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Abstract—Hybrid electric vehicles employ a hybrid propul-
sion system to combine the energy efficiency of electric motor
and a long driving range of internal combustion engine, thereby
achieving a higher fuel economy as well as convenience compared
with conventional ICE vehicles. However, the relatively com-
plicated powertrain structures of HEVs necessitate an effective
power management policy to determine the power split between
ICE and EM. In this work, we propose a deep reinforcement
learning framework of the HEV power management with the aim
of improving fuel economy. The DRL technique is comprised of
an offline deep neural network construction phase and an online
deep Q-learning phase. Unlike traditional reinforcement learn-
ing, DRL presents the capability of handling the high dimensional
state and action space in the actual decision-making process, mak-
ing it suitable for the HEV power management problem. Enabled
by the DRL technique, the derived HEV power management pol-
icy is close to optimal, fully model-free, and independent of a prior
knowledge of driving cycles. Simulation results based on actual
vehicle setup over real-world and testing driving cycles demon-
strate the effectiveness of the proposed framework on optimizing
HEYV fuel economy.

I. INTRODUCTION

The development of electric vehicles, both all-electric ones
(aka EVs) and hybrid ones (aka HEVs), has been a mitigation
to the roaring demand of fossil fuels by the rapidly growing
transportation systems and industry. Nowadays, almost all the
automobile manufacturers have released their own EV and/or
HEV models. Compared with conventional internal combus-
tion engine (ICE)-propelled vehicles, EVs employ electric mo-
tors (EMs), which enable higher energy efficiency and zero
tailpipe emission [1,2]. HEVs employ both ICEs and EMs for
propulsion to combine the energy efficiency of EMs and a long
driving range of ICEs into the same HEVs [3].

The hybrid propulsion system is comprised of an ICE with
its associated fuel tank, and one or more EMs with the asso-
ciated energy storage system (i.e., the battery pack). The ICE
provides the primary propulsion by consuming fuel, whereas
the EM converts the electrical energy from the battery pack
into the secondary propulsion [4,5]. The EM not only assists
the ICE with extra torque, but also serves as an electricity gen-
erator during regenerative braking, which recovers the kinetic
energy into electrical energy to charge the battery pack [4]. The
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EM helps the ICE operate in fuel-efficient regions that further
improves the fuel economy.

Comparing to conventional ICE vehicles and EVs, the HEVs
have a relatively complicated powertrain. The power man-
agement policy, which determines the power split between the
ICE and the EM to fulfill the demanded propulsion, is essen-
tial to the improved fuel economy of HEVs. Various types
of HEV power management policies have been investigated,
such as rule-based policies [6, 7], global optimization poli-
cies [8,9], real-time optimization policies [10, 11], and rein-
forcement learning-based policies [12—-14].

Inspired by the recent breakthrough of deep reinforcement
learning (DRL) [15, 16], we develop a deep reinforcement
learning framework of the HEV power management to en-
hance the fuel economy in this work. Generally speaking,
the DRL technique is comprised of an offline deep neural net-
work (DNN) construction phase and an online deep Q-learning
phase. In the offline phase, a DNN is constructed and trained
to infer the Q values for the potentially huge amount of state-
action pairs. The deep Q-learning performs the optimal action
selection and the Q value update in the online phase.

The innovations and contributions of this proposed frame-
work, compared with the previous HEV power management
policies, are as follows: (1) It can converge to the optimal
power management policy by using the offline constructed
DNN and the online Q-learning, while the rule-based policies
are usually far from the optimal. (2) Unlike the global opti-
mization policies, it neither relies on a priori knowledge of the
driving cycles, nor needs the detailed and accurate HEV mod-
eling. (3) Itis possible to arrive at the optimal policy applicable
to any types of driving cycles, while the real-time optimization
policies are quite sensitive to different types of driving cycles.
(4) Compared with reinforcement learning, it is able to handle
the high dimensions of the state and action space in the HEV
power management with accelerated convergence speed. (5)
Also enabled by the DRL, prediction of future driving char-
acteristics is incorporated into the state representation, which
further enhances the effectiveness of the proposed DRL frame-
work. Simulation results based on actual vehicle setup over
real-world and testing driving cycles demonstrate that the pro-
posed DRL framework can improve the HEV fuel economy by
up to 56.3%.
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II. RELATED WORK

