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Abstract

Indoor robots hold the promise of automatically handling
mundane daily tasks, helping to improve access for people
with disabilities, and providing on-demand access to remote
physical environments. Unfortunately, the ability to under-
stand never-before-seen objects in scenes where new items
may be added (e.g., purchased) or altered (e.g., damaged)
on a regular basis remains an open challenge for robotics. In
this paper, we introduce EURECA, a mixed-initiative system
that leverages online crowds of human contributors to help
robots robustly identify 3D point cloud segments correspond-
ing to user-referenced objects in near real-time. EURECA al-
lows robots to understand multi-object 3D scenes on-the-fly
(in ∼40 seconds) by providing groups of non-expert crowd
workers with intelligent tools that can segment objects more
quickly (∼70% faster) and more accurately than individuals.
More broadly, EURECA introduces the first real-time crowd-
sourcing tool that addresses the challenge of learning about
new objects in real-world settings, creating a new source
of data for training robots online, as well as a platform for
studying mixed-initiative crowdsourcing workflows for un-
derstanding 3D scenes.

Introduction
Autonomous robots capable of fulfilling high-level end-user
requests could revolutionize in-home automation and assis-
tive technology, potentially improving access to the world
for people with disabilities, providing a helping hand, and
enabling more complete on-demand access to remote phys-
ical environments. Yet, robots’ ability to identify objects in
diverse environments, particularly for objects in settings that
have not been previously encountered, remains a barrier to
creating and deploying such systems in the wild. Existing
3D computer vision algorithms often fail in new contexts
where training data is limited, or in complex real-world set-
tings where scene contents cannot be fully specified in ad-
vance. Furthermore, supporting natural language (NL) inter-
action with end users introduces the significant additional
challenge of associating linguistic information with visual
scenes (e.g., to identify the target of a request).

We leverage real-time crowdsourcing to create EURECA,
a system that helps bridge the gap in understanding between
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(a) Paint tool (b) Region tool

(c) Trace tool (d) A case study

Figure 1: (a)-(c) Intelligent and collaborative selection tools
in EURECA. Crowd workers can choose from three tools
to select a group of points for segmenting and labeling 3D
point clouds. EURECA takes initiative to automatically aug-
ment initial user selections; unintentionally selected points
are “filtered” out, and missed points are “filled” in, making
final worker selection easier, faster, and more accurate. (d)
The scene used in our robot case study, as well as a real
crowd worker’s annotation of “spray bottle.”

visual scenes and the language used to describe the objects
in them in order to make systems that can robustly operate
in real-world settings possible.

As an example, imagine a scenario in which an in-home
assistive robot routinely fields requests to pick up or move
different household objects. The robot is trained to carry out
these tasks and can rely on a wealth of training data available
for most objects. However, if the user asks for a newly intro-
duced object (e.g., something they recently purchased) to be
retrieved, the robot may fail to complete the requested task
using automated methods alone if it does not understand the
reference to a new object. EURECA helps robots overcome
such failure modes by leveraging on-demand crowds of hu-
man workers to collaboratively segment and label unfamiliar
objects based on an NL request and a 3D point cloud view of
the current scene. Within tens of seconds, the robot under-



stands which object is being referenced and can immediately
carry out the request, as well as increase the setting-specific
training dataset to improve future automation.

While this presents a powerful way to make robots more
robust in real-world settings through on-the-fly training,
using human workers as part of the sensing process—
especially in non-public spaces, such as home or office
settings—introduces privacy concerns. Workers may be able
to identify individuals, observe information on documents or
whiteboards, and more. To address this, we designed EU-
RECA to be effective even with only depth information
(without an RGB image overlayed). This both helps pre-
serve privacy and makes EURECA compatible with a wider
range of sensor technology currently used on robotic plat-
forms (e.g., LIDAR sensors).

By combining the machine’s ability to precisely select
content with people’s ability to understand scene seman-
tics, EURECA presents a hybrid intelligence approach to
3D annotation—allowing it to benefit from as much automa-
tion as possible, while using human intelligence to fill in the
gaps. To improve crowd workers’ ability to quickly and ac-
curately select objects in a 3D scene, EURECA takes steps
towards a mixed-initiative workflow, allowing the crowd to
work collaboratively with the system to refine selections for
segmentation. Based on initial worker selections, the sys-
tem automatically infers points to augment those selections
(which can even draw on existing 3D vision approaches),
with workers able to progressively correct those automatic
refinements.

