
RC-UDP: On Raptor Coding Over UDP For
Reliable High-Bandwidth Data Transport

Abderrahmen Mtibaa∗, Charles Good∗, Satyajayant Misra∗, David G. M. Mitchell†, Bhumika Parikh∗
∗ Department of Computer Science, New Mexico State University

† Klipsch School of Electrical & Computer Engineering, New Mexico State University

Abstract—Data-driven and collaborative research has become
the trend for today’s scientific communities, resulting in large-
scale datasets being shared and transported through networks
every day. Most of these large data transfers use TCP sockets
which are known to be limited in long-distance and high-
bandwidth scenarios. UDP, on the other hand, while fast and
efficient does not implement any reliability mechanisms. In this
paper, we investigate the use of erasure coding techniques, namely
fountain codes, on top of UDP to help high speed and reliable
data transfer applications to attain high bandwidth in the face
of packet losses. We propose RC-UDP, a Raptor Code over
UDP framework that enables reliable data transfers for high
bandwidth networks. We implement RC-UDP and evaluate its
performance using computer simulation (ns-3) and real world
testbed experimentations. We compare RC-UDP to HighSpeed
and CUBIC TCP. Our results show that RC-UDP, which achieves
up to 75× time reduction while incurring minimum overhead,
is beneficial when the network is subject to high congestion or
packet drop rates.

I. INTRODUCTION

Scientific data is often extremely large in size and needs
to be shared among multiple collaborative researchers, often
residing in multiple geographical locations, that results in daily
large-scale data transfers over long-distance networks. Such
large data transfers create multiple issues and challenges that
urged researchers to consider novel architectures, technologies,
and transport protocols. The commonly-used Transmission
Control Protocol (TCP) has limitations when used for long-
distance and/or high-bandwidth networks [1]. While some
researchers have focused on improving TCP’s congestion
control/avoidance algorithms [2], [3], we investigate the use of
rateless coding [4] to ensure reliability over the “unreliable”
User Datagram Protocol (UDP) as a means to increase the
throughput in such high bandwidth networks. Thus, we allow
as many packets as necessary to be transmitted to successfully
recover the source message at the decoder.

A Forward Error Correction (FEC) code typically operates
on a fixed block/packet length, with fixed rate, and can
correct a number of errors up to a predefined maximum that
depends on the encoder and decoder.Rateless or Fountain
codes, however, generate a potentially infinite stream of en-
coded data, called symbols, in order to improve the recovery
probability regardless of the error or loss rates applied to the
original encoded symbols. Luby Transform (LT) codes [4],
one of the first practical rateless coding schemes, incur an
encoding/decoding cost of O(k log k), where k is the original
number of encoded symbols (file size). Raptor (rapid Tornado)
codes [5] achieve linear time encoding and decoding (O(k))
by adding an outer low-density parity-check (LDPC) code.

In this paper, we propose RC-UDP, a Raptor Code over
UDP framework that enables reliable data transfers for high-
bandwidth networks. Our framework is implemented as a
middleware that encodes blocks of data into an infinite encoded
stream and sends them using UDP in order to increase the
overall throughput and decrease end-to-end transfer delays.
We implement an active acknowledgement mechanism at the
decoder, wherein the decoder acknowledges the successful
decoding of a received block. This acknowledgement in turn
triggers the sender to send another encoded block. RC-UDP
implements a block-by-block flow control which limits the
flooding rate for a given block i by estimating the number
of packets dropped while transporting block i − 1. We use
standalone raptor encoding and decoding modules which we
integrate into our RC-UDP protocol implementation. We eval-
uate RC-UDP using both ns-3 [6] simulation and real world
testbed experimentation. We validate our implementation and
test a large spectrum of parameters such as the block size,
symbol lengths, and encoding matrix size. We also compare
RC-UDP versus latest versions of TCP (CUBIC and high
speed TCP). In this paper, we investigate the benefits and the
drawbacks of using RC-UDP for high bandwidth networks
using both the Energy Sciences Network (ESnet) [7] and
random network topologies.

