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Abstract—Hybrid electric vehicles employ a hybrid propul-

sion system to combine the energy efficiency of electric motor

and a long driving range of internal combustion engine, thereby

achieving a higher fuel economy as well as convenience compared

with conventional ICE vehicles. However, the relatively com-

plicated powertrain structures of HEVs necessitate an effective

power management policy to determine the power split between

ICE and EM. In this work, we propose a deep reinforcement

learning framework of the HEV power management with the aim

of improving fuel economy. The DRL technique is comprised of

an offline deep neural network construction phase and an online

deep Q-learning phase. Unlike traditional reinforcement learn-

ing, DRL presents the capability of handling the high dimensional

state and action space in the actual decision-making process, mak-

ing it suitable for the HEV power management problem. Enabled

by the DRL technique, the derived HEV power management pol-

icy is close to optimal, fully model-free, and independent of a prior

knowledge of driving cycles. Simulation results based on actual

vehicle setup over real-world and testing driving cycles demon-

strate the effectiveness of the proposed framework on optimizing

HEV fuel economy.

I. INTRODUCTION

The development of electric vehicles, both all-electric ones

(aka EVs) and hybrid ones (aka HEVs), has been a mitigation

to the roaring demand of fossil fuels by the rapidly growing

transportation systems and industry. Nowadays, almost all the

automobile manufacturers have released their own EV and/or

HEV models. Compared with conventional internal combus-

tion engine (ICE)-propelled vehicles, EVs employ electric mo-

tors (EMs), which enable higher energy efficiency and zero

tailpipe emission [1, 2]. HEVs employ both ICEs and EMs for

propulsion to combine the energy efficiency of EMs and a long

driving range of ICEs into the same HEVs [3].

The hybrid propulsion system is comprised of an ICE with

its associated fuel tank, and one or more EMs with the asso-

ciated energy storage system (i.e., the battery pack). The ICE

provides the primary propulsion by consuming fuel, whereas

the EM converts the electrical energy from the battery pack

into the secondary propulsion [4, 5]. The EM not only assists

the ICE with extra torque, but also serves as an electricity gen-

erator during regenerative braking, which recovers the kinetic

energy into electrical energy to charge the battery pack [4]. The

EM helps the ICE operate in fuel-efficient regions that further

improves the fuel economy.

Comparing to conventional ICE vehicles and EVs, the HEVs

have a relatively complicated powertrain. The power man-

agement policy, which determines the power split between the

ICE and the EM to fulfill the demanded propulsion, is essen-

tial to the improved fuel economy of HEVs. Various types

of HEV power management policies have been investigated,

such as rule-based policies [6, 7], global optimization poli-

cies [8, 9], real-time optimization policies [10, 11], and rein-

forcement learning-based policies [12–14].

Inspired by the recent breakthrough of deep reinforcement

learning (DRL) [15, 16], we develop a deep reinforcement

learning framework of the HEV power management to en-

hance the fuel economy in this work. Generally speaking,

the DRL technique is comprised of an offline deep neural net-

work (DNN) construction phase and an online deep Q-learning

phase. In the offline phase, a DNN is constructed and trained

to infer the Q values for the potentially huge amount of state-

action pairs. The deep Q-learning performs the optimal action

selection and the Q value update in the online phase.

The innovations and contributions of this proposed frame-

work, compared with the previous HEV power management

policies, are as follows: (1) It can converge to the optimal

power management policy by using the offline constructed

DNN and the online Q-learning, while the rule-based policies

are usually far from the optimal. (2) Unlike the global opti-

mization policies, it neither relies on a priori knowledge of the

driving cycles, nor needs the detailed and accurate HEV mod-

eling. (3) It is possible to arrive at the optimal policy applicable

to any types of driving cycles, while the real-time optimization

policies are quite sensitive to different types of driving cycles.