The HEV power management coordinates the operation of
ICE and EM, to fulfill the propulsion requirement and at the
same time minimize the fuel consumption. Many research
works have been conducted on the HEV power management to
improve the fuel economy. The rule-based HEV power man-
agement strategies have been proposed based on intuition, hu-
man expertise or fuzzy logic [6,7]. These approaches are easy
for run-time implementation, but they cannot guarantee any
kind of optimality. To overcome the shortcomings of the rule-
based approaches, the global optimization methods i.e., dy-
namic programming algorithms, have been employed for HEV
power control [8,9]. The global optimization methods can
achieve optimal fuel consumption for specific trips. However,
they require a priori knowledge of the driving cycles for spe-
cific trips and heavily rely on detailed and accurate HEV mod-
eling. The real-time optimization techniques [10, 11], such as
the equivalent consumption minimization strategies (ECMS),
have been proposed to transform global optimization into an
instantaneous optimization problem. Such techniques are ef-
fective for run-time control but quite sensitive to the driving
cycles.

Reinforcement learning (RL) [17, 18] provides a powerful
tool for the decision-maker to “learn” how to “act” optimally.
The decision-maker i.e., agent can observe the environment’s
state and take an appropriate action according to the observed
state. A reward will be given to the agent as the result of the
chosen action. Stimulated by the reward, the agent targets at
deriving a policy, by “learning” from its past experience. RL
has been applied to the HEV power management for minimiz-
ing fuel cost, total operation cost, or joint control with auxiliary
systems [12—14]. RL techniques have guaranteed convergence
to the optimal policy, but the convergence speed is related to
the dimensions of the state and action space.

With the increasing popularity of neural networks, there are
also research works on HEV that apply learning techniques. A
learning vector quantization neural network [19] has been pro-
posed to identify the driving cycle style. In [20], a fuzzy neural
network has been applied to identify urban driving conditions.
The authors of [21] have proposed a solution algorithm to the
ECMS and an adaptive neural network for driving cycle recog-
nition is utilized to decrease the sensitivity of the algorithm to
driving cycle variations. [22] has developed a neural network
based trip modeling.

Recently the breakthroughs of DRL in playing Atari [16]
and Alpha Go [15] demonstrate a good example to handle the
high dimensional state and action space in complicated control
problems. Reference [16] presented the pioneering work of the
deep reinforcement learning, which successfully learns control
policies directly from high-dimensional sensory inputs. It uses
a trained deep convolutional neural network and outperforms
all previous approaches on six of the games. In [15], a new
approach to computer Go has been proposed, in which ’value
networks’ are used to evaluate board position and ’policy net-
works’ are used to select moves. A novel combination of su-
pervised learning from human expert games and reinforcement
learning from games of a self-play is adopted for training these
deep neural networks.
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Parallel Drivetrain

Fig. 1. A parallel hybrid powertrain architecture of an HEV [23].

III. HEV SYSTEM ARCHITECTURE

Figure 1 shows a parallel hybrid powertrain, where ICE and
EM propel the vehicle in parallel. Thanks to its high energy
efficiency and a relatively straightforward structure [5], power
management techniques can be applied to it effectively. The
HEV models are described below for better understanding of
the whole HEV system and faciliating the simulations. How-
ever, our approach is totally model-free and does not rely on
models to derive a high-fuel economy control policy.