EURECA comprises an interface for selection and scene
manipulation (allowing workers to rotate, pan, and zoom)
using a series of selection tools, and automated assistance
for selection refinement. To further reduce segmentation task
latency, EURECA recruits multiple workers on-demand to
synchronously complete tasks faster than any lone worker.
Coordination mechanisms are provided to prevent redundant
or conflicting worker effort.

While EURECA’s approach requires no prior human or
machine training (and can actually generate training data),
it is possible to integrate the output of computer vision ap-
proaches for even better results. In fact, we explicitly avoid
relying on preprocessing because we target settings where
automated systems have already failed. However, if output
from vision approaches exist (e.g., preprocessed clusters,
labels, etc.), EURECA can use that to make selection eas-
ier for workers. This reduces the effort needed from crowd
workers and, over time, enables our approach to smoothly
transition towards full automation as 3D computer vision
methods improve and as more data is collected.

We validate our approach on scenes from an established,
publicly-available dataset (Lai et al. 2011) and demonstrate
that our annotation baseline tool, Paint, leads to per-object
segmentation times of 85 seconds for individual workers.
From this base approach, we then show that our machine-
augmented selection tools, Region and Trace, which in-
fer final selections based on worker input, further decrease
segmentation times by 32%, while increasing object pre-
cision and recall by 5% and 9%, respectively. Next, we
demonstrate that our techniques for supporting coordination

among workers lead to speedups that increase with the num-
ber of contributors, further decreasing the average time it
takes to annotate objects to just 26.5 seconds each.

We conclude with a demonstration of the end-to-end EU-
RECA system with a Fetch robot1 that is able to respond to
a user’s natural language command and accomplish a grasp-
ing task. Our work will allow automated object recognition
systems to be trained on the fly, creating a seamless, reliable
experience between end users and robots. Specifically, we
contribute the following in this paper:
• EURECA, a mixed-initiative crowd-powered system that

leverages non-expert human workers to annotate objects
in 3D scenes on the fly.

• Mixed-Initiative Annotation Tools for EURECA that
help coordinate multiple simultaneous workers on an an-
notation task to further reduce latency.

• Validation that EURECA can achieve high precision
(84%) and recall (92%) while keeping latency on par with
fully-automated methods (26.5s/object).

Background
Our work is related to crowdsourcing, human computation,
3D sensing for robotics, and visual scene understanding.

Robotics and Semantic Mapping Point cloud data has
enabled geometric mapping of 3D space (Endres et al.
2014; Meilland and Comport 2013; Golovinskiy, Kim, and
Funkhouser 2009) and a proliferation of robots capable of
autonomous navigation in both indoor and outdoor environ-
ments. However, the perception capabilities are often limited
to the mapping of space without a semantic parsing of indi-
vidual objects, as well as their afforded actions and language
groundings. Even for simple object affordances (“picking”
and “placing”), language annotation of objects is essential
to establishing a common ground of object references that is
both intuitive for humans and perceptible by robots.

Creating Object Geometries For the robotic manipula-
tion of objects, model-free approaches (Ten Pas and Platt
2016; Garage 2008) reason geometrically over 3D point
clouds to grasp objects. Such methods do not attempt to
semantically distinguish individual objects, and are unable
to provide a common grounding for human-robot interac-
tion or reason in a goal-directed manner. Methods using ob-
ject geometries (Sui et al. 2017; Desingh et al. 2016; Pa-
pazov et al. 2012; Narayanan and Likhachev 2016) address
these shortcomings, often through a combination of gener-
ative and discriminative inference. However, such methods
then rely upon object models to be provided a priori. EU-
RECA, as a crowdsourcing-based data annotation system,
offers one viable option to building such object geometries
suitable for real-world scenarios.

Scene Annotation Interfaces In general, there is a lack
of annotation interfaces for visual scenes; this is typically
because existing work has focused on creating datasets for
these applications offline, often curated by experts. Help-
ful tools like (Russell et al. 2008) are used to create large

1http://fetchrobotics.com/platforms-research-development/



Figure 2: EURECA’s worker labeling interface. A typical view includes: (1) Natural language query issued by the end user.;
(2) Camera controls allow a worker to easily zoom, pan, and orbit around in the scene; (3) Collaborative selection tools make
it easy to select objects (as well as undo any erroneous selections); (4) An object already segmented and labeled by the worker;
(5) An object that is currently being selected by the worker; (6) Gray points indicate a remote worker’s real-time activity for
collaboration tasks; (7) Labeling interface for associating the NL query to object segments.

datasets, but are often time-consuming to create. Further-
more, our envisioned use cases are for the in-home or in-
office setting, where preserving privacy becomes an impor-
tant concern, especially in crowd-powered systems (Kaur et
al. 2017). Indeed, removing the RGB data from an image
will make it resemble a flat grid; without RGB, performing
the kind of outlining discussed in Russell et al. would not
be as feasible. If an application wishes to work with another
sensor, such as a Velodyne, lack of RGB would be the norm.
However, with the 3D point selection that EURECA makes
possible, privacy is maintained and segmentation is done on-
line and in real-time.

