
Prediction-Based Fast Thermoelectric Generator
Reconfiguration for Energy Harvesting from Vehicle Radiators

Hanchen Yang‡‡∗, Feiyang Kang†∗, Caiwen Ding‡, Ji Li§, Jaemin Kim¶, Donkyu Baek‖

Shahin Nazarian§, Xue Lin††, Paul Bogdan§, and Naehyuck Chang‖
‡‡Beijing University of Posts and Telecommunications, Beijing, China (hcyang11@qq.com)

†Zhejiang University, Hangzhou, China (fy.kang@outlook.com)
‡Syracuse University, Syracuse, NY, USA (cading@syr.edu)

§University of Southern California, Los Angeles, CA, USA ({jli724, shahin, pbogdan}@usc.edu)
¶Seoul National University, Seoul, Korea (jmkim@elpl.snu.ac.kr)

‖Korea Advanced Institute of Science and Technology, Daejeon, Korea ({donkyu, naehyuck}@cad4x.kaist.ac.kr)
††Northeastern University, Boston, MA, USA (xue.lin@northeastern.edu)

Abstract—Thermoelectric generation (TEG) has increasingly
drawn attention for being environmentally friendly. A few re-
searches have focused on improving TEG efficiency at system
level on vehicle radiators. The most recent reconfiguration
algorithm shows improvement on performance but suffers from
major drawback on computational time and energy overhead,
and non-scalability in terms of array size and processing fre-
quency. In this paper, we propose a novel TEG array reconfigu-
ration algorithm that determines near-optimal configuration with
an acceptable computational time. More precisely, with O(N)
time complexity, our prediction-based fast TEG reconfiguration
algorithm enables all modules to work at or near their maximum
power points (MPP). Additionally, we incorporate prediction
methods to further reduce the runtime and switching over-
head during the reconfiguration process. Experimental results
present 30% performance improvement, almost 100× reduction
on switching overhead and 13× enhancement on computational
speed compared to the baseline and prior work. The scalability
of our algorithm makes it applicable to larger scale systems such
as industrial boilers and heat exchangers.

I. INTRODUCTION

Many researches have been focused on improving the
efficiency of energy harvesting devices, among which thermo-
electric generator (TEG) is a wide-used device that generates
electric energy directly from heat energy via Seeback ef-
fect [1]. For most of the energy harvesting systems on vehicle,
a number of TEG modules need to be combined together
for extensive contact with heat sources. However, without a
rational arrangement for the connections between modules,
the system will suffer from a poor holistic performance due
to electrical limits. Besides, temperature fluctuation during the
harvesting process brings significant disturbance to the system.
Thus a system-level solution is necessary for achieving a high
conversion efficiency for each TEG module.

Reconfigurable array in energy harvesting system is pre-
sented to overcome performance degradation caused by
volatile energy sources and electrical limits [2]. The electrical
connections are adjusted periodically to enable TEG modules
to operate at or near their maximum power points (MPPs).
Determining an optimal connection structure for such a sys-
tem can be interpreted as a nonlinear integer programming
problem, which has been proved to be NP-Hard [3]. For a
large scale problem, the optimal solution cannot be decided
in an acceptable time. Therefore, a near-optimal algorithm is
needed to reduce computational complexity without causing
excessive efficiency loss [4].

The state-of-the-art reconfiguration algorithm shows a
prominent performance improvement compared to other non-
dynamic configurations. However, further applications of this
real-time algorithm [2] on larger-scale systems are restrained
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by the leaping runtime and subsequent significant switching
overhead [5] due to its high computational complexity as
O(N3). Former researchers have also attempted to find an op-
timized reconfiguration period via trade-off analysis between
switching frequency and output efficiency to reduce switching
overhead [5–7]. However, the results are not remarkable.

To solve the problems, we first present a fast instantaneous
algorithm (Algorithm 1) with an improved performance and
an O(N) complexity that ensures a preeminent scalability.
Then we incorporate prediction methods and propose a novel
reconfiguration control strategy based on Algorithm 1 to
overcome high switching overhead. We test three prediction
methods and implement Multiple Linear Regression (MLR)
with the highest accuracy and fastest speed.

Experimental results present almost 100× energy overhead
reduction and 13× enhancement of computational speed com-
pared to prior work. It also has an 30% improvement when
compared to the baseline of 10 × 10 TEG array. It is worth
mentioning that, if our work is further applied to a larger
scale energy harvesting system such as heat exchangers and
industrial boilers, the effects of its low time complexity could
be dramatically enlarged, which leads to a significant reduction
of energy overhead and improved performance.

