
Machine and Application Aware Partitioning for Adaptive Mesh
Refinement Applications

Milinda Fernando

School of Computing,

University of Utah

Salt Lake City, Utah

milinda@cs.utah.edu

Dmitry Duplyakin

Department of Computer Science

University of Colorado

Boulder, Colorado

dmitry.duplyakin@colorado.edu

Hari Sundar

School of Computing,

University of Utah

Salt Lake City, Utah

hari@cs.utah.edu

ABSTRACT

Load balancing and partitioning are critical when it comes to paral-

lel computations. Popular partitioning strategies based on space

filling curves focus on equally dividing work. The partitions pro-

duced are independent of the architecture or the application. Given

the ever-increasing relative cost of data movement and increasing

heterogeneity of our architectures, it is no longer sufficient to only

consider an equal partitioning of work. Minimizing communication

costs are equally if not more important. Our hypothesis is that an
unequal partitioning that minimizes communication costs signifi-
cantly can scale and perform better than conventional equal-work
partitioning schemes. This tradeoff is dependent on the architec-

ture as well as the application. We validate our hypothesis in the

context of a finite-element computation utilizing adaptive mesh-

refinement. Our central contribution is a new partitioning scheme

that minimizes the overall runtime of subsequent computations by

performing architecture and application-aware non-uniform work

assignment in order to decrease time to solution, primarily by mini-

mizing data-movement. We evaluate our algorithm by comparing it

against standard space-filling curve based partitioning algorithms

and observing time-to-solution as well as energy-to-solution for

solving Finite Element computations on adaptively refined meshes.

We demonstrate excellent scalability of our new partition algo-

rithm up to 262, 144 cores on ORNL’s Titan and demonstrate that

the proposed partitioning scheme reduces overall energy as well as

time-to-solution for application codes by up to 22.0%.

CCS CONCEPTS

•Computingmethodologies→Massively parallel algorithms;

KEYWORDS

domain decomposition; communication minimizing algorithms;

energy efficient computing; AMR; FEM

1 INTRODUCTION

As we scale up to exascale machines, the cost of data movement

and load-imbalance therein are a major bottleneck for achieving

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

HPDC ’17, June 26-30, 2017, Washington, DC, USA
© 2017 ACM. 978-1-4503-4699-3/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3078597.3078610

scalability [28] and energy and power efficiency [31]. These are

dictated largely by how data (or tasks) are partitioned across pro-

cesses. This motivates a need for better partitioning schemes for

our most demanding applications. While we continue to build

larger supercomputers, these come with increased parallelism and

heterogeneity at the node as well as the cluster level. In all cases,

minimizing load-imbalance and communication-costs as well as

minimizing data-movement are critical to ensuring scalability and

performance on leadership architectures. Additionally, the parti-

tioning algorithms need to be architecture (e.g. bandwidth) and

application-aware (e.g. data access pattern) and not simply divide

the problem into equal-sized chunks across p processes. These are

also important for reducing the energy footprint of our algorithms

and making extreme-scale computing economically viable [31]. To

be practical, such partitioning algorithms need to be optimal, i.e.,

with a O(N /p + logp) parallel complexity for partitioning N data

across p processes, ideally with low constants [12].

Space Filling Curves (SFC) are commonly used by the HPC com-

munity for partitioning data [7, 10, 36] and for resource allocations

[3, 32]. By mapping high-dimensional spatial coordinates (or re-

gions) onto a 1D curve, the task of partitioning is made trivial.

Locality, i.e., ensuring that regions that are close in the higher di-

mensional space are also close along the 1D curve, is guaranteed by

the ordering of the curve, leading to different SFC, such as Morton,

Hilbert, Peano, etc. The key challenge is to order the coordinates

or regions according to the specified ordering, usually performed

using an ordering function and sorting algorithm. This approach is

easily parallelized using efficient parallel sorting algorithms such

as SampleSort [11]. This is the approach used by several state-of-

the-art packages [5, 7, 10, 24, 36]. This approach either aims to get

the ideal load balance (N /p ± 1) or relies on the underlying sorting

algorithm to load balance. In either case there is no expectation

on the minimization of the communication costs beyond what is

afforded by the locality of the SFC.

Our hypothesis is that an unequal partitioning that minimizes
communication-costs significantly and is architecture and application-
aware, can scale and perform better than conventional equal-work
partitioning schemes. In this work, we test this hypothesis in the

context of SFC-based partitioning and present novel sequential

and distributed partitioning algorithms that minimize the overall

time-to-solution as well as the energy-to-solution by minimizing

communication costs in exchange for a (small) increase in work-

load imbalance. We evaluate energy-to-solution in addition to time-

to-solution to ensure that the increased load-imbalance does not

result in increasing the energy-cost of computations. Our approach

https://www.olcf.ornl.gov/titan/

is architecture and application-aware and will produce different

partitions on different machines and for different applications.

Related Work. Load balancing and partitioning are critical when

it comes to parallel computations. Generally partitioning involves

equally dividing the work and data among the processors, reduc-

ing processor idle time and communication costs. The standard

approach is to model the problem using a communication or data-

dependency graph and partition the vertices of the graph into

(roughly) equal-sized groups such that the weight of the edges

crossing across processes is minimized. Graph partitioning is a

NP-hard problem and most work focuses on heuristics to obtain

good approximations. Several graph partitioning packages exist

[9, 17, 22, 23, 37] but performance and parallel scalability is chal-

lenging, especially for applications requiring repeated partitioning,

such as Adaptive Mesh Refinement (AMR). In many such cases, SFC

are used as a scalable and effective partitioning technique [2, 5].

Note that several recent Gordon-Bell award winners have used SFC-

based partitioning techniques for this reason [15, 18, 27, 30]. One

of the main advantage of SFC based partitioning is the preservation

of geometric locality of objects between processors. Depending

on the SFC (i.e. Morton, Moore, Hilbert) that is used for partition-

ing, the amount of locality preserved differs [2]. Most SFC based

partitioning—especially for adaptive meshing—use the Morton or-

dering that offers a good balance between the quality of partition

and the efficiency of implementation.

There is a large literature of Space Filling Curve (SFC) based

partitioning schemes. Several works have compared the clustering

properties of space filling curves [1, 25] and concluded the superi-

ority of Hilbert curves over the Morton curve. Gunther et al[13]

demonstrated that using SFCs to build hierarchical data structures

such as octrees minimizes data access time. Algorithms have been

proposed for computing the (inverse) mapping between one and d-

dimensional spaces [2, 6, 7] including indexing schemes for unequal

dimension cardinalities [16], resulting in reduced communication

costs. Other applications include multi-dimensional data reordering

[20] and to speed up sparse matrix-vector multiplications [38] by

improving cache-utilization. Several implementations of SFC-based

partitioning algorithms are also available including Dendro [36],

p4est [5] and Zoltan [8]. A thorough review of SFCs and their

applications can be found in [2].

Contributions. While SFCs have been used for partitioning data

for a long time and several efficient implementations exist, our

algorithms produce better partitions and demonstrate the scala-

bility and efficiency experimentally. Our main contribution is the
development of a new SFC-based partitioning algorithm that enables
incorporation of a machine-model to produce high-quality partitions.
Our contributions in detail:

• Method: We present an algorithm that allows us to factor

in the overall communication costs during SFC-based par-

titioning. We demonstrate that reducing load-imbalance is

accompanied with increasing communication costs when

performed in a top-down manner. By using a performance

model to determine the tradeoff between work-imbalance

and communication costs, we can determine the optimal

partition that results in reduced time-to-solution for appli-

cation codes. Our approach is also comparable in perfor-

mance and scalability to existing SFC-based partitioning

approaches.

