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Abstract— This paper proposes a general framework for an-
alyzing continuous-time systems controlled by event-triggered
algorithms. Closed-loop systems resulting from using both
static and dynamic output (or state) feedback laws that are
implemented via asynchronous event-triggered techniques are
modeled as hybrid systems given in terms of hybrid inclusions
and studied using recently developed tools for robust stabil-
ity. Properties of the proposed models, including stability of
compact sets, robustness, and Zeno behavior of solutions are
addressed. The framework and results are illustrated in several
event-triggered strategies available in the literature.

I. INTRODUCTION

Event-triggered control reduces the need to continu-
ously or periodically update the control input by triggering
such events only when necessary. Such control strategies
can be employed when a continuous-time controller for
a continuous-time plant is already available, which is an
emulation-based approach, or they can be directly designed
by analyzing the closed-loop system that would result from
using such a strategy. A wide range of contributions pursuing
both types of design methods are available in the literature.
Without attempting to cover such a vast and rapidly growing
literature, for the case of nonlinear continuous-time systems
with static-state feedback laws, an event-triggered strategy
is proposed in [1] for scheduling tasks in embedded pro-
cessors. For linear systems with dynamic output feedback,
the stability and L..-performance of event-triggered control
strategies are studied in [2]. The survey paper [3] col-
lects many more event-triggered control strategies, classifies
them into different categories, such as event-triggered and
self-triggered, and highlights key properties they guarantee.
Moreover, the recent application of event-triggered control
to a plethora of different problems, such as the stabilization
of control affine systems [4], [5] attitude control [6] and
quadrotor stabilization [7] further highlight the importance
of the development of analysis and synthesis tools for event-
based control systems.
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Due to the impulsive nature of event-triggered control
strategies, it is natural to analyze and design such strategies
using tools for hybrid dynamical systems. In this paper
(Section III), we propose a rather general formulation of
event-triggered control for continuous-time systems within
the hybrid inclusions framework developed in [8]. In such
a framework, differential and difference inclusions with
constraints are used to describe the continuous and discrete
behavior of the closed-loop system resulting from employing
an event-triggered control law. The proposed formulation
captures closed-loop systems resulting from using both static
and dynamic output (or state) asynchronous event-triggered
feedback laws. It allows for local events triggered by part of
the state components [9], [10], which may involve memory
states storing the most recent controller and output values.

While the hybrid inclusions framework in [8] has been
used in a few instances for the analysis and design of
event-triggered control algorithms [3], [11], [12], a complete
treatment of general event-triggered control strategies using
the tools in [8] has not yet been pursued, and as shown
in this article, leads to insightful results. More precisely, in
Section IV-A, we provide relaxed Lyapunov-based sufficient
conditions for asymptotic stability and convergence of a
given set applying tools from [8]. These conditions do not
require a decrease in the Lyapunov function both during
flows and jumps, but rather allow increases that can be
compensated by decrease. Moreover, assuming the objects
defining the closed-loop system satisfy the conditions that
lead to sequential compactness of solutions, we point out
that asymptotic stability of a compact set is robust to
small perturbations (Section IV-B). In addition, conditions
guaranteeing that solutions exists for arbitrarily long (hybrid)
time are provided in Section IV-C. Very importantly, as it
is typically desired that event-triggering control algorithms
assure that the time in between consecutive events — typically
called the inter-event time — is (uniformly) lower bounded by
a positive constant for each solution, necessary and sufficient
conditions for such a property to hold for the resulting well-
posed systems are provided in Section IV-D, both through
design and as a temporal regularization (Sections IV-E &
IV-F). Through an example we show that the existence of a
Zeno solution at the attractor of interest could lead to Zeno
solutions nearby it when vanishing noise is present.