(4) Compared with reinforcement learning, it is able to handle

the high dimensions of the state and action space in the HEV

power management with accelerated convergence speed. (5)

Also enabled by the DRL, prediction of future driving char-

acteristics is incorporated into the state representation, which

further enhances the effectiveness of the proposed DRL frame-

work. Simulation results based on actual vehicle setup over

real-world and testing driving cycles demonstrate that the pro-

posed DRL framework can improve the HEV fuel economy by

up to 56.3%.
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II. RELATED WORK

The HEV power management coordinates the operation of

ICE and EM, to fulfill the propulsion requirement and at the

same time minimize the fuel consumption. Many research

works have been conducted on the HEV power management to

improve the fuel economy. The rule-based HEV power man-

agement strategies have been proposed based on intuition, hu-

man expertise or fuzzy logic [6, 7]. These approaches are easy

for run-time implementation, but they cannot guarantee any

kind of optimality. To overcome the shortcomings of the rule-

based approaches, the global optimization methods i.e., dy-

namic programming algorithms, have been employed for HEV

power control [8, 9]. The global optimization methods can

achieve optimal fuel consumption for specific trips. However,

they require a priori knowledge of the driving cycles for spe-

cific trips and heavily rely on detailed and accurate HEV mod-

eling. The real-time optimization techniques [10, 11], such as

the equivalent consumption minimization strategies (ECMS),

have been proposed to transform global optimization into an

instantaneous optimization problem. Such techniques are ef-

fective for run-time control but quite sensitive to the driving

cycles.

Reinforcement learning (RL) [17, 18] provides a powerful

tool for the decision-maker to “learn” how to “act” optimally.

The decision-maker i.e., agent can observe the environment’s

state and take an appropriate action according to the observed

state. A reward will be given to the agent as the result of the

chosen action. Stimulated by the reward, the agent targets at

deriving a policy, by “learning” from its past experience. RL

has been applied to the HEV power management for minimiz-

ing fuel cost, total operation cost, or joint control with auxiliary

systems [12–14]. RL techniques have guaranteed convergence

to the optimal policy, but the convergence speed is related to

the dimensions of the state and action space.

With the increasing popularity of neural networks, there are

also research works on HEV that apply learning techniques. A

learning vector quantization neural network [19] has been pro-

posed to identify the driving cycle style. In [20], a fuzzy neural

network has been applied to identify urban driving conditions.

The authors of [21] have proposed a solution algorithm to the

ECMS and an adaptive neural network for driving cycle recog-

nition is utilized to decrease the sensitivity of the algorithm to

driving cycle variations. [22] has developed a neural network

based trip modeling.

Recently the breakthroughs of DRL in playing Atari [16]

and Alpha Go [15] demonstrate a good example to handle the

high dimensional state and action space in complicated control

problems. Reference [16] presented the pioneering work of the

deep reinforcement learning, which successfully learns control

policies directly from high-dimensional sensory inputs. It uses

a trained deep convolutional neural network and outperforms

all previous approaches on six of the games. In [15], a new

approach to computer Go has been proposed, in which ’value

networks’ are used to evaluate board position and ’policy net-

works’ are used to select moves. A novel combination of su-

pervised learning from human expert games and reinforcement

learning from games of a self-play is adopted for training these

deep neural networks.

Fig. 1. A parallel hybrid powertrain architecture of an HEV [23].

III. HEV SYSTEM ARCHITECTURE

Figure 1 shows a parallel hybrid powertrain, where ICE and

EM propel the vehicle in parallel. Thanks to its high energy

efficiency and a relatively straightforward structure [5], power

management techniques can be applied to it effectively. The

HEV models are described below for better understanding of

the whole HEV system and faciliating the simulations. How-

ever, our approach is totally model-free and does not rely on

models to derive a high-fuel economy control policy.