Our contributions include: (i) proposing RC-UDP, a frame-
work that ensures reliable communication while maximizing
the throughput and reducing data delivery latencies. We im-
plement RC-UDP using a raptor code module that encodes
all datagram messages; (ii) comparison of RC-UDP success
rate and transfer delays with HighSpeed TCP performance
using both network simulation and testbed experimentation;
(iii) quantifying the overhead required to recover encoded
messages at the decoder node; (iv) investigation of the tradeoff
between overhead and latency performance of RC-UDP using
real world and random topologies and a large spectrum of
network parameters; and (v) demonstration of RC-UDP in the
presence of high network congestion and/or packet drops.

II. BACKGROUND & RELATED WORK

Many researchers have noted the slowness of TCP and its
inability to take advantage of available bandwidth [3]. TCP
enhancements [2], [3] have been proposed and various FEC
schemes on top of UDP [8], [9], [10] have been considered.
Given the limitations of fixed-rate based solutions to adapt to
the network characteristics [11] and the inefficiency of random
linear network coding [12] for wired unicast application such

1 2 3 4 K

1 2 3 4 K K+1 K+2 K+R

.....

.....
Redundant symbols

LT-Coding

Precoding

.....

Original Message

Block 1 Block 2 Block N.....

Fig. 1. Raptor coding phases (i) pre-coding, and (ii) LT-coding.

as high-bandwidth data transfers [13], rateless or fountain
codes [8] have been largely investigated to ensure reliable
communications in lossy networks [14], [15]. Rateless codes
have been employed for both the packet erasure channel [10]
and general wireless channels [9].

Rateless codes have been used to design new transport
protocols using TCP without its congestion control [15], [16],
or UDP [17]. Most of the raptor coding transport protocols
were designed for small sized packet transfers [17], [14]
or lossy wireless communications [17]. Molnar et al. [15]
proposed DFCP, which uses raptor coding to replace TCP’s
congestion control, to achieve higher goodput performance
under a wide range of packet loss rates and round-trip delay
environments. However, TCP’s flow control in DFCP uses
sliding windows which limits the goodput as mentioned by
the authors [15].

Most relevant to our research are (1) RCDP, a raptor-based
content delivery protocol was designed for intelligent transport
systems wireless communications where messages are small
and paths are short [17], and (2) Chong et al. [14] proposed
a UDP based raptor transport protocol which implements a
stop-and-wait protocol making it very slow for high bandwidth
network communications. Compared to these approaches, our
work implements reliable and fast transfers of large data
blocks while maintaining low overhead in the network. It’s
block-by-block flow control helps a full and quick utilization
of the available resources in the network, without incurring
performance degradation. To the best of our knowledge, our
work is the first to implement, simulate, and experimentally
evaluate, using a large spectrum of parameters, raptor coding
over UDP as an alternative transport protocol.

III. RATELESS CODING: PRELIMINARIES

For a given vector (x1, x2, . . . , xk) of R source symbols,
a fountain encoder produces a potentially infinite stream of
encoded symbols (y1, y2, . . .). When the decoder has received
enough symbols/packets (typically slightly larger than the
original message size), the message can be recovered. When
packet losses occur in the network, the receiver node is able
to recover the original message by collecting any sufficiently
large subset of the encoded stream.

Let s be a source node (which we also refer to as the en-
coder) that transmits a message m, of size Sm, to a destination
node d (the decoder). In raptor codes, the original message m
is partitioned into a stream of N blocks (b1, b2, . . . , bN) of

Application

Transport

Network

Data Link

Physical

RC-UDP Reliability Middleware
Framework

UDP: unreliable
TCP: conservative

Applications choose
reliability service

Packet Drops/Errors

(a) RC-UDP framework

Send En/Decode Parameters

Pre-
Encoded?

Encode & Divide
Encoded Symbols

Send

ACK
received?

Yes

No

End

Start:
Parameter Initialization

No

ACK
Received?

No
Yes

More
Blocks?

Yes

Per Block Flow
Control

NoYes

(b) RC-UDP process

Fig. 2. Overview of RC-UDP.

fixed size B, where N × B = Sm. Each block bi consists of
K symbols of fixed size L bits. The source node encodes
each block bi in two phases as shown in Fig. 1: (i) pre-
coding, and (ii) LT coding. The pre-coding phase consists of
encoding the K original symbols by adding parity symbols via
a pre-specified (outer) code, usually an LDPC code [18]. This
process generates R redundant symbols, called repair symbols.
All K +R symbols are then encoded according to the (inner)
LT code using an exclusive-or (XOR) operation following a
pre-specified distribution [4].