Notation: Given a vector z, |z| denotes the 2-norm of x.
The distance from point = to a closed set K is denoted by
lz| = gm}f( | — &|. Given a set-valued mapping M : R™ =

€

R™, we denote the domain of M as dom M = {z € R™ :
M(z) # 0}, and given a set K C R", the set M(K) :=



{M(z) : z € K} C R" denotes all points that result from
evaluating M on the set K. The boundary points of a closed
set K is denoted by 0K the interior points of a set K is
denoted by int K. Givenr € Rand V : R" - R, V=1(r) =
{z € R™ : V(z) = r} denotes the r-level set of V. The
closed unit ball around the origin in R" is denoted as B.
The closure of the convex hull of a set K is denoted by
oK.

II. PRELIMINARIES ON HYBRID SYSTEMS

A hybrid system H, or more precisely, a hybrid closed-
loop system in our setting, can be written as

H{ er € F(z) zeC )
zt € G(2) zeD,

where C, F, D, and G represent the flow set, the flow map,
the jump set, and the jump map, respectively. Solutions to
(1) have continuous and/or discrete behavior depending on
the system data (C,F,D,G). Following [8], besides the
usual time variable ¢ € R>(, we consider the number of
jumps, 7 € N := {0,1,2,...}, as an independent variable.
Thus, hybrid time is parametrized by (¢,j). The domain
of a solution to H is given by a hybrid time domain. A
hybrid time domain is defined as a subset £ of R>¢ x N
that, for each (T, J) € E, E N ([0,7] x {0,1,...J}) can
be written as Uj;ol ([tj,tj+1],j) for some finite sequence of
times 0 =tg <t <t2 < ... <ty. A solution to the hybrid
system (1) is given by a hybrid arc ¢ satisfying the dynamics
of (1). A hybrid arc ¢ is a function on a hybrid time domain
that, for each j € N, t — ¢(¢,j) is absolutely continuous
on the interval I/ := {t : (t,j) € dom ¢ }. In addition, we
classify the solutions to hybrid system as follows.

Definition 2.1: A solution ¢ to (1) is

o nontrivial if dom ¢ has at least two points;

o complete if dom ¢ is unbounded;

e precompact if it is complete and bounded;

o Zeno if it is complete and sup{? : (¢, j) € dom ¢} < oo

o maximal if there does not exist another pair ¢’ such that
¢ is a truncation of ¢’ to some proper subset of dom ¢'.

The set Sy and Sy (K) collect all maximal solutions to the
hybrid system H and all maximal solutions with ¢(0,0) €
K, respectively. ]

The following regularity conditions on the system data for
a hybrid system H will be needed in the forthcoming results.
They guarantee robustness of stability of compact sets with
respect to perturbations; see [8, Chapter 6] for details.

Definition 2.2: (hybrid basic conditions) A hybrid system
‘H with state z € R" is said to satisfy the hybrid basic
conditions if its data (C, F, D, G) is such that

(A1) C and D are closed sets;

(A2) F : R* == R" is outer semicontinuous (0sc),
nonempty and locally bounded, and F'(z) is nonempty and
convex for all z € C;

(A3) G : R™ = R" is osc, nonempty and locally bounded,
and G(z) for all z € D. O

III. GENERAL FORMULATION

In this paper, using hybrid inclusions introduced in [8], we
model the closed-loop system obtained from a continuous-
time plant controlled by a dynamic controller implemented
via event-triggered mechanisms (ETMs). The plant has state
zp € Xp CR", input u € Y C R™, output y € Y C R",
and is given by