Crowdsourcing and Human Computation Recent work
has explored “hybrid intelligence” workflows that leverage
both human and machine intelligence to solve tasks that nei-
ther could accomplish alone (Russakovsky, Li, and Fei-Fei
2015; Song et al. 2018).

Our work draws heavily on real-time crowdsourcing,
which makes it possible to get rapid responses from crowds
of workers—often in less than a second. This response speed
makes it possible to create crowd-powered interactive sys-
tems. By leveraging real-time crowds to quickly annotate
3D scenes, we make it possible to interact with robots us-
ing natural language in real-world scenarios, even when the
robot has no prior training on them. For example, Lasecki et
al. have created systems capable of generating captions with
less than 3 seconds of latency per word (Lasecki et al. 2012)
and creating functional UI prototypes (Lasecki et al. 2015).
Berstein et al. have created systems for finding the best im-
age from a short video, and generating varied images from a
single source (Bernstein et al. 2011).

Since robust, general-purpose computer vision is still a
distant goal, visual scene understanding via human com-
putation has been explored by several prior projects. Ob-
jects and activities have also been recognized in video using
the crowd—Glance (Lasecki et al. 2014) coded behavioral
events, Salisbury et al. used augment live video with natural
language markers using real-time crowds (Salisbury, Stein,
and Ramchurn 2015a), and Legion:AR (Lasecki et al. 2013)
recognized human activities in real time. By building upon
this body of work, we will integrate visual scene understand-
ing into EURECA.

Robotics and Autonomous Control Prior work has also
explored how to use crowdsourcing to augment robotics.
Crick et al. show that users provide reliable demonstrations
and training for robots when the robots were in sensory-
constrained environments (Crick et al. 2011). Moreover, Le-
gion (Lasecki et al. 2011) used real-time crowds to pro-
vide continuous control for an off-the-shelf robot that en-
abled it to follow natural language commands. While Le-
gion provided generalized user interface control, Salisbury
et al. (Salisbury, Stein, and Ramchurn 2015b) introduced
additional control mediators that improved performance by
focusing specifically on robotics applications. de la Cruz et
al. (de la Cruz et al. 2015) got feedback from a crowd of
workers in∼0.3 seconds for mistakes made by an automated
agent. Chung et al. (Chung et al. 2014) explored learning
from initial demonstrations using crowd feedback for mo-
tion planning problems.

We clarify that while these references contribute useful
selection UIs, none solve the NL resolution problem on
the fly. Instead, they are systems for offline segmentation



and data creation. Further, a majority rely on high qual-
ity segmentations or classifications from automated systems,
which we do not assume is available to EURECA due to our
focus on novel objects and settings. Our solution provides
near real-time segmentation based on an NL query even in
domains where references and objects may be completely
unknown to the system (i.e., no available training data).

EURECA: Collaborative 3D Tagging
We build on this related work to recognize objects in settings
where automated approaches fail or lack sufficient train-
ing data. EURECA recruits crowds of workers on demand,
then takes initiative to augment user selections, after which
users can further correct updated selections. In this section,
we describe EURECA’s architecture, including the mixed-
initiative workflow, worker UI for interacting with the point
cloud, automated support to refine users’ object selections,
and annotation tools for collaborating with remote workers.

Web-based Annotation Tool
EURECA presents workers with an interactive visualization
and annotation tool for 3D point clouds (Figure 2) built in
JavaScript using the ThreeJS library2. Full 3D point clouds
can contain more datapoints than can be rendered at inter-
active speeds (e.g. a Kinect generates over 300,000 points).
To address this, EURECA keeps only every eighth point for
a final point cloud size of ∼35,000 points. On page load,
crowd workers are shown the point cloud and asked to se-
lect and label objects mentioned in a natural language query.
Workers can adjust their view of the 3D space using camera
controls that let them easily pan, zoom, and orbit a scene.
Workers see color highlights of the points they select. To se-
lect points, workers are provided with the Paint tool (Fig-
ure 1(a)) which works by dragging an adjustable-size cursor
over the 3D points in a continuous motion (akin to “paint-
ing” on the 3D canvas).

