Machine and Application Aware Partitioning for Adaptive Mesh
Refinement Applications

Milinda Fernando

Dmitry Duplyakin

Hari Sundar

School of Computing, Department of Computer Science School of Computing,
University of Utah University of Colorado University of Utah
Salt Lake City, Utah Boulder, Colorado Salt Lake City, Utah

milinda@cs.utah.edu dmitry.duplyakin@colorado.edu hari@cs.utah.edu

ABSTRACT

Load balancing and partitioning are critical when it comes to paral-
lel computations. Popular partitioning strategies based on space
filling curves focus on equally dividing work. The partitions pro-
duced are independent of the architecture or the application. Given
the ever-increasing relative cost of data movement and increasing
heterogeneity of our architectures, it is no longer sufficient to only
consider an equal partitioning of work. Minimizing communication
costs are equally if not more important. Our hypothesis is that an
unequal partitioning that minimizes communication costs signifi-
cantly can scale and perform better than conventional equal-work
partitioning schemes. This tradeoff is dependent on the architec-
ture as well as the application. We validate our hypothesis in the
context of a finite-element computation utilizing adaptive mesh-
refinement. Our central contribution is a new partitioning scheme
that minimizes the overall runtime of subsequent computations by
performing architecture and application-aware non-uniform work
assignment in order to decrease time to solution, primarily by mini-
mizing data-movement. We evaluate our algorithm by comparing it
against standard space-filling curve based partitioning algorithms
and observing time-to-solution as well as energy-to-solution for
solving Finite Element computations on adaptively refined meshes.
We demonstrate excellent scalability of our new partition algo-
rithm up to 262, 144 cores on ORNL'’s Titan and demonstrate that
the proposed partitioning scheme reduces overall energy as well as
time-to-solution for application codes by up to 22.0%.

CCS CONCEPTS
«Computing methodologies —Massively parallel algorithms;

KEYWORDS

domain decomposition; communication minimizing algorithms;
energy efficient computing; AMR; FEM

1 INTRODUCTION

As we scale up to exascale machines, the cost of data movement
and load-imbalance therein are a major bottleneck for achieving

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

HPDC ’17, June 26-30, 2017, Washington, DC, USA

© 2017 ACM. 978-1-4503-4699-3/17/06...$15.00

DOI: http://dx.doi.org/10.1145/3078597.3078610

scalability [28] and energy and power efficiency [31]. These are
dictated largely by how data (or tasks) are partitioned across pro-
cesses. This motivates a need for better partitioning schemes for
our most demanding applications. While we continue to build
larger supercomputers, these come with increased parallelism and
heterogeneity at the node as well as the cluster level. In all cases,
minimizing load-imbalance and communication-costs as well as
minimizing data-movement are critical to ensuring scalability and
performance on leadership architectures. Additionally, the parti-
tioning algorithms need to be architecture (e.g. bandwidth) and
application-aware (e.g. data access pattern) and not simply divide
the problem into equal-sized chunks across p processes. These are
also important for reducing the energy footprint of our algorithms
and making extreme-scale computing economically viable [31]. To
be practical, such partitioning algorithms need to be optimal, i.e.,
with a O(N/p + log p) parallel complexity for partitioning N data
across p processes, ideally with low constants [12].

Space Filling Curves (SFC) are commonly used by the HPC com-
munity for partitioning data [7, 10, 36] and for resource allocations
[3, 32]. By mapping high-dimensional spatial coordinates (or re-
gions) onto a 1D curve, the task of partitioning is made trivial.
Locality, i.e., ensuring that regions that are close in the higher di-
mensional space are also close along the 1D curve, is guaranteed by
the ordering of the curve, leading to different SFC, such as Morton,
Hilbert, Peano, etc. The key challenge is to order the coordinates
or regions according to the specified ordering, usually performed
using an ordering function and sorting algorithm. This approach is
easily parallelized using efficient parallel sorting algorithms such
as SAMPLESORT [11]. This is the approach used by several state-of-
the-art packages [5, 7, 10, 24, 36]. This approach either aims to get
the ideal load balance (N /p + 1) or relies on the underlying sorting
algorithm to load balance. In either case there is no expectation
on the minimization of the communication costs beyond what is
afforded by the locality of the SFC.

Our hypothesis is that an unequal partitioning that minimizes
communication-costs significantly and is architecture and application-
aware, can scale and perform better than conventional equal-work
partitioning schemes. In this work, we test this hypothesis in the
context of SFC-based partitioning and present novel sequential
and distributed partitioning algorithms that minimize the overall
time-to-solution as well as the energy-to-solution by minimizing
communication costs in exchange for a (small) increase in work-
load imbalance. We evaluate energy-to-solution in addition to time-
to-solution to ensure that the increased load-imbalance does not
result in increasing the energy-cost of computations. Our approach

https://www.olcf.ornl.gov/titan/

is architecture and application-aware and will produce different
partitions on different machines and for different applications.

Related Work. Load balancing and partitioning are critical when
it comes to parallel computations. Generally partitioning involves
equally dividing the work and data among the processors, reduc-
ing processor idle time and communication costs. The standard
approach is to model the problem using a communication or data-
dependency graph and partition the vertices of the graph into
(roughly) equal-sized groups such that the weight of the edges
crossing across processes is minimized. Graph partitioning is a
NP-hard problem and most work focuses on heuristics to obtain
good approximations. Several graph partitioning packages exist
[9, 17, 22, 23, 37] but performance and parallel scalability is chal-
lenging, especially for applications requiring repeated partitioning,
such as Adaptive Mesh Refinement (AMR). In many such cases, SFC
are used as a scalable and effective partitioning technique [2, 5].
Note that several recent Gordon-Bell award winners have used SFC-
based partitioning techniques for this reason [15, 18, 27, 30]. One
of the main advantage of SFC based partitioning is the preservation
of geometric locality of objects between processors. Depending
on the SFC (i.e. Morton, Moore, Hilbert) that is used for partition-
ing, the amount of locality preserved differs [2]. Most SFC based
partitioning—especially for adaptive meshing—use the Morton or-
dering that offers a good balance between the quality of partition
and the efficiency of implementation.

There is a large literature of Space Filling Curve (SFC) based
partitioning schemes. Several works have compared the clustering
properties of space filling curves [1, 25] and concluded the superi-
ority of Hilbert curves over the Morton curve. Gunther et al[13]
demonstrated that using SFCs to build hierarchical data structures
such as octrees minimizes data access time. Algorithms have been
proposed for computing the (inverse) mapping between one and d-
dimensional spaces [2, 6, 7] including indexing schemes for unequal
dimension cardinalities [16], resulting in reduced communication
costs. Other applications include multi-dimensional data reordering
[20] and to speed up sparse matrix-vector multiplications [38] by
improving cache-utilization. Several implementations of SFC-based
partitioning algorithms are also available including Dendro [36],
pdest [5] and Zoltan [8]. A thorough review of SFCs and their
applications can be found in [2].

Contributions. While SFCs have been used for partitioning data
for a long time and several efficient implementations exist, our
algorithms produce better partitions and demonstrate the scala-
bility and efficiency experimentally. Our main contribution is the
development of a new SFC-based partitioning algorithm that enables
incorporation of a machine-model to produce high-quality partitions.
Our contributions in detail:

e Method: We present an algorithm that allows us to factor
in the overall communication costs during SFC-based par-
titioning. We demonstrate that reducing load-imbalance is
accompanied with increasing communication costs when
performed in a top-down manner. By using a performance
model to determine the tradeoff between work-imbalance
and communication costs, we can determine the optimal

partition that results in reduced time-to-solution for appli-
cation codes. Our approach is also comparable in perfor-
mance and scalability to existing SFC-based partitioning
approaches.

e Experimental Evaluation: We conduct experiments to
demonstrate the efficiency and scalability of our algorithm
on ORNL’s Titan up to 262,144 cores. We demonstrate
that our algorithm reduces runtime by up to 22% while
performing Finite Element computations. We also include
energy measurements for resulting MATVEC operations
on Cloudlab [29] and demonstrate similar 22% savings in
energy-to-solution.