A. HEV Components
A.1 Internal Combustion Engine (ICE)

According to the quasi-static ICE model [24], the ICE fuel
efficiency is given by

nice(Trce,wice) = Tice -wice/(my - Dy) (1)

where T7o g and wrcp are the torque (in N - m) and rotational
speed (in rad/s) of an ICE, respectively, representing the oper-
ating point of the ICE. rivy denotes the fuel consumption rate
(in g/s) of the ICE, which is a nonlinear function of the oper-
ating point, and D represents the fuel energy density (in J/g).
The ICE operating should remain in a safe range:

(2a)
(2b)

wice Swice < WicE,
0<Trce <Ti85(wicE)-

A.2 Electric Motor (EM)

The EM operates in parallel with the ICE. It acts as a motor
to propel the vehicle solely or together with ICE. It also oper-
ates as a generator to charge the battery pack. The efficiency of
the EM [23] is given by

(Tenm - wen)/Poart Tenm >0

3
Poatt/(Tem -wenm) Tem <0 3)

nem(Tem,wen) = {
where T’ and wg)ys are the torque and speed of the EM,
respectively, and Py, is the output power of the battery pack.
When the EM operates as a motor, T, is positive and the
battery pack is being discharged, i.e., Pyq:+ > 0; when the EM
operates as a generator, 7', is negtive and the battery pack is
being charged, i.e., Pyqt+ < 0. To ensure a safe and smooth
operation of an EM, the operating point (T, wg ) must be
within a certain range as follows:

0 <wpm < Wi, (4a)
Te (wew) < Tey < TS (Wenr)- (4b)
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A.3 Vehicle Dynamics

The vehicle tractive force Frrp to support the vehicle speed
and acceleration, which are controlled by the brake or acceler-
ator pedal, is derived by

Frr=m-a+ Fy+ Fr + Fap, (5a)
Fy=m-g-sind, (5b)
Fr=m-g-cosb-Cg, (5¢)
Fap=05-p-Cp-Ap-v?, (5d)

where m is the vehicle mass, a is the vehicle acceleration, F,
is the force due to road slope, F'i is the rolling friction force,
F4p is the air drag force, 6 is the road slope angle, Cr is the
rolling friction coefficient, p is the air density, C'p is the air
drag coefficient, Ar is the vehicle frontal area, and v is the
vehicle speed. Given v, a and 6, the tractive force Frrp can
be derived using (5). Then, the vehicle wheel torque 73,5, and
wheel speed w,,, are given by

(6a)
(6b)

Twh = FrR * Twh,

Wawh = V/Twh-

The demanded power for propelling the vehicle, i.e., Pyey, is
then calculated as

Piem = Frr - v = Tyh - Wwh- @)

A.4 Powertrain Mechanics

The ICE and EM are coupled together through the hybrid
powertrain [25], which is commonly comprised of planetary
gear sets, to propel the vehicle cooperatively. The speed and
torque of the ICE, the EM, and the vehicle wheel satisfy the
following speed and torque relation:

WICE _ WEM
R(j)  R(j) preg’
Twh = R(]) . (TICE‘ + Preg - Teum - (nreg)a) . (ngb)ﬁ(gb)

(8a)

Wwh =

where R(j) is the j-th gear ratio, p,¢4 is the reduction gear
ratio, nyeg and 7y, are the reduction gear efficiency and the
gear box efficiency, respectively. o and (3 are defined as

| 41 Tgm >0,

O‘*{—1 Ty < 0. ©)

B _ { +1 TICE + Preg * TEM : (nreg)a Z O, (10)
-1 TICE + Preg * TEM : (nreg)a <0.