To help the crowd select 3D objects more efficiently,
we create two additional tools, Region and Trace. The
Region tool (Figure 1(b)) allows workers to drag-select
a rectangle over a region of interest. Once the click-and-
drag event is finished, points that are inside the 2D rectangu-
lar region are selected by ray casting a shape matching the
worker-indicated region and including all intersected points.
For objects that are harder to select with just the Region
tool—e.g., objects with a more organic shape, or objects
that are partially occluded—workers can use the Trace tool
(Figure 1(c)). Unlike Region tool, Trace allows workers
to draw a free-form region of interest. The points enclosed
within the region are highlighted using a ray casting method
similar to that used for the Region tool.

Mixed-Initiative Workflow
Selection using the tools described above will not always re-
sult in perfect object boundaries. Automated refinement is
one way to overcome this limitation. A user’s ultimate goal
of fine-grained selection of a novel object can be thought

2http://threejs.org

Figure 3: EURECA’s iterative, mixed-initiative approach. In
(a), the user makes an initial selection (magenta); in (b), the
machine observes the selection, takes initiative, and modifies
it to fill the rest of the base (green); in (c), the user sees
that the system overfilled points (dotted oval), and retakes
initiative to clean up that excess selection, and then selects
the tea pot’s spout; finally, in (d), the machine enters a “no-
op” state since there is no more filter/fill to be had.

of as a two-part approach: there is the user’s latent intent,
which involves wanting to perform a fine-grained segmen-
tation of an object (the “goal state”), and then there is the
user’s expressed intent, which involves using the tools in the
system. A user’s expressed intent is often limited by the se-
lection tools’ capabilities (there will be imperfection in this
process).

One approach would be to provide smarter and more ca-
pable tools to the users. However, direct manipulation using
selection tools might not always help achieve the goal state
because the user’s latent intent is unknown to the system.
Our key insight into overcoming this limitation is to instead
use a mixed-initiative workflow (Hearst et al. 1999; Horvitz
1999). Within this mixed-initiative framework, users can
now collaborate with the system’s initiative to interactively
refine the machine’s selection (by taking back initiative).
Based on the initial user selections, EURECA takes initia-
tive to filter out points that were unintentionally selected by
workers, and fill in points that it believes were missed in
the initial worker selection. As users make repeated point
selections for the same object, EURECA starts to better un-
derstand the user’s high-level (latent) intent that is being ex-
pressed through low-level selection actions, thereby building
a shared context to achieve the goal of fine-grained segmen-
tations (Figure 3). This lets EURECA’s automated selection



methods iteratively refine the current selection state in tan-
dem with the worker, thereby informing future selections.

As an example of where this mixed-initiative approach is
beneficial is in cases where users might not always know
the exact object boundaries in the 3D scene. If they mis-
takenly lump two objects into one selection (if, say, their
viewpoint hid the boundaries), a confident system can take
initiative, jump in, and adjust the filter / fill process. This
mixed-initiative approach, then, can let both the user and the
system collaborate effectively.

Point-Filtering (“Filter”) To infer points to be removed
from a worker’s initial selection, EURECA uses a combi-
nation of two methods: filtering first by performing outlier
detection, and then finding the selection of interest using the
Kernel Density Estimation from an off-the-shelf JavaScript
library (Davies 2011).

Standard outlier detection, in which points that are signif-
icantly distant from the bulk of the selected points are re-
moved, is first performed. This method is not resilient to
filtering out points that are within the distance threshold,
but still clearly belong to another object (e.g., if there are
two objects that occlude each other, a worker’s wayward se-
lection can catch points from both objects). Outlier detec-
tion is augmented with the KDE method. (We note that EU-
RECA’s architecture supports any method that takes in an
initial user selection and outputs a refined segmentation, and
so use KDE as one such method.)

EURECA builds a density curve of points from the cam-
era’s line-of-sight to the initial selection set, based on cam-
era distance. Since the goal is to filter out erroneous selec-
tions within the user’s line of sight, the algorithm splits on
the first local minimum and discards points outside the first
cluster. This method filters out points that are behind the ob-
ject that was “intended” to be selected. A threshold learned
from training data is used to avoid splitting off and selecting
a cluster that contains only a few points.

Selection-Completion (“Fill”) For fill, there is a higher
likelihood that points close together belong to the same ob-
ject. To infer points to add to the initial selection set, EU-
RECA uses a label propagation-based method that is similar
to “flood fill” tools in modern graphic editing software (the
simplest example of which is “bucket fill” in Microsoft Paint
and similar applications).

