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Abstract—Absorbing sets are known to be the primary fac-
tor in the error-floor performance of low-density parity-check
(LDPC) codes with message passing decoders over the additive
white Gaussian noise (AWGN) channel. Besides showing excellent
waterfall performance, spatially coupled LDPC (SC-LDPC) codes
that are constructed by an edge spreading technique are known to
have fewer cycles and absorbing sets than their block code coun-
terparts, and therefore to exhibit better error-floor performance.
Based on our previously obtained results for quantized LDPC
block decoders, we derive lower bounds on the performance of
quantized SC-LDPC decoders, including both a flooding schedule
decoder and a sliding window decoder. Numerical simulation
results confirm the accuracy of the obtained bounds and show
that, for quantized decoders, properly designed SC-LDPC codes
have better error-floor performance than their underlying LDPC
block codes.

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] are a power-
ful class of capacity approaching channel codes. One major
benefit of these codes is that they can be decoded with an
iterative belief propagation (BP) message passing decoder
whose complexity grows linearly with block length, which is
a significant advantage over maximum-likelihood decoders in
term of complexity. Spatial coupling (connecting) L copies
of an LDPC block code (LDPC-BC) Tanner graph creates
a coupled chain with a convolutional structure, called a
spatially coupled LDPC code (SC-LDPCC), with improved
performance [2]-[4]. Iterative BP decoding using the standard
flooding schedule over the entire code graph can be used to
achieve capacity approaching performance with SC-LDPCCs,
but the decoding latency and complexity is large. Therefore,
in [5], a sliding window decoder was proposed to allow low
latency operation with minimal loss in performance.

One important aspect of any decoder implementation is fi-
nite precision or quantization, which impacts both the waterfall
and error-floor performance of message passing decoders. The
main factor affecting the error-floor performance of message
passing decoders for LDPC codes was identified as trapping
sets in [6]. A special class of particularly harmful trapping sets
are called absorbing sets, which are combinatorially-defined
structures existing in the Tanner graph of an LDPC code [7].
In [8], we introduced a code-independent lower bound on the
frame error rate (FER) of a quantized decoder for an LDPC-
BC based on absorbing sets, which can predict the effect
that each absorbing set has on code performance. Typically,
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there is one type of absorbing set that dominates the error-
floor performance. If the code-independent bound is calculated
for this absorbing set and multiplied by the absorbing set
multiplicity in the code graph, a good estimate of the error-
floor performance is obtained.

Array based LDPC codes are a class of (v, p)-regular quasi-
cyclic LDPC-BCs defined by the parameter pair (v, p), where
p is a prime and p > -, with attractive implementation
properties [9]. Also, thanks to the quasi-cyclic structure of
these codes, it is possible to completely characterize their
absorbing sets [7], [10]. Several examples of designing array-
based SC-LDPCCs with the aim of decreasing the average
number of absorbing sets per symbol are contained in [10]-
[13]. Spatial coupling via edge spreading [14] is known to
break cycles and absorbing sets in the code graph [10], [11].
Hence, the error-floor is expected to be better for SC-LDPCCs
than for their underlying LDPC-BCs.

In this paper, we consider two different BP decoding
schedules for SC-LDPCCs: the standard flooding schedule!
used for LDPC-BCs and a sliding window decoder used for
low latency applications. We extend the code-independent
bound of [8] to bound both the FER of the standard decoder
and the block error rate (BLER) of the window decoder.
We examine the proposed lower bounds for array-based SC-
LDPCCs with quantized sum-product algorithm (SPA) and
quantized min-sum algorithm (MSA) decoders.? Finally, we
compare the lower bounds of quantized SC-LDPCC decoders
with the lower bounds of their underlying quantized LDPC-BC
decoders and provide simulation results to verify the accuracy
of the bounds.

II. PRELIMINARIES

1) Absorbing sets: Let A denote a subset of cardinality a of
all the variable nodes in a Tanner graph. Let E(A) and O(A)
represent the subsets of check nodes connected to variable
nodes in A with even and odd degrees, respectively, where
|O(A)| = b. Here, A is called an (a,b) trapping set. Also,
A is defined to be an (a,b) absorbing set if each variable
node in A is connected to fewer check nodes in O(A) than
E(A). As an illustration, Fig. 1(a) shows a (4,2) absorbing
set, with variable nodes and check nodes represented by O

I'Henceforth, we refer to this as the standard decoder.