Organization of the paper. The rest of the paper is organized as
follows. In §2, we give a quick overview of space filling curves
and octree-based adaptive meshing. In §3 we describe the new
partitioning algorithm, as well as justifications for trading minor
load-imbalance for reduced communication costs. In §4, we discuss
the experimental setup including the framework for measuring
the energy costs related with a finite element simulation. In §5,
we present results demonstrating the superiority of the new parti-
tioning algorithm. Finally, we conclude with directions for future
work.

2 BACKGROUND

The most common strategy for parallelizing algorithms is to par-
tition data. The primary goal of the partitioning approach is to
divide work equally (load-balance) and minimize the communica-
tion between processes. Geometry-based heuristics, such as the
use of Space filling curves (SFC) are often the only choice when the
data is complex and dynamic, such as for adaptive mesh refinement
[2]. For this reason, we will primarily use adaptively refined octree
meshes for illustrative purposes, although the proposed methods
are equally applicable to other spatial partitioning problems, such
as resource allocation[3, 32]. SFCs define a one-to-one mapping
between an d-dimensional space and one dimensional space. Since,
partitioning 1D data is trivial, such an ordering enables simple load-
balanced partitioning of data. The minimization of communication
is achieved by the clustering properties of the SFC. For applications
where the data dependencies are geometrically local, SFC-based
partitioning schemes are efficient, scalable and highly effective. We
introduce notation used for the rest of the paper in Table 1.

While SFCs are defined primarily for coordinates, they can be
easily extended to support regions, such as octants or elements, by
having a notion of an anchor coordinate, say the smallest corner
along all dimensions, and a measure of the size of the region, such
as the level of refinement. In the context of octrees, firstly a dis-
cretization of the coordinates is specified by the maximum level of
refinement, Dy, 4. This allows for the coordinates to be stored as
unsigned integers of length Dy, 4x bits. We will consider ordering
for 3D regions specified using 4 values, the anchor (x, y, z) and the
level I € [0, Djpax). As previously mentioned, the usual approach
has been to define an ordering function using such coordinates and
use existing parallel sorting algorithms such as SAMPLESORT. Since
it is not straightforward to incorporate the machine-model into a
parallel sorting algorthm like SAMPLESORT, we will first present a
modified SFC ordering (and therefore partitioning) algorithm that

https://www.olcf.ornl.gov/titan/

comm MPI communicator

P number of MPI tasks in comm

r the task id (MPI Rank)

A global: input elements or regions

A, local : input elements or regions local to task r
A; local : elements or regions in the i‘/* bucket

N global number of elements in A

n=N/p local number of elements in A

1 refinement level of the curve or tree

Ry SFC based permutation function

Wnax max. of work assigned to an individual processor
Crmax max. of data communicated

Ly interconnect slowness (1/bandwidth)

ts interconnect latency

te intranode memory slowness (1/ RAM bandwidth)

Table 1: Notation used in this paper.

we will eventually extend to an architecture and application-aware,
communication-minimizing partitioning algorithm.

2.1 Modified SFC Ordering

Let us consider the sequential case first. Instead of relying on a
comparison based sorting algorithms such as quicksort or Sam-
PLESORT, one can instead opt to use a non-comparative sorting
algorithm, such as the Radix sort [39]. If one considers the Most-
Significant-Digit (MSD) Radix sort, then this is equivalent to a
top-down construction of quadtrees or octrees, in 2D and 3D re-
spectively. Bucketing the data (re-ordering) based ok the k-th bit
of the x, y, and z coordinates, is equivalent to splitting the octree
at the k™ level. We call this algorithm TREESORT (Algorithm 1). A
key difference between the standard Radix sort and TREESORT is
that we need to re-order the buckets based on the SFC-curve. The
complexity of the algorithm is not affected by the choice of SFCs. In
case of the Morton Curve, the ordering is fixed, independent of the
level. For cases where the ordering is based on the level, as in the
case of Hilbert, these can be applied at this level with an O(1) cost.
Another advantage of this approach is that it traverses the tree in a
depth-first fashion leading to good locality and cache utilization.

While it might seem like we have simply replaced SAMPLE-
SorT with a Radix sort, there is an important reason for this. Be-
cause of the similarity to the octree construction, note that we get
progressively closer to the optimal N/p load on each partition. It
is this iterative nature of the Radix sort (induced partitions) that
makes it appealing over comparison-based approaches like Sam-
PLESORT.

3 ARCHITECTURE-OPTIMAL
PARTITIONING

Two desirable qualities of any partitioning strategy are load balanc-
ing, and minimization of overlap between the processor domains.
SFC-based partitioning does a very good job in load balancing but
does not permit an explicit control on the level of overlap. Ideally,
we would like to have a perfectly load-balanced partition that also
minimizes the overall communication. But this is usually not pos-
sible, especially for non-uniform work distributions such as for
adaptively refined meshes. Additionally, it might not be possible

Algorithm 1 TREESORT (Sequential)

Input: A list of elements or regions A, the starting level I; and the ending level I,
Output: A is reordered according to the SFC.
: counts[] <0
: fora € Ado
increment counts|[child_num(a)]
: counts <« Rp(counts)

1 > |counts| = 24™ 8 for 3D
2

3

4

5: offsets < scan(counts)

6

7

8

> Permute counts using SFC ordering

¢ A'[] « empty
: fora € Ado
i « child_.num(a)

9: append a to A” at offsets|i]
10: increment offset|[i]
11: swap(A, A")
12: if I; > I, then
13: for i :=1:2491m do

14: TREESORT(A;, I] — 1, 1) > local sort

to minimize the load-imbalance and overall communication simul-
taneously. Since the cost of communication across inter-process
boundaries depends both on the machine characteristics, say net-
work bandwidth, as well as the application, i.e., the amount of
data being exchanged per unit boundary, it is important to con-
sider these aspects while partitioning data. Specifically, since the
goal of most parallel codes is to minimize time-to-solution (and
possibly energy-to-solution), it is important that the partition bal-
ances “equal assignment of work” with “overall communication
cost” to achieve these goals. Clearly such a balance is dependent on
both the machine-characteristics as well as the application’s data-
dependencies. In this section, we will incorporate these features
into SFC-based partitioning.

Simple partitions, such as those producing relatively cuboid
partitions have a smaller overlap compared with more irregular
partitions, as might be produced by a SFC-based partitioning algo-
rithm. In [35], we proposed a heuristic partitioning scheme based
on the intuition that a coarse grid partition is likely to have a
smaller overlap between the processor domains as compared to a
partition computed on the underlying fine grid. This algorithm first
constructed and partitioned a complete linear octree based on the
data (equivalent to a standard SFC-based partitioning). This was
followed by coarsening of the ocree and a second weighted parti-
tioning of the coarse octree to get simpler partitioning. There are a
few shortcomings of this approach. Firstly, this is a heuristic and
there are no guarantees that the partition produced will be better
than using the standard SFC-based partition. This is mainly due
to the reliance on an external sorting function and the bottom-up
(coarsening) fashion in which it operates. Secondly, the algorithm
considers neither the machine-characteristics nor the application
characteristics and will produce the same partition on different
machines and for different applications!. OptiPart addresses these
shortcomings. We will first present the distributed memory version
of TREESORT, then demonstrate that decreasing the load-imbalance
via this algorithm results in a monotic increase in overall communi-
cation costs, allowing users to specify a tolerance and reduce overall
communication costs. We then develop a performance model to
estimate the optimal tolerance to obtain the best time-to-solution
for the specific machine and application.

le.g. for the Poisson equation vs the wave Equation on the same mesh.