IV. THE RAPTOR CODING OVER UDP FRAMEWORK

A. Overview

While TCP, and its enhancements for high-bandwidth net-
works, such as CUBIC [2] and HighSpeed TCP [3], implement
multiple features to ensure reliable end-to-end communication
between end hosts, their performance degrades in environ-
ments where packet drops are transient or a bufferbloat [19]
occurs in the network of fast pipes and large queuing delays
that overwhelm TCP’s congestion control.

RC-UDP resides as a middleware between the application
and the transport layers as shown in Fig. 2(a). RC-UDP is
designed for efficient and reliable large-scale data transfers
such as scientific data collaborative sharing applications. The
coding scheme ensures end-to-end reliability using an unreli-
able but efficient UDP transport protocol.

B. RC-UDP Protocol Design

RC-UDP implements a rateless coding which consists of
sending a stream of encoded symbols to the destination node
until it receives an explicit acknowledgement (ACK) indicating
successful reception and decoding.

a) RC-UDP Framework: Fig. 2(b) details the RC-UDP
encoding process. As soon as the application obtains data
to transmit, it chunks it into blocks and starts the encod-
ing/sending process block-by-block. The encoder then sends
the set of parameters needed for the encoding/decoding pro-
cedure. These parameters consist of the total data length Sm,
number of source blocks N , number of symbols per block
K, block size B, and symbol length L. When the decoder
acknowledges the reception of the parameters, the encoder

 0

 0.2

 0.4

 0.6

 0.8

 1

10-2 10-1 100 101 102 103

C
D

F

Encode time (s)

Enc 1K
Enc 10K

Enc 100K
Enc 1M

(a) Encoding time (1024 bytes symbol size)

 0

 0.2

 0.4

 0.6

 0.8

 1

101 102 103

C
D

F

Encode time (s)

L=1KB
L=512B

L=256B
L=128B

(b) Encoding time (500 KB block size)

 0

 0.2

 0.4

 0.6

 0.8

 1

10-3 10-2 10-1 100 101 102 103

C
D

F

Decode time (s)

Dec 1K
Dec 10K

Dec 100K
Dec 1M

(c) Decoding time (1024 bytes symbol size)

Fig. 3. Encoding and decoding time for: (a) and (c) different file sizes, and (b) different block sizes.

starts encoding and sending block-by-block until all data is
received and acknowledged by the decoder.

For any given block, RC-UDP generates a list of encoded
symbols that are partitioned into a set of r symbols per
packet, where r is set according to the maximum transmission
unit (MTU). When the decoder receives (1 + ε)K symbols
from a given block, it acknowledges (ACK) the reception
of the block and decodes it. When the encoder receives an
acknowledgement of the successful reception of a given block,
it checks if there are more blocks to encode/send. If so,
it verifies if the next block is already pre-encoded and the
process continues as shown in Fig. 2(b).

b) Block-by-block Flow Control: The encoder imple-
ments a block-by-block flow control consisting of estimating a
waiting delay between blocks. If no pre-encoded blocks exist
then the encoder waits until the next block is encoded and
sends it with no delay. If a block is already pre-encoded at
the time it receives an ACK (acknowledging the reception of
the previous block) then the encoder computes a waiting time
T which aims to reduce the flood of UDP messages if the
network is congested. T is computed based on an estimation
of the number of packets dropped during the transfer of the
previous block, ∆P ; upon reception of ACK, the source
compares the number of packets transmitted, Ps, and the
number of packets received by the destination (1 + ε)K/r;
therefore, ∆P = Ps − (1 + ε)K/r. We use T = ∆P · δt,
where δt is a waiting delay per dropped packet. In this paper,
we set δt = 0.3ms. Tuning δt is not investigated as it is beyond
the scope of this paper.

C. Encoder & Decoder Modules

The rateless encoding and decoding scheme affects the
efficiency of RC-UDP. Therefore, we first deploy and test
a standalone rateless raptor encoding and decoding python
modules in [14]. These modules are integrated into our RC-
UDP algorithm as described earlier.