• Experimental Evaluation: We conduct experiments to

demonstrate the efficiency and scalability of our algorithm

on ORNL’s Titan up to 262,144 cores. We demonstrate

that our algorithm reduces runtime by up to 22% while

performing Finite Element computations. We also include

energy measurements for resulting matvec operations

on Cloudlab [29] and demonstrate similar 22% savings in

energy-to-solution.

Organization of the paper. The rest of the paper is organized as

follows. In §2, we give a quick overview of space filling curves

and octree-based adaptive meshing. In §3 we describe the new

partitioning algorithm, as well as justifications for trading minor

load-imbalance for reduced communication costs. In §4, we discuss

the experimental setup including the framework for measuring

the energy costs related with a finite element simulation. In §5,

we present results demonstrating the superiority of the new parti-

tioning algorithm. Finally, we conclude with directions for future

work.

2 BACKGROUND

The most common strategy for parallelizing algorithms is to par-

tition data. The primary goal of the partitioning approach is to

divide work equally (load-balance) and minimize the communica-

tion between processes. Geometry-based heuristics, such as the

use of Space filling curves (SFC) are often the only choice when the

data is complex and dynamic, such as for adaptive mesh refinement

[2]. For this reason, we will primarily use adaptively refined octree

meshes for illustrative purposes, although the proposed methods

are equally applicable to other spatial partitioning problems, such

as resource allocation[3, 32]. SFCs define a one-to-one mapping

between an d-dimensional space and one dimensional space. Since,

partitioning 1D data is trivial, such an ordering enables simple load-

balanced partitioning of data. The minimization of communication

is achieved by the clustering properties of the SFC. For applications

where the data dependencies are geometrically local, SFC-based

partitioning schemes are efficient, scalable and highly effective. We

introduce notation used for the rest of the paper in Table 1.

While SFCs are defined primarily for coordinates, they can be

easily extended to support regions, such as octants or elements, by

having a notion of an anchor coordinate, say the smallest corner

along all dimensions, and a measure of the size of the region, such

as the level of refinement. In the context of octrees, firstly a dis-

cretization of the coordinates is specified by the maximum level of

refinement, Dmax . This allows for the coordinates to be stored as

unsigned integers of length Dmax bits. We will consider ordering

for 3D regions specified using 4 values, the anchor (x ,y, z) and the

level l ∈ [0,Dmax). As previously mentioned, the usual approach

has been to define an ordering function using such coordinates and

use existing parallel sorting algorithms such as SampleSort. Since

it is not straightforward to incorporate the machine-model into a

parallel sorting algorthm like SampleSort, we will first present a

modified SFC ordering (and therefore partitioning) algorithm that

https://www.olcf.ornl.gov/titan/

comm MPI communicator

p number of MPI tasks in comm
r the task id (MPI Rank)

A global: input elements or regions

Ar local : input elements or regions local to task r

Ai local : elements or regions in the ith bucket

N global number of elements in A
n = N /p local number of elements in A
l refinement level of the curve or tree

Rh SFC based permutation function

Wmax max. of work assigned to an individual processor

Cmax max. of data communicated

tw interconnect slowness (1/bandwidth)

ts interconnect latency

tc intranode memory slowness (1/ RAM bandwidth)

Table 1: Notation used in this paper.

we will eventually extend to an architecture and application-aware,

communication-minimizing partitioning algorithm.

2.1 Modified SFC Ordering

Let us consider the sequential case first. Instead of relying on a

comparison based sorting algorithms such as quicksort or Sam-

pleSort, one can instead opt to use a non-comparative sorting

algorithm, such as the Radix sort [39]. If one considers the Most-

Significant-Digit (MSD) Radix sort, then this is equivalent to a

top-down construction of quadtrees or octrees, in 2D and 3D re-

spectively. Bucketing the data (re-ordering) based ok the k-th bit

of the x ,y, and z coordinates, is equivalent to splitting the octree

at the kth
level. We call this algorithm TreeSort (Algorithm 1). A

key difference between the standard Radix sort and TreeSort is

that we need to re-order the buckets based on the SFC-curve. The

complexity of the algorithm is not affected by the choice of SFCs. In

case of the Morton Curve, the ordering is fixed, independent of the

level. For cases where the ordering is based on the level, as in the

case of Hilbert, these can be applied at this level with an O(1) cost.

Another advantage of this approach is that it traverses the tree in a

depth-first fashion leading to good locality and cache utilization.

While it might seem like we have simply replaced Sample-

Sort with a Radix sort, there is an important reason for this. Be-

cause of the similarity to the octree construction, note that we get

progressively closer to the optimal N /p load on each partition. It

is this iterative nature of the Radix sort (induced partitions) that

makes it appealing over comparison-based approaches like Sam-

pleSort.

3 ARCHITECTURE-OPTIMAL

PARTITIONING

Two desirable qualities of any partitioning strategy are load balanc-

ing, and minimization of overlap between the processor domains.

SFC-based partitioning does a very good job in load balancing but

does not permit an explicit control on the level of overlap. Ideally,

we would like to have a perfectly load-balanced partition that also

minimizes the overall communication. But this is usually not pos-

sible, especially for non-uniform work distributions such as for

adaptively refined meshes. Additionally, it might not be possible

Algorithm 1 TreeSort (Sequential)

Input: A list of elements or regions A, the starting level l1 and the ending level l2
Output: A is reordered according to the SFC.

1: counts[] ← 0 ▷ |counts | = 2
dim

, 8 for 3D

2: for a ∈ A do

3: increment counts[child num(a)]
4: counts ← Rh (counts) ▷ Permute counts using SFC ordering

5: offsets← scan(counts)
6: A′[] ← empty
7: for a ∈ A do

8: i ← child num(a)
9: append a to A′ at offsets[i]

10: increment offset[i]
11: swap(A, A′)
12: if l1 > l2 then

13: for i := 1 : 2
dim

do

14: TreeSort(Ai , l1 − 1, l2) ▷ local sort

to minimize the load-imbalance and overall communication simul-

taneously. Since the cost of communication across inter-process

boundaries depends both on the machine characteristics, say net-

work bandwidth, as well as the application, i.e., the amount of

data being exchanged per unit boundary, it is important to con-

sider these aspects while partitioning data. Specifically, since the

goal of most parallel codes is to minimize time-to-solution (and

possibly energy-to-solution), it is important that the partition bal-

ances “equal assignment of work” with “overall communication

cost” to achieve these goals. Clearly such a balance is dependent on

both the machine-characteristics as well as the application’s data-

dependencies. In this section, we will incorporate these features

into SFC-based partitioning.

Simple partitions, such as those producing relatively cuboid

partitions have a smaller overlap compared with more irregular

partitions, as might be produced by a SFC-based partitioning algo-

rithm. In [35], we proposed a heuristic partitioning scheme based

on the intuition that a coarse grid partition is likely to have a

smaller overlap between the processor domains as compared to a

partition computed on the underlying fine grid. This algorithm first

constructed and partitioned a complete linear octree based on the

data (equivalent to a standard SFC-based partitioning). This was

followed by coarsening of the ocree and a second weighted parti-

tioning of the coarse octree to get simpler partitioning. There are a

few shortcomings of this approach. Firstly, this is a heuristic and

there are no guarantees that the partition produced will be better

than using the standard SFC-based partition. This is mainly due

to the reliance on an external sorting function and the bottom-up

(coarsening) fashion in which it operates. Secondly, the algorithm

considers neither the machine-characteristics nor the application

characteristics and will produce the same partition on different

machines and for different applications
1
. OptiPart addresses these

shortcomings. We will first present the distributed memory version

of TreeSort, then demonstrate that decreasing the load-imbalance

via this algorithm results in a monotic increase in overall communi-

cation costs, allowing users to specify a tolerance and reduce overall

communication costs. We then develop a performance model to

estimate the optimal tolerance to obtain the best time-to-solution

for the specific machine and application.