111 |@ 111 | @ 111 |@ 111 |@
110 (©) 110 @ 110 e 110 e
(@) 0 o 01 O 011 O

010 @ 010 (¢} 010 ¢} 010 ¢}

000 @ 000 @ 000 @ 000 @
(== _ — o o _ = - o o == —- o o = —-
(== (=3 - S O (=3 — (==} (=] - (== S O —-
S = (=] —- S = (=} — S = S - S = S = [

Figure 1: Equivalence of the MSD Radix sort with top-down quadtree construction when ordered according to space filling
curves. Each color-coded point is represented by its x and y coordinates. From the MSD-Radix perspective, we start with the
most-significant bit for both the x and y coordinates and progressively bucket (order) the points based on these. The bits are
colored based on the points and turn black as they get used to (partially) order the points.

3.1 Distributed Memory TreeSort

Our modified SFC-ordering algorithm TREESORT operates in a top-
down fashion. In this section, we propose a distributed variant
of TREESORT that enables fine control over the load-balance and
also enables reduction in communication costs in exchange for
higher load-imbalance. The distributed algorithm proceeds as the
sequential variant (§2.1), bucketing and partially sorting the data.
Unlike the sequential TREESORT, we have to traverse the tree in
a breadth first fashion, as the data needs to be distributed across
processors. Note that at each level, we split each octant 8 times
(for 3D), so in logg p steps we will have p buckets. A reduction
provides us with the global ranks? of these p buckets. Here p is
the desired number of partitions. Using the optimal ranks (r -
N/p) at which the data needs to be partitioned for process r, we
selectively partition the buckets to obtain the correct partitioning
of the local data. This is in principle similar to the approach used
by algorithms such as histogramsort [33] and hyksort [34], except
that no comparisons are needed for computing the ranks. The
computational cost corresponds to the O(N/p) bucketing required
for each of the logg p levels. We also need p reductions and an
all-to-all data exchange. Therefore the expected parallel runtime,
Ty for the distributed algorithm is,

N N
T, = tc; + (s + twp) logp + tw;’ (1)

where t., ts, and t,, are the memory slowness (1/RAM bandwidth),
the network latency and the network slowness (1/bandwidth), re-
spectively. In our evaluation, we considered trees of depth 30 (so
that the coordinates can be represented using unsigned int). Note
that up to 8% = 262, 144 buckets can be determined using six levels,
so the cost of determining splitters to distribute the data across pro-
cessors is significantly lower than other approaches. An analysis
of complexities for popular distributed sorting algorithms can be
found in [34].

While TREESORT is performed in place, the distributed version
requires O(p) additional storage to perform the reduction to com-
pute the global splitter ranks. The additional storage as well as the
cost of performing the reductions can be significant for large p,
therefore we perform the splitter selection in a staged manner. We

2The rank here referes to the position of a element in a sorted array.

limit the maximum number of splitters to a user-specified parame-
ter k < p. This also reduces the cost of the reduction to compute
the global ranks of the splitters from O(plogp) to O(k log p). The
expected running time for the staged distributed TREESORT is,

N N
sztC; +(t3+twk)logp+tW;. (2)

Additionally, the all-to-all exchange is also performed in a staged
manner similar to [4, 34], avoiding potential network congestion.
We will now develop the algorithm further to automatically deter-
mine the best tolerance.

REMARK. We will develop the distributed TREESORT algorithm fur-
ther to balance work and communication costs based on the machine-
model in §3.4. Therefore, for clarity of presentation, we are not pre-
senting the pseudocode for distributed TREESORT. The pseudocode for
OPTIPART is presented in Algorithm 3.

3.2 Justification for Flexible Partitioning

An advantage of the distributed TREESORT algorithm is that we can
specify a tolerance, tol, for the desired load-balance, i.e., stopping if
the induced partitions are r - N/p + tolerance instead of the optimal
r-N/p. While it is possible to specify such a tolerance for samplesort
variants [21, 33, 34], the advantage is limited to reducing the cost
of computing the partition or ordering at the cost of reduced load-
balance and will not provide any reduction in communication costs.
SFC-based partitioning algorithms are likely to partition using the
finest level octant, resulting is increased boundary surface, as the
primary criterion is to equally divide the work (octants) amongst
the processes. Our hypothesis is that, it should be possible to
find a partition in close proximity to the optimally load-balanced
partition, that has a lower inter-process boundary surface. This
will enable users to get the partition with the minimum boundary
surface, by specifying a tolerance on the equally-divided load. In
case of TREESORT, specifying a tolerance, in addition to making the
ordering faster to compute, the induced partition also has reduced
communication costs (for subsequent computations, like numerical
simulations) in exchange for the increased load-imbalance. This
makes TREESORT attractive when the communication costs are
high. If we consider the cost of communication to be 10x that of
performing the work on one unit of data, then an increase of 20

1=1, A=2, s=16 1=2, A=1.2, s=24 1=3, 1=1.05, s=28 1=4, A1=1.01, s=30

=

Figure 2: Illustration of the increase in communication
costs with increasing levels of TREESORT. Partitions for the
case of p = 3 are drawn with the boundary of the partition (s)
and the load-imbalance (1) given along with the level (J) at
which the partition is defined. At each level, the orange par-
tition (') gets the extra load that is progressively reduced.
The green partition (') gets the largest boundary that pro-
gressively increases.

units of work resulting in a reduction of 5 units of data-exchange,
would still provide savings of 5 X 10 — 20 = 30 units. This is a
contrived example, but the key point is that even small reductions
in data-movement over the network provide large savings in overall
runtime.

By design, for the TREESORT algorithm the load-imbalance, A =
max(|W;|)/min(|W,|) decreases with increasing [getting closer to
the optimal value of A = 1. However, as we increase levels, the
boundary of the partition s is non-decreasing. This is illustrated in
Figure 2 using a simple 2D partition using 3 processors. This allows
the user to specify a tolerance, say 1%, which when reached will
prevent further refinement, potentially reducing the inter-process
boundary and thereby the communication costs of subsequent op-
erations. Note that the claim is not for reducing the data-exchange
cost during the reordering, but for subsequent operations that might
be performed based on the partition.

The example in Figure 2 considers uniform refinement, but the
result is also true for meshes with adaptive refinement, as would be
the case for most numerical simulations. This is demonstrated in
Figure 3. Here we consider the partition between two processors,
and the specific element that will be refined at the next level. It can
be seen that for all cases except one, the surface area of the partition
is non-decreasing. The case where the surface area decreases is a
case of extreme refinement, that will only occur if the last child has
a significantly higher refinement compared to the other siblings.
While this case appears to limit the effectiveness of the approach, it
is important to realize that other more-expensive approaches like
spectral bisection also fail for similar examples [26].