The standalone raptor encoder module uses encoding pa-
rameters that are set by users (or applications), such as the
length of the source symbols and the number of overall
symbols, to generate a set of encoded symbols, and employs
a randomly generated degree distribution used by the LT
encoder. The decoder module converts the sparse LDPC matrix
into a (potentially) dense generator matrix using Gaussian
Elimination in order to determine the repair symbols.

A set of preliminary experiments were run to measure the
encoding and decoding times using an Intel Core i7-6700K

10Gbps 100Gbps

Fig. 4. ESnet topology.

CPU @ 4.00GHz PC with 64GB of RAM, running Ubuntu
16.04 LTS OS. Note that our results do not evaluate raptor
coding performance in general, but rather test its functionality
under a given set of parameters. In addition, time requirements
can vary drastically depending on the computation resources
and could be significantly improved using GPU or a hardware
implementation of raptor coding.

We vary the encoded file size and the symbol size to plot
a distribution of 1000 different encoding and decoding times
in Fig. 3. First we fix the symbol size L = 1024B, and plot
in Fig. 3(a) the encoding time distribution for file sizes Sm =
1KB, 10KB, 100KB, 1MB, and 10MB. While in theory raptor
codes achieve linear time encoding and decoding, we found
that the time to encode is empirically “not linear” using this
module implementation. Moreover, when we fix the file size
and vary the symbol size L from 128 bytes to 1KB (Fig. 3(b)),
we found that the time is inversely proportional to L. Indeed,
the larger L, the less symbols are available to encode (LDPC
and LT encoding). Note that we choose not to consider larger
symbol sizes in order not to exceed the MTU.

In Fig. 3(c), we plot the decoding time distribution of 1000
trials with 0 to 10% random symbol drop ratio. Unexpectedly,
we found that decoding is slightly faster than encoding on
average, but decoding of large files can reach 2× the encoding
time of the same file. We also note that block size B = 1MB
and symbol size L = 1KB appear to be the best performing
block and symbol sizes for both encoding and decoding time.
We therefore fix them as constant for the rest of this paper
and evaluate our RC-UDP using both simulation (Section V)
and real world testbed implementation (Section VI).

V. SIMULATION RESULTS

First, we evaluate RC-UDP via computer simulation using
the network simulator, ns-3 [6]. We implement RC-UDP in
ns-3 as described in the previous section. In this simulation
experiment, we did not implement the encoding and decoding
modules, but used the time distributions in Fig. 3 as waiting
delays to perform such operations. Note that we discuss a real
world experimental study of RC-UDP in the next section.

TABLE I
NETWORK TOPOLOGIES.

Topology # Nodes # Links Capacity
ESnet 16 20 [0.5,5] Mbps
Random (ER) 50 [100, 120, · · · , 280] [10,100] Gbps

A. Metrics & Parameters

We consider two types of network topologies to evaluate
RC-UDP performance: ESnet and random graph (ER) net-
works, as summarized in Table I. We emulate the ESnet as
shown in Fig. 4, with 16 nodes and 20 links spanning the
USA. We assign a capacity of 100Gbps for most of the
links except the links connected to the Boston and Boise
nodes (highlighted), which have a capacity of 10Gbps [7].
The second topology considered consists of a network of 50
nodes connected randomly, with the number of links from 100
to 280. This variation allows us to investigate the impact of
density and congestion on the RC-UDP performance. For each
topology, we use HighSpeed-TCP (HS-TCP) as a benchmark
method for comparison to quantify the gain achieved with
RC-UDP. HS-TCP is designed to overcome TCP’s limitations
for high-bandwidth file transfer applications [3]. Note that we
use CUBIC TCP for our real world experimentation in the
next section. In each trial, we consider three simultaneously
communicating source/destination pairs where sources send
files of size Sm chunked into blocks of size B. We vary the
size of the message sent by the application while fixing the
data payload to 1 symbol of size L = 1024 bytes per packet.
We set the queue sizes at the nodes to 100 packets in ER and
10000 in ESnet, where packets will be dropped when arriving
at nodes with a full queue. We consider ε = 0.01 which has
been shown more than 99.9% success decoding ratio [8].