For each unselected point, EURECA first calculates a
constant influence value from a selection point to all points
within its neighborhood. Using the kd-tree structure allows
for rapid calculation of each point’s distance relations to all
its neighbors. This is augmented with a term that takes into
account how far away this unselected point is from the se-
lection center. Since we assume a worker’s initial selection
lies mostly within their target object, the second term helps
prevent runaway propagation, as points that are too far away
will be less likely to be filled in. An inclusion threshold is
used to determine which points to add to the final filled-in
selection set. A version of the Brushfire algorithm (Choset
2005) is used to estimate the influence on subsequent points.
In practice, every point influences its neighbors within a ra-
dius that is proportional to the average distances between

neighborhoods of points. To slow down the effect of the
“brushfire,” EURECA adds a penalty on the length of the
propagation chain. An inclusion threshold is again used to
determine points that are added to the final selection set.

Collaboration and Scaling with Crowd Size
Moreover, EURECA facilitates coordination between multi-
ple workers via real-time feedback on the selection and la-
beling of synchronous workers. Because we have little to
no information about a given scene in our problem formula-
tion, it is difficult to direct workers to non-overlapping parts
of the scene to avoid redundant work. Lasecki et al. previ-
ously explored using “soft locking” in Apparition (Lasecki
et al. 2015), where workers manually placed markers to sig-
nal to others that they were contributing in the 2D scene’s
physical location. We adapt this idea by automatically pro-
viding real-time feedback on what other workers are mark-
ing via highlighting. This approach, while intuitive, is novel
in crowdsourcing systems and generalizes to broader classes
of real-time coordination problems. EURECA uses Meteor3

to create a shared tagging state that allows remote events to
be synchronized between workers’ local views.

Evaluation
Making interactive robotics applications possible via crowd-
augmented sensing requires a combination of speed and ac-
curacy. In the previous section, we described EURECA’s ar-
chitecture. In this section, we introduce the experiments we
use to validate the efficacy of this architecture.

Recruiting Crowd Workers
We recruited 78 unique workers with a minimum approval
rating of 95% from Amazon Mechanical Turk (AmazonMe-
chanicalTurk 2005). For each task, we paid at an effective
hourly rate of $10 per hour, along with a built-in bonus
amount for successfully completing a multi-stage tutorial.
Once workers pass the tutorial, they are routed to the main
task in which they use EURECA to respond to the posted
query (e.g. “Select and label the dinner plate”).

Point Cloud Dataset
Our evaluation uses scenes from the RGBD Object
Dataset (Lai et al. 2011), which consists of color and depth
images of naturalistic household and office scenes. Because
we wish to explore sensing modes that preserve user pri-
vacy, we use only the depth images to generate a 3D point
cloud. We selected five scenes with enough diversity in ob-
ject type, clutter, and orientation to validate object reference
resolutions and crowd segmentations (Figure 4). To create
the ground truth for evaluation, two researchers carefully an-
notated the various object segments for each scene.

Measures
We evaluate worker performance using four measures: la-
tency, precision, recall, and the F1 score. We measure la-
tency in terms of the entire session’s duration, from under-
standing to segmentation to NL annotation, and not simply

3https://www.meteor.com/



Figure 4: Point clouds used in worker studies. Workers are instructed to segment common household objects. The exact natural
language query differs for each scene. For each scene, non-trivial camera movements are required to overcome object occlusion,
shadow effects, and orientation in order to identify objects.

the time spent selecting the object. This includes time to un-
derstand the scene (“perception”) and time to select objects
(“selection”). Factors that impact perception include dealing
with occlusion, understanding an object’s orientation within
the scene, and recognizing how distinct an object is by its
shape. Factors that impact selection include how easily sep-
arable the objects are, as well as how difficult it is to select
the object’s shape. Therefore, latency will always be longer
than time spent segmenting objects.

We divide latency by the number of objects we detect that
the worker has labeled. This normalization on a per-object
basis lets us compare across scenes with different numbers
of objects. We then automatically align worker selections to
the best-fit ground truth objects to calculate precision and re-
call. We report precision and recall for both objects (impor-
tant for object recognition) and points (important for grasp-
ing / motion planning). The F1 score (harmonic mean of pre-
cision and recall) gives a combined accuracy measure. We
perform paired two-tailed t-test to measure significance.