B. HEV Control

In the actual operation of an HEV, the vehicle speed v and
the power demand P, (or equivalently, the speed v and ac-
celeration a) are determined by the driver through pressing the
acceleration or brake pedal. Then the HEV controller needs to
control the operation of the ICE, EM and powertrain to make
the vehicle meet the target propulsion. Generally, the HEV
controller chooses a couple of control variables, such as the
battery output power Py, (or equivalently, the battery output
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Fig. 2. The interactions between the agent and environment.

current 7) and the gear ratio R(j), and then the rest of the vari-
ables (i.e., the ICE torque T7¢ g, the ICE speed wicy, the EM
torque 7'z, and the EM speed wgyp) are determined according
to the given control variables based on the operating principles
of HEV components as discussed previously. This is called the
backward-looking optimization approach, which is equivalent
to actual HEV management [6,7].

IV. DRL FRAMEWORK OF HEV POWER MANAGEMENT
A. Motivations

The complete HEV power management problem exhibits
high dimensional state and action space. To deal with such
situation, the reinforcement learning-based methods [12-14]
need to reduce the state and/or action space in order to make
the HEV power management problem tractable. However, the
state and action space reduction may decrease the effective-
ness of the control and compromise the model-free characteris-
tics. Therefore, we propose the DRL framework of HEV power
management, exploiting the capability of DRL to handle the
large state and action space in actual control problem. By us-
ing the DRL, we can more effectively represent the system state
and implement a fully model-free control.

B. Basics of DRL Framework

The learner and decision-maker is called agent and the ex-
ternal world of the agent is called environment. The agent and
environment interact continually with each other. The agent
selects actions, and the environment responds to those actions
and presents new situations to the agent. The environment also
gives rise to rewards, which are specific numerical values that
the agent tries to maximize over time. The interaction proce-
dure is illustrated in Figure 2. The DRL technique is comprised
of an offline DNN construction phase and an online deep Q-
learning phase to solve complicated control problems with a
large number of states and a wide action space [16,26].

The offline phase adopts DNN to derive the correlation be-
tween each state-action pair (s, a) of the system under con-
trol and its value function Q(s, a). The value function Q(s, a),
which represents the expected accumulated (with discount) re-
ward when the system starts at state s and follows action a and
certain policy thereafter, is defined as:

Q(s,a) = E{ivkrk‘smao]

k=0

Y

where 7, is the reward received in the k-th time slot and ~ is
the discount rate.
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C. DRL Formulation

In this section, we propose the DRL formulation of the HEV
power management problem, formulating the state, action, and
reward of DRL to represent the HEV power management prob-
lem. We use a slot-time model, i.e., the decision epoch is at
the beginning of each time slot with equal length. At each k-
th decision epoch i.e., ti, the HEV system is at state s;. The
HEV controller (i.e., agent) takes an action aj, according to the
current state. As a result of the action taken, the agent receives
the reward 7, in the k-th time slot i.e., [tx, tg41).

C.1 State Space

The state space of the DRL is comprised of a finite number
of states, each represented by the propulsion power demand,
vehicle speed, charge stored in the battery pack, and predicted
propulsion power demand for the next time slot, given by

S = {5 = [pdemava%pre}T |pdem € Piems
veV,geQ,pre € Py}

where pgen, is the power demand for propelling the HEV, v is
the vehicle speed, ¢ is the amount of charge stored in the bat-
tery pack, and pre is the predicted power demand. Py, V, @,
and P,,. in (12) are, respectively, the finite sets of propulsion
power demand levels, vehicle speed levels, levels of charge
stored in the battery pack, and predicted power demand lev-
els. Discretization is required when defining these four finite
sets. In particular, @) is constructed by discretizing the range of
charge stored in the battery pack, i.e., [¢min, Gmaz], into a finite
number of charge levels:

Q:{CI1»(]27"'7CIN}a (13)

where ¢min = @1 < q2 < ... < gN = Qmao- Generally,
Qrmin and Qq. are 40% and 80% of the nominal capacity of
the battery pack, respectively, for an ordinary HEV.