We consider two evaluation scenarios (with and without
packet drops): a) Scenario 1 (No Drops): In this scenario we
operate our networks in “low” congestion mode where link
capacities are adequate to send small bursts. We set all ER link
capacities to 5Mbps, thereby providing enough bandwidth for
the considered B = 1MB blocks sent by all RC-UDP nodes.
We note that in the case of ESnet, links are pre-configured and
remain unchanged as shown in Fig. 4. b) Scenario 2 (Drops):
We introduce fixed rate packet drops to the previous scenario
to evaluate the response of both RC-UDP and HS-TCP. The
rate error model in ns-3 is applied to random wired
point-to-point links in the network to create packet drops. The
packet drop rate varies from 1, 3, 5, to 10%. Results for the
3% packet drops are selected as an exemplary sample, but
similar behavior was registered for the other drop rates with
increased RC-UDP gains when the packet drop rate increases.

We perform ten different simulation runs for each parameter
set and present the average results. We measure; (1) the
average block transfer time, defined as the time between
sending the first byte by the encoder to the time required to
collect enough data to start the decoding process of a given
block ((1+ε)K symbols). We choose to normalize the transfer
time per B = 1MB (i.e., block size) to highlight the impact of
message size on the time to transfer the same block size; and
(2) the overhead transmitted by RC-UDP into the network.

100 140 180 220 260

No. links

0.8

1.0

1.2

1.4

1.6

1.8

2.0

1
M

B
 t

ra
n
s
fe

r
ti

m
e
 (

s
)

HS-TCP

RC-UDP

(a) Sm = 1MB

100 140 180 220 260

No. links

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1
M

B
 t

ra
n
s
fe

r
ti

m
e
 (

s
)

HS-TCP

RC-UDP

(b) Sm = 30MB
Fig. 5. Avg. transfer time per block of B = 1MB (ER: Scenario 1, 5Mbps
Links no drops).

This is measured as the additional data sent by the encoder
node in order to receive (1+ ε)K ·N symbols by the decoder.

B. Results

Transfer Time (ER Network): Fig. 5 compares the average
end-to-end transfer time of B = 1MB blocks between source
and destination pairs as a function of the number of links in
the networks using Scenario 1 (5Mbps links). We vary the
total data size, and present Sm = {1, 30}MB as shown in
Fig. 5(a) and 5(b), respectively. We find that, while transfer
delays decrease when the number of links increases (creating
shortcuts and faster routes for each transmission flow), RC-
UDP achieves higher transfer delay gain (≈ 35% reduction)
when the number of links in the network increases. Indeed,
when the paths become shorter the average number of con-
current flows sharing links decreases, which makes RC-UDP
send bursts faster with minimum errors/drops. While RC-UDP
transfers data faster than HS-TCP for most of the considered
data sizes, HS-TCP seems to outperform RC-UDP in sparse
networks (small number of links) due to its active flow and
congestion control in the presence of concurrent flows.

Fig. 6 plots the transfer time for RC-UDP and HS-TCP
when we apply 3% packet drops in the ER network (Scenario
2). We find that the gain with RC-UDP is considerable, reach-
ing up to 90% delay reduction compared to HS-TCP. In fact,
HS-TCP suffers significantly from such packet drops, whereby
its window remains very small resulting in a reduction of the
throughput. However, RC-UDP continues sending packets at
the same rate while the receiver employs FEC to recover the
original message with little or no delay when compared to the
previous scenario with no drops. Note that further gains are
observed when the drop rate increases.
Transfer Time (ESnet): We pre-encode data and emulate blocks
of encoded data of size B = 100GB. In this experiment, we
do not perform decoding, instead we assume that the receiver
will successfully decode the original block if it receives (1 +
ε) ·100GB. We plot, in Fig. 7, the average (using 4 runs) total
time to transfer different file sizes Sm = 1, 10, and 100TB
using (a) Scenario 1, as depicted in Fig. 7(a), and (b) Scenario

100 140 180 220 260

No. links

0

1

2

3

4

5

6

7

8

1
M

B
 t

ra
n
s
fe

r
ti

m
e
 (

s
)

HS-TCP

RC-UDP

(a) Sm = 1MB

100 140 180 220 260

No. links

0

2

4

6

8

10

12

14

1
M

B
 t

ra
n
s
fe

r
ti

m
e
 (

s
)

HS-TCP

RC-UDP

(b) Sm = 30MB
Fig. 6. Avg. transfer time per block of B = 1MB (ER: Scenario 2, 5Mbps
Links, 3% pkt drops).