Study Conditions
We focus on evaluating 1) EURECA’s overall efficacy, 2)
the effect of our selection tools (with automated refinement)
on how quickly and accurately workers can segment objects,
and 3) the impact of workers collaborating in teams.

Study 1: EURECA’s Effectiveness. To measure the over-
all effectiveness of EURECA in enabling workers to seg-
ment and label objects in 3D point clouds, we identify at the
object level how many object instances were correctly iden-
tified by the workers. Across the five scenes, there are 21
unique objects (four scenes with four objects each, and one
scene with five objects).

We evaluate this recognition in terms of precision (how
many objects did the worker correctly identify?) and recall
(did the worker correctly identify all the requisite objects in
the scene?). We treat each iteration of the scene as a new data
point, as there is a chance that a worker might not recognize
an object when they see the scene the first time around, but

do end up recognizing it the second time they see the scene.
Study 2: The Effect of Automatic Refinement on Se-

lection. To study the efficacy of EURECA’s initiative when
automatically refining user selections, we task workers with
segmenting and labeling objects in the same scene twice:
once with only the Paint tool enabled (PAINTMODE) and
then once with all tools at their disposal (TOOLSMODE),
presented in a randomized order.

Study 3: Collaboration in Teams. Next, we want to
demonstrate that EURECA’s collaborative features enable it
to efficiently scale with the number of workers available. We
select two scenes with a total of nine distinct objects that
needed to be identified. Workers are recruited to a “retainer
pool” whenever EURECA is running, and can be directed to
a task within one second of a query that the system does not
understand arriving. By varying the team size from one to
three workers, we can investigate the efficacy of EURECA
in enabling worker coordination and collaboration when per-
forming multiple selections.

Results
In this section, we describe the experimental results of re-
lated to the core EURECA system, the mixed-initiative tools
that support workers, and the benefits of collaboration.

Study 1: EURECA (It Works!)
We recruited 34 workers to use EURECA using only the
Paint tool. We dropped one outlier whose task duration
was more than 3σ from the mean. The remaining 33 work-
ers were distributed across the five scenes: three scenes had
seven workers each, and two scenes had six workers each.

We find that the average total time to task completion
(both perception and selection for the never-before-seen
scene) for all 33 workers, when normalized on a per-object
basis, was 85 seconds (σ = 56s; p < 0.005), with 99.6%
object-level precision (only one false positive), and 93.9%
recall. Of the total of 17 object instances were missed (not
recalled) by workers, 10 were completely missed and 7 were



Figure 5: Overall latency per object among the crowd work-
ers in EURECA’s various iterations.

combined with other objects into one label. As mentioned
earlier, because scene understanding involves both percep-
tion and selection factors, we see scene latency times range
from 65s to 92s on average.

Study 2: Mixed-Initiative Selection Tools
Although 85 seconds latency per object segmentation and la-
beling already allows for on-the-fly understanding of novel
3D scenes, we seek to improve this further with EURECA’s
mixed-initiative tools. Does the progressive refinement of
selections help speed workers up?

For the 33 workers, as we see in Figure 5, when
TOOLSMODE is enabled, we see a 35% relative improve-
ment in annotation speed to 58 seconds (σ = 28s). Ad-
ditionally, we observe an improvement in the average pre-
cision and average recall: precision improves from 0.82 to
0.86, whereas recall improves from 0.82 to 0.90).

Worker Improvement Over Time In addition to worker
speedups from the mixed-initiative tools, we want to know
if workers learn with repeated exposure to the conditions in
Studies 1 and 2. We further break down the performance
on tasks accounting for the order of task conditions (i.e.,
whether workers used PAINTMODE or TOOLSMODE first).
There were 19 workers who used PAINTMODE first and 14
who used TOOLSMODE first. Workers using PAINTMODE
first completed the first task in 87.4s (followed by a sec-
ond task using TOOLSMODE completed in 61.1s). Workers
using TOOLSMODE first completed the first task in 55.6s
(followed by a second task using PAINTMODE completed in
81.8s). Comparing across both orders, we find that workers
improve over time when they use EURECA.

Moreover, we note that 10 workers (30.3%) did not use
TOOLSMODE when they had the option available, which
means that they used the Paint tool for all object tagging.
With this in mind, we can focus specifically on those work-
ers who used at least one of our TOOLSMODE selection
tools. For these 23 workers, when in the TOOLSMODE con-
dition, we see a statistically significant 36% improvement
(p < 0.02) in time taken to tag objects when compared with

the time taken in the PAINTMODE condition.