In the state representation, we incorporate some future driv-
ing characteristics (i.e., pre) into consideration for more ef-
fective representation and thereby better performance in fuel
economy. Incorporating future driving characteristics leads to
one additional dimension in the state representation, which in-
creases computation complexity, however, the DRL has the suf-
ficient capability to handle large state space. Also, although
both the future velocity and future propulsion power demand
could be predicted, predicting the later is more desirable for
the DRL. The reason is that the propulsion power demand is
more directly related to the action selection than the velocity.

As for the prediction method of future driving characteris-
tics, the randomness of the driving behavior may affect the pre-
diction accuracy. We need a desirable tradeoff between accu-
rate prediction and additional computation complexity. Based
on the above mentioned observations, we employ the expo-
nential weighting function to predict the future power demand
based on the current measurement data as follows:

12)

pre; <+ (1 —«) - pre,_; + a - meas;_; (14)

where pre; is the ¢-th predicted propulsion power demand,
pre;_1 is the (i — 1)-th predicted data, meas;_1 is the (i — 1)-
th measured propulsion power demand, and « is the learning
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rate. Experiments show that the simple function can serve as a
desirable prediction method to strike a balance between effec-
tive prediction and additional complexity. We are incorporat-
ing one-step-ahead prediction into the state space. We can do
more steps ahead, but it complicates the state space and predic-
tion accuracy may not be guaranteed. The prediction decision
epoch coincides with the deep reinforcement learning decision
epoch.

C.2 Action Space

The action space of the DRL is comprised of a finite number
of actions, each represented by the discharging current of the
battery pack and the gear ratio, i.e.,

A={a=[i,R(j)|" i € I,R(j) € R} (15)
where an action a = [i, R(j)]" denotes to discharge the bat-
tery pack using current ¢ and choose the j-th gear ratio. The set
I contains a finite (discretized) number of discharging current
values in the range of [—Inaz; Imaz]. ¢ > 0 denotes discharg-
ing the battery pack, and ¢ < 0 denotes charging the battery
pack. The set R contains all allowable gear ratio values. Usu-
ally, there are four or five gear ratio values in total [27].

C.3 Reward Function

The objective of the DRL-based control is to minimize the
HEV fuel consumption. Therefore, we define the reward 7y
that the agent receives after taking action aj in state sj as
the negative of the fuel consumption in the k-th time slot, i.e.,
—m - AT, where AT is the length of a time slot, and 77 is the
fuel consumption rate in that time slot. The DRL agent targets
at maximizing the expected return

w07 T (16)
which is a discounted sum of rewards. Hence, by using the
above-mentioned reward function, the overall fuel consump-
tion will be minimized while maximizing the expected return.

D. DRL Procedure

Based on the DRL formulation of the HEV power manage-
ment problem, we discuss the procedure for deriving the op-
timal HEV action selection. The proposed DRL procedure of
HEYV power management comprises an offline DNN construc-
tion phase and an online deep Q-learning phase. The key steps
are summarized in Algorithm 1.

D.1 Offline DNN Construction

The offline DNN construction phase derives the Q-value es-
timate for each state-action (s, a) pair. We employ a convolu-
tional neural network as the DNN structure. The first layer is
a pooling layer, which reduces the input dimensionality and
computation complexity. The following layers are convolu-
tional layers, each followed by rectified linear units (ReLUs)
to perform element-wise nonlinearity. The last hidden layer is
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Algorithm 1 The DRL Framework of HEV power control
Offline:
1: Simulate the control process using an arbitrary but gradu-
ally refined policy for enough long time;
2: Obtain the state transition profile and Q(s,a) value esti-
mates during the process simulation;
3. Store the state transition profile and Q(s,a) value esti-
mates in experience memory D with capacity Np;
4: Train a DNN with features (s, a) and outcomes Q(s, a);
Online:
5: for each execution sequence do
6:  for each decision epoch t;, do

7: With probability 1 — ¢ select the action ar =
arg max,Q(sg,a), otherwise select an action ran-
domly;

8: Perform system control using the chosen action;

9: Observe reward 74(sg,ar) during time period
[tk,tk+1) and the new state sy at the next epoch;

10: Store transition set (Sg, ak, 'k, Skt+1) in D;

11: Update Q(sg,ar) using maxq, Q(sgp41,a’) and
7k (8K, ai) based on the Q-learning updating rule;
12:  end for
13:  Update DNN weight set § based on the newly updated
Q-value estimates in a mini-batch manner;
14: end for

a fully-connected layer, followed by ReLUs. The output layer
is also a fully-connected layer with outputs for the actions.