A. HEV Components

A.1 Internal Combustion Engine (ICE)

According to the quasi-static ICE model [24], the ICE fuel

efficiency is given by

ηICE(TICE , ωICE) = TICE · ωICE/(ṁf ·Df ) (1)

where TICE and ωICE are the torque (in N ·m) and rotational

speed (in rad/s) of an ICE, respectively, representing the oper-

ating point of the ICE. ṁf denotes the fuel consumption rate

(in g/s) of the ICE, which is a nonlinear function of the oper-

ating point, and Df represents the fuel energy density (in J/g).

The ICE operating should remain in a safe range:

ωmin
ICE ≤ ωICE ≤ ωmax

ICE , (2a)

0 ≤ TICE ≤ Tmax
ICE(ωICE). (2b)

A.2 Electric Motor (EM)

The EM operates in parallel with the ICE. It acts as a motor
to propel the vehicle solely or together with ICE. It also oper-
ates as a generator to charge the battery pack. The efficiency of
the EM [23] is given by

ηEM (TEM , ωEM ) =

ß

(TEM · ωEM )/Pbatt TEM ≥ 0
Pbatt/(TEM · ωEM ) TEM < 0

(3)

where TEM and ωEM are the torque and speed of the EM,

respectively, and Pbatt is the output power of the battery pack.

When the EM operates as a motor, TEM is positive and the

battery pack is being discharged, i.e., Pbatt > 0; when the EM

operates as a generator, TEM is negtive and the battery pack is

being charged, i.e., Pbatt < 0. To ensure a safe and smooth

operation of an EM, the operating point (TEM , ωEM ) must be

within a certain range as follows:

0 ≤ ωEM ≤ ωmax
EM , (4a)

Tmin
EM (ωEM ) ≤ TEM ≤ Tmax

EM (ωEM ). (4b)
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A.3 Vehicle Dynamics

The vehicle tractive force FTR to support the vehicle speed

and acceleration, which are controlled by the brake or acceler-

ator pedal, is derived by

FTR = m · a+ Fg + FR + FAD, (5a)

Fg = m · g · sin θ, (5b)

FR = m · g · cos θ · CR, (5c)

FAD = 0.5 · ρ · CD ·AF · v2, (5d)

where m is the vehicle mass, a is the vehicle acceleration, Fg

is the force due to road slope, FR is the rolling friction force,

FAD is the air drag force, θ is the road slope angle, CR is the

rolling friction coefficient, ρ is the air density, CD is the air

drag coefficient, AF is the vehicle frontal area, and v is the

vehicle speed. Given v, a and θ, the tractive force FTR can

be derived using (5). Then, the vehicle wheel torque Twh and

wheel speed ωwh are given by

Twh = FTR · rwh, (6a)

ωwh = v/rwh. (6b)

The demanded power for propelling the vehicle, i.e., Pdem is

then calculated as

Pdem = FTR · v = Twh · ωwh. (7)

A.4 Powertrain Mechanics

The ICE and EM are coupled together through the hybrid
powertrain [25], which is commonly comprised of planetary
gear sets, to propel the vehicle cooperatively. The speed and
torque of the ICE, the EM, and the vehicle wheel satisfy the
following speed and torque relation:

ωwh =
ωICE

R(j)
=

ωEM

R(j) · ρreg
, (8a)

Twh = R(j) · (TICE + ρreg · TEM · (ηreg)
α) · (ηgb)

β
(8b)

where R(j) is the j-th gear ratio, ρreg is the reduction gear

ratio, ηreg and ηgb are the reduction gear efficiency and the

gear box efficiency, respectively. α and β are defined as

α =

ß

+1 TEM ≥ 0,
−1 TEM < 0.

(9)

β =

ß

+1 TICE + ρreg · TEM · (ηreg)
α ≥ 0,

−1 TICE + ρreg · TEM · (ηreg)
α < 0.