Leveraging A Priori Clustering Information With EU-
RECA, we obtain performance improvements when we add
our new selection tools with the system initiative to refine
user selections. However, active research is being conducted
on devising systems that can segment out objects or surfaces
in visual scenes. Such information can provide our tools
with improved knowledge and understanding of the scene.
In fact, for all new elements that have never been seen be-
fore, this kind of automated segmentation is the best that can
be done. But, even though we can delineate it in the scene,
we still require the proper NL annotation for it. Since both
of EURECA’s selection tools have the ability to integrate
results from any off-the-shelf segmentation algorithm, can
performance be improved if our envisioned robot has such a
priori understanding of its environment?

To test this hypothesis, we recruited 10 workers from
Amazon Mechanical Turk and ran the same experimental
setup as seen in Study 1 with one of our scenes. We use per-
ceptual grouping of RGBD segments to form object cluster
information (Richtsfeld et al. 2012). When we take the av-
erage worker performance across all of TOOLSMODE with
clustering information available, we find a further 37% im-
provement in speed when compared with the average across
all of TOOLSMODE without clustering information. There-
fore, if prior clustering knowledge exists, EURECA’s selec-
tion tools can leverage that information to further reduce per-
object tagging time (Figure 5).

Study 3: Collaboration Leads to Lower Latency
To understand the ability of teams of workers to complete
the annotation tasks, we recruited 24 workers to create four
different teams for four scenes. Each team had to segment
between four and five objects. We find a large decrease in
segmentation time required as we add more workers (Fig-
ure 6). Individual workers (teams of size one) took on av-
erage 89 seconds (σ = 24s) to segment the objects, with
an overall precision of 0.96 and an overall recall of 0.99 (F1
score of 0.97). When we add one worker (teams of size two),
we see a 62% relative decrease in time taken to 34 seconds
(σ = 15s); however, we also see a 14% decrease in preci-

Figure 6: Latency per object in a collaborative setting.



sion along with a 0.2% increase in recall (F1 score of 0.91).
Finally, for teams of size three, we see a further 22.5% de-
crease in time taken for segmentation and labeling to 26.5
seconds (σ = 8.4s), with a relative decrease in precision of
0.12%, and a relative decrease of 7.3% in recall (F1=0.88).

These results suggest that having workers collaborate
with each other offers immediate speed benefits; increasing
team size to two leads to a drastic reduction in latency, but
at the expense of a decrease in precision. However, precision
losses seem to stabilize when an additional worker is added.

During one of the trials, we observed that one team of
three did not complete the task because they entered a con-
flict state in which an error confused all workers into tag-
ging erroneous objects. This suggests EURECA still needs
to find more effective ways of enabling explicit worker co-
ordination, especially to rectify mistakes. Future work may
explore addressing such conflicts by automatically changing
a worker’s camera view such that no one worker is looking
at the same part of the scene during collaborative tasks.

Case Studies
We have experimentally validated that EURECA enables
crowd workers to quickly identify and accurately select, seg-
ment, and annotate objects in 3D point clouds, all with near
real-time latency. With the novel Paint tool, we see speeds
of 85 seconds, which we are able to reduce to a best-case
scenario of 26.5 seconds with teams of 3 workers. In this
section, we explore some case study scenarios to better eval-
uate EURECA’s performance for real life applicability.

Case Study: End-to-End Test with a Robot
We are using the Fetch robot, a mobile manipulation plat-
form mounted with an ASUS depth camera to sense the
environment. For this case study, we assume that the robot
has bounding boxes and training data for numerous objects.
Provided the object locations in the point cloud, the robot
uses handle grasp localization (Ten Pas and Platt 2016) and
MoveIt! (Sucan and Chitta 2013) (a motion planning library)
to manipulate an object. However, when a new object—a
spray bottle—is introduced, the robot has no way of detect-
ing it, so it places an on-demand request to EURECA. In
our case study, the robot successfully picked up the spray
bottle—of which it had zero training data on—based on the
crowd-generated annotation. Our case study validates that
the precision obtained from the crowd’s segmentation and
annotation using EURECA is enough to enable object ma-
nipulation, which is typically seen as a harder task than ob-
ject annotations for room navigation (as manipulation re-
quires higher segmentation accuracy).