II. RADIATOR AND TEG MODULE MODELING

We employ the model of finned-tube cross-flow (coolant
in tubes) heat exchanger from [8]. We measure the inlet
temperature and flow rate of both fluids, and use this model
to calculate the coolants temperature distribution along the
radiator. Effectiveness-NTU (number of transfer units) method
is adopted for derivation, through which the temperature
distribution function along the radiator is obtained by

T (d) = (Th,i − Tc,a)× e−
K
Cc

·d + Tc,a (1)

where T (d), Th,i and Tc,a represent the temperature at a
distance of d from the radiator entrance, of the hot fluid
(coolant) at the radiator entrance, and the arithmetic mean
of the cold fluid (ambient air) inlet and outlet temperature,
respectively. K is the overall heat transfer coefficient. Cc

denotes the fluid capacity rate of cold fluid. d represents the
distance from radiator entrance.

In this work, the TEG module’s hot side is attached to
the radiator surface and the other side is exposed to the
radiator heatsink, enabling them to generate electricity from
the temperature difference between two sides.

The output power of one TEG module is derived from [9]:

Eteg = α ·ΔT ·Ncpl, Iteg =
Eteg

Rteg +RLoad

, Pteg = I
2

teg ·RLoad

(2)
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Fig. 1. (a) I-V and (b) P-V output characteristics of selected TEG module
(TGM-199-1.4-0.8) for different temperatures

where α is the Seebeck coefficient [1], ∆T denotes the local
temperature difference between radiator surface and heatsink,
and Ncpl is the number of the couples. Rteg and RLoad

represent the TEG module resistance and load resistance,
respectively. We assume the heatsink and ambient air have the
same temperature Tamb, which is a typical operating condition
for vehicle radiator [2]. We use “TGM-199-1.4-0.8” as the
TEG module. Its I-V and P-V curves under different ∆T ,
which is equal to T (d) − Tamb are shown in Fig. 1 and the
black points denote the maximum power points (MPP).

III. TEG ARRAY RECONFIGURATION FORMULATION

A. TEG Array Reconfiguration

We use a 1-dimensional radiator model for simplification
because the actual 2-dimensional radiator structure in a vehicle
is a parallel connection of multiple 1-dimensional ones. Fig.
2 illustrates an S-shaped 1-dimensional radiator with N TEGs
on the surface, represented by N squares. For the i-th TEG,
its hot side temperature is T (i) (1 ≤ i ≤ N ). As defined
in Section II, the temperature difference of a module’s two
sides is ∆T (i) = T (i) − TAmb. ∆T (i) differs among all the
modules due to thermo-dynamic mechanism, which results in
the varieties of their I-V curves and MPPs.

Modules in parallel connections have the same output
voltage (Fig. 3 (a)) while modules in series connections
share the same amount of current (Fig. 3 (b)), which limits
interconnected modules with different ∆T s from reaching
their MPPs at the same time. Apparently, to avoid a poor
performance presented in Fig. 3, the controller should enable
all the modules to work close to their MPPs by modulating
the TEG array connections and the array’s output current ac-
cording to real-time temperature distribution along the radiator.
Moreover, different connections should be utilized to adapt for
the continuous temperature changes during driving process,
which raises the demand for TEG array reconfiguration [2].

The dynamic electrical connections of the reconfigurable
array of N TEG modules is illustrated in Fig. 4. There are
three switches integrated between every two TEG modules: a
series switch SS,i in the middle and two parallel switches

Fig. 2. A TEG module array attached to the S-shaped radiator fins.

Fig. 3. TEG module output power loss caused by the hot-side temperature
differences among modules in (a) parallel and (b) series connections.

SPT,i, SPB,i on the top and the bottom respectively. For
every two adjacent modules, only one type of the switches is
closed every time to build a corresponding connection between
them without changing their physical position. By controlling
ON/OFF state of the switches, the system can form adaptive
configurations following a reconfiguration algorithm.

B. TEG Charger

A vehicle radiator energy harvesting system consists of
a proposed reconfigurable array, a charger, a battery and a
central controller. After a suitable configuration is built for a
certain temperature distribution each time, the charger adjusts
the overall current and finds the overall maximum output
power of the array using MPPT [10]. Then it converts the
array’s output voltage to vehicle battery’s charging voltage,
i.e., 13.8V for a typical lead-acid car battery. The converting
efficiency decreases when the input voltage deviates from
the output voltage (13.8V). Namely, energy loss through the
charger cannot be neglected especially for a low input voltage.
We consider this feature when designing the reconfiguration
algorithm, which will be further discussed in Section V.