(10)

B. HEV Control

In the actual operation of an HEV, the vehicle speed v and

the power demand Pdem (or equivalently, the speed v and ac-

celeration a) are determined by the driver through pressing the

acceleration or brake pedal. Then the HEV controller needs to

control the operation of the ICE, EM and powertrain to make

the vehicle meet the target propulsion. Generally, the HEV

controller chooses a couple of control variables, such as the

battery output power Pbatt (or equivalently, the battery output

Environment

Agent

Action

State

Reward

Fig. 2. The interactions between the agent and environment.

current i) and the gear ratio R(j), and then the rest of the vari-

ables (i.e., the ICE torque TICE , the ICE speed ωICE, the EM

torque TEM and the EM speed ωEM) are determined according

to the given control variables based on the operating principles

of HEV components as discussed previously. This is called the

backward-looking optimization approach, which is equivalent

to actual HEV management [6, 7].

IV. DRL FRAMEWORK OF HEV POWER MANAGEMENT

A. Motivations

The complete HEV power management problem exhibits

high dimensional state and action space. To deal with such

situation, the reinforcement learning-based methods [12–14]

need to reduce the state and/or action space in order to make

the HEV power management problem tractable. However, the

state and action space reduction may decrease the effective-

ness of the control and compromise the model-free characteris-

tics. Therefore, we propose the DRL framework of HEV power

management, exploiting the capability of DRL to handle the

large state and action space in actual control problem. By us-

ing the DRL, we can more effectively represent the system state

and implement a fully model-free control.

B. Basics of DRL Framework

The learner and decision-maker is called agent and the ex-

ternal world of the agent is called environment. The agent and

environment interact continually with each other. The agent

selects actions, and the environment responds to those actions

and presents new situations to the agent. The environment also

gives rise to rewards, which are specific numerical values that

the agent tries to maximize over time. The interaction proce-

dure is illustrated in Figure 2. The DRL technique is comprised

of an offline DNN construction phase and an online deep Q-

learning phase to solve complicated control problems with a

large number of states and a wide action space [16, 26].

The offline phase adopts DNN to derive the correlation be-

tween each state-action pair (s, a) of the system under con-

trol and its value function Q(s, a). The value function Q(s, a),
which represents the expected accumulated (with discount) re-

ward when the system starts at state s and follows action a and

certain policy thereafter, is defined as:

Q(s, a) = E

[

∞
∑

k=0

γkrk

∣

∣

∣s0, a0

]

(11)

where rk is the reward received in the k-th time slot and γ is

the discount rate.
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C. DRL Formulation

In this section, we propose the DRL formulation of the HEV

power management problem, formulating the state, action, and

reward of DRL to represent the HEV power management prob-

lem. We use a slot-time model, i.e., the decision epoch is at

the beginning of each time slot with equal length. At each k-

th decision epoch i.e., tk, the HEV system is at state sk. The

HEV controller (i.e., agent) takes an action ak according to the

current state. As a result of the action taken, the agent receives

the reward rk in the k-th time slot i.e., [tk, tk+1).

C.1 State Space

The state space of the DRL is comprised of a finite number

of states, each represented by the propulsion power demand,

vehicle speed, charge stored in the battery pack, and predicted

propulsion power demand for the next time slot, given by

S =
¶

s = [pdem, v, q, pre]
T
|pdem ∈ Pdem,

v ∈ V, q ∈ Q, pre ∈ Ppre}
(12)

where pdem is the power demand for propelling the HEV, v is

the vehicle speed, q is the amount of charge stored in the bat-

tery pack, and pre is the predicted power demand. Pdem, V , Q,

and Ppre in (12) are, respectively, the finite sets of propulsion

power demand levels, vehicle speed levels, levels of charge

stored in the battery pack, and predicted power demand lev-

els. Discretization is required when defining these four finite

sets. In particular, Q is constructed by discretizing the range of

charge stored in the battery pack, i.e., [qmin, qmax], into a finite

number of charge levels:

Q = {q1, q2, · · · , qN}, (13)

where qmin = q1 < q2 < ... < qN = qmax. Generally,

qmin and qmax are 40% and 80% of the nominal capacity of

the battery pack, respectively, for an ordinary HEV.