100

101

102

103

1TB 10TB 100TB

To
ta

l t
ra

ns
fe

r t
im

e
(h

)
HS-TCP
RC-UDP

(a) scenario 1 (no drop)

100

101

102

103

1TB 10TB 100TB

To
ta

l t
ra

ns
fe

r t
im

e
(h

)

HS-TCP
RC-UDP

(b) scenario 2 (3% drops)

Fig. 7. ESnet average transfer delays of 1, 10, and 100TB files (B = 100GB).

2, as depicted in Fig. 7(b), where we introduce 3% packet
drops. While RC-UDP outperforms HS-TCP in both scenarios,
we see that when packet drops occur, HS-TCP performance
drops considerably resulting in bigger gains (up to 3.5×) using
RC-UDP. Note that the gain of using RC-UDP is up-to 6.7
days (for 100TB transfers with 3% drops) which represents a
major improvement for large-scale high bandwidth scientific
data transfers. Similar to the ER network results, we find that
the RC-UDP performance does not decrease as much when
packet drops occur, unlike HS-TCP.
Overhead: As described in Section 4, an explicit acknowl-
edgment mechanism was implemented to notify the encoder
of successful block decoding and to reduce the overhead
resulting from the infinite stream of data. Fig. 8 quantifies the
exact overhead (measured as a percentage of the block size)
introduced to the network. We find that Scenario 1 uses, on
average, only 3.85% overhead, often due to minor packet drops
and delays to receive the ACK message. Notably, Scenario 2
exhibits similar overhead as Scenario 1. This indicates that
the packet drops introduced in Scenario 2 do not noticeably
impact the overhead as they are transient. HS-TCP, however,
treats these transient packet drops as a sign of congestion and
reduces its throughput as shown in Fig. 6.

VI. TESTBED EXPERIMENTS

A. Experimental Setup

We implement our proof-of-concept RC-UDP prototype as
a client-server application and evaluate its performance using
a real world network testbed consisting of a sender node
(encoder), a receiver node (decoder), and a traffic shaper
connecting both entities as shown in Fig. 9. A real testbed
permits full control over the network parameters which we
can decouple and test their impact on RC-UDP performance.
We implement the traffic shaper using the Linux command
qdisc which directs the kernel to enqueue any received
packet before forwarding it. We implement pfifo (queuing
discipline), tbf (Token Bucket Filter), and netem (network
emulation) to control traffic at the shaper node.

We use three Dell laptops with Intel Core 2 Duo 1.66 GHz
Dual Core Processor and 2GB RAM running Ubuntu 14.04
and connected via a LAN switch as shown in Fig. 9. We then

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8

C
D

F

Overhead (%)

S1: 0% drop
S2: 3% drop

Fig. 8. RC-UDP overhead results using Scenarios 1 & 2 (S1 and S2).

RC-UDP
Receiver

RC-UDP
Sender

LDPC LT

UDP Socket Traffic
Shaper

QS, d, D, R2

UDP Socket

LT LDPC

R1 R2

Fig. 9. Schematic diagram of the testbed set-up.

set static routing to force all traffic between the sender and
receiver to pass through the traffic shaper. While we do not
control the sending rate (R1), we set a delay D, packet drops
d, queuing QS, and rate control (R2) at the traffic shaper
node as shown in Table II. We set the maximum burst (the
TBF bucket size) to 10KB.

B. Experimental Results

We perform multiple runs (with a two second waiting delay
between each run to clear out the packets of the last run from
the network) and measure the average total transfer time of
Sm = 1 and 10MB files using (1) CUBIC TCP (which we
will refer to as TCP), and (2) RC-UDP without considering
the encoding and decoding times. We note that for large data
transfers (e.g., those for collaborative science) it is normal
to assume that the data is pre-encoded and decoding happens
using fast machines at either ends. The encoding and decoding
processes can be easily implemented in GPUs and can be
highly parallelized and sped-up.