&p € Fp(zp,u), y € Hy(xp). )
The dynamic controller has state z. € X, C R™ and is
givenby g € F.(ze,y), u€ He(ze,y). 3)

which is reduced to u € H.(y) in the static case. The set-
valued maps F), : &, xU = X, and F, : X, x Y = A,
describe the continuous dynamics for the plant and the con-
troller, respectively, while the set-valued maps H,, : X}, = )
and H. : X.x)Y =3 U assign values for u and y, respectively.
Defining the state * = (xp,2.), the closed-loop system
(without ETM in the loop) is given by

refce [Rma] [ e iy}

Now, we introduce a model for the closed-loop system
of the plant in (2) controlled by (3) implemented via event-
triggered strategies. When ETMs are in the loop, the closed-
loop system has the structure shown in Figure 1. Similar to
sample-and-hold systems, the plant and the controller operate
with sampled versions of the output y and the input w,
denoted § € Y and @ € U, respectively. An auxiliary state
x € X C R"x is introduced to capture possible dynamics
added for defining ETMs. The state x may not be involved
in the plant or the controller but rather play a significant role
in triggering events [13], [14].

i Plant
&p € Fp( xp,
y € H (xp)

L Controller
+/"“ Ze € Fe(xc, ),
LE_T_I\LIE,' u € He(xe,9)

Fig. 1: Closed-loop system with ETM in the loop.

At corresponding triggering events, the most recent values
of the output y from the plant and the input u are assigned
to § and u, respectively. Moreover, x is updated via the
difference inclusion x* € Gy (xp,xc, J, 4, x). In between
two events, (zp,z.) evolves according to F}, and F,, while
¢ and 4 are governed by

g€ Fy(zp, e, 9,0, %), € Fu(zp, e, 3,0, X)-
When simply “zero-order hold” is employed for ¢ and @, we
have Fy =0 and Fu = (. Also in between two events, the
auxiliary state y has dynamics x € Fy(zp, Z¢, 9, U, X)-

We also consider local triggering events (LTE), which trig-
ger updates in individual components of the output memory
state and the input memory state. In particular, the presence
of each individual LTE permits selective updates of the
components of ¢ and 4. To this end, the vectors y and gy
are partitioned into NV, subcomponents; while u and 4 are
partitioned into N,, subcomponents, i.e.,



Y= (yl’y27"'7yNy)7 1]: (g15y27"'7gNy)7
u:(ul,u2,...,uNu), ﬂ:(ﬂl,ﬂg,...,ﬂ]\[u).
With i, € {1,2,..., Ny} and i, € {1,2,..., N, }, we define
triggering event functions as v, : = — R™v and Vi 2
R™= with the argument for these event functions given as
& = (y,u,g,ﬁ,x) €eZwithZ:=)YxUxYxUxX.
When 71 (&) = 0, only the i, —th component of g is updated
accordlng to the local output, i.e. yZ =y, and g yk = g, for
every k € {1,2,..., Ny}, k # zy Slmllarly, when 7t (§) = 0,
only the i,,—th component of 4 is updated according to the
local input, ie., 4] = w;, and @ = dy for every k €

{1,2,..., Ny} k # 4.

Due to the impulsive nature of ETM, we propose to model
the closed-loop system as a hybrid system given in (1). We
assume that when ~; (§) > 0 (or 7;* (§) > 0) the update of
each corresponding gomponent ys, (or y;, , respectively) is
triggered.! Defining the state

2= (Tp, e, U, U, X) € Z =X X Ao x Y xU XX,
the closed-loop system resulting from the mechanism de-
scribed above has a jump set given by

D:=D,U Du7 “)

N,
where D,, := U U Dy, D! ={z€ 2:

7€) = 0,y gH( >,ueH“(xc, §)} and D = {z €
Z i (§) 2 0,y € Hy(wp),u € He(we, )} The flow set
is given by
N, C:=CynN Cu, 3)
where C, = ) CY,C, :ﬂC;fLCU::{zeZ:
Zy—l Zu—

%yy(f) <0,y € Hy(zp),u € He(xe,9)} and Cf = {z €
Z 9 (&) <0,y € Hy(xp), u € He(xe,9)}. Without much
loss of generality, we assume that C'U D = Z. Observe that
when each ;' and ~;* is defined for every £ € =, by (5),
(4) and the construction of maps H, and H,, CUD = Z
holds. Then, for each z € C, the flow map is given by