In the state representation, we incorporate some future driv-

ing characteristics (i.e., pre) into consideration for more ef-

fective representation and thereby better performance in fuel

economy. Incorporating future driving characteristics leads to

one additional dimension in the state representation, which in-

creases computation complexity, however, the DRL has the suf-

ficient capability to handle large state space. Also, although

both the future velocity and future propulsion power demand

could be predicted, predicting the later is more desirable for

the DRL. The reason is that the propulsion power demand is

more directly related to the action selection than the velocity.

As for the prediction method of future driving characteris-

tics, the randomness of the driving behavior may affect the pre-

diction accuracy. We need a desirable tradeoff between accu-

rate prediction and additional computation complexity. Based

on the above mentioned observations, we employ the expo-

nential weighting function to predict the future power demand

based on the current measurement data as follows:

prei ← (1− α) · prei−1 + α ·measi−1 (14)

where prei is the i-th predicted propulsion power demand,

prei−1 is the (i− 1)-th predicted data, measi−1 is the (i− 1)-
th measured propulsion power demand, and α is the learning

rate. Experiments show that the simple function can serve as a

desirable prediction method to strike a balance between effec-

tive prediction and additional complexity. We are incorporat-

ing one-step-ahead prediction into the state space. We can do

more steps ahead, but it complicates the state space and predic-

tion accuracy may not be guaranteed. The prediction decision

epoch coincides with the deep reinforcement learning decision

epoch.

C.2 Action Space

The action space of the DRL is comprised of a finite number

of actions, each represented by the discharging current of the

battery pack and the gear ratio, i.e.,

A = {a = [i, R(j)]T |i ∈ I, R(j) ∈ R} (15)

where an action a = [i, R(j)]
T

denotes to discharge the bat-

tery pack using current i and choose the j-th gear ratio. The set

I contains a finite (discretized) number of discharging current

values in the range of [−Imax; Imax]. i > 0 denotes discharg-

ing the battery pack, and i < 0 denotes charging the battery

pack. The set R contains all allowable gear ratio values. Usu-

ally, there are four or five gear ratio values in total [27].

C.3 Reward Function

The objective of the DRL-based control is to minimize the

HEV fuel consumption. Therefore, we define the reward rk
that the agent receives after taking action ak in state sk as

the negative of the fuel consumption in the k-th time slot, i.e.,

−ṁf ·∆T , where ∆T is the length of a time slot, and ṁf is the

fuel consumption rate in that time slot. The DRL agent targets

at maximizing the expected return

Σ∞

k=0γ
k · rk, (16)

which is a discounted sum of rewards. Hence, by using the

above-mentioned reward function, the overall fuel consump-

tion will be minimized while maximizing the expected return.

D. DRL Procedure

Based on the DRL formulation of the HEV power manage-

ment problem, we discuss the procedure for deriving the op-

timal HEV action selection. The proposed DRL procedure of

HEV power management comprises an offline DNN construc-

tion phase and an online deep Q-learning phase. The key steps

are summarized in Algorithm 1.

D.1 Offline DNN Construction

The offline DNN construction phase derives the Q-value es-

timate for each state-action (s, a) pair. We employ a convolu-

tional neural network as the DNN structure. The first layer is

a pooling layer, which reduces the input dimensionality and

computation complexity. The following layers are convolu-

tional layers, each followed by rectified linear units (ReLUs)

to perform element-wise nonlinearity. The last hidden layer is
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Algorithm 1 The DRL Framework of HEV power control

Offline:

1: Simulate the control process using an arbitrary but gradu-

ally refined policy for enough long time;

2: Obtain the state transition profile and Q(s, a) value esti-

mates during the process simulation;

3: Store the state transition profile and Q(s, a) value esti-

mates in experience memory D with capacity ND;

4: Train a DNN with features (s, a) and outcomes Q(s, a);
Online:

5: for each execution sequence do

6: for each decision epoch tk do

7: With probability 1 − ε select the action ak =
argmaxaQ(sk, a), otherwise select an action ran-

domly;

8: Perform system control using the chosen action;

9: Observe reward rk(sk, ak) during time period

[tk, tk+1) and the new state sk+1 at the next epoch;

10: Store transition set (sk, ak, rk, sk+1) in D;

11: Update Q(sk, ak) using maxa′Q(sk+1, a
′) and

rk(sk, ak) based on the Q-learning updating rule;

12: end for

13: Update DNN weight set θ based on the newly updated

Q-value estimates in a mini-batch manner;

14: end for

a fully-connected layer, followed by ReLUs. The output layer

is also a fully-connected layer with outputs for the actions.