Fig. 10 plots the average over 50 different runs for the
total transfer time of a 1MB file (a single block) along with
the standard deviation (as error bars). Varying drop rates,
delay, and R2 are shown in Figs. 10(a), 10(b), and 10(c),
respectively. We found that RC-UDP outperforms TCP in most
of the experiments. Our testbed experiment allowed us to
isolate parameters to study the impact of each one on the
performance. Similar to the simulation results, when packet
drop rates increase, RC-UDP’s performance is not impacted
compared to that of TCP, which gets slower by a factor of
75× with 10% drop rate. Similar behavior is registered when
the network delay D (RTT) increases (see Fig. 10(b)). The
TCP transfer time increases exponentially due to its RTO
estimation [20], while RC-UDP recovers 40× faster when
D = 500ms. TCP outperforms RC-UDP by only 0.01ms when
D = 0.5ms (representing a fast link(s) between source and
destination pairs or a LAN connecting the pairs).

In Fig. 10(c), we show that TCP and RC-UDP transfer times
decrease when R2 increases beyond 50Mbps (50% of R1). For
R2 > 50Mbps, the large queue size will allow all packets to
be delivered with slight delays. Here, RC-UDP outperforms
TCP in all considered rates. In fact, while TCP reduces its
congestion window when R2 decreases, resulting in longer
transfer times, RC-UDP will register more drops resulting in

TABLE II
EXPERIMENTATION PARAMETERS.

Parameter Label Range Nominal Value
Bandwidth (Mbps) R2 [5,10,25,50,75,100] 100
Drop ratio (%) d [0, 1, . . . , 5, 10] 1
Delay (ms) D [0.5,5,50,100,250,500] 50
Queue size (KB) QS 130 130 (≈ 10pkt)

 0.1

 1

 10

 100

 0 2 4 6 8 10

Tr
an

sf
er

 ti
m

e
(s

)

Drop ratio d (%)

TCP
RC-UDP

(a) Impact of packet drops (d)

 0.1

 1

 10

 100

 0.1 1 10 100 1000

Tr
an

sf
er

 ti
m

e
(s

)

Delay D (ms)

TCP
RC-UDP

(b) Impact of halfway delay (D)

 0.1

 1

 10

 100

 0 20 40 60 80 100

Tr
an

sf
er

 ti
m

e
(s

)

Outgoing rate (Mbps)

TCP
RC-UDP

(c) Impact of available bandwidth (R2)

Fig. 10. 1MB file transfer experimental results; all y-axis are in log-scale; log/log-scale in (b).

 1

 10

 100

 1000

 0 2 4 6 8 10

Tr
an

sf
er

 ti
m

e
(s

)

Drop ratio d (%)

TCP
RC-UDP

(a) Impact of packet drops (d)

 1

 10

 100

 1000

 0.1 1 10 100 1000

Tr
an

sf
er

 ti
m

e
(s

)

Delay D (ms)

TCP
RC-UDP

(b) Impact of halfway delay (D)

 1

 10

 100

 1000

 0 20 40 60 80 100

Tr
an

sf
er

 ti
m

e
(s

)

Outgoing rate (Mbps)

TCP
RC-UDP

(c) Impact of available bandwidth (R2)

Fig. 11. 10MB file transfer experimental results; all y-axis are in log-scale; log/log-scale in (b).

longer transmissions and more overhead to recover. However,
RC-UDP recovers faster and achieves 5× reduction in latency
at R2 = 5Mbps. Moreover, we can see that RC-UDP registers
more consistent performance compared to TCP (registering
higher standard deviation values in most of the experiments).

We perform 10 runs, and measure the average transfer times
of 10MB files using TCP and RC-UDP in Fig.11. We notice
similar performance results as shown in Fig. 10 with slightly
slower transfer delays using TCP under D = 0.5ms.

VII. CONCLUDING REMARKS

This paper investigated the benefits (latency gain) and the
costs (overhead) of RC-UDP as a novel raptor code based
middleware proposed for reliable data transfers for large
amounts of data over high speed networks. The performance
was evaluated with/without congestion and in the presence or
absence of packet drops. We showed that although, RC-UDP
does not achieve good overhead-latency performance when
abundant bandwidth is available (compared to HighSpeed
TCP), it results in significant latency gains with minimum
overhead costs when the network is subject to congestion
and/or packet drops. Our study represents the first step towards
implementing a real-world platform for designing and testing
rateless coding schemes for data transfer applications.