3.3 Performance Model

While having the user specify a tolerance for the load-balance
in order to lower the communication costs allows for better per-
formance, it does limit the portability of the method and makes
it difficult when either the architecture or the data distribution
changes. Ideally, we would like to automatically determine the
optimum tolerance based on the application and the machine char-
acteristics. As mentioned previously, the tradeoff is between the
load and the communication costs across all machines. Additionally,
the time for either stage will be dominated by the processor that has

2
4 4 6
4
4 4 6
4
6
6 6
Figure 3: Demonstration that the communication costs

are non-decreasing with increasing levels of TREESORT for
most refinements and identification of the pathological case
where the surface area decreases (bottom-right). The left col-
umn corresponds to initial boundaries (blue line) sharing 1,
2, and 3 faces of the quadrant (rows) that will be refined at
level I. The remaining columns illustrate the change in sur-
face area for the cases where 1-3 child nodes get added to
the blue partition. The numbers represent the surface area
of each case.

the maximum load (W, 4x) or has to communicate the maximum
(Cmax) amount of data. We build a simple performance model to
characterize the overall parallel runtime as a combination of these
two terms. We further note that these times can be estimated using
the network bandwidth (1/¢,,) and the memory bandwidth (1/¢t.)-
for memory-bound computations. In other words the total runtime
(Tp) can be characterized by the following equation,

Tp = atceWmax + twCmax- 3
Here, « is indicative of the number of memory accesses performed
per unit of work. For example, if the target application is a 7-point
stencil operation, then a will be ~ 8. In general, this can be com-
puted using a simple sequential profiling of the main execution
kernel. While this model ignores aspects such as overlapping com-
putation and communication, it is simple and can help us easily
determine if given a set of partitions with different Wy, 45, Cmax
which partition is likely to be the most efficient.

REMARK. It is easy to modify (3) for a compute-bound application,
and even use a simple profiling step to determine the right parameters
for running a specific application on a specific architecture.

We would also like to briefly discuss the model from the energy
perspective, as there might be concerns that the increased load
imbalance might increase the overall energy cost of the compu-
tation. For most modern cluster architectures, the overall energy
will be strongly correlated with the overall runtime. Assuming an
efficient processor architecture, the overall energy for the compu-
tation will not depend on the partitioning, as the sum of work will
remain the same. The overall energy cost of communication will
however be lower for the lowest total data communicated. This
is what we aim for, i.e., a partition that gives the best runtime by
balancing Wy, 4x and Cpqx and minimizes the total energy required

Algorithm 2 PartitionQuality

Algorithm 3 OpTIPART

Input: A distributed list of elements or regions A,, comm, splitters s,
Output: Predicted execution time T}, for current splitters s

: bdyOctants « computeLocalBdyOctants(A,, s)

: localSz « size(A,, s)

: MPI_ReduceAll(bdyOctants, Cpax, MPIMAX, comm)

: MPI_ReduceAll(localSz, Wy, qx, MPI_MAX, comm)

: Tp — ateWnax + twCrmax

: return T),

QU R W

for the computation by additionally minimizing Cp,4x. However,
since energy-to-solution is an increasingly important metric for
current and future HPC systems, we will also analyze the energy-
to-solution in addition to time-to-solution while evaluating our
new partitioning algorithm.

3.4 OpPTIPART: Architecture & Data optimized
partitioning

Armed with our performance model, we can easily modify the
distributed TREESORT to compute the optimal partition without
having to guess the appropriate tolerance. We will use the memory
and network slowness (¢, t,,) based on the machine and will expect
the user to provide the parameter « that is representative of the
core computations. We call this algorithm OpTIPART. The algorithm
proceeds the same as distributed TREESORT , but instead relies on
estimates of Wy, ax, Cmax for the current and next refinements and
proceeds only if the runtime estimates (3) for the next refinement
are lower than the current estimate. This does not change the
complexity of the partitioning algorithm, requiring only O(N/p)
local work and a single reduction O(log p). OPTIPART relies on a
helper routine that computes the quality of the current partition,
by doing a linear pass over the elements to determine the size of
the local boundary. The pseudocode for this routine is given in
Algorithm 2. Finally, the pseudocode for OPTIPART is given in
Algorithm 3. Note that the standard distributed TREESORT can be
recovered by iterating till the work is equally divided instead of
using Algorithm 2 to estimate the partition quality.

4 EXPERIMENTAL SETUP

Large scalability experiments reported in this paper were performed
on Titan and Stampede. Titan, a Cray XK7 supercomputer at Oak
Ridge National Laboratory (ORNL), has a total of 18,688 nodes
consisting of a single 16-core AMD Opteron 6200 series processor,
for a total of 299,008 cores. Each node has with 32GB of memory.
It is also equipped with a Gemini interconnect and 600 terabytes
of memory across all nodes. Stampede at the Texas Advanced
Computing Center (TACC), is a linux cluster consisting of 6400
computes nodes, each with dual, eight-core processors for a total of
102,400 available cpu-cores. Each node has two eight-core 2.7GHz
Intel Xeon E5 processors with 2GB/core of memory and a 3 level
cache. Stampede has a 56Gb/s FDR Mellanox InfiniBand network
connected in a fat tree configuration. In our largest runs we use a
total of 262,144 cores on Titan.

4.1 Power Measurements

In order to quantify energy consumption tradeoffs, we provisioned
two clusters on the CloudLab testbed [29]: Wisconsin-8 — an 8-node

Input: A distributed list of elements or regions A,., comm, p (w.l.g., assume p = mk),
r of current task in comm,a,t¢,tyy,
Output: globally sorted array A
1: counts_locall] « 0, counts_globall[] « 0
2: s < TREESORT(A,, | —log(p), I)
: default « PartitionQuality(A,, comm, s)
: current < default
: while default > current do
counts[] « 0
fora € A, do
increment counts|child-num(a)]
9: counts_local « push(counts)
10: counts <« Ry(counts)
11: offsets «— scan(counts)
12: A'[] « empty
13: fora € A, do

> initial splitter computation

> [counts| = 24i™ 8 for 3D

> Permute counts using SFC ordering

14: i « child_num(a)
15: append a to A’ at offsets[i]
16: increment offset[i]

17: swap(A,, A')
18: MPI_ReduceAll(counts_local, counts_global, MPI_SUM, comm)
19: s « select(s, counts_global)

20: default « current

21: current « PartitionQuality(A,, comm, s)
22: MPI_A11toAllv(W,, s, comm)

23: TREESORT(A,, 0, [)

> Staged All2all
> local sort

cluster in the Wisconsin datacenter consisting of nodes with 2x Intel
E5-2630 v3 8-core Haswell CPUs (2.40 GHz), 128GB ECC Memory,
and 10Gb Ethernet NICs, and Clemson-32 — a 32-node cluster in
the Clemson datacenter with each node having 2x Intel E5-2683
v3 14-core Haswell CPUs (2.00 GHz), 256GB ECC Memory, and a
10Gb Ethernet NIC. We configured the provisioned hardware into
SLURM-based [32] cluster environments and ran a set of selected
parallel jobs with 256 (on Wisconsin-8) and 1792 (on Clemson-32)
MPT tasks.

During execution, we obtained on-board IPMI sensor informa-
tion and recorded every machine’s instantaneous power draw (in
Watts) every second. As concluded in [14] and stated in a recent sur-
vey [19], power samples collected using IPMI are accurate enough
as long as the temporal load-varying effects do not occur at the
rate that is near the sampling rate. Accurate energy estimation
is a difficult task for short-period jobs. The energy experiments
reported in this work includes over 380 jobs that are between 2 and
14 minutes in duration-120 to 8400 samples—on these clusters. In
our evaluation, with the aforementioned runtimes and the number
of power samples we collected, we are convinced that we are able to
draw reliable quantitative conclusions about the energy tradeoffs.