2The proposed method is not restricted to array-based SC-LDPCCs. These
codes are examined due to the known characteristics of their absorbing sets.
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Fig. 1: (a) (4,2) absorbing set, and (b) (6,0) absorbing set.
and M, respectively. This structure appears often in (3, K)-
regular LDPC codes and is the dominant cause of error-
floors for quantized SPA decoders. Also, Fig. 1(b) shows
a (6,0) absorbing set, which was shown in [15] to be the
dominant cause of error-floors in (3, K')-regular LDPC codes
for quantized MSA decoders.

2) Code-Independent Lower Bound: In [8], a lower bound
on the performance of a quantized LDPC-BC decoder was
proposed based on a single dominant absorbing set A.3 The
bound is denoted as Ar (Ep/No(dB)), where R is the rate
of the code containing A. Henceforth we denote this bound
simply as A\.* A lower bound on the FER of any code
containing N copies of A is then approximated by N)\.5 The
bound was obtained by considering the absorbing set A with
an extra edge connected to each of its check nodes. These
single edges represent all edges connected to the check nodes
from outside A. It was assumed that these edges carry the
largest possible quantizer outputs (maximum log-likelihood-
ratios (LLRs)) from outside A at each decoding iteration.
Under this assumption, all possible combinations of quantized
channel LLRs were input to the variable nodes of A, and
each combination was decoded iteratively until all the variable
nodes of A were decoded without error (success) or until a
maximum number of iterations I,,x was reached (failure).
The probability of those combinations of inputs that failed to
decode correctly were then added to provide a lower bound A
on the FER of any code containing A [8].

In ongoing work, we further show that a better lower
bound on the error-floor performance can be obtained if the
assumption regarding the LLRs of the extra edges connected
to the check nodes is modified. Specifically, if these edges
have LLRs that monotonically increase with iteration number
until they reach the maximum LLR level, new combinations of
absorbing set LLRs beyond those that cannot be decoded under
the previous assumption can sometimes be found. Computing
the probability of the intersection of the combinations of
absorbing set inputs that fail under both assumptions gives an
improved estimate of the error-floor performance of a quan-
tized decoder. A similar observation was made in [15] to obtain
code-dependent lower bound. The code-independent bounds
for MSA decoders presented in this paper are calculated based
on this modified assumption.

3) Spatially Coupled LDPC Codes: Given an underlying
LDPC-BC with a p x v parity-check matrix Hgc, a spatially

3If the decoding errors are mostly caused by different copies of A, we
call A the dominant absorbing set.

4We simplify the notation by dropping the rate subscript for conve-
nience. The bound can be adjusted for rate using Agr (Ey,/No(dB)) =

5The approximation of the lower bound is referred to as a bound for
convenience in this paper.

Hse = LW L+m

Fig. 2: Window decoder for an SC-LDPCC operating on the
parity-check matrix Hgc.

coupled code with parity-check matrix Hgc and syndrome
former memory m can be formed by partitioning Hpc into
m component matrices H;,7 = 0,1, ...m, each of size yu x v,
such that Hgc = Zgn H,, and arranging them as

“H,
H, H,
H;
Hse — |H,, . - Ho|. 0
H, - H,
H,]

In (1), each column including Hy, Hy, ..., H,, is referred to
as a block, and L denotes the number of block columns in
4) Window Decoding: A window decoder was introduced
in [5] to address the large latency and complexity requirements
of decoding SC-LDPCCs with a standard decoder. Fig. 2,
adopted from [5], shows a window decoder with window size
W = 6 operating on the parity-check matrix Hgc of an SC-
LDPCC with m = 2 and L = 10. All the variable nodes
and check nodes included in the window (the blue area) are
updated using a message passing algorithm that has access
to previously decoded symbols (the red area). The goal is to
decode the variable nodes in the first block of the window,
called the target symbols. The message passing algorithm
updates the nodes in the window for some maximum number
of iterations I, after which the first block of target symbols
is decoded. Then the window slides one block (v bits) to the
right and one block down (i bits) to decode the second block,
and the process continues until the last block is decoded.

