second tier: In the second tier, the central manager solves
the request dispatch problem, i.e. it finds the optimal values of
piji’s- The central manager minimises the objective function (22)
subject to the constraints (23)—(26). In this tier, the central manager
only focuses on the p;j values with picjl”s >0, i.e. it sets an
additional constraint that p; =0 if psl"s = 0. In this way, the
number of optimisation variables is significantly reduced compared
with the overall request dispatch problem.

We integrate the request dispatch optimisation performed by the
central manager with the local agents that solve the CTMDP
subproblems, and thereby, we derive an iterative distributed
algorithm with the ON servers and cores (i.e. with the given x; and
¥jk values.). Algorithm 1 (see Fig. 4) shows the pseudo-code of the
proposed near-optimal solution.
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Initialization: Turn on all servers and cores.

Do the following procedure:
Run Algorithm 1 on the set of ON servers and cores and
calculate the total profit.

Turn off a subset of L cores or a server with the
minimum average service request arrival rate(s), and set
the corresponding x; and y;;, values to zero.

Until the total profit of the server cluster stops rising.

Fig. 5 Algorithm 2: distributed near-optimal solution of the whole
resource allocation and consolidation problem

Initialization: Turn on all servers and cores.
Do the following procedure:
Run Algorithm 1 on the set of ON servers and cores and

calculate the total profit.

Log the total profit of the server cluster under the current
consolidation level.

Turn off a subset of L cores or a server with the
minimum average service request arrival rate(s), and set
the corresponding x; and y;; values to zero.

Until no solution can be found when running Algorithm 1
(because the number of ON servers and cores is not enough
for request dispatch and resource allocation.)

Find the optimal solution (in terms of profit) throughout the
whole consolidation process.

Fig. 6 Algorithm 3: a more advanced distributed near-optimal solution of

the whole resource allocation and consolidation problem

4.3 Core- and server-level consolidations

In this section, we perform core-level and server-level resource
consolidation to further improve energy efficiency of the overall
server cluster. We perform the optimal service request dispatching
and DVFS of the local agents as the inner loop [i.e. Algorithm 1
(Fig. 4) as the inner loop], while we determine the optimal set of
ON servers and cores in an outer loop. We start from turning ON
all the servers and cores and then selectively turn off a subset of
cores or a server in one execution of the outer loop. The outer loop
will terminate if no more gain in the total profit of the server
cluster can be achieved. In this way, we will reach a near-optimal
tradeoff between the dynamic and static power consumptions
through effective consolidation methods. Algorithm 2 (see Fig. 5)
provides the pseudo-code of the proposed procedure with the
combination of optimal service request dispatching and DVFS [i.e.
Algorithm 1 (Fig. 4) as the inner loop]. We also propose a more
advanced algorithm for core- and server-level consolidations
motivated by the Kernighan—Lin heuristic [37], with details shown
in Algorithm 3 (see Fig. 6).

5 Experimental results

In this section, we perform several experiments with Matlab
(fmincon function is utilised for solving convex optimisation) to
test the proposed whole framework including request dispatching,
DVES, and resource consolidation, and compare with some
baseline algorithms to investigate the effectiveness of the proposed
framework.

The first experiment is performed for a server cluster with 15
heterogeneous servers and each having a uniformly distributed
number of cores between 4 and 6. There are ten clients considered
in the system. For the rest of parameters, we use normalised values
instead of real values for the system simulation. We first set the
average service request generating rate of each client as a
uniformly distributed random number between 3 and 5 (This may

IET Cyber-Phys. Syst., Theory Appl.

be changed for later experiments.). We set the minimal average
service request processing rate of each core (when running at its
minimal execution frequency) as a uniformly distributed number
between 1.0 and 2.5. We assume each core perform at five different
execution frequencies, which are 1%, 1.25x, 1.5 %, 1.75 X, and
2 x of its minimal execution frequency, respectively. These five
levels of execution frequencies correspond to five different actions
in the CTMDP-based DVFS model. According to the server core's
execution frequency setup, the different average service request
processing rates of each core are therefore 1 X, 1.25X%, 1.5X,
1.75 %, and 2 X of its minimum average service request processing
rate, respectively.

We assume the (instantaneous) dynamic power consumption of
each core is proportional to the square of its execution frequency
(or equivalently, proportional to the square of its average service
request processing rate.). On the other hand, we assume the
(average) static power consumption of each core is half as the
dynamic power consumption when that core is running at its
minimum execution frequency level. The maximum queue length
Q is set to be 20. For the utility functions, we assume each ¢; value
is a uniformly distributed random number between 1 and 1.5, and
each f; value is set as 10. We change the unit energy price Price in
the experiments and derive different results on the total profit in the
server cluster.

There is no existing work that addresses both the optimal
request dispatching to the server cluster, optimal DVFS control of
each core, and core-level and server-level resource consolidations.
Therefore, we use three baselines that have no CTMDP-based
DVEFES control ability for the individual cores. Specifically, in
baseline 1, we set each of the cores to run at its maximum possible
execution frequency such that its average service request response
time is minimised. For baseline 2, we set each of the cores to run at
its minimum possible execution frequency such that its dynamic
power consumption is minimised. We will make sure the service
request processing rate of the core is still higher than the average
service request arrival rate. In baseline 3, we set the cores to run at
their medium execution frequencies, which are 1.5 of the
minimum frequencies, to achieve a tradeoff between response time
and power consumption. For the request dispatching, we assume all
the three baseline systems distribute the service requests from the
clients to all the cores in the server cluster with equal probabilities.
In addition, we add baseline 4 that also distributes service requests
to all the cores in the system with equal probabilities and performs
the CTMDP-based DVFS control for individual cores. Besides,
baseline 5 utilises a near-optimal solution of the joint optimisation
problem based on the Hungarian algorithm for the assignment
problem, as well as convex optimisation techniques, in a way that
is similar to the constructive partitioning algorithm in very large
scale integration computer-aided design [17]. The near-optimal
solution consists of two steps. The first step performs server and
core assignment based on Hungarian algorithm and convex
optimisation techniques. The second step implements effective
service request dispatching and resource allocation, based on the
results of the first step.