After job completion, we combined the recorded power traces
with the job start and end timestamps from the scheduler and ob-
tained per-job energy consumption estimates (in Joules). In addition
to the total job consumption, we estimated the amount of energy
consumed during the communication phase (i.e. MATVEC operation
in FEM computations) of these jobs. In order to eliminate the impact
of the dynamic CPU frequency scaling on our energy estimates, we
disabled the dynamic scaling and set all CPU cores to run at 2.4 and
2.0 GHz on Wisconsin-8 and Clemson-32, respectively.

4.2 Implementation details

All algorithms described in this work were implemented using C++
using MPI. We tested the performance using randomly generated

https://www.olcf.ornl.gov/titan/
https://www.tacc.utexas.edu/stampede/
https://www.olcf.ornl.gov/titan/
https://www.tacc.utexas.edu/stampede/

1 M I B Morton
o 0.6 0o Hilbert |
H

g 04l 38% .
=

£ 91%

5 02 51% i
2 IH 85% 65% 43%
= 0 L g0 {uln] mm |

T T T T T T
L I &
number of cores —

Figure 4: Strong scaling results for HILBERT & MORTON
based partitioning using a problem size of 16 x 10° elements
on ORNL’s Titan using core-counts from 16 to 1024. The par-
allel efficiency for each case (rounded) is listed above the
bars.

octrees according to three distributions, uniform, normal, and log-
normal. These were generated using the standard c++11 random
number generators. No significant difference in performance was
observed across the distributions, and therefore the distribution
information has been suppressed for clarity of presentation. All
results presented in this paper are for data generated according to
the normal distribution. We implemented standard FEM compu-
tation on randomly generated octrees, focusing on matrix vector
multiplication (MATVEC) for energy measurements. All the energy
measurements are done in CloudLab (Wisconsin-8 & Clemson-32)
cluster and all the other performance runs are done on ORNL’s
Titan and TACC’s Stampede supercomputers.

5 PERFORMANCE EVALUATION

In this section we present results demonstrating the scalability and
performance of OPTIPART as well as the quality of the partitions
produced. We will first demonstrate the scalability of OpTIPART and
its capability of partitioning large adaptive meshes efficiently. We
will also compare its performance with standard SFC-based par-
titioning algorithms, primarily to demonstrate that OPTIPART s
performance is comparable to existing approaches. This is followed
by detailed characterization of the partitioning qualities of the par-
titions generated by OPTIPART in the context of a finite element
computations on adaptively refined meshes.

5.1 Scalability

In this section we present both strong and weak scalability results
carried out for OPTIPART. Figure 4 shows the strong scalability
results, using a fixed problem size of 16 x 10° elements, with in-
creasing number of cores on ORNL’s Titan. We present results
for two popular space filling curves, HILBERT and MoRrTON [2],
to demonstrate that our algorithm is insensitive to the choice of
the SFC. We obtain very good strong scalability with a parallel
efficiency of ~ 43% for a 64x scaleup. We are able to partition 16
million elements in ~ 25 msecs across 1024 cores on Titan. We also
present weak scalability results, in figure 5 up to 262, 144 cores on
ORNL’s Titan. We used a grain size of 10° elements per process for

16 to 262, 144 processes. In our largest run, we were able to partition
262 Billion elements in ~ 4 seconds across 262, 144 processes. Note
that the increase in runtime is largely due to the increased cost of
moving elements across the network (MPI_Al1toallv) whereas the
partitioning algorithm demonstrate better scalability.

5.2 Comparison with SFC-based partitioning

In this section, we present a comparison between existing SFC-
based partition schemes and OPTIPART. Most existing SFC-based
partitioning algorithms rely on parallel sorting algorithms such
as SAMPLESORT along with an ordering defined based on the SFC.
In general, we would expect OPTIPART to be slightly faster than
a comparable implementation of SFC-partitioning relying on par-
allel sorting, as we terminate the splitter selection early. In this
comparison, our primary goal is to demonstrate that incorporating
the machine and application model does not adversely affect the
efficiency or scalability of OPTIPART compared to standard SFC-
based partitioning. We compare against the SFC-based partitioning
implemented in Dendro[36]. This implementation uses the Morton
ordering along with SAMPLESORT to partition data. This implemen-
tation was also used by the 2010 Gordon-Bell winner [27], and
has been demonstrated to scale to leadership architectures. Since
OpTIPART produces different partitions for different machines, we
performed this comparison on both ORNL’s Titan as well as TACC’s
Stampede supercomputers using a grain-size of 5 x 10° elements.
These results are presented in Figure 6. We can see that OpTI-
PART has a small performance and scalability improvement over
Dendro. This could be due to implementation differences, but the
major take-away from this experiment is that it is possible to get
application and architecture-aware partitioning without sacrificing
performance or scalability.

5.3 Test application

Our target applications are solving Partial Partial Differential Equa-
tions (PDEs) using adaptive discretizations using the Finite Element
method (FEM). In most computational codes, the basic building
block is the MATVEC, a function that takes a vector and returns
another vector, the result of applying the discretized PDE operator
to the the input vector. Complex operations such an non-linear
operators, time-dependent problems, and using iterative solvers to
solve a linear system can all be represented as a series of MATVECs.
The communication as well as the compute pattern for most PDEs
is characterized by the MATVEC. For this reason, we evaluate the
effectiveness of OPTIPART using a adaptively discretized Laplacian
operator. This is equivalent to us solving a 3D Poisson problem
with zero Dirichlet boundary conditions on a unit cube. In order
to avoid any issues related to the convergence, we run all applica-
tion comparisons using 100 MATVECS using the standard partition
produced by Dendro as well as the partition produced by OPTIPART.

5.4 Improved performance for the MaTVEC

In this section we present experiments demonstrating the reduction
in time-to-solution and energy-to-solution for 100 iterations of
the Laplacian operator using the OPTIPART algorithm. All energy
measurements were carried out in Clemson-32 (1792 cores) and
Wisconsin-8(256 cores) in CloudLab cluster. Figure 7 shows the

https://www.olcf.ornl.gov/titan/
https://cloudlab.us/
https://www.olcf.ornl.gov/titan/
https://www.tacc.utexas.edu/stampede/
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/
https://www.olcf.ornl.gov/titan/
https://www.tacc.utexas.edu/stampede/
https://cloudlab.us/

I I
4l B Morton (partition) I

| | | | | | | | | |
AP B Py F F

number of cores —

T B Morton (all2all)
2 O Hilbert (partition)
& O Hilbert (all2all) :
3 2 =
k|
Il i
oommmnmn ||
| | |
o

N

|
S Q§- &

Figure 5: Total execution time for HILBERT & MORTON curve based partitioning scheme with a grain size of 10°elements
(minimum of 16M & maximum of 262B elements), on ORNL’s Titan with number of cores from 16 to 262, 144. The total time is
divided into time for computing the partition (partition) and the cost of actually exchanging data (all2all).