F(z) := (Fp(zp, 0), Fe(zc, §), Fy(z)a Fu(z), Fy(2)) (6)
The jump map captures the dynamics at events. The memory
states ¢, i are updated via local reset functions. More pre-

cisely, for every i, € {1,2,..., Ny} and i, € {1,2,..., N,},
we define

gy (yhﬁ) — (.1)17 "7yAiy717yiy 7giy+1, -'-a?)Ny) if z € D?y

B 1] otherwise,

TR TP PR if 2 € Du

g;;u (u7,&) — (ul Uy —1yWiy Uiy +1 uN'u.) iz ] T

0 otherwise.

Hence, the union of these reset functions captures the LTE
dynamics. At triggering events, the state x remains unal-
tered, the auxiliary state x resets according to G, and the
components of states ¢ and @ are either kept the same or
are updated according to the local reset functions. Then, the
jump map is given by

Note that two independent sets of event functions are considered in this
model to allow gy and @ to be updated via asynchronous events. However,
this general case can be simplified by setting o/f’y (&) = (&), Ny = Nu
and 7, = iy for every £ € E.

U o w:9) )
ool [l Bl
Gy(2)

Therefore, the closed-loop system resulting from event-
triggered control is given by (1). Next, we provide conditions
guaranteeing H to satisfy the hybrid basic conditions.

Lemma 3.1: The closed-loop hybrid system H in (1) sat-
isfies the hybrid basic conditions in Definition 2.2 if

(AI’) The set C and D given in (5) and (4) are closed;
(A2’) The maps F),, F,, Fy7 F, and F, are osc, nonempty,
and locally bounded relative to the respective sets of
definition, and convex valued;

(A3’) The maps Hy, H., and G, are osc, nonempty, and
locally bounded.

Remark 3.2: When Hj, and H, satisfy (A3’), item (Al’)
in Lemma 3.1 is guaranteed if Z is closed and for each
iy € {1,2,..., Ny} and i, € {1,2,..., Ny}, 7/ and ;" are
continuous. ’

Next, we show event-triggered controlled systems in the
literature that fit in the framework (1) with data (4)-(7).

Example 3.3: (ETM for output-feedback in [2]) An ETM
is designed for a continuous-time LTI plant given by?
Tp = Apxp + Bpu, y=Cpzp
which is controlled by a dynamic controller given by
Te = Acxe + Bey, uw=Cox.+ D.y,
where matrices A,, By, Cp, A¢, Be, Cc, D, have appropriate
size. The ETM introduced in [2] leads to N, = N, = 1 and
V(€)= 7"(€) = min{ly — §* — oy ly* — ey, Ju —al* -
oulu? — e} with € = (y,u, J,4), where oy, 0y, €y, €, are
constants to be designed. With z = (zp,z.,9,0) € Z :=
R™ x R™ x R™ x R™, the closed-loop system is given by
2 2= F(z) = (Apxp + Bpti, Acxc + Bpj) z€C,
2t = G(2) := (zp, xe, Cpp, Coxe + D) 2z € D,
where the flow set C' and jump set D are given as in
(5) and (4), respectively. Note that the formulation in (1)
could be exploited to extend the ETM in [2] to the case of
asynchronous events for input and output. AN

The following examples illustrate (1) for the state-
feedback case with y = x,, and § = &

Example 3.4: (ETM for state-feedback in [14]) A frame-
work is proposed for nonlinear continuous-time plants z,, =
F,(zp,u) controlled by the dynamic state-feedback con-
troller . = Fe(xc,xp), v = He(xc, xp) that is implemented
via ETMs. Such a model in [14] leads to N, = N, =
1, state z = (zp,xc,Tp, Uy x) € R™ x R™ x R™ X
R™ x R™, and the closed-loop system modeled as (1)
with data defined as follows. For each z € C, flow map
is given by F(z) := (Fy(xp, ey + He(2p, 2c)), Fe(2c, €2, +
), Fy(2), Fu(2), Fy(2)) and the jump map is given by

2The unknown disturbances w in [2] are ignored. See Section IV-B for
robustness analysis.