To train the DNN, we need enough samples of Q-value esti-
mates of the corresponding state-action (s, a) pairs. The real-
world and testing driving cycles are utilized to obtain the Q-
value estimates. More specifically, we can drive the vehicle fol-
lowing the driving cycles and use an arbitrary but gradually re-
fined policy for the HEV power management. The state transi-
tion profile is recorded in an experience memory D with capac-
ity Np and also the Q-value estimates are obtained as the accu-
mulative fuel consumption. Based on the stored state transition
profiles and Q-value estimates, the DNN is constructed with
weight set 0 trained using the standard training algorithms [28].

D.2 Online Deep Q-Learning

For the online phase, we adopt the deep Q-learning tech-
nique based on the offline-trained DNN to select actions and
update Q-values estimates. At each decision epoch ¢; of an
execution sequence, suppose the HEV system is in state sy,
the DRL agent performs inference using the DNN to obtain
the Q(sy,a) value estimate for each possible action a. The &-
greedy policy selects the action with the maximum Q(sg, a)
value estimate with probability 1 — € and a random action with
probability . At the next decision epoch, the observed reward
ri(Sk, ar) after action ay, leads to Q-value updates based on
the following updating rule,

Q(Saa) — Q(Sva’) +OZ'€(S7CL) '57 (17)

where « is a coefficient controlling the learning rate, e(s, a) is
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the eligibility of the pair (s, a), and 0 is calculated as

O Tpy1+7- H;@XQ(SICH,G') — Q(sk, ak)- (18)
In (18), v is the discount rate. After the execution of a whole
control sequence, the DNN is updated with the newly observed
Q-value estimates.

E. Model-Free Property Analysis

Theoretically, the DRL framework could be model-free, i.e.,
the agent does not require detailed system model to choose ac-
tions as long as it can observe the current state and reward as a
result of an action previously taken. For the HEV power man-
agement, model-free control means that the controller should
be able to observe the current state (i.e., propulsion power de-
mand, vehicle speed, battery pack charge level, and power pre-
diction) and the reward (i.e., the negative of fuel consumption
in a time slot) as a result of an action (i.e., battery pack dis-
charging current and gear ratio), while the detailed HEV mod-
els are not needed by the controller.

In the DRL framework, the HEV controller can use sen-
sors to measure the driver-controller pedal motions to obtain
power demand and vehicle speed and observe the current state.
The future power demand is predicted according to Eqn. (14).
In order to observe the charge level, the Coulomb counting
method [29] is required, which is typically realized using a ded-
icated circuit implementation [30]. The reward can be obtained
by measuring the actual fuel consumption. Therefore, the DRL
framework is fully model-free i.e., no need for the detailed and
accurate HEV modeling.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

The results of the simulation of the DRL framework for HEV
power management are presented in this section. The HEV
setup is adopted from the vehicle simulator ADVISOR [23].
The key parameters of the HEV are summarized in Table I.
The proposed DRL framework for HEV power management
is compared with the rule-based policy [6] and reinforcement
learning technique [31] based on both real-word and testing
driving cycles. One driving cycle denotes a vehicle speed ver-
sus time profile for a specific trip. The experiments make use
of both real-world and testing driving cycles developed by dif-
ferent organizations and projects such as U.S. EPA (Environ-
mental Protection Agency) and E.U. MODEM (Modeling of
Emissions and Fuel Consumption in Urban Areas project).