1
e.g. for the Poisson equation vs the wave Equation on the same mesh.

111
110

011
010

000

000
001

101
100

111

111
110

011
010

000

000
001

101
100

111

111
110

011
010

000

000
001

101
100

111

111
110

011
010

000

000
001

101
100

111

Figure 1: Equivalence of the MSD Radix sort with top-down quadtree construction when ordered according to space filling

curves. Each color-coded point is represented by its x and y coordinates. From the MSD-Radix perspective, we start with the

most-significant bit for both the x and y coordinates and progressively bucket (order) the points based on these. The bits are

colored based on the points and turn black as they get used to (partially) order the points.

3.1 Distributed Memory TreeSort

Our modified SFC-ordering algorithm TreeSort operates in a top-

down fashion. In this section, we propose a distributed variant

of TreeSort that enables fine control over the load-balance and

also enables reduction in communication costs in exchange for

higher load-imbalance. The distributed algorithm proceeds as the

sequential variant (§2.1), bucketing and partially sorting the data.

Unlike the sequential TreeSort, we have to traverse the tree in

a breadth first fashion, as the data needs to be distributed across

processors. Note that at each level, we split each octant 8 times

(for 3D), so in log
8
p steps we will have p buckets. A reduction

provides us with the global ranks
2

of these p buckets. Here p is

the desired number of partitions. Using the optimal ranks (r ·
N /p) at which the data needs to be partitioned for process r , we

selectively partition the buckets to obtain the correct partitioning

of the local data. This is in principle similar to the approach used

by algorithms such as histogramsort [33] and hyksort [34], except

that no comparisons are needed for computing the ranks. The

computational cost corresponds to the O(N /p) bucketing required

for each of the log
8
p levels. We also need p reductions and an

all-to-all data exchange. Therefore the expected parallel runtime,

Tp for the distributed algorithm is,

Tp = tc
N

p
+ (ts + twp) logp + tw

N

p
, (1)

where tc , ts , and tw are the memory slowness (1/RAM bandwidth),

the network latency and the network slowness (1/bandwidth), re-

spectively. In our evaluation, we considered trees of depth 30 (so

that the coordinates can be represented using unsigned int). Note

that up to 8
6 = 262, 144 buckets can be determined using six levels,

so the cost of determining splitters to distribute the data across pro-

cessors is significantly lower than other approaches. An analysis

of complexities for popular distributed sorting algorithms can be

found in [34].

While TreeSort is performed in place, the distributed version

requires O(p) additional storage to perform the reduction to com-

pute the global splitter ranks. The additional storage as well as the

cost of performing the reductions can be significant for large p,

therefore we perform the splitter selection in a staged manner. We

2
The rank here referes to the position of a element in a sorted array.

limit the maximum number of splitters to a user-specified parame-

ter k ≤ p. This also reduces the cost of the reduction to compute

the global ranks of the splitters from O(p logp) to O(k logp). The

expected running time for the staged distributed TreeSort is,

Tp = tc
N

p
+ (ts + twk) logp + tw

N

p
. (2)

Additionally, the all-to-all exchange is also performed in a staged

manner similar to [4, 34], avoiding potential network congestion.

We will now develop the algorithm further to automatically deter-

mine the best tolerance.

Remark. We will develop the distributed TreeSort algorithm fur-
ther to balance work and communication costs based on the machine-
model in §3.4. Therefore, for clarity of presentation, we are not pre-
senting the pseudocode for distributed TreeSort. The pseudocode for
OptiPart is presented in Algorithm 3.

3.2 Justification for Flexible Partitioning

An advantage of the distributed TreeSort algorithm is that we can

specify a tolerance, tol , for the desired load-balance, i.e., stopping if

the induced partitions are r ·N /p± tolerance instead of the optimal

r ·N /p. While it is possible to specify such a tolerance for samplesort

variants [21, 33, 34], the advantage is limited to reducing the cost

of computing the partition or ordering at the cost of reduced load-

balance and will not provide any reduction in communication costs.

SFC-based partitioning algorithms are likely to partition using the

finest level octant, resulting is increased boundary surface, as the

primary criterion is to equally divide the work (octants) amongst

the processes. Our hypothesis is that, it should be possible to

find a partition in close proximity to the optimally load-balanced

partition, that has a lower inter-process boundary surface. This

will enable users to get the partition with the minimum boundary

surface, by specifying a tolerance on the equally-divided load. In

case of TreeSort, specifying a tolerance, in addition to making the

ordering faster to compute, the induced partition also has reduced

communication costs (for subsequent computations, like numerical

simulations) in exchange for the increased load-imbalance. This

makes TreeSort attractive when the communication costs are

high. If we consider the cost of communication to be 10x that of

performing the work on one unit of data, then an increase of 20

l=1, λ=2, s=16 l=2, λ=1.2, s=24 l=3, λ=1.05, s=28 l=4, λ=1.01, s=30

Figure 2: Illustration of the increase in communication

costs with increasing levels of TreeSort. Partitions for the

case of p = 3 are drawnwith the boundary of the partition (s)
and the load-imbalance (λ) given along with the level (l) at
which the partition is defined. At each level, the orange par-

tition (■) gets the extra load that is progressively reduced.

The green partition (■) gets the largest boundary that pro-

gressively increases.

units of work resulting in a reduction of 5 units of data-exchange,

would still provide savings of 5 × 10 − 20 = 30 units. This is a

contrived example, but the key point is that even small reductions

in data-movement over the network provide large savings in overall

runtime.

By design, for the TreeSort algorithm the load-imbalance, λ =
max(|Wr |)/min(|Wr |) decreases with increasing l getting closer to

the optimal value of λ = 1. However, as we increase levels, the

boundary of the partition s is non-decreasing. This is illustrated in

Figure 2 using a simple 2D partition using 3 processors. This allows

the user to specify a tolerance, say 1%, which when reached will

prevent further refinement, potentially reducing the inter-process

boundary and thereby the communication costs of subsequent op-

erations. Note that the claim is not for reducing the data-exchange

cost during the reordering, but for subsequent operations that might

be performed based on the partition.

The example in Figure 2 considers uniform refinement, but the

result is also true for meshes with adaptive refinement, as would be

the case for most numerical simulations. This is demonstrated in

Figure 3. Here we consider the partition between two processors,

and the specific element that will be refined at the next level. It can

be seen that for all cases except one, the surface area of the partition

is non-decreasing. The case where the surface area decreases is a

case of extreme refinement, that will only occur if the last child has

a significantly higher refinement compared to the other siblings.

While this case appears to limit the effectiveness of the approach, it

is important to realize that other more-expensive approaches like

spectral bisection also fail for similar examples [26].