G(z) == (zp, e, Tp, He(Tp, ), Gy (7)), Wheree, = —u
and e, , = I, —x,. However, the flow set C' and jump set D
in [14] are only provided specifically for each of the ETMs
in the five given examples, among which, all can be written
in form (5) and (4); in particular, see Example 3.5 for the
strategy in [14, Section V.C]. A

According to [14, Section V.C], the ETM developed for
systems with static state-feedbacks in [1] can be adapted to
the framework in [14]. Thus, it also fits (1).

Example 3.5: (ETM for ISS static state-feedback in [1])
For a real-time scheduling problem, [1] develops an ETM
for the continuous-time system &, = Fj(z,,u) controlled
by a static state-feedback controller v = H.(z,). The
controller is assumed to render the closed-loop system &, =
Fy(zp, H.(z)p + €)) Input-to-State Stable (ISS) with respect
to e, namely, it is assumed that there exists a smooth function
V:R" — R>p and @, a, o, 7 € Koo such that

aflzp|) < V(xp) < al|apl)
(VV (@p), Fp(p, He(zp + €))) < —al|zp]) +(le])
for each (z,e) € R™ x R™. The ETM memorizes x,, from

the most recent event; hence, e = £, — z,. Such ETM leads
to (1) with N, = N, = 1 and the event-functions given as

VY (@p, Tp) = v (2p, Tp) = V(|12p — 7p|) — 0(|p|) Where
o € (0,1). With z = (xp, &) € R™ x R"r, the resulting
system is given by

2=F(z) = (Fp(zp, He(£p)),0) z€C ©)
2t =G(2) = (xp, xp) z€eD.

where D and C' are given as in (4) and (5), respectively. A

(8a)

H

IV. PROPERTIES OF GENERAL FORMULATION

In this section, we study the properties of the closed-loop
system H with ETMs modeled as (1).

A. Stability and Convergence Analysis

The results in [8] for certifying asymptotic stability for
general hybrid systems can be employed to design the ETMs
in the closed-loop system 7 in (1). In [8, Chapter 3], uniform
pre-asymptotic stability of a set is defined as the property
that, in particular, solutions starting close to A stay close to
it, and maximal solutions that are complete converge to it,
uniformly in hybrid time over compact sets; see [8, Definition
3.6]. In [8, Chapter 7], an invariance principle to locate the
w-limit set of maximal and complete solutions is given. The
following theorem conveniently summarizes these results.

Theorem 4.1: Let H be the hybrid system with data
(C,F,D,G) given by (5), (6), (4), and (7), respectively,
and let A be closed. Suppose that there exists a continuous
function V' that is Lipschitz continuous on an open set
containing C' such that

a1 (|z] ) S V(z) < az(]z]4)
V(2 f) < ase(z)
Vi(g) = V(2) < asa(z)

for some a1, 00 € Ko, a3 : C = R, a3 q: D — R, where

V°(z; f) denotes Clarke’s generalized derivative (see [15]).
Then, the following hold:

VzeZ (10a)
VzeC, f € F(z) (10b)
Vze D, g € G(z) (10c)

a) If asc(z) = AV (2) and a3 q4(z) = (exp(Ag) — 1)V (2)
with Ae, Aq € R and there exists M,~ > 0 such that,
Jor each solution ¢ to H, (t,7) € dom¢p = At +
Xaj < M —~(t + j) then A is uniformly globally pre-
asymptotically stable;

b) If H satisfies the hybrid basic conditions, o3 . is a neg-
ative definite function relative to A and a3 q4(z) < 0 for
each z € D, then the set A is stable and each precompact
solution to ‘H approaches the largest weakly invariant
subset® of V-1(r)N((ANC)U (a;i(O) N G(a;i(O))))
for some r € V(Z);