1.5 T T

T T T T
orriPart M local [allzall [splitter Stamlpede
samplesort-M [1ocat [anzan [J splitter
(R |
T
& L
5
E o5 .
=}
=
& il @ & I
(e L |
‘o\ %\ b(,‘ OO\ ‘o\ q)\ b(,‘ OO\ b\
N % © NA P & \Q‘b %QV’ @o,
number of procs —
20~ " Titan | T]
15 |- N
T H
= .
15
& 1f | |
> -
E
g 50 .
0 | L = |
b\ q/\ b;‘ 00‘ ‘o\ ‘1,‘ bg‘ fb‘ b\ fb‘ b(,‘ oo\
N % © NG \el N \4 2 3 9 D S
N T A G O U

number of procs —

Figure 6: Weak scaling results breakdown (local sort, all to all, splitter calculation) for OPTIPART & SAMPLESORT in Dendro[36]
with a grain size of 10° octants on Stampede (top) and on Titan (bottom) with a grain size of 5 X 10° octants. The scalability
of OPTIPART is better than SAMPLESORT as show in above figure. Note that the performance and partitions produced by
OPTIPART are architecture specific, hence the differences between the results on Stampede and Titan.

runtime and energy consumption using an adaptive discretization curve. Both curves show reduction in runtime as well as energy
with 179.2M elements on 1792 cores for different tolerances. Note for tolerances > 0, indicating that our initial hypothesis is correct.
that the energy and runtime are strongly correlated. Additionally, Figure 8 shows the runtime and energy consumption of the same

the Hilbert curve produces better partitions compared to the Morton MATVEC operation for a smaller problem size of 95M octants on 256

https://www.olcf.ornl.gov/titan/
https://www.tacc.utexas.edu/stampede/
https://www.olcf.ornl.gov/titan/

cores (8 nodes). A closer look at the energy consumption across
these 8 nodes for the best tolerance (0.3), shown in Figure 9, that
while there is some variability in the energy consumption across
the nodes, there is reduction in energy across all nodes. This is true
for both the Hilbert and the Morton curves.

Optimal tolerance. We use the performance model, §3.3, to es-
timate the optimal tolerance. In order to validate our model and
determine if it indeed was able to obtain the best partition, we
compared our predicted runtime with the actual runtime using a
brute-force run for all tolerance values. These results are presented
in Figure 10 for the HILBERT curve. This comparison suggests that
the overall time consumed by MATVEC operation is directly corre-
lated with the maximum work assigned to an individual processor
(Wmax), the maximum amount of data exchanged for any two pro-
cessors (Cmax), the underlying architectural (¢, t,y) parameters
and the computational kernel of the application (). Please note
that OPTIPART starts from a higher tolerance and progressively
decreases this, i.e. in the plot it approaches the optimum from the
right. For this example, OPTIPART will not reduce the tolerance
below 0.3 as the predicted runtime increases at this stage and will
terminate the partition.

5.5 Quality of induced partitions

Our main motivation for developing architecture-aware partition-
ing algorithms, is to lower the communication costs and conse-
quently reduce the time-to and energy-to solution for application
codes. In this section, we analyze the partitions produced by Op-
TIPART to understand the savings better. For FEM computations,
processes need read-only access to information from neighboring
processes—commonly referred as ghost/halo regions—in order to
perform the MaTvEc. The performance and scalability of the paral-
lel code depends on both the number of processes that a process
needs to communicate with as well as the total amount of data
that it needs to send or receive. The communication pattern can be
represented in the form of a communication matrix M, where

M {mij if p; needs access to m;; elements on p;

0 if no shared data between p; and p;

We can consider the number of non-zeros (NNZ) elements in
the communication matrix M as a metric for communications cost
between partitions since it captures the total number of messages
that are exchanged during the computation. We use total amount
of data communicated between partitions as another metric. We
collect these metrics for a fixed problem size (fixed number of
elements and number of processors) with varying tolerance value
and evaluate how above mentioned metrics behave for the same
input data.

Number of non-zeros (NNZ): We observed the effect of vary-
ing tolerance on the number of non-zeros in the communication
matrix for 1B elements partitioned across 4096 processes. These
results are shown in Figure 12. Note the scale difference of two
graphs in figure 12 which is due to higher locality preserving na-
ture of the HILBERT curve compared to the MORTON curve. Figure
12 suggests that NNZ strictly decreases with increasing tolerance

value, but note that although we can reduce the NNZ with increas-
ing tolerance value, this leads to increased load & communication
imbalances (see Figure 11). In order to get optimal partitions (in
terms of communication and energy) we need to find the tolerance
value that does not disproportionately affect the work imbalance.

Total data communicated: Total data communicated during
MATVEC operation in FEM computations is directly coupled with
the overall communication cost of the partitions. Figure 12 shows
the total data exchanged during 100 MATVEC operations for a fixed
problem size on the CloudLab cluster. As expected we can reduce
the total data exchanged by increasing the flexibility in the OpTI-
PART implementation. Figure 12 demonstrates the superiority of
HILBERT compared to MORTON in terms of communication cost.
The results for HILBERT empirically confirm our observations that
the communication decreases with increasing tolerance. The kink
in MorToN in Figure 12 is likely due to the discontinuous partitions
that are possible with MORTON ; a case we did not consider in our
discussions in §3.2.

6 CONCLUSIONS & FUTURE WORK

In this work we presented a new partitioning algorithm that by
being architecture and application aware is able to reduce parallel
runtime as well as overall energy consumption. The key idea is to
assign unequal work to processes in order to reduce overall com-
munication costs. By incorporating machine characteristics such
as the slowness of memory and network as well as the applications
characteristics we were able to develop a performance model that
is able to predict the optimal tradeoff between reducing communi-
cation costs and increased load-imbalance. We demonstrated the
scalability of the proposed partitioning algorithm up to 262, 144
cores on ORNL’s Titan Supercomputer. We also demonstrated en-
ergy savings of up to 22% while using the new partition compared
to standard SFC-based partitioning algorithms for performing FEM
based MATVEC. Our code is available on github® so that other re-
searchers can incorporate these methods in their codes. For future
work, we would like to refine our performance model with addi-
tional information about the machine and the application, such as
NUMA and memory access patterns. While the current work is
developed in the context of SFC-based partitioning algorithms, the
key ideas are applicable to other partitioning algorithms and will
be the focus of future research. Specifically, we are working on in-
corporating architecture and application models while partitioning
irregular applications.

ACKNOWLEDGMENTS

We thank the reviewers whose feedback greatly improved this paper.
This work was supported in part by the National Science Foundation
grants ACI-1464244 and CCF-1643056. This research used resources
of the Oak Ridge Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract DE-AC05-
000R22725 and the Extreme Science and Engineering Discovery
Environment (XSEDE), which is supported by National Science
Foundation grant ACI-1548562.

3https://github.com/orgs/paralab

https://cloudlab.us/

-100

I S S R B B B B B
1.8 —e— Morton(energy) -
Hilbert(energy)
&) 1.6 -
>
& Y
£ 14f U
s £
= |
T2
[2
1Q*%1 \1 o)x %1 (01 n)x %1 K %1 %1 o)x bx (01 -
§ Q7Y 7Y T (P TN 7 (BT 07 (P o
) tolerance

runtime (mins)

180

—_
(=)
(=]

140

—_
[\
(=]

T T T T T T T T T

T T T T
I-| —e— Morton(time) - §
Hilbert(time) /

e e e B B B S S B S— ——
R I R R IR I I A
\QQQ.\QQ?»QQ%QQP*Q&QQ‘PQ

tolerance

Figure 7: (left) Total energy & time consumption (right) for 100 iterations of maTvEc(distributed) operations, for HILBERT and
MoRTON curve based partitioning with initial element grain size with 10° with maximum depth (of octree) of 30 across 1792
MPI tasks on the Clemson CloudLab cluster.

.106| —®— Morton(energy)

T T T T T

energy (J) —

0.8 |- n

load flexibility (tolerance) —

Hilbert(energy)
T

runtime (mins) —

—e— Morton(time) Hilbert(time)
T T T T T T
600 -
500 / -
—
400 = i i i I —

load flexibility (tolerance) —

Figure 8: Comparison for MATVEC energy consumption based on HILBERT and MoRTON based partitioning schemes for a mesh
size of 95M nodes with 256 mpi with varying tolerance values in CloudLab Wisconsin cluster.

REFERENCES

(1]

(2]

David J Abel and David M Mark. 1990. A comparative analysis of some two-
dimensional orderings. International Journal of Geographical Information System
4,1(1990), 21-31.