3.3 Performance Model

While having the user specify a tolerance for the load-balance

in order to lower the communication costs allows for better per-

formance, it does limit the portability of the method and makes

it difficult when either the architecture or the data distribution

changes. Ideally, we would like to automatically determine the

optimum tolerance based on the application and the machine char-

acteristics. As mentioned previously, the tradeoff is between the

load and the communication costs across all machines. Additionally,

the time for either stage will be dominated by the processor that has

2

4 4 6

4

4 4 6

6

6 6

4

Figure 3: Demonstration that the communication costs

are non-decreasing with increasing levels of TreeSort for

most refinements and identification of the pathological case

where the surface area decreases (bottom-right). The left col-

umn corresponds to initial boundaries (blue line) sharing 1,

2, and 3 faces of the quadrant (rows) that will be refined at

level l . The remaining columns illustrate the change in sur-

face area for the cases where 1-3 child nodes get added to

the blue partition. The numbers represent the surface area

of each case.

the maximum load (Wmax) or has to communicate the maximum

(Cmax) amount of data. We build a simple performance model to

characterize the overall parallel runtime as a combination of these

two terms. We further note that these times can be estimated using

the network bandwidth (1/tw) and the memory bandwidth (1/tc)–

for memory-bound computations. In other words the total runtime

(Tp) can be characterized by the following equation,

Tp = αtcWmax + twCmax . (3)

Here, α is indicative of the number of memory accesses performed

per unit of work. For example, if the target application is a 7-point

stencil operation, then α will be ∼ 8. In general, this can be com-

puted using a simple sequential profiling of the main execution

kernel. While this model ignores aspects such as overlapping com-

putation and communication, it is simple and can help us easily

determine if given a set of partitions with differentWmax ,Cmax
which partition is likely to be the most efficient.

Remark. It is easy to modify (3) for a compute-bound application,
and even use a simple profiling step to determine the right parameters
for running a specific application on a specific architecture.

We would also like to briefly discuss the model from the energy

perspective, as there might be concerns that the increased load

imbalance might increase the overall energy cost of the compu-

tation. For most modern cluster architectures, the overall energy

will be strongly correlated with the overall runtime. Assuming an

efficient processor architecture, the overall energy for the compu-

tation will not depend on the partitioning, as the sum of work will

remain the same. The overall energy cost of communication will

however be lower for the lowest total data communicated. This

is what we aim for, i.e., a partition that gives the best runtime by

balancingWmax andCmax and minimizes the total energy required

Algorithm 2 PartitionQuality

Input: A distributed list of elements or regions Ar , comm, splitters s ,

Output: Predicted execution time Tp for current splitters s
1: bdyOctants ← computeLocalBdyOctants(Ar , s)
2: localSz ← size(Ar , s)
3: MPI ReduceAll(bdyOctants, Cmax , MPI MAX, comm)
4: MPI ReduceAll(localSz,Wmax , MPI MAX, comm)
5: Tp ← αtcWmax + twCmax
6: return Tp

for the computation by additionally minimizing Cmax . However,

since energy-to-solution is an increasingly important metric for

current and future HPC systems, we will also analyze the energy-

to-solution in addition to time-to-solution while evaluating our

new partitioning algorithm.

3.4 OptiPart: Architecture & Data optimized

partitioning

Armed with our performance model, we can easily modify the

distributed TreeSort to compute the optimal partition without

having to guess the appropriate tolerance. We will use the memory

and network slowness (tc , tw) based on the machine and will expect

the user to provide the parameter α that is representative of the

core computations. We call this algorithm OptiPart. The algorithm

proceeds the same as distributed TreeSort , but instead relies on

estimates ofWmax ,Cmax for the current and next refinements and

proceeds only if the runtime estimates (3) for the next refinement

are lower than the current estimate. This does not change the

complexity of the partitioning algorithm, requiring only O(N /p)
local work and a single reduction O(logp). OptiPart relies on a

helper routine that computes the quality of the current partition,

by doing a linear pass over the elements to determine the size of

the local boundary. The pseudocode for this routine is given in

Algorithm 2. Finally, the pseudocode for OptiPart is given in

Algorithm 3. Note that the standard distributed TreeSort can be

recovered by iterating till the work is equally divided instead of

using Algorithm 2 to estimate the partition quality.

4 EXPERIMENTAL SETUP

Large scalability experiments reported in this paper were performed

on Titan and Stampede. Titan, a Cray XK7 supercomputer at Oak

Ridge National Laboratory (ORNL), has a total of 18,688 nodes

consisting of a single 16-core AMD Opteron 6200 series processor,

for a total of 299,008 cores. Each node has with 32GB of memory.

It is also equipped with a Gemini interconnect and 600 terabytes

of memory across all nodes. Stampede at the Texas Advanced

Computing Center (TACC), is a linux cluster consisting of 6400

computes nodes, each with dual, eight-core processors for a total of

102,400 available cpu-cores. Each node has two eight-core 2.7GHz

Intel Xeon E5 processors with 2GB/core of memory and a 3 level

cache. Stampede has a 56Gb/s FDR Mellanox InfiniBand network

connected in a fat tree configuration. In our largest runs we use a

total of 262,144 cores on Titan.

4.1 Power Measurements

In order to quantify energy consumption tradeoffs, we provisioned

two clusters on the CloudLab testbed [29]: Wisconsin-8 – an 8-node

Algorithm 3 OptiPart

Input: A distributed list of elements or regions Ar , comm, p (w.l.g., assume p =mk),

r of current task in comm,α ,tc ,tw ,

Output: globally sorted array A
1: counts local [] ← 0, counts дlobal [] ← 0

2: s ← TreeSort(Ar , l − log(p), l) ▷ initial splitter computation

3: def ault ← Par tit ionQuality(Ar , comm, s)
4: current ← def ault
5: while def ault ≥ current do
6: counts[] ← 0 ▷ |counts | = 2

dim
, 8 for 3D

7: for a ∈ Ar do

8: increment counts[child num(a)]
9: counts local ← push(counts)

10: counts ← Rh (counts) ▷ Permute counts using SFC ordering

11: offsets← scan(counts)
12: A′[] ← empty
13: for a ∈ Ar do

14: i ← child num(a)
15: append a to A′ at offsets[i]
16: increment offset[i]
17: swap(Ar , A′)
18: MPI ReduceAll(counts local, counts дlobal, MPI SUM, comm)
19: s ← select (s, counts дlobal)
20: def ault ← current
21: current ← Par tit ionQuality(Ar , comm, s)
22: MPI AlltoAllv(Wr , s, comm) ▷ Staged All2all

23: TreeSort(Ar , 0, l) ▷ local sort

cluster in the Wisconsin datacenter consisting of nodes with 2x Intel

E5-2630 v3 8-core Haswell CPUs (2.40 GHz), 128GB ECC Memory,

and 10Gb Ethernet NICs, and Clemson-32 – a 32-node cluster in

the Clemson datacenter with each node having 2x Intel E5-2683

v3 14-core Haswell CPUs (2.00 GHz), 256GB ECC Memory, and a

10Gb Ethernet NIC. We configured the provisioned hardware into

SLURM-based [32] cluster environments and ran a set of selected

parallel jobs with 256 (on Wisconsin-8) and 1792 (on Clemson-32)

MPI tasks.

During execution, we obtained on-board IPMI sensor informa-

tion and recorded every machine’s instantaneous power draw (in

Watts) every second. As concluded in [14] and stated in a recent sur-

vey [19], power samples collected using IPMI are accurate enough

as long as the temporal load-varying effects do not occur at the

rate that is near the sampling rate. Accurate energy estimation

is a difficult task for short-period jobs. The energy experiments

reported in this work includes over 380 jobs that are between 2 and

14 minutes in duration–120 to 8400 samples–on these clusters. In

our evaluation, with the aforementioned runtimes and the number

of power samples we collected, we are convinced that we are able to

draw reliable quantitative conclusions about the energy tradeoffs.