¢) If H satisfies the hybrid basic conditions, oz q is a
negative definite function relative to A and ag (z) <0
for each z € C, then the set A is stable and each
precompact solution to ‘H approaches the largest weakly
invariant subset of V="1(r)N (043_; (0)U(AND)) for some
reV(2);

d) If H satisfies the hybrid basic conditions, as 4(z) < 0
for each z € D and a3.(z) < 0 for each z € C, then
the set A is stable and each precompact solution to H
approaches the largest weakly invariant subset of

V() N (05,(0) U (a5 4(0) N G(az 3(0))))

for some r € V(2).
Furthermore, if H is such that C and F satisfy (Al) and (A2)
in Definition 2.2 then the above statements hold with (10b)
replaced by

VO(z f) < aze(2)

Remark 4.2: A local version of Theorem 4.1 also holds by
restricting the system to the set of interest. Item a) provides
good flexibility in the search for a Lyapunov function as,
in particular, covers the case where V' grows during flows
(A¢ > 0) but decreases at jumps (A¢ < 0), which seems
natural in event-trigger control as the control input is only
updated at events, likely leading to a decrease of V, while
in between events V' may grow continuously. In addition,
item a) covers [14, Theorem 1], which, since assumes that H
satisfies the hybrid basic conditions, (11) can be used instead
of (10b). Furthermore, Theorem 4.1 pertains to stability and
convergence only. The issue of completeness, lower bound
on the inter-event times, and robustness are addressed in the
next sections.

V2 € C, f € F(z)NTeo(z). (11)

Next, we revisit Example 3.5 to illustrate the use of
Theorem 4.1.

Example 4.3: (Example 3.5 revisited) In this example,
Theorem 4.1 is applied to show pre-asymptotic stability of
A = {(zp, &p) € R™ x R"™ : z, = 0} for (9). Consider
V(z) = V(z,) for every z = (x,2,) € R™ x R,
Condition (10a) follows from assumption (8a). Then, (10b)
holds with a3 .(2) = —(1 — o)a(|zp|) for each z € C. The
inequality in (10c) holds with ag 4(z) = 0 for each z € D
because V is constant during jumps. Hence, it follows from
Theorem 4.1.b) that the set A is globally pre-asymptotically
stable since a;i(o) N G(a;i(o)) Cc A A

3See [8, Definition 6.19].



B. Robustness Analysis

When the closed-loop system given as in (1) satisfies the
properties in Lemma 3.1, H is nominally well-posed [8, Defi-
nition 6.2]. Moreover, given a compact set that is (uniformly)
pre-asymptotically stable for such H, the stability property
is robust to small perturbations. In particular, perturbations
on ¥y, u, and the plant dynamics leads to

se{ce [Pl do sl ] [ i) )

where dy,d, correspond to the noise and d, captures un-
modeled dynamics. Hence, with dy = (0,0,dy,dy,0) € Z,
gg = (d,,0,0,0,0), the closed-loop system # given as in
(1) with such perturbations, which is denoted by 7:2, has state
z = (xp, ¢, §, G, x) and dynamics*

~| 2 € F(z+671)+672 z+d €C
2t e Glz+dy) z+dy € D.

The following result establishes that stability is robust to
small measurement noise and unmodeled dynamics.

Theorem 4.4: Suppose H satisfies the hybrid basic con-
ditions and there exists a compact set A C Z that is pre-
asymptotically stable for H with basin of pre-attraction Bi.s
Then, there exists 3 € KL such that, for each € > 0 and
each compact set K C BY, there exists 6 > 0 such that
Jor any two measurable functions 671, JQ :R>o — 0B, every
solution ¢ € Sz (K) satisfies

6(t,7)|a < B(16(0,0)| 4t + j) +&  V(t,j) € dom .

C. Completeness of Maximal Solutions
Conditions to guarantee completeness of every maximal
solution to (1) are proposed next using [8, Proposition 6.10].