Michael Bader. 2012. Space-filling curves: an introduction with applications in
scientific computing. Vol. 9. Springer Science & Business Media.

Michael A Bender. 2006. Compute Process Allocator (CPA). Urbana 51 (2006),
61801.

Jehoshua Bruck, Ching-Tien Ho, Shlomo Kipnis, Eli Upfal, and Derrick Weath-
ersby. 1997. Efficient algorithms for all-to-all communications in multiport
message-passing systems. Parallel and Distributed Systems, IEEE Transactions on
8, 11 (1997), 1143-1156.

Carsten Burstedde, Lucas C. Wilcox, and Omar Ghattas. 2011. p4est: Scalable
Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees. SIAM
Journal on Scientific Computing 33, 3 (2011), 1103—-1133. DOI : http://dx.doi.org/
10.1137/100791634

Arthur R Butz. 1971. Alternative algorithm for Hilbert’s space-filling curve. IEEE
Trans. Comput. 4 (1971), 424-426.

Paul M Campbell, Karen D Devine, Joseph E Flaherty, Luis G Gervasio, and
James D Teresco. 2003. Dynamic octree load balancing using space-filling curves.
Williams College Department of Computer Science Technical Report CS-03 1 (2003),

(8]

(10]

(1]

[14]

68.

UV. Catalyurek, E.G. Boman, K.D. Devine, D. Bozdag, RT. Heaphy, and L.A.
Riesen. 2007. Hypergraph-based Dynamic Load Balancing for Adaptive Scientific
Computations. In Proc. of 21st International Parallel and Distributed Processing
Symposium (IPDPS’07). IEEE. Best Algorithms Paper Award.

Cédric Chevalier and Francois Pellegrini. 2008. PT-Scotch: A tool for efficient
parallel graph ordering. Parallel computing 34, 6 (2008), 318-331.

Karen D Devine, Erik G Boman, Robert T Heaphy, Bruce A Hendrickson, James D
Teresco, Jamal Faik, Joseph E Flaherty, and Luis G Gervasio. 2005. New challenges
in dynamic load balancing. Applied Numerical Mathematics 52, 2 (2005), 133-152.
W. D. Frazer and A. C. McKellar. 1970. Samplesort: A Sampling Approach
to Minimal Storage Tree Sorting. J. ACM 17, 3 (July 1970), 496-507. DOI:
http://dx.doi.org/10.1145/321592.321600

Ananth Grama. 2003. Introduction to parallel computing. Pearson Education.
Frank Giinther, Miriam Mehl, Markus Pégl, and Christoph Zenger. 2006. A cache-
aware algorithm for PDEs on hierarchical data structures based on space-filling
curves. SIAM Journal on Scientific Computing 28, 5 (2006), 1634-1650.

Daniel Hackenberg, Thomas Ilsche, Robert Schéne, Daniel Molka, Maik Schmidt,
and Wolfgang E Nagel. 2013. Power measurement techniques on standard
compute nodes: A quantitative comparison. In Performance Analysis of Systems
and Software (ISPASS), 2013 IEEE International Symposium on. IEEE, 194-204.

https://cloudlab.us/
https://cloudlab.us/
http://dx.doi.org/10.1137/100791634
http://dx.doi.org/10.1137/100791634
http://dx.doi.org/10.1145/321592.321600

-10°,

—_
)

energy (J) —

0B default(HicBerT) 0 DHILBERT (fol = 0.3)

node id

Figure 9:

energy (J) —

—_
)
w

—_
(3]

—_
—_
o

1.1

0 1 2 3 4 5 6 7

0 8 default(MorTon) 0 @ MorToON (tol = 0.3)

node id

Energy consumed by each node while performing maTvEcoperation , with ideal load balancing (for both

HiLBERT (left) and MorToN (right)) Vs. flexible load balancing with a tolerance of 0.3 for 95M mesh nodes with 256 mpi

tasks in CloudLab8 node cluster.

Hilbert(Measured)
—m— Hilbert(Predicted)
T T T T T T
700 |- n
1
£ 00| |
g
[}
E
g 500 |- -
—
400 optimal tolerance —@ |]
© Q"\ Qr'b Q('b Q'by Q(?

load flexibility (tolerance) —

Figure 10: Total time consumed by the 100 MATVEC opera-
tions with 256 cores in Wisconsin CloudLab cluster and the
interpolated execution time values for HILBERT and MoR-
TON based partitioning, using the model T, = at:Wpnax +
tw * Cmax. This implies the total time consumed during
the MATVEC operation directly correlated with maximum
amount of work assigned for each core and maximum
amount of communication that each core has to carry out.
The optimal tolerance that is computed by OPTIPART is high-
lighted in each figure. Note that OPTIPART starts from a
higher tolerance and progressively decreases this, i.e. in the
plot it approaches the optimum from the right.

[15] Tsuyoshi Hamada, Tetsu Narumi, Rio Yokota, Kenji Yasuoka, Keigo Nitadori,
and Makoto Taiji. 2009. 42 TFlops Hierarchical N-body Simulations on GPUs
with Applications in Both Astrophysics and Turbulence. In Proceedings of the
Conference on High Performance Computing Networking, Storage and Analysis
(SC ’09). ACM, New York, NY, USA, Article 62, 12 pages. DOI:http://dx.doi.org/
10.1145/1654059.1654123

Chris H. Hamilton and Andrew Rau-Chaplin. 2008. Compact Hilbert Indices:
Space-filling Curves for Domains with Unequal Side Lengths. Inf. Process. Lett.
105, 5 (Feb. 2008), 155-163. DO : http://dx.doi.org/10.1016/j.ip.2007.08.034

[17] Bruce Hendrickson and Robert Leland. 1995. The Chaco userfis guide: Version 2.0.
Technical Report. Technical Report SAND95-2344, Sandia National Laboratories.

Tomoaki Ishiyama, Keigo Nitadori, and Junichiro Makino. 2012. 4.45 Pflops
Astrophysical N-body Simulation on K Computer: The Gravitational Trillion-
body Problem. In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (SC ’12). IEEE Computer Society
Press, Los Alamitos, CA, USA, Article 5, 10 pages. http://dl.acm.org/citation.
cfm?id=2388996.2389003

[16

(18

T T T T T T T T T ‘
6 |-| —®— communication imbalance A

load imbalance

imbalance —

N N N G P R
R N RN S SN RN

) tolerance —

Figure 11: Load imbalance (work_max/work_min) and
communication imbalance (bdy_max/bdy min) plots for
HILBERT curve based partitioning, with initial element
grain size with 10° with maximum depth (of octree) of 30
across 1792 MPI tasks on the Clemson CloudLab cluster.

https://cloudlab.us/
https://cloudlab.us/
http://dx.doi.org/10.1145/1654059.1654123
http://dx.doi.org/10.1145/1654059.1654123
http://dx.doi.org/10.1016/j.ipl.2007.08.034
http://dl.acm.org/citation.cfm?id=2388996.2389003
http://dl.acm.org/citation.cfm?id=2388996.2389003
https://cloudlab.us/

-104 -10° -107
T T T T [T T T [T T T T
| Morton
1.55 |- —m— Hilbert [
T
iz 1.5 —
[~ — (=]
1 8
Q
5 S 145
E -
[| [F]
@ 1.4
=
o]
1.35
7.% | | | b;‘ 5 S | | b;l (/)‘ S | | | b»l 5
Q'\ Q{'b Q('b Q- Q- Q'} Qr'b Q(b Q- Q- Q'\ Q{'b Q(b Q- Q-

tolerance —

tolerance —

tolerance —

Figure 12: Comparison for number of non-zeros (nnz) elements in the communication matrix corresponding to perform
MATVEcoperation based on HILBERT (left) and MorTON (center) based partitioning schemes for a mesh size of 1B nodes with
4096 mpi tasks with varying tolerance values. Note that the scale difference between the axes in the plots, and for both
partitioning schemes we can reduce the nnz (overall communication cost) by increasing the tolerance value. (right) Total
amount of data communicated while performing 100 iterations of MATVEC in Wisconsin-8 in CloudLab with 25.6M elements
and 256 cores with varying tolerance value.