In Fig. 7, we show the normalised total profit versus the unit
energy price resulting from the proposed system and the five
baseline systems. First, it is obvious that our proposed system
consistently outperforms the five baseline systems. Specifically, if
we check the normalised profit at the unit energy price of 1.8, we
can observe 148.6, 55.0, 73.3, 30.5 and 12.4% higher value from
the proposed system than the baseline systems 1-5, respectively.
Also observable from Fig. 7 is that baseline 1 has better
performance when the unit energy price is lower. This is because
baseline 1 minimises the cost penalty by running every core at its
maximum execution frequency and when the unit energy price is
low the energy cost is much lower than the cost penalty.
Differently, baseline 2 has better performance when the unit energy
price is high, because in this case the energy cost becomes the
dominating factor. The performance difference between the
proposed algorithm and baseline 4 is due to the optimal service
request dispatch method in the proposed algorithm. Baseline 5 has
lower total profit than the proposed method due to the applications
of multiple near optimal methods in multiple phases in two steps.
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Fig. 9 Normalised total profit versus the average service request
generating rate of the proposed near-optimal algorithm and five baseline
algorithms

We also note that as the unit energy price increases, the near
optimal method of baseline 5 begins to outperform baseline 4 at a
certain point. The reason is that the near optimal service request

8

dispatch of baseline 5 can achieve quite efficient energy allocation
as the energy cost keeps increasing.

In the second experiment, we consider a larger-scale test case
with 20 heterogeneous servers and 15 clients in the system. Fig. 8
illustrates the normalised total profit versus the unit energy price of
the proposed near-optimal algorithm and five baseline algorithms.
We can observe from Fig. 8 that the proposed near-optimal
algorithm consistently outperforms the five baseline algorithms.
When the unit energy price is 2.0, the total profit obtained by the
proposed algorithm is 140.0, 52.2, 60.6, 15.6, and 11.6% higher
than baseline 1, baseline 2, baseline 3, baseline 4, and baseline 5
respectively. The analysis for the first experiments also hold here
as the explanation of results from the second experiments,
demonstrating the effectiveness and consistency of our proposed
algorithm.

Next, we investigate the effect of the average service request
generating rate of the clients on the normalised total profit among
the proposed system and the baseline systems. For this experiment,
we use a fixed unit energy price Price of 1.6 while changing the
average service request generating rate of the clients. This is for
investigating the effectiveness of performing server-level and core-
level consolidations. Fig. 9 illustrates the normalised total profit
versus the average service request generating rate of the clients on
the proposed system and five baseline systems. The proposed
framework consistently outperforms the five baseline systems as
observed in Fig. 9. When the average service request generating
rate is 3.0, the total profit obtained by the proposed algorithm is
83.1, 40.3, 47.2, 19.8 and 11.8% higher than baseline 1, baseline 2,
baseline 3, baseline 4, and baseline 5, respectively. On the other
hand, when the average service request generating rate is 4.0, the
total profit obtained by the proposed algorithm is 71.3, 39.4, 40.6,
14.2 and 8.9% higher than baseline 1, baseline 2, baseline 3,
baseline 4, and baseline 5, respectively. Both the proposed
framework and baseline 5 performs server-level and core-level
consolidations and assignments, thus achieving higher total profit
due to reduction on energy consumption. Since baseline 5 utilises
multiple near-optimal methods in multiple phases, baseline 5
suffers from some total profit degradation compared with the
proposed framework. We find that the optimal number of ON cores
will increase if the average service request generating rate is larger.
The optimal number of ON cores is 41 when the average request
generating rate is 2.0, and is 62 when the average generating rate is
4.0. The reason is that fewer cores are required for request
processing when the average service request generating rate is
lower and the static power consumption in the server cluster is
reduced in this case.

6 Conclusion

In this paper, we consider the SLA-based resource allocation
optimisation problem in the cloud computing framework. The
objective is to maximise the total profit, which is the total revenue
obtained from serving the clients subtracted by the energy cost of
the server cluster. The total revenue depends on the average request
response time for each client as defined in its utility function. Each
core in the server cluster is modelled by a CTMDP. We propose a
joint optimisation framework accounting for request dispatch,
DVES for individual cores in the server cluster, as well as core-
level and server-level consolidations. The near-optimal solution is
comprised of a central manager and distributed local agents. Each
local agent employs linear programming-based CTMDP solving
method to solve the DVFS problem for the corresponding core. On
the other hand, the central manager solves the request dispatch
problem and finds the optimal number of ON cores and servers for
request processing. To reduce the computational overhead, the
central manager is realised as a two-tier hierarchical controller.
Experimental results demonstrate that the proposed near-optimal
resource allocation and consolidation algorithm consistently
outperforms the baseline algorithms.
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