5) Array-Based Spatially Coupled Codes: An array-based
SC-LDPCC [10] is defined by the parameters -, p, L, m and
the partitioning used to form H;,¢ = 0,1,...,m, from the
parity-check matrix Hpc of an array-based LDPC-BC. In [10],
an m = 1 partitioning is described by a cutting vector &,
where £ = [£0,&1,...,6y—1] is a vector of non-decreasing
non-negative integers (0 < & < & < ... < &1 < p)
that determines the partition of Hpc of size yp X p into two
components Hy and H; of the same size. Fig. 3 shows an
example of an array-based parity-check matrix Hpc being
partitioned into H{, and H}. In this case, Hy is obtained by
taking H{, and setting the H area with all zeros. Similarly,
H, is obtained by taking H/ and setting the H{, area with all
zeros. The resulting SC-LDPCC is denoted C(v,p, L, &), and



Hp = Hj Hj

Fig. 3: Array-based code with v = 3 and p = 7, partitioned
by a cutting vector £ = [2,3,5] to construct two component
matrices based on H{, and H}. (Each square represents a p X p
circulant permutation matrix.)

the code rate is given by Rgc = 1 — (LH)LV+7H, where the

underlying LDPC-BC has rate Rgc = 1 — ”’;73“.
III. LOWER BOUNDS FOR SC-LDPCCs

The code-independent bound is based on the multiplicity
of a given absorbing set. We categorize the absorbing sets in
an SC-LDPCC by how many consecutive blocks are spanned
by the variable nodes of the absorbing set. Depending on the
memory size, the spatial coupling method, and the absorbing
set structure, the number of blocks spanned may vary. For
example, in the graph of the C(3,61,L,[15,30,45]) SC-
LDPCC, the (4,2) and (6, 0) absorbing sets of Fig. 1 are either
contained completely in one block or span two blocks. We
denote the multiplicity of absorbing set A that spans i blocks
by N;. It follows that the total number of absorbing sets A in
a graph with L blocks is

L
NéZNi(L—i—i—l). ()
i=1

Therefore, the average number of absorbing sets A per block

1S
L

—al '

N_Z;Ni(L—H—l). (3)
Example 1. Consider the C(3,61,100,[15,30,45]) SC-
LDPCC. Table I shows the resulting multiplicities for the (4, 2)
and (6, 0) absorbing sets, which are counted using the methods
described in [16].

Ny No N;,i>3 N N
(4,2) | 37,088 29,097 0 6,589,403 65,894.03
(6,0) | 48,129 | 211,975 0 25,721,100 257,211
TABLE I: Multiplicities of absorbing sets in the

C(3,61,100, [15, 30, 45]) SC-LDPCC.

A. Lower Bound for Standard Decoding of SC-LDPCCs

Since the standard decoder operates on the entire graph, thus
treating an SC-LDPCC as a large block code, our previously
developed code-independent lower bound can be directly ap-
plied. To evaluate the approximate lower bound on FER for a
single dominant absorbing set A, the multiplicity IV is used
to obtain

FER > N), 4

where A is the lower bound for A. To compare with the
underlying LDPC-BC, which operates on a shorter graph. we
normalize the FER by L, to obtain a normalized FER per
block. denoted FER £ FER/L. Consequently, the normalized
(approximated) lower bound is given by

F/ETQE%:NA. (5)

B. Lower Bounds for Window Decoding of SC-LDPCCs

For window decoding, we define the block error rate at
window position j € [L] £ {1,2,... L} by BLERY). By
taking the average over all the L window positions, the average
BLER can be written as

L

_ 1 .

BLER £ 7 § BLERW), (6)
=1

Since BLER gives the average error rate for blocks of length
v with window decoding, it is appropriate to compare this to
the FER of the underlying LDPC-BC or to FER for standard
decoding of the SC-LDPCC.

To proceed, it is necessary to identify the absorbing sets
that can cause decoding errors in one block of target symbols
so that the code-independent bound can be applied to evaluate
the lower bound on BLER for that block.