ACKNOWLEDGMENTS

This material is based upon work supported in part by the
National Science Foundation under Grant Nos. CCSS-1710920,
1345232, 1248109, 1719342, and in part by NASA Training Grant
NNX15AL51H. The information reported here does not reflect the
position or the policy of the federal government.

REFERENCES

[1] V. Jacobson, R. Braden, and D. Borman, “TCP extensions for high
performance,” 1992.

[2] S. Ha, I. Rhee, and L. Xu, “Cubic: a new TCP-friendly high-speed
TCP variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 5,
pp. 64–74, 2008.

[3] S. Floyd, “Highspeed TCP for large congestion windows,” 2003.

[4] M. Luby, “LT codes,” in The 43rd Annual IEEE Symposium on Foun-
dations of Computer Science, pp. 271–280, IEEE, 2002.

[5] A. Shokrollahi, “Raptor codes,” IEEE Transactions on Information
Theory, vol. 52, no. 6, pp. 2551–2567, 2006.

[6] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,”
Modeling and tools for network simulation, pp. 15–34, 2010.

[7] W. Johnston, “Esnet: Advanced networking for science,” SciDAC Re-
view, vol. 4, p. 48, 2007.

[8] D. J. MacKay, “Fountain codes,” IEE Proceedings-Communications,
vol. 152, no. 6, pp. 1062–1068, 2005.

[9] M. Luby, T. Gasiba, T. Stockhammer, and M. Watson, “Reliable
multimedia download delivery in cellular broadcast networks,” IEEE
Transactions on Broadcasting, vol. 53, no. 1, pp. 235–246, 2007.

[10] Z. Xu, C. Yang, Z. Tan, and Z. Sheng, “Raptor code-enabled reliable
data transmission for in-vehicle power line communication systems with
impulsive noise,” IEEE Communications Letters, vol. PP, no. 99, pp. 1–
4, 2017.

[11] G.-H. Gho, L. Klak, and J. M. Kahn, “Rate-adaptive coding for optical
fiber transmission systems,” Journal of Lightwave Technology, vol. 29,
no. 2, pp. 222–233, 2011.

[12] P. Wu and N. Jindal, “Coding versus ARQ in fading channels: How
reliable should the phy be?,” IEEE Transactions on Communications,
vol. 59, no. 12, pp. 3363–3374, 2011.

[13] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding: an
instant primer,” ACM SIGCOMM Computer Communication Review,
vol. 36, no. 1, pp. 63–68, 2006.

[14] Z.-K. Chong, H. Ohsaki, B. Ng, B.-M. Goi, H.-T. Ewe, and S.-R. Chong,
“Improving reliable transmission throughput with systematic random
code,” in 41st Conference on Local Computer Networks (LCN), pp. 539–
542, IEEE, 2016.

[15] S. Molnár, Z. Móczár, A. Temesváry, B. Sonkoly, S. Solymos, and
T. Csicsics, “Data transfer paradigms for future networks: Fountain
coding or congestion control?,” in IFIP Networking Conference, 2013,
pp. 1–9, IEEE, 2013.

[16] Z. Móczár, S. Molnár, and B. Sonkoly, “Multi-platform performance
evaluation of digital fountain based transport,” in Science and Informa-
tion Conference (SAI), 2014, pp. 690–697, IEEE, 2014.

[17] M. Báguena, C.-K. Toh, C. T. Calafate, J.-C. Cano, and P. Manzoni,
“RCDP: Raptor-based content delivery protocol for unicast communi-
cation in wireless networks for ITS,” Journal of Communications and
Networks, vol. 15, no. 2, pp. 198–206, 2013.

[18] R. Gallager, “Low-density parity-check codes,” IRE Transactions on
Information Theory, vol. 8, no. 1, pp. 21–28, 1962.

[19] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the internet,”
Queue, vol. 9, no. 11, p. 40, 2011.

[20] P. Sarolahti, M. Kojo, and K. Raatikainen, “F-RTO: an enhanced
recovery algorithm for TCP retransmission timeouts,” ACM SIGCOMM
Computer Communication Review, vol. 33, no. 2, pp. 51–63, 2003.