After job completion, we combined the recorded power traces

with the job start and end timestamps from the scheduler and ob-

tained per-job energy consumption estimates (in Joules). In addition

to the total job consumption, we estimated the amount of energy

consumed during the communication phase (i.e. matvec operation

in FEM computations) of these jobs. In order to eliminate the impact

of the dynamic CPU frequency scaling on our energy estimates, we

disabled the dynamic scaling and set all CPU cores to run at 2.4 and

2.0 GHz on Wisconsin-8 and Clemson-32, respectively.

4.2 Implementation details

All algorithms described in this work were implemented using C++

using MPI. We tested the performance using randomly generated

https://www.olcf.ornl.gov/titan/
https://www.tacc.utexas.edu/stampede/
https://www.olcf.ornl.gov/titan/
https://www.tacc.utexas.edu/stampede/

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

0

0.2

0.4

0.6

number of cores→

E
x
e
c
u

t
i
o

n
T

i
m

e
(
s
)
→

Morton

Hilbert

98%

91%
51%

85% 65% 43%

Figure 4: Strong scaling results for Hilbert & Morton

based partitioning using a problem size of 16 × 10
6
elements

on ORNL’s Titan using core-counts from 16 to 1024. The par-

allel efficiency for each case (rounded) is listed above the

bars.

octrees according to three distributions, uniform, normal, and log-

normal. These were generated using the standard c++11 random

number generators. No significant difference in performance was

observed across the distributions, and therefore the distribution

information has been suppressed for clarity of presentation. All

results presented in this paper are for data generated according to

the normal distribution. We implemented standard FEM compu-

tation on randomly generated octrees, focusing on matrix vector

multiplication (matvec) for energy measurements. All the energy

measurements are done in CloudLab (Wisconsin-8 & Clemson-32)

cluster and all the other performance runs are done on ORNL’s

Titan and TACC’s Stampede supercomputers.

5 PERFORMANCE EVALUATION

In this section we present results demonstrating the scalability and

performance of OptiPart as well as the quality of the partitions

produced. We will first demonstrate the scalability of OptiPart and

its capability of partitioning large adaptive meshes efficiently. We

will also compare its performance with standard SFC-based par-

titioning algorithms, primarily to demonstrate that OptiPart’s

performance is comparable to existing approaches. This is followed

by detailed characterization of the partitioning qualities of the par-

titions generated by OptiPart in the context of a finite element

computations on adaptively refined meshes.

5.1 Scalability

In this section we present both strong and weak scalability results

carried out for OptiPart. Figure 4 shows the strong scalability

results, using a fixed problem size of 16 × 10
6

elements, with in-

creasing number of cores on ORNL’s Titan. We present results

for two popular space filling curves, Hilbert and Morton [2],

to demonstrate that our algorithm is insensitive to the choice of

the SFC. We obtain very good strong scalability with a parallel

efficiency of ∼ 43% for a 64x scaleup. We are able to partition 16

million elements in ∼ 25 msecs across 1024 cores on Titan. We also

present weak scalability results, in figure 5 up to 262, 144 cores on

ORNL’s Titan. We used a grain size of 10
6

elements per process for

16 to 262, 144 processes. In our largest run, we were able to partition

262 Billion elements in ∼ 4 seconds across 262, 144 processes. Note

that the increase in runtime is largely due to the increased cost of

moving elements across the network (MPI Alltoallv) whereas the

partitioning algorithm demonstrate better scalability.

5.2 Comparison with SFC-based partitioning

In this section, we present a comparison between existing SFC-

based partition schemes and OptiPart. Most existing SFC-based

partitioning algorithms rely on parallel sorting algorithms such

as SampleSort along with an ordering defined based on the SFC.

In general, we would expect OptiPart to be slightly faster than

a comparable implementation of SFC-partitioning relying on par-

allel sorting, as we terminate the splitter selection early. In this

comparison, our primary goal is to demonstrate that incorporating

the machine and application model does not adversely affect the

efficiency or scalability of OptiPart compared to standard SFC-

based partitioning. We compare against the SFC-based partitioning

implemented in Dendro[36]. This implementation uses the Morton

ordering along with SampleSort to partition data. This implemen-

tation was also used by the 2010 Gordon-Bell winner [27], and

has been demonstrated to scale to leadership architectures. Since

OptiPart produces different partitions for different machines, we

performed this comparison on both ORNL’s Titan as well as TACC’s

Stampede supercomputers using a grain-size of 5 × 10
6

elements.

These results are presented in Figure 6. We can see that Opti-

Part has a small performance and scalability improvement over

Dendro. This could be due to implementation differences, but the

major take-away from this experiment is that it is possible to get

application and architecture-aware partitioning without sacrificing

performance or scalability.

5.3 Test application

Our target applications are solving Partial Partial Differential Equa-

tions (PDEs) using adaptive discretizations using the Finite Element

method (FEM). In most computational codes, the basic building

block is the matvec, a function that takes a vector and returns

another vector, the result of applying the discretized PDE operator

to the the input vector. Complex operations such an non-linear

operators, time-dependent problems, and using iterative solvers to

solve a linear system can all be represented as a series of matvecs.

The communication as well as the compute pattern for most PDEs

is characterized by the matvec. For this reason, we evaluate the

effectiveness of OptiPart using a adaptively discretized Laplacian

operator. This is equivalent to us solving a 3D Poisson problem

with zero Dirichlet boundary conditions on a unit cube. In order

to avoid any issues related to the convergence, we run all applica-

tion comparisons using 100 matvecs using the standard partition

produced by Dendro as well as the partition produced by OptiPart.

5.4 Improved performance for the matvec

In this section we present experiments demonstrating the reduction

in time-to-solution and energy-to-solution for 100 iterations of

the Laplacian operator using the OptiPart algorithm. All energy

measurements were carried out in Clemson-32 (1792 cores) and

Wisconsin-8(256 cores) in CloudLab cluster. Figure 7 shows the

https://www.olcf.ornl.gov/titan/
https://cloudlab.us/
https://www.olcf.ornl.gov/titan/
https://www.tacc.utexas.edu/stampede/
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/
https://www.tacc.utexas.edu/stampede/
https://cloudlab.us/

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
K

2
K

4
K

8
K

1
6
K

3
2
K

6
5
K

1
3
1
K

2
6
2
K

0

2

4

number of cores→

r
u

n
t
i
m

e
(
s
e
c
s
)
→

Morton (partition)

Morton (all2all)

Hilbert (partition)

Hilbert (all2all)

Figure 5: Total execution time for Hilbert & Morton curve based partitioning scheme with a grain size of 10
6
elements

(minimum of 16M & maximum of 262B elements), on ORNL’s Titan with number of cores from 16 to 262, 144. The total time is

divided into time for computing the partition (partition) and the cost of actually exchanging data (all2all).

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

0

0.5

1

1.5

number of procs→

r
u

n
t
i
m

e
(
s
e
c
s
)
→

Stampede
OptiPart local all2all splitter

samplesort M local all2all splitter

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

8
1
9
2

1
6
3
8
4

3
2
7
6
8

0

5

10

15

20

number of procs→

r
u

n
t
i
m

e
(
s
e
c
s
)
→

Titan

Figure 6: Weak scaling results breakdown (local sort , all to all , splitter calculation) forOptiPart&SampleSort inDendro[36]

with a grain size of 10
6
octants on Stampede (top) and on Titan (bottom) with a grain size of 5 × 10

6
octants. The scalability

of OptiPart is better than SampleSort as show in above figure. Note that the performance and partitions produced by

OptiPart are architecture specific, hence the differences between the results on Stampede and Titan.

runtime and energy consumption using an adaptive discretization

with 179.2M elements on 1792 cores for different tolerances. Note

that the energy and runtime are strongly correlated. Additionally,

the Hilbert curve produces better partitions compared to the Morton

curve. Both curves show reduction in runtime as well as energy

for tolerances > 0, indicating that our initial hypothesis is correct.