Proposition 4.5: Suppose the hybrid system H in (1) with
system data given as in (4)-(7) satisfies the hybrid basic
conditions. Then, there exists a nontrivial solution to H from
every initial point in CUD = Z if

(VC’) For every z € {z € Z : 7} () < 0,7 (§) <0,
iy € {1,2,...,Nu},iy € {1,2,...,Ny},y € Hp(xp),u €
Hc(xcu g)}’ F(Z) N TC(Z) 7é (Z)
Moreover, every ¢ € Sy is complete if
(b’) case (b) in [8, Proposition 6.10] does not hold for every
¢ € Su;
(c’) Gy(D) C X.

Remark 4.6: When Z = R"™, the set C'\ D is open. Since
for every z € int (C'\ D), F(z) C Tc(z) = R"™, condition
(VC’) holds trivially. In principle, condition (b’) is a solution-
dependent property, which can be guaranteed when either C'
is compact or F' is bounded on C. All maximal solutions
to the closed-loop in (9) in Example 3.5 are complete when
Fy(zp, He(%p)) is locally Lipschitz.

D. Lower Bound on Inter-Event Times by Design
In this section, we present conditions on the system data

to guarantee a uniform positive lower bound on inter-event

4Perturbations on C and D, in particular, in the ETM, is also allowed.
3See [8, Definition 7.3].

time for all solutions to (1). By guaranteeing such a bound,
the jumps do not happen arbitrarily close in time. Moreover,
the proposed conditions ensure a lower bound on the time
between events for systems with small perturbations, for
which we impose the hybrid basic conditions on the system
of interest. As the following example shows, when such a
lower bound is not guaranteed, a “vanishing” perturbation
leads to Zeno solutions.

Example 4.7: (Example 3.5 revised) Consider the ETM
presented in [1] applied to a dynamical system with state
zp, € R given by &, = Fp(2p,u) :==u, u = H.(xp) =
—x,,. Then, the closed-loop system is given as in (9) with
2z = (2p,2p), F(2) = [z, 0]" and G(2) := [z, 7] .
According to [1], we pick triggering event ~v*(zp,Zp)
Y (zp, &p) = |&p — xp| — olz,| With o € (0,1). Suppose u
is effected by a disturbance d,,. Then, the resulting perturbed
system has flow map defined as F'(z) := [~z,, +d, 0] for
every z € C:= {z € R? : |&, — xp| — o|xp| < 0}, the jump
map remains the same as in (9), and the jump set is given

— 2.4
as z € D :={z € R® : &, — xp| — olxp| > 0}.
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Fig. 2: Simulation of closed-loop system in Example 3.5 with
vanishing perturbation d,, on u.

Figure 2 illustrates solution to the system under influence
of the vanishing perturbation d, = —#,|#,[°~! with 0 =
b =1/2 and initial conditions &,(0,0) = z,(0,0) = 1. The
resulting solution induces Zeno behavior with accumulation
point in the time domain given by ¢ ~ 1.22.° A

By construction of (1), jumps are triggered by either “event
type vy, ie., ”y?y (¢) = 0 with i, € {1,2,..., Ny}, or “event
type u,” i.e., 7} (§) = 0 with i, € {1,2,..., N, }. Since these
events are asynchronous, it suffices to guarantee a uniform
positive lower bound for each type of event. To this end,
for a given solution ¢ € Sy, let E be the set of all points
in dom ¢ at which a jump occurs (J := sup, dom¢ can
be finite or infinite). Moreover, we denote the collection of
points in dom ¢ at which a jump is triggered by “event type
y” as Iy, while I, denotes the collection of points in dom ¢
at which a jump is triggered by “event type u.” Note that
E,UE, = E. Then, given a solution ¢ € Sy, the minimum
inter-event time for “event type y” is given by

At, = inf{t"—t":(t',7),(t",j") € By, j'<j"}. (12)
Similarly, the minimum inter-event time for “event type u”
is given by

At, = inf{t"—t":(¢',5),(t",7") € Eu,j'<j"}. (13)

5Code at github.com/HybridSystemsLab/EventTriggerScalarZeno



Following [16, Lemma 2.7], we provide a necessary and
sufficient condition for the existence of a positive uniform
lower bound on inter-event time.