First, the fuel consumptions of an HEV with the proposed
DRL framework and the rule-based policy are investigated. Ta-
ble II summarizes the fuel consumptions over some driving cy-
cles. We can observe that the fuel consumptions of the pro-
posed DRL framework are always lower than that of the rule-
based policy for all the driving cycles, and the reduction of the
fuel consumption can be as high as 56.3%. On average, the
fuel consumption can be reduced by 35% with the proposed
DRL framework, as shown in the last row of Table II. Then,
we compute the MPG values of the proposed DRL framework
and the rule-based policy for different driving cycles, as pre-
sented in Figure 3. It can be observed that the proposed con-
trol framework achieves higher MPG values than the rule-based
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TABLE I
HEV KEY PARAMETERS.

Vehicle Transmission ICE
m = 1254kg Preg = 175 Peak power 41kW
Cr = 0.009 Nreg = 0.98 Peak eff. 34%
Cp =0.335 Ngp = 0.98 EM
Ap = 2m? R(k) = [13.5;7.6; | Peak power 56kW
rwhn = 0.282m 5.0;3.8;2,8] Peak eff. 92%
Battery
Capacity 25 A.h  Voltage 240V

TABLE II
FUEL CONSUMPTION OF THE PROPOSED FRAMEWORK AND THE
RULE-BASED POLICY

Driving cycle | Rule-based | Proposed method | reduction
UDDS 412.3¢g 303.5¢ 26.4%
NEDC 319.8¢ 203.5¢g 36.4%
NYCC 86.1¢g 37.6g 56.3%

HWEFET 364.0g 201.9¢ 44.5%
Modem1 228.6g 162.6g 28.9%
Modem?2 344.9¢ 225.6g 34.6%

total 1755.7¢g 1134.7¢g 35.4%

policy and improves the fuel efficiency. The proposed frame-
work achieves up to 35% MPG improvement.

Furthermore, we demonstrate the effectiveness of introduc-
ing the prediction of future propulsion power demand into state
representation on the fuel economy. The results are shown in
Figure 4. We compare the normalized fuel consumption for
several driving cycles under DRL frameworks with and with-
out the prediction. The results show that the framework with
prediction decreases fuel consumption and achieves better per-
formance compared with the framework without prediction.
The achievements demonstrate the effectiveness of prediction
on the fuel economy, and the improvements due to prediction
only can be as high as 19%. We also compare our DRL-based
framework with the reinforcement learning based power man-
agement method [31]. The RL-based method employs T'D(\)-
learning algorithm to derive the power management policy. As
shown in Figure 5, we can see DRL-based power control can

uUDDS  NEDC NYCC HWFET MODEM1 MODEM2

Fig. 3. The MPG values achieved by the proposed DRL framework and the
rule-based policy.
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Fig. 4. Normalized fuel consumption of DRL-based HEV control frameworks
with and without prediction.
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Fig. 5. Normalized fuel consumption of RL-based HEV control framework
and DRL-based framework.

achieve better fuel economy than the RL-based framework, and
the fuel economy improvement can be as high as 10%. DRL
enables larger state space and thereby better control policy can
be acheived, while in RL the state space needs to be discretized
more coarsely. The results demonstrate the effectiveness of
DRL method compared with RL-based framework.

VI. SUMMARY AND CONCLUSIONS

In this work, we propose a DRL based HEV power manage-
ment framework for optimizing the fuel economy. The DRL
technique is comprised of an offline DNN construction phase
and an online deep Q-learning phase. The offline phase adopts
DNN to derive the correlation between each stateaction pair
and its value function. The online Q-learning phase would
perform action selection and value updating. The DRL based
HEV power management policy is fully modelfree, and inde-
pendent of a prior knowledge of driving cycles. Simulation
results based on actual vehicle setup over realworld and testing
driving cycles demonstrate the effectiveness of the proposed
framework on optimizing HEV fuel economy.
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