Figure 8 shows the runtime and energy consumption of the same

matvec operation for a smaller problem size of 95M octants on 256

https://www.olcf.ornl.gov/titan/
https://www.tacc.utexas.edu/stampede/
https://www.olcf.ornl.gov/titan/

cores (8 nodes). A closer look at the energy consumption across

these 8 nodes for the best tolerance (0.3), shown in Figure 9, that

while there is some variability in the energy consumption across

the nodes, there is reduction in energy across all nodes. This is true

for both the Hilbert and the Morton curves.

Optimal tolerance. We use the performance model, §3.3, to es-

timate the optimal tolerance. In order to validate our model and

determine if it indeed was able to obtain the best partition, we

compared our predicted runtime with the actual runtime using a

brute-force run for all tolerance values. These results are presented

in Figure 10 for the Hilbert curve. This comparison suggests that

the overall time consumed by matvec operation is directly corre-

lated with the maximum work assigned to an individual processor

(Wmax), the maximum amount of data exchanged for any two pro-

cessors (Cmax), the underlying architectural (tc , tw) parameters

and the computational kernel of the application (α). Please note

that OptiPart starts from a higher tolerance and progressively

decreases this, i.e. in the plot it approaches the optimum from the

right. For this example, OptiPart will not reduce the tolerance

below 0.3 as the predicted runtime increases at this stage and will

terminate the partition.

5.5 Quality of induced partitions

Our main motivation for developing architecture-aware partition-

ing algorithms, is to lower the communication costs and conse-

quently reduce the time-to and energy-to solution for application

codes. In this section, we analyze the partitions produced by Op-

tiPart to understand the savings better. For FEM computations,

processes need read-only access to information from neighboring

processes–commonly referred as ghost/halo regions–in order to

perform the matvec. The performance and scalability of the paral-

lel code depends on both the number of processes that a process

needs to communicate with as well as the total amount of data

that it needs to send or receive. The communication pattern can be

represented in the form of a communication matrixM, where

M =

{
mi j if pi needs access tomi j elements on pj

0 if no shared data between pi and pj

We can consider the number of non-zeros (NNZ) elements in

the communication matrixM as a metric for communications cost

between partitions since it captures the total number of messages

that are exchanged during the computation. We use total amount

of data communicated between partitions as another metric. We

collect these metrics for a fixed problem size (fixed number of

elements and number of processors) with varying tolerance value

and evaluate how above mentioned metrics behave for the same

input data.

Number of non-zeros (NNZ): We observed the effect of vary-

ing tolerance on the number of non-zeros in the communication

matrix for 1B elements partitioned across 4096 processes. These

results are shown in Figure 12. Note the scale difference of two

graphs in figure 12 which is due to higher locality preserving na-

ture of the Hilbert curve compared to the Morton curve. Figure

12 suggests that NNZ strictly decreases with increasing tolerance

value, but note that although we can reduce the NNZ with increas-

ing tolerance value, this leads to increased load & communication

imbalances (see Figure 11). In order to get optimal partitions (in

terms of communication and energy) we need to find the tolerance

value that does not disproportionately affect the work imbalance.

Total data communicated: Total data communicated during

matvec operation in FEM computations is directly coupled with

the overall communication cost of the partitions. Figure 12 shows

the total data exchanged during 100 matvec operations for a fixed

problem size on the CloudLab cluster. As expected we can reduce

the total data exchanged by increasing the flexibility in the Opti-

Part implementation. Figure 12 demonstrates the superiority of

Hilbert compared to Morton in terms of communication cost.

The results for Hilbert empirically confirm our observations that

the communication decreases with increasing tolerance. The kink

in Morton in Figure 12 is likely due to the discontinuous partitions

that are possible with Morton ; a case we did not consider in our

discussions in §3.2.

6 CONCLUSIONS & FUTUREWORK

In this work we presented a new partitioning algorithm that by

being architecture and application aware is able to reduce parallel

runtime as well as overall energy consumption. The key idea is to

assign unequal work to processes in order to reduce overall com-

munication costs. By incorporating machine characteristics such

as the slowness of memory and network as well as the applications

characteristics we were able to develop a performance model that

is able to predict the optimal tradeoff between reducing communi-

cation costs and increased load-imbalance. We demonstrated the

scalability of the proposed partitioning algorithm up to 262, 144

cores on ORNL’s Titan Supercomputer. We also demonstrated en-

ergy savings of up to 22% while using the new partition compared

to standard SFC-based partitioning algorithms for performing FEM

based matvec. Our code is available on github
3

so that other re-

searchers can incorporate these methods in their codes. For future

work, we would like to refine our performance model with addi-

tional information about the machine and the application, such as

NUMA and memory access patterns. While the current work is

developed in the context of SFC-based partitioning algorithms, the

key ideas are applicable to other partitioning algorithms and will

be the focus of future research. Specifically, we are working on in-

corporating architecture and application models while partitioning

irregular applications.

ACKNOWLEDGMENTS

We thank the reviewers whose feedback greatly improved this paper.

This work was supported in part by the National Science Foundation

grants ACI-1464244 and CCF-1643056. This research used resources

of the Oak Ridge Leadership Computing Facility, which is a DOE

Office of Science User Facility supported under Contract DE-AC05-

00OR22725 and the Extreme Science and Engineering Discovery

Environment (XSEDE), which is supported by National Science

Foundation grant ACI-1548562.

3https://github.com/orgs/paralab

https://cloudlab.us/

0

5
· 1

0
−
2

0
.1

0
.1

5
0
.2

0
.2

5
0
.3

0
.3

5
0
.4

0
.4

5
0
.5

0
.5

5
0
.6

0
.6

5
0
.7

1

1.2

1.4

1.6

1.8

·10
6

tolerance

t
o

t
a
l

e
n

e
r
g

y
(
J
)

Morton(energy)

Hilbert(energy)

0

5
· 1

0
−
2

0
.1

0
.1

5
0
.2

0
.2

5
0
.3

0
.3

5
0
.4

0
.4

5
0
.5

0
.5

5
0
.6

0
.6

5
0
.7

100

120

140

160

180

tolerance

r
u

n
t
i
m

e
(
m

i
n

s
)

Morton(time)

Hilbert(time)

Figure 7: (left) Total energy & time consumption (right) for 100 iterations of matvec(distributed) operations, for Hilbert and

Morton curve based partitioning with initial element grain size with 10
5
with maximum depth (of octree) of 30 across 1792

MPI tasks on the Clemson CloudLab cluster.

0
0
.1

0
.2

0
.3

0
.4

0
.5

0.8

1

1.2

·10
6

load flexibility (tolerance)→

e
n

e
r
g

y
(
J
)
→

Morton(energy) Hilbert(energy)

0
0
.1

0
.2

0
.3

0
.4

0
.5

400

500

600

load flexibility (tolerance)→

r
u

n
t
i
m

e
(
m

i
n

s
)
→

Morton(time) Hilbert(time)

Figure 8: Comparison for matvec energy consumption based onHilbert andMorton based partitioning schemes for amesh

size of 95M nodes with 256 mpi with varying tolerance values in CloudLab Wisconsin cluster.

REFERENCES

[1] David J Abel and David M Mark. 1990. A comparative analysis of some two-

dimensional orderings. International Journal of Geographical Information System
4, 1 (1990), 21–31.