C. Switching Overhead

In [2] the reconfiguration is executed all the time at a high
frequency, bringing a considerable switching overhead includ-
ing timing overhead and energy overhead, and a subsequent
performance degradation. We borrow the estimate method of
switching overhead in [5] to this work. For every period during
TEG array reconfiguration, timing overhead can be estimated
by the summation of sensing delay, computational overhead,
reconfiguration delay and MPPT control overhead. During
these delays in every reconfiguration period, the system has
lower output power causing the energy overhead while switch-
ing. Therefore, if the system keeps reconfiguring rapidly, the
high energy overhead will degrade the system performance.
On the other hand, a low execution frequency can reduce
the energy overhead but is unable to capture the fast change
of temperature distribution along the radiator. Experimental
results have shown that in some cases a configuration can
maintain a relatively high output power under a subsequent
moderate temperature fluctuation. Therefore if the application
of each configuration lasts longer until the performance is

Fig. 4. Architecture of the proposed reconfigurable TEG module array.
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about to decline, frequent switching can be avoided and
the energy overhead will dramatically decrease. This is the
motivation for the introduction of temperature prediction.

IV. PREDICTION METHODS

For an effective reconfiguration judgment, the assessment
of the future performance of each configuration setup is
necessary, which raises the demand for temperature distribu-
tion prediction. As introduced in Section II, the temperature
distribution along the radiator can be derived from the entrance
temperature of the hot and cold fluids. According to our test
and the experimental results in [11,12], directly predicting the
temperature distribution for all TEG modules using former
derived temperature distributions has better prediction results
than any other prediction schemes practicable in such systems.
Therefore, this approach is adopted in this work. Experiments
are conducted using three prevalent prediction algorithms
- multiple linear regression (MLR) [13], back propagation
neural network (BPNN) [14–17] and support vector regression
(SVR) [18]. Mean absolute percentage error (MAPE) is used
to evaluate the accuracy of prediction, which is defined as:

M ≡
100

n

n∑

t=1

|
At − Ft

At

|% (3)

where n is the sample amount, At is the actual value and Ft

is the forecast value.

V. RECONFIGURATION ALGORITHM

A near-optimal algorithm is suggested in order to find a
solution for this NP-Hard problem in acceptable time. The
Efficient Heuristic TEG Reconfiguration (EHTR) algorithm
with a satisfying performance is proposed in former work [2].
But it has two main drawbacks: a high time complexity as
O(N3) and significant switching overhead. To overcome the
deficiency in EHTR, two new reconfiguration algorithms with
higher performance and faster running speed are proposed
in this section. In Part A, the instantaneous near-Optimal
TEG array reconfiguration algorithm (INOR), a non-prediction
version that helps to form the ultimate algorithm, focuses on
finding near-optimal solutions periodically and reducing time
complexity. Then the prediction-incorporated Durable Near-
Optimal Reconfiguration (DNOR) algorithm is presented in
Part B for reduction of switching overhead.

A. Instantaneous Near-Optimal Reconfiguration Algorithm

Algorithm 1 shows the pseudo-code of INOR. Given the
temperature distribution Ti of the array at each time point,
the function outputs a near-optimal configuration in the form
of a 1-dimensional matrix consisting of the serial number gj
of each group’s first module. Besides, nmin and nmax in the
external loop form a proper range for n, satisfying the high
converter efficiency requirement mentioned in Section III part
B. The internal loop searches the near-optimal configuration
for each value of n following the current constraint shown in
Fig. 3. The time complexity can be estimated to O(N).

B. Durable Near-Optimal Reconfiguration Algorithm

To reduce energy overhead, we incorporate prediction with
INOR and propose the durable near-optimal reconfiguration
(DNOR) algorithm. We compare three prediction methods in
including (MLR), (BPNN) and (SVR), among which MLR
presents the best performance with the highest prediction
accuracy for this application. Say MLR is used to predict
next tp seconds. As elucidated in Algorithm 2, function
INOR(Ti) is invoked every tp + 1 seconds to find a near-
optimal configuration. Then the controller decides whether

Algorithm 1: Instantaneous Near-Optimal TEG Array

Reconfiguration

Function C(g1, g2, ..., gn)=INOR(Ti)

Input: TEG module array temperature distribution of all past time, i.e., Ti.

Output: The near-optimal TEG array configuration, i.e., C(g1, g2, ..., gn).