[19]

[20]

[21]
[22]
[23]

[24

[25]

[26]

[27]

[28]

[29]

Chao Jin, Bronis R de Supinski, David Abramson, Heidi Poxon, Luiz DeRose,
Minh Ngoc Dinh, Mark Endrei, and Elizabeth R Jessup. 2016. A survey on software
methods to improve the energy efficiency of parallel computing. International
Journal of High Performance Computing Applications (2016), 1094342016665471.
Guohua Jin and John Mellor-Crummey. 2005. Using space-filling curves for
computation reordering. In Proceedings of the Los Alamos Computer Science
Institute Sixth Annual Symposium.

LV. Kale and S. Krishnan. 1993. A comparison based parallel sorting algorithm.
In International Conference on Parallel Processing, 1993, Vol. 3. IEEE, 196-200.
George Karypis and Vipin Kumar. 1995. Metis-unstructured graph partitioning
and sparse matrix ordering system, version 2.0. (1995).

George Karypis, Kirk Schloegel, and Vipin Kumar. 2003. Parmetis. Parallel graph
partitioning and sparse matrix ordering library. Version 2 (2003).

Justin Luitjens, Martin Berzins, and Tom Henderson. 2007. Parallel space-filling
curve generation through sorting. Concurrency and Computation: Practice and
Experience 19, 10 (2007), 1387-1402.

Bongki Moon, H.v. Jagadish, Christos Faloutsos, and Joel H. Saltz. 2001. Analysis
of the Clustering Properties of the Hilbert Space-Filling Curve. IEEE Transactions
on Knowledge and Data Engineering 13, 1 (2001), 124-141. DOI : http://dx.doi.org/
10.1109/69.908985

Alex Pothen, Horst D. Simon, and Kang-Pu Liou. 1990. Partitioning Sparse Matri-
ces with Eigenvectors of Graphs. SIAM J. Matrix Anal. Appl. 11, 3 (1990), 430-452.
DOI:http://dx.doi.org/10.1137/0611030 arXiv:http://dx.doi.org/10.1137/0611030
Abtin Rahimian, Ilya Lashuk, Shravan Veerapaneni, Aparna Chandramowlish-
waran, Dhairya Malhotra, Logan Moon, Rahul Sampath, Aashay Shringarpure,
Jeffrey Vetter, Richard Vuduc, Denis Zorin, and George Biros. 2010. Petas-
cale Direct Numerical Simulation of Blood Flow on 200K Cores and Het-
erogeneous Architectures. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Anal-
ysis (SC ’10). IEEE Computer Society, Washington, DC, USA, 1-11. DOI:
http://dx.doi.org/10.1109/SC.2010.42

DOE report. 2010. The opportunities and challenges of exascale computing.
(2010).

Robert Ricci, Eric Eide, and CloudLab Team. 2014. Introducing CloudLab: Scien-
tific infrastructure for advancing cloud architectures and applications. ; login::
the magazine of USENIX & SAGE 39, 6 (2014), 36-38.

[30

[31

[32

(33]

[34]

(35]

[36

(37]

(38]

Johann Rudi, A. Cristiano I. Malossi, Tobin Isaac, Georg Stadler, Michael Gur-
nis, Peter W. J. Staar, Yves Ineichen, Costas Bekas, Alessandro Curioni, and
Omar Ghattas. 2015. An Extreme-scale Implicit Solver for Complex PDEs:
Highly Heterogeneous Flow in Earth’s Mantle. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’15). ACM, New York, NY, USA, Article 5, 12 pages. DOI:http:

//dx.doi.org/10.1145/2807591.2807675
John Shalf, Sudip Dosanjh, and John Morrison. 2011. Exascale computing tech-

nology challenges. In High Performance Computing for Computational Science—
VECPAR 2010. Springer, 1-25.

Leszek Sliwko and Vladimir Getov. 2015. Workload Schedulers-Genesis, Algo-
rithms and Comparisons. International Journal of Computer Science and Software
Engineering 4, 6 (2015), 141-155.

E. Solomonik and LV. Kale. 2010. Highly scalable parallel sorting. In Parallel
& Distributed Processing (IPDPS), 2010 IEEE International Symposium on. IEEE,
1-12.

Hari Sundar, Dhairya Malhotra, and George Biros. 2013. HykSort: a new variant
of hypercube quicksort on distributed memory architectures. In International
Conference on Supercomputing, ICS’13, Eugene, OR, USA - June 10 - 14, 2013.
293-302. DOI:http://dx.doi.org/10.1145/2464996.2465442

Hari Sundar, Rahul Sampath, and George Biros. 2008. Bottom-up construction
and 2:1 balance refinement of linear octrees in parallel. STAM Journal on Scientific
Computing 30, 5 (2008), 2675-2708. DOI: http://dx.doi.org/10.1137/070681727
Hari Sundar, Rahul S. Sampath, Santi S. Adavani, Christos Davatzikos, and
George Biros. 2007. Low-constant Parallel Algorithms for Finite Element Simu-
lations Using Linear Octrees. In Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing (SC '07). ACM, New York, NY, USA, Article 25, 12 pages. DOIL:
http://dx.doi.org/10.1145/1362622.1362656

C. Walshaw and M. Cross. 2007. JOSTLE: Parallel Multilevel Graph-Partitioning
Software — An Overview. In Mesh Partitioning Techniques and Domain Decompo-
sition Techniques, F. Magoules (Ed.). Civil-Comp Ltd., 27-58. (Invited chapter).
Albert-Jan N Yzelman and Rob H Bisseling. 2012. A cache-oblivious sparse
matrix-vector multiplication scheme based on the Hilbert curve. In Progress in
Industrial Mathematics at ECMI 2010. Springer, 627-633.

Marco Zagha and Guy E Blelloch. 1991. Radix sort for vector multiprocessors. In
Proceedings of the 1991 ACM/IEEE conference on Supercomputing. ACM, 712-721.

https://cloudlab.us/
http://dx.doi.org/10.1109/69.908985
http://dx.doi.org/10.1109/69.908985
http://dx.doi.org/10.1137/0611030
http://arxiv.org/abs/http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1109/SC.2010.42
http://dx.doi.org/10.1145/2807591.2807675
http://dx.doi.org/10.1145/2807591.2807675
http://dx.doi.org/10.1145/2464996.2465442
http://dx.doi.org/10.1137/070681727
http://dx.doi.org/10.1145/1362622.1362656

	Abstract
	1 Introduction
	2 Background
	2.1 Modified SFC Ordering

	3 Architecture-Optimal Partitioning
	3.1 Distributed Memory TreeSort
	3.2 Justification for Flexible Partitioning
	3.3 Performance Model
	3.4 OptiPart: Architecture & Data optimized partitioning

	4 Experimental Setup
	4.1 Power Measurements
	4.2 Implementation details

	5 Performance Evaluation
	5.1 Scalability
	5.2 Comparison with SFC-based partitioning
	5.3 Test application
	5.4 Improved performance for the matvec
	5.5 Quality of induced partitions

	6 Conclusions & Future Work
	References