[2] Michael Bader. 2012. Space-filling curves: an introduction with applications in
scientific computing. Vol. 9. Springer Science & Business Media.

[3] Michael A Bender. 2006. Compute Process Allocator (CPA). Urbana 51 (2006),

61801.

[4] Jehoshua Bruck, Ching-Tien Ho, Shlomo Kipnis, Eli Upfal, and Derrick Weath-

ersby. 1997. Efficient algorithms for all-to-all communications in multiport

message-passing systems. Parallel and Distributed Systems, IEEE Transactions on
8, 11 (1997), 1143–1156.

[5] Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. 2011. p4est: Scalable

Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees. SIAM
Journal on Scientific Computing 33, 3 (2011), 1103–1133. DOI:http://dx.doi.org/

10.1137/100791634

[6] Arthur R Butz. 1971. Alternative algorithm for Hilbert’s space-filling curve. IEEE
Trans. Comput. 4 (1971), 424–426.

[7] Paul M Campbell, Karen D Devine, Joseph E Flaherty, Luis G Gervasio, and

James D Teresco. 2003. Dynamic octree load balancing using space-filling curves.

Williams College Department of Computer Science Technical Report CS-03 1 (2003),

68.

[8] U.V. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, R.T. Heaphy, and L.A.

Riesen. 2007. Hypergraph-based Dynamic Load Balancing for Adaptive Scientific

Computations. In Proc. of 21st International Parallel and Distributed Processing
Symposium (IPDPS’07). IEEE. Best Algorithms Paper Award.

[9] Cédric Chevalier and François Pellegrini. 2008. PT-Scotch: A tool for efficient

parallel graph ordering. Parallel computing 34, 6 (2008), 318–331.

[10] Karen D Devine, Erik G Boman, Robert T Heaphy, Bruce A Hendrickson, James D

Teresco, Jamal Faik, Joseph E Flaherty, and Luis G Gervasio. 2005. New challenges

in dynamic load balancing. Applied Numerical Mathematics 52, 2 (2005), 133–152.

[11] W. D. Frazer and A. C. McKellar. 1970. Samplesort: A Sampling Approach

to Minimal Storage Tree Sorting. J. ACM 17, 3 (July 1970), 496–507. DOI:
http://dx.doi.org/10.1145/321592.321600

[12] Ananth Grama. 2003. Introduction to parallel computing. Pearson Education.

[13] Frank Günther, Miriam Mehl, Markus Pögl, and Christoph Zenger. 2006. A cache-

aware algorithm for PDEs on hierarchical data structures based on space-filling

curves. SIAM Journal on Scientific Computing 28, 5 (2006), 1634–1650.

[14] Daniel Hackenberg, Thomas Ilsche, Robert Schöne, Daniel Molka, Maik Schmidt,

and Wolfgang E Nagel. 2013. Power measurement techniques on standard

compute nodes: A quantitative comparison. In Performance Analysis of Systems
and Software (ISPASS), 2013 IEEE International Symposium on. IEEE, 194–204.

https://cloudlab.us/
https://cloudlab.us/
http://dx.doi.org/10.1137/100791634
http://dx.doi.org/10.1137/100791634
http://dx.doi.org/10.1145/321592.321600

0 1 2 3 4 5 6 7

1

1.2

·10
5

node id

e
n

e
r
g

y
(
J
)
→

default(Hilbert) Hilbert (tol = 0.3)

0 1 2 3 4 5 6 7

1.1

1.15

1.2

1.25

·10
5

node id

e
n

e
r
g

y
(
J
)
→

default(Morton) Morton (tol = 0.3)

Figure 9: Energy consumed by each node while performing matvecoperation , with ideal load balancing (for both

Hilbert (left) and Morton (right)) Vs. flexible load balancing with a tolerance of 0.3 for 95M mesh nodes with 256 mpi

tasks in CloudLab8 node cluster.

0
0
.1

0
.2

0
.3

0
.4

0
.5

400

500

600

700

load flexibility (tolerance)→

r
u

n
t
i
m

e
(
m

i
n

s
)
→

Hilbert(Measured)

Hilbert(Predicted)

optimal tolerance

Figure 10: Total time consumed by the 100 matvec opera-

tions with 256 cores in Wisconsin CloudLab cluster and the

interpolated execution time values for Hilbert and Mor-

ton based partitioning, using the model Tp = αtcWmax +

tw ∗ Cmax . This implies the total time consumed during

the matvec operation directly correlated with maximum

amount of work assigned for each core and maximum

amount of communication that each core has to carry out.

The optimal tolerance that is computed byOptiPart is high-

lighted in each figure. Note that OptiPart starts from a

higher tolerance and progressively decreases this, i.e. in the

plot it approaches the optimum from the right.

[15] Tsuyoshi Hamada, Tetsu Narumi, Rio Yokota, Kenji Yasuoka, Keigo Nitadori,

and Makoto Taiji. 2009. 42 TFlops Hierarchical N-body Simulations on GPUs

with Applications in Both Astrophysics and Turbulence. In Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis
(SC ’09). ACM, New York, NY, USA, Article 62, 12 pages. DOI:http://dx.doi.org/

10.1145/1654059.1654123

[16] Chris H. Hamilton and Andrew Rau-Chaplin. 2008. Compact Hilbert Indices:

Space-filling Curves for Domains with Unequal Side Lengths. Inf. Process. Lett.
105, 5 (Feb. 2008), 155–163. DOI:http://dx.doi.org/10.1016/j.ipl.2007.08.034

[17] Bruce Hendrickson and Robert Leland. 1995. The Chaco userfis guide: Version 2.0.

Technical Report. Technical Report SAND95-2344, Sandia National Laboratories.

[18] Tomoaki Ishiyama, Keigo Nitadori, and Junichiro Makino. 2012. 4.45 Pflops

Astrophysical N-body Simulation on K Computer: The Gravitational Trillion-

body Problem. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC ’12). IEEE Computer Society

Press, Los Alamitos, CA, USA, Article 5, 10 pages. http://dl.acm.org/citation.

cfm?id=2388996.2389003

0

5
· 1

0
−
2

0
.1

0
.1

5
0
.2

0
.2

5
0
.3

0
.3

5
0
.4

0
.4

5
0
.5

2

4

6

tolerance→

i
m

b
a
l
a
n

c
e
→

communication imbalance

load imbalance

Figure 11: Load imbalance (work max/work min) and

communication imbalance (bdy max/bdy min) plots for

Hilbert curve based partitioning, with initial element

grain size with 10
5
with maximum depth (of octree) of 30

across 1792 MPI tasks on the Clemson CloudLab cluster.

https://cloudlab.us/
https://cloudlab.us/
http://dx.doi.org/10.1145/1654059.1654123
http://dx.doi.org/10.1145/1654059.1654123
http://dx.doi.org/10.1016/j.ipl.2007.08.034
http://dl.acm.org/citation.cfm?id=2388996.2389003
http://dl.acm.org/citation.cfm?id=2388996.2389003
https://cloudlab.us/

0
0
.1

0
.2

0
.3

0
.4

0
.5

7.9

8

8.1

8.2

8.3

8.4

·10
4

tolerance→

n
n

z
→

0
0
.1

0
.2

0
.3

0
.4

0
.5

1.1

1.15

1.2

1.25

·10
5

tolerance→

0
0
.1

0
.2

0
.3

0
.4

0
.5

1.35

1.4

1.45

1.5

1.55

·10
7

tolerance→

n
u

m
b

e
r

o
f

o
c
t
a
n

t
s
→

Morton

Hilbert

Figure 12: Comparison for number of non-zeros (nnz) elements in the communication matrix corresponding to perform

matvecoperation based on Hilbert (left) and Morton (center) based partitioning schemes for a mesh size of 1B nodes with

4096 mpi tasks with varying tolerance values. Note that the scale difference between the axes in the plots, and for both

partitioning schemes we can reduce the nnz (overall communication cost) by increasing the tolerance value. (right) Total

amount of data communicated while performing 100 iterations of matvec in Wisconsin-8 in CloudLab with 25.6M elements

and 256 cores with varying tolerance value.