To train the DNN, we need enough samples of Q-value esti-

mates of the corresponding state-action (s, a) pairs. The real-

world and testing driving cycles are utilized to obtain the Q-

value estimates. More specifically, we can drive the vehicle fol-

lowing the driving cycles and use an arbitrary but gradually re-

fined policy for the HEV power management. The state transi-

tion profile is recorded in an experience memory D with capac-

ity ND and also the Q-value estimates are obtained as the accu-

mulative fuel consumption. Based on the stored state transition

profiles and Q-value estimates, the DNN is constructed with

weight set θ trained using the standard training algorithms [28].

D.2 Online Deep Q-Learning

For the online phase, we adopt the deep Q-learning tech-

nique based on the offline-trained DNN to select actions and

update Q-values estimates. At each decision epoch tk of an

execution sequence, suppose the HEV system is in state sk,

the DRL agent performs inference using the DNN to obtain

the Q(sk, a) value estimate for each possible action a. The ε-

greedy policy selects the action with the maximum Q(sk, a)
value estimate with probability 1− ε and a random action with

probability ε. At the next decision epoch, the observed reward

rk(sk, ak) after action ak leads to Q-value updates based on

the following updating rule,

Q(s, a) ← Q(s, a) + α · e(s, a) · δ, (17)

where α is a coefficient controlling the learning rate, e(s, a) is

the eligibility of the pair (s, a), and δ is calculated as

δ ← rk+1 + γ ·max
a′

Q(sk+1, a
′)−Q(sk, ak). (18)

In (18), γ is the discount rate. After the execution of a whole

control sequence, the DNN is updated with the newly observed

Q-value estimates.

E. Model-Free Property Analysis

Theoretically, the DRL framework could be model-free, i.e.,

the agent does not require detailed system model to choose ac-

tions as long as it can observe the current state and reward as a

result of an action previously taken. For the HEV power man-

agement, model-free control means that the controller should

be able to observe the current state (i.e., propulsion power de-

mand, vehicle speed, battery pack charge level, and power pre-

diction) and the reward (i.e., the negative of fuel consumption

in a time slot) as a result of an action (i.e., battery pack dis-

charging current and gear ratio), while the detailed HEV mod-

els are not needed by the controller.

In the DRL framework, the HEV controller can use sen-

sors to measure the driver-controller pedal motions to obtain

power demand and vehicle speed and observe the current state.

The future power demand is predicted according to Eqn. (14).

In order to observe the charge level, the Coulomb counting

method [29] is required, which is typically realized using a ded-

icated circuit implementation [30]. The reward can be obtained

by measuring the actual fuel consumption. Therefore, the DRL

framework is fully model-free i.e., no need for the detailed and

accurate HEV modeling.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The results of the simulation of the DRL framework for HEV

power management are presented in this section. The HEV

setup is adopted from the vehicle simulator ADVISOR [23].

The key parameters of the HEV are summarized in Table I.

The proposed DRL framework for HEV power management

is compared with the rule-based policy [6] and reinforcement

learning technique [31] based on both real-word and testing

driving cycles. One driving cycle denotes a vehicle speed ver-

sus time profile for a specific trip. The experiments make use

of both real-world and testing driving cycles developed by dif-

ferent organizations and projects such as U.S. EPA (Environ-

mental Protection Agency) and E.U. MODEM (Modeling of

Emissions and Fuel Consumption in Urban Areas project).