Calculate the MPP current of each TEG module via Ti i.e., IMPPi
for

1 ≤ i ≤ N
Pmax = 0;
for n from nmin to nmax do

g1 = 1;
Iideal = 1

n

∑N
i=1

IMPPi
;

for j from 2 to n do

Find the value of gj such that |
∑gj−1

i=gj−1
IMPPi

− Iideal| is

minimized;
end

Calculate the PMPP of Cn(g1, g2, ...gn);

if PMPP > Pmax then
C = Cn(g1, g2, ...gn);

end

end

Algorithm 2: Predictable Near-Optimal TEG Array Re-

configuration

Input: The TEG module array temperature distribution of past time, i.e., Tt,i for

0 < t ≤ tnow and 1 ≤ i ≤ N ; The old configuration of last tp + 1
seconds i.e., Cold.

Output: The new near-optimal TEG array configuration for next tp + 1 seconds

i.e., C.

Invoke function: Cnew=INOR(Ti)

Predict temperature distribution for next tp seconds via MLR.

Find MPPs of the two configurations and calculate their output energy in next

tp + 1 seconds i.e., Eold for Cold, and Enew for Cnew .

if Eold ≤ Enew − Eoverhead then
Switch ⇒ C = Cnew ;

else
No switch ⇒ C = Cold;

end

or not to switch by comparing the output power of the old
configuration and the new in next tp + 1 seconds (including
current second), considering switching overhead. In this way,
each configuration is durable until the summation of its power
loss in the predictable time exceeds the cost of switch.

VI. EXPERIMENTAL RESULTS

We measured the coolant temperature and flow rate of the
radiator on a two-door 3.0L diesel pickup truck (Hyundai
Porter II) during 800-second driving. The inlet and outlet
coolant temperature are obtained by thermocouple probes (TC-
K-NPT-U-72) while the coolant flow rate is measured via
Recordall industrial flow meter. The temperature distribution
is calculated using the function introduced in Section II.

A. Temperature Prediction

Our prediction results presented in this work are under
parameters which are proved to have the best performance. A
1-second prediction MAPE comparison of these three methods
are shown in Fig. 5. MLR method has the best performance
for temperature prediction on vehicle radiator. Even the highest
percentage error of 2-second MLR prediction in this duration
with such a radical temperature fluctuation is only around
0.3%. Due to the low time complexity (O(N)) of MLR, the
temperature prediction process is so transitory that it lays
ignorable affects on the reconfiguration algorithm’s runtime.

B. Performance of Reconfiguration Algorithms

The experimental system consists of a 100-TEG-module
array, an LTM4607 converter and a lead-acid vehicle battery
with a 13.8V charging voltage. We implement MPPT proposed
in [10] for the charger to find the maximum power point. We
make a performance comparison among DNOR, INOR, EHTR

Design, Automation And Test in Europe (DATE 2018) 879



Fig. 5. 1-second prediction percentage error of three prediction algorithms

Fig. 6. Output power of three reconfiguration methods and the baseline during
120 seconds.

[2] and the baseline, a 10 × 10 TEG module array. INOR
and EHTR all run at a fixed reconfiguration period of 0.5s
according to [5]. Fig. 6 shows the overall output power of the
above three reconfiguration algorithms and the baseline for
a 120-second duration in our experiment. Fig. 7 gives their
ratios with ideal maximum output power Pideal calculated by
assuming all modules working at their MPPs. Each switch
point of DNOR is marked by a black point, while INOR and
TMAR switch at every time point. Table I presents the total
output energy, the overall switch overhead and the average
runtime of these four schemes in 800 seconds. Obviously,
DNOR has a 30% enhancement on output power compared
to baseline, and almost 100× reduction in energy overhead
compared to EHTR. Moreover, INOR has an 8× faster average
running speed than EHTR’s, while PNOR runs at a 13× higher
speed. As explained above, a longer runtime always results in
a higher timing overhead and subsequent energy loss during
reconfiguration period. Thus, with the growth of problem
scale, DNOR will have a dramatically high enhancement on
both efficiency and running speed.

Fig. 7. Output power ratio between four schemes and Pideal during 120
seconds.

TABLE I
PERFORMANCE AND RUNTIME COMPARISON DURING 800 SECONDS

DNOR INOR EHTR Baseline

Energy Output(J) 43309.6 41375.6 41067.1 33543.4

Switch Overhead(J) 21.7 2034.7 2160.3 /

Average Runtime(ms) 2.6 4.1 37.2 /

VII. CONCLUSION

This paper proposes a novel prediction-based approach
to reduce the time complexity and switching overhead of
reconfiguration for vehicle radiators energy harvesting. A
fast algorithm is presented to reduce runtime and enhance
the scalability of the system. We also incorporate prediction
methods into our instantaneous algorithm to avoid frequent
reconfiguring operation. Compared to the state-of-the-art work,
our methods present a significant improvement on running
speed and switching overhead reduction.
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