Definition 1. Absorbing set A is a window absorbing set if
all the variable nodes and connected check nodes are in the
window (the blue area in Fig. 2).

Consider the window decoder illustrated in Fig. 2. Assum-
ing BP decoding is performed on all W blocks (the blue area),
the code-independent bound can be applied to all the window
absorbing sets to estimate the probability of error in the whole
window.® However, we are interested in the probability of error
only in the target symbols. Hence, only window absorbing sets
with variable nodes in the target symbols should be considered.
To this end we propose the following definition.

Definition 2. Target symbol absorbing set A is a window
absorbing set with at least one variable node in the set of
target symbols.

For each window position j € [L], we denote the multiplic-
ity of target symbol absorbing sets by 7). To evaluate the
BLER of the ;" block of target symbols, the code-independent
bound with multiplicity 7U) can be applied. Defining T} as
the number of target symbol absorbing sets that span ¢ € [W]
consecutive blocks, we can write

min(W,L—j41)

> I ™

i=1

7@ —

Applying the code-independent bound, the probability that
there is at least one error in the j** block of target symbols
can now be (approximately) bounded below as

BLERY) > TWX  jel[L]. (8)
Finally, using (7) and (8) in (6), we obtain
min(W,L—j+1)

Z T;. )
=1

In Fig. 2, the LLRs from previous window positions (the red area) are
also used. However, we exclude any absorbing set with at least one node in
the red area for two reasons. First, the LLRs in the red area are not being
updated, so these absorbing sets do not satisfy the bound assumption that all
variable node combinations are considered. Second, at high SNR, it is assumed
that these LLRs have large values and therefore are less likely to cause an
absorbing set to get trapped. Essentially, by excluding these absorbing sets,
we are obtaining a lower bound.

)\ L
BLER > ZZI
iz



By examining  Fig. 2, we  can see that
Z] ) me(WL Jj+1) T, = Ezmél TZ(L — g+ 1)’ and
therefore
N
BLER > Z;Ti(L—erl). (10)

Remark 1. Any absorbing set A of the SC-LDPCC with all
its variable nodes located within the first W — m blocks of
the window is a window absorbing set. Therefore, for the first
W — m blocks in the window, the absorbing set multiplicity
is counted in the same way as for the entire SC-LDPCCs, i.e.,

T, = N; i€ [W —m. (11)

Remark 2. Any absorbing set A of the SC-LDPCC that shares
variable nodes with the last m blocks in the window is not
necessarily a window absorbing set A since some check nodes
of the SC-LDPCC code are not contained in the window for
these blocks. Therefore, for the last m blocks, the multiplicity
of absorbing sets must be counted separately.

Using (11) in (10) it follows that

for

/\ — :
BLER > 7 Z L—i+1)
L (12)
+7 Y T(L-i+1).
i=W—-m-+1

If the target symbol absorbing sets are all confined to W —m
positions, i.e. N; =0, : > W —m + 1, it can be concluded
that right hand side of (5) and (12) are the same, i.e., the FER
of the standard decoder and the BLER of the window decoder
have the same lower bound.

Example 2. For the code of Example 1, where m = 1 and
N; =0, @ > 3, any window size W > 3 gives the same
lower bound for the FER of the standard decoder and the
BLER of the window decoder. This result suggests that the
choice of window size depends primarily on how it affects
the performance in the waterfall, not in the error-floor.”

C. Lower Bound Comparison: Array-Based SC-LDPCCs vs.
the Underlying LDPC-BCs

In this subsection, we compare the lower bounds on FER
and BLER of array-based SC-LDPCCs to the lower bounds on
FER of the underlying LDPC-BCs.? In particular, we compare
the (v, p) array-based LDPC-BC with the corresponding array-
based SC-LDPCC with the same (v, p). Two factors must be
considered: first, the respective multiplicities Ngc and Ngc,
and second, the respective rates of Rpgc and Rsc of the LDPC-
BC and SC-LDPCC being compared. In [10], [12] it is shown
that Ngc for SC-LDPCCs is less than Npc for the underlying
LDPC-BC, so we define o = Npc/Nsc. For the code of
Example 1, for the (4,2) and (6,0) absorbing sets, Npc can

"It is well known that small windows have poor waterfall performance,
and therefore choosing W < 3(m + 1) is not advisable.