First, the fuel consumptions of an HEV with the proposed

DRL framework and the rule-based policy are investigated. Ta-

ble II summarizes the fuel consumptions over some driving cy-

cles. We can observe that the fuel consumptions of the pro-

posed DRL framework are always lower than that of the rule-

based policy for all the driving cycles, and the reduction of the

fuel consumption can be as high as 56.3%. On average, the

fuel consumption can be reduced by 35% with the proposed

DRL framework, as shown in the last row of Table II. Then,

we compute the MPG values of the proposed DRL framework

and the rule-based policy for different driving cycles, as pre-

sented in Figure 3. It can be observed that the proposed con-

trol framework achieves higher MPG values than the rule-based
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TABLE I

HEV KEY PARAMETERS.

Vehicle Transmission ICE

m = 1254kg ρreg = 1.75 Peak power 41kW

CR = 0.009 ηreg = 0.98 Peak eff. 34%

CD = 0.335 ηgb = 0.98 EM

AF = 2m2 R(k) = [13.5;7.6; Peak power 56kW

rwh = 0.282m 5.0;3.8;2,8] Peak eff. 92%

Battery

Capacity 25 A.h Voltage 240V

TABLE II

FUEL CONSUMPTION OF THE PROPOSED FRAMEWORK AND THE

RULE-BASED POLICY

Driving cycle Rule-based Proposed method reduction

UDDS 412.3g 303.5g 26.4%

NEDC 319.8g 203.5g 36.4%

NYCC 86.1g 37.6g 56.3%

HWFET 364.0g 201.9g 44.5%

Modem1 228.6g 162.6g 28.9%

Modem2 344.9g 225.6g 34.6%

total 1755.7g 1134.7g 35.4%

policy and improves the fuel efficiency. The proposed frame-

work achieves up to 35% MPG improvement.

Furthermore, we demonstrate the effectiveness of introduc-

ing the prediction of future propulsion power demand into state

representation on the fuel economy. The results are shown in

Figure 4. We compare the normalized fuel consumption for

several driving cycles under DRL frameworks with and with-

out the prediction. The results show that the framework with

prediction decreases fuel consumption and achieves better per-

formance compared with the framework without prediction.

The achievements demonstrate the effectiveness of prediction

on the fuel economy, and the improvements due to prediction

only can be as high as 19%. We also compare our DRL-based

framework with the reinforcement learning based power man-

agement method [31]. The RL-based method employs TD(λ)-
learning algorithm to derive the power management policy. As

shown in Figure 5, we can see DRL-based power control can

UDDS NEDC NYCC HWFET MODEM1 MODEM2
0

5

10

15

20

25

30

35

40

45

50
Rule-Based

Proposed

Fig. 3. The MPG values achieved by the proposed DRL framework and the

rule-based policy.
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Fig. 4. Normalized fuel consumption of DRL-based HEV control frameworks

with and without prediction.
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Fig. 5. Normalized fuel consumption of RL-based HEV control framework

and DRL-based framework.

achieve better fuel economy than the RL-based framework, and

the fuel economy improvement can be as high as 10%. DRL

enables larger state space and thereby better control policy can

be acheived, while in RL the state space needs to be discretized

more coarsely. The results demonstrate the effectiveness of

DRL method compared with RL-based framework.

VI. SUMMARY AND CONCLUSIONS

In this work, we propose a DRL based HEV power manage-

ment framework for optimizing the fuel economy. The DRL

technique is comprised of an offline DNN construction phase

and an online deep Q-learning phase. The offline phase adopts

DNN to derive the correlation between each stateaction pair

and its value function. The online Q-learning phase would

perform action selection and value updating. The DRL based

HEV power management policy is fully modelfree, and inde-

pendent of a prior knowledge of driving cycles. Simulation

results based on actual vehicle setup over realworld and testing

driving cycles demonstrate the effectiveness of the proposed

framework on optimizing HEV fuel economy.
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