[19] Chao Jin, Bronis R de Supinski, David Abramson, Heidi Poxon, Luiz DeRose,

Minh Ngoc Dinh, Mark Endrei, and Elizabeth R Jessup. 2016. A survey on software

methods to improve the energy efficiency of parallel computing. International
Journal of High Performance Computing Applications (2016), 1094342016665471.

[20] Guohua Jin and John Mellor-Crummey. 2005. Using space-filling curves for

computation reordering. In Proceedings of the Los Alamos Computer Science
Institute Sixth Annual Symposium.

[21] L.V. Kale and S. Krishnan. 1993. A comparison based parallel sorting algorithm.

In International Conference on Parallel Processing, 1993, Vol. 3. IEEE, 196–200.

[22] George Karypis and Vipin Kumar. 1995. Metis-unstructured graph partitioning

and sparse matrix ordering system, version 2.0. (1995).

[23] George Karypis, Kirk Schloegel, and Vipin Kumar. 2003. Parmetis. Parallel graph
partitioning and sparse matrix ordering library. Version 2 (2003).

[24] Justin Luitjens, Martin Berzins, and Tom Henderson. 2007. Parallel space-filling

curve generation through sorting. Concurrency and Computation: Practice and
Experience 19, 10 (2007), 1387–1402.

[25] Bongki Moon, H.v. Jagadish, Christos Faloutsos, and Joel H. Saltz. 2001. Analysis

of the Clustering Properties of the Hilbert Space-Filling Curve. IEEE Transactions
on Knowledge and Data Engineering 13, 1 (2001), 124–141. DOI:http://dx.doi.org/

10.1109/69.908985

[26] Alex Pothen, Horst D. Simon, and Kang-Pu Liou. 1990. Partitioning Sparse Matri-

ces with Eigenvectors of Graphs. SIAM J. Matrix Anal. Appl. 11, 3 (1990), 430–452.

DOI:http://dx.doi.org/10.1137/0611030 arXiv:http://dx.doi.org/10.1137/0611030

[27] Abtin Rahimian, Ilya Lashuk, Shravan Veerapaneni, Aparna Chandramowlish-

waran, Dhairya Malhotra, Logan Moon, Rahul Sampath, Aashay Shringarpure,

Jeffrey Vetter, Richard Vuduc, Denis Zorin, and George Biros. 2010. Petas-

cale Direct Numerical Simulation of Blood Flow on 200K Cores and Het-

erogeneous Architectures. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC ’10). IEEE Computer Society, Washington, DC, USA, 1–11. DOI:
http://dx.doi.org/10.1109/SC.2010.42

[28] DOE report. 2010. The opportunities and challenges of exascale computing.

(2010).

[29] Robert Ricci, Eric Eide, and CloudLab Team. 2014. Introducing CloudLab: Scien-

tific infrastructure for advancing cloud architectures and applications. ; login::
the magazine of USENIX & SAGE 39, 6 (2014), 36–38.

[30] Johann Rudi, A. Cristiano I. Malossi, Tobin Isaac, Georg Stadler, Michael Gur-

nis, Peter W. J. Staar, Yves Ineichen, Costas Bekas, Alessandro Curioni, and

Omar Ghattas. 2015. An Extreme-scale Implicit Solver for Complex PDEs:

Highly Heterogeneous Flow in Earth’s Mantle. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’15). ACM, New York, NY, USA, Article 5, 12 pages. DOI:http:

//dx.doi.org/10.1145/2807591.2807675

[31] John Shalf, Sudip Dosanjh, and John Morrison. 2011. Exascale computing tech-

nology challenges. In High Performance Computing for Computational Science–
VECPAR 2010. Springer, 1–25.

[32] Leszek Sliwko and Vladimir Getov. 2015. Workload Schedulers-Genesis, Algo-

rithms and Comparisons. International Journal of Computer Science and Software
Engineering 4, 6 (2015), 141–155.

[33] E. Solomonik and L.V. Kale. 2010. Highly scalable parallel sorting. In Parallel
& Distributed Processing (IPDPS), 2010 IEEE International Symposium on. IEEE,

1–12.

[34] Hari Sundar, Dhairya Malhotra, and George Biros. 2013. HykSort: a new variant

of hypercube quicksort on distributed memory architectures. In International
Conference on Supercomputing, ICS’13, Eugene, OR, USA - June 10 - 14, 2013.

293–302. DOI:http://dx.doi.org/10.1145/2464996.2465442

[35] Hari Sundar, Rahul Sampath, and George Biros. 2008. Bottom-up construction

and 2:1 balance refinement of linear octrees in parallel. SIAM Journal on Scientific
Computing 30, 5 (2008), 2675–2708. DOI:http://dx.doi.org/10.1137/070681727

[36] Hari Sundar, Rahul S. Sampath, Santi S. Adavani, Christos Davatzikos, and

George Biros. 2007. Low-constant Parallel Algorithms for Finite Element Simu-

lations Using Linear Octrees. In Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing (SC ’07). ACM, New York, NY, USA, Article 25, 12 pages. DOI:
http://dx.doi.org/10.1145/1362622.1362656

[37] C. Walshaw and M. Cross. 2007. JOSTLE: Parallel Multilevel Graph-Partitioning

Software – An Overview. In Mesh Partitioning Techniques and Domain Decompo-
sition Techniques, F. Magoules (Ed.). Civil-Comp Ltd., 27–58. (Invited chapter).

[38] Albert-Jan N Yzelman and Rob H Bisseling. 2012. A cache-oblivious sparse

matrix–vector multiplication scheme based on the Hilbert curve. In Progress in
Industrial Mathematics at ECMI 2010. Springer, 627–633.

[39] Marco Zagha and Guy E Blelloch. 1991. Radix sort for vector multiprocessors. In

Proceedings of the 1991 ACM/IEEE conference on Supercomputing. ACM, 712–721.

https://cloudlab.us/
http://dx.doi.org/10.1109/69.908985
http://dx.doi.org/10.1109/69.908985
http://dx.doi.org/10.1137/0611030
http://arxiv.org/abs/http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1109/SC.2010.42
http://dx.doi.org/10.1145/2807591.2807675
http://dx.doi.org/10.1145/2807591.2807675
http://dx.doi.org/10.1145/2464996.2465442
http://dx.doi.org/10.1137/070681727
http://dx.doi.org/10.1145/1362622.1362656

	Abstract
	1 Introduction
	2 Background
	2.1 Modified SFC Ordering

	3 Architecture-Optimal Partitioning
	3.1 Distributed Memory TreeSort
	3.2 Justification for Flexible Partitioning
	3.3 Performance Model
	3.4 OptiPart: Architecture & Data optimized partitioning

	4 Experimental Setup
	4.1 Power Measurements
	4.2 Implementation details

	5 Performance Evaluation
	5.1 Scalability
	5.2 Comparison with SFC-based partitioning
	5.3 Test application
	5.4 Improved performance for the matvec
	5.5 Quality of induced partitions

	6 Conclusions & Future Work
	References