8The proposed comparison provides a tool for error-floor comparisons of
SC-LDPCCs and LDPC-BCs. Waterfall comparisons are typically made via
Monte-Carlo simulation.
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Fig. 4: Proposed lower bound versus simulation re-
sults for standard decoding and window decoding of
C(3,61,100, [15, 30, 45]), with both quantized MSA and quan-
tized SPA.

be found in [7], [17], Nsc is given in Table I, and we find
that « = 5.08 and 8.535, respectively. Regarding the rates,
we make the assumption that the difference between the rate
Rgc of the block code and the rate Rsc of the SC-LDPCC is
negligible for large L.° For code of Example 1, with L = 100,
Rsc = 0.9503 and Rgc = 0.9514, so in this case we can
ignore the rate difference. Therefore the SC-LDPCC standard
decoder FER and window decoder BLER lower bounds are «
times better than the underlying LDPC-BC FER lower bound.

IV. RESULTS AND DISCUSSION

To verify the accuracy of the proposed lower bound, we
simulated the C(3, 61, 100, [15, 30, 45]) code for various com-
binations of decoders/quantizers. The results are presented in
Fig 4. When an SPA decoder with a 6-bit uniform quantizer
(see [8] for parameters) is used, the (4,2) absorbing sets are
dominant, similar to the underlying block code. When an MSA
decoder with a 5-bit quasi-uniform quantizer [18] (see [15] for
parameters) is used, (6,0) absorbing sets are dominant, which
is also the case for the underlying LDPC-BC [15]. In [18],
it was also shown that MSA with a quasi-uniform quantizer
outperforms the conventional quantized SPA for LDPC-BCs.
We recall from Sec. III-B that the bounds for FER of the
standard decoder and BLER of the window decoder are the
same for this SC-LDPCC. For standard decoding, applying
the code-independent bound to these absorbing sets with the
multiplicities from Table I, we see in Fig. 4 that the FER
simulation result agrees with the bound. We also see that
the BLER simulation result for window size W = 6 agrees
closely with the bound. In summary, we note that (1) the lower
bounds agree with the simulation results, and (2) the error-
floor performance is almost the same for standard decoding
and window decoding.

9The rate Rgc increases monotonically with L. As L — oo, Rsc —
1 — ~/p which is slightly less than Rpc, and the rate loss vanishes as p
increases [10].
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Fig. 5: FER and FER comparison of the SC-LDPCC with stan-
dard decoding and the underlying LDPC-BC for the quantized
SPA decoder.

Fig. 5 shows the bound and simulation results for the FER
of the underlying LDPC-BC versus the bound and simulation
results for the FER of the SC-LDPCC with SPA decoding and
a uniform quantizer. It was noted earlier that @ = 5.08 in
this case, which means that the bound for the LDPC-BC code
is 5.08 times higher than the bound for the SC-LDPCC, and
we see that the simulation results agree with this prediction.
In other words, the convolutional gain factor o« = 5.08 of the
proposed lower bounds tracks the convolutional gain exhibited
by the simulation results.

In Fig. 6, another interesting comparison is made between
the simulated bit error rate (BER) performance of quantized
SPA and quantized MSA decoders, where we see that the
trends observed in our analysis are also reflected in the BER
simulation results. In particular, for both standard and window
decoding, the SC-LDPCC with the quantized MSA decoder
outperforms the SC-LDPCC with the quantized SPA decoder
as well as the underlying LDPC-BC decoded with either the
SPA or the MSA.

V. CONCLUSION

In this paper, we derived lower bounds on the perfor-
mance of quantized SC-LDPCC decoders, for both standard
flooding schedule decoders and sliding window decoders. We
showed that properly designed SC-LDPCCs have better lower
bounds than their underlying LDPC-BC counterparts, and this
advantage was confirmed via computer simulation. We also
showed that MSA decoders with quasi-uniform quantization
outperform SPA decoders with uniform quantization for SC-
LDPCCs, with either standard or window decoding.
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