Proposition 4.8: (positive lower bound on inter-event
times) Suppose H satisfies the hybrid basic conditions and
that every ¢ € Sy is precompact. Then, for every ¢ € Sy

1) there exists Ay > 0 such that At, given as in (12)

satisfies At, > X\, iff D, NG(D,) = 0;
2) there exists Ay, > 0 such that At, given as in (13)
satisfies Aty > Ay, iff Dy N G(Dy,) = 05

Note that some assumptions on system data and solutions
in Proposition 4.8 are not “necessary” in the sense that
without these assumptions,” the necessary and sufficient
condition for the existence of the lower bound is still valid.
We impose these conditions because they guarantee nominal
well-posedness, which, as seen in Section IV-B, is crucial in
the robustness and stability analysis for hybrid systems.

E. Lower Bound on Inter-Event Time via Temporal Regular-
ization

The conditions in Proposition 4.8 guarantee a lower
bound on inter-event times. When those conditions are not
enforced at the design stage, the closed-loop system may
have Zeno solutions from initial conditions in 4 or from
nearby it. A way to guarantee such a lower bound is to
temporally regularize the closed-loop system by adding a
timer to each ETM with dynamics that allow events to occur
only after a particular positive amount of time has elapsed
after every respective event. To this end, let 7 be a timer
with positive threshold T' € [0,7*), where T* is a fixed
positive parameter.® The augmented version of the closed-
loop system H = (C, F, D, G) in (1) is denoted #, has state
Z=(z,7) € Z x R>g, and dynamics

ZeEF(z)xp(r) Ze(CxRxp)U(Zx][0,T))

Zt € G(z) x {0} zZ€e D x[T,00)
where p is designed to have 7 converge to [0, 7*]. A partic-
ular choice is p(7) = 1 for each 7 € [0,7%), p(r) = [0, 1]
for 7 = T*, and p(7) = —7 + T for each 7 > T™. Note
that when 7" = 0 the z component of 7{ matches that of .
We have the following result.

Theorem 4.9: Suppose the set A is compact and pre-
asymptotically stable for the closed-loop system H in (1)
with basin of pre-attraction BY. Then, the set A x [0,T*]
has the following semiglobal practical (in the parameter T')
stability property: there exists a class-KCL function 3 such
that for each compact set K, x K. C BY x R>( and each
€ > 0 there exists T' € (0,T*) such that for each T' € (0,77,
every solution ¢ to H with $(0,0) € K, x K, satisfies

|t 3)axio,r+) < B(#(0,0)] axjo,7+)t +J) + €
V(t,j) € dom QNS
F. Zeno Stability .3)
Though not recommended due to the reasons illustrated
in Example 4.7, if Zeno solutions from A are acceptable,

"The convexity of F(z) required by (A2) in Definition 2.2 is one such
assumption.
8The threshold could be function of the augmented state.

one might be interested in determining if solutions starting
nearby A are also Zeno. [17, Proposition 4.5] provides a set
of conditions for Zeno solutions to exist from nearby .A.

V. CONCLUSION

A general framework is proposed to model the closed-
loop system resulting from event-triggered control of a
continuous-time system as hybrid systems. Multiple existing
event-triggered strategies fit the proposed model. Recent
developed tools for hybrid systems are applied to analyze its
stability, convergence, and robustness properties. Moreover,
conditions are proposed to check completeness of maximal
solutions, more importantly, to guarantee a uniform positive
lower bound on inter-event times. The Zeno behavior of
solutions can be also avoided by constructively designing
a temporal regularization of the proposed model.
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