Case Study: Using RGB Color Information
If the lack of RGB color information constraint were re-
laxed, would that improve worker performance? To inves-
tigate this, we repeat Study 1, but workers now see the
RGB point clouds. After accounting for two outliers, we find
that with N=25 workers, segmentation is 5.9% faster with
PAINTMODE (80s), with a 4.9% gain in precision and 2.4%
gain in recall. Worker feedback seems to shed some light on

Figure 7: For a deformable object (Top: green scarf within
the dotted white oval), PCL’s region growing erroneously
segments the scarf into multiple distinct regions (Bottom
Left), whereas an Amazon Mechanical Turk worker is able
to correctly segment and annotate the scarf (Bottom Right).

this result, as workers found it difficult to delineate the selec-
tion colors from the point cloud colors. Future work could
look into ways of toggling point cloud colors to make the
selection object stand out more clearly.

Case Study: Deformable Objects
We study EURECA’s performance on a custom scene with
deformable objects where the task is to identify a scarf.
Compared with the segmentation using an off-the-shelf re-
gion growing algorithm in PCL (Rusu and Cousins 2011) in
Figure 7, workers are able to properly segment the scarf.

We can see that an off-the-shelf region growing algorithm
erroneously identifies multiple regions for the scarf, whereas
crowd workers are able to correctly segment the scarf us-
ing EURECA. However, because deformable objects can be
rather complex, workers need contextual information to dis-
ambiguate between objects if confusion arises (e.g., if the
table were to consist of only scarves, then picking out the



correct one would not work). Perhaps crowd workers can
separate out the individual scarves and the robot can rely
on more clues in the natural language query to annotate the
proper scarf (e.g., “the middle one”).

Limitations and Future Work
We show that EURECA effectively leverages non-expert
crowd workers to annotate 3D scenes in as little as 36s per
object for individual workers, and as little as 26s per ob-
ject when workers collaborate in teams. However, collabora-
tion currently only works in parallel and builds on the “soft-
locking” idea seen in (Lasecki et al. 2015). Future work can
explore ways of having multiple workers select the same ob-
ject without conflicts, making the workflow fast enough for
natural and continuous interactions with robots.

During our collaboration tests, we did not observe any so-
cial loafing behaviors in our tests. We were focused on the
functionality of the end-to-end system, and any loafing ef-
fect was minimal enough that it did not prevent a signifi-
cant improvement in the performance of groups over indi-
viduals. With further instrumentation, future work can study
worker behavior in detail. While this is an interesting prob-
lem, studying it sufficiently is beyond this paper’s scope.

Furthermore, even when preserving privacy by remov-
ing RGB information and downsampling the point cloud by
keeping only 10% of initial points, workers are still able to
correctly identify common household items with high preci-
sion and recall. However, in addition to the scenario we saw
in the case study where it is hard to delineate objects into
constituent ones (e.g. the saucepan), unique objects could
prove problematic for EURECA. Unique objects, such as
say a clay dinosaur, would be hard to identify from just the
point cloud alone. Indeed, clutter and other scene proper-
ties (e.g., camera capture angle) can significantly affect the
ability for anyone, computer or human, to both perceive and
select objects in 3D scenes.

Our goal was to demonstrate that crowds could be used
to segment and annotate objects in real time in “tractable”
scenes, which we explored using a common 3D vision
dataset in the literature that contains images feasible for
highly-trained vision systems to recognize with reasonable
accuracy. As a result, EURECA’s strength lies in dealing
with objects that are familiar to the average worker. Future
work could explore how to overcome these bounds by devis-
ing workflows that selectively relax privacy constraints.

Finally, EURECA’s ability to deal with novelty makes
our approach especially relevant to mobile robots. As these
robots enter new environments, the likelihood of them en-
countering unknown and novel objects increases. For these
settings, the robot can place on-demand requests to EU-
RECA. We could then take advantage of the class of point-
tracking algorithms to map the already-annotated region as
the robot moves around its environment. Furthermore, EU-
RECA’s fill algorithm can be used to incrementally update
this annotated region as more of the object is uncovered
(e.g., occlusions disappear as the robot moves around). Fu-
ture work may address how to introduce approaches that re-
duce latency and further reduce the amount of human time
required for the real-time annotations.

Figure 8: An example case study where the Fetch Robot suc-
cessfully picked up a spray bottle based on an Amazon Me-
chanical Turk worker’s annotation using EURECA.

Conclusion
In this paper, we present EURECA, a mixed-initiative, hy-
brid intelligence system that leverages non-expert crowds of
human contributors to help robots identify, segment, and la-
bel objects in 3D point clouds in near real-time. EURECA
allows robots to recognize, on-the-fly, new natural language
references to never-before-seen objects. This makes it pos-
sible to deploy robots that operate reliably in real-world set-
tings from day one, while collecting training data that can
help gradually automate these systems over time.
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