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ABSTRACT

Network motifs are often called the building blocks of net-
works. Analysis of motifs is found to be an indispensable
tool for understanding local network structure, in contrast to
measures based on node degree distribution and its functions
that primarily address a global network topology. As a result,
networks that are similar in terms of global topological prop-
erties may differ noticeably at a local level. In the context of
power grids, this phenomenon of the impact of local struc-
ture has been recently documented in fragility analysis and
power system classification. At the same time, most studies
of power system networks still tend to focus on global topo-
logical measures of power grids, often failing to unveil hidden
mechanisms behind vulnerability of real power systems and
their dynamic response to malfunctions. In this paper a pilot
study of motif-based analysis of power grid robustness un-
der various types of intentional attacks is presented, with the
goal of shedding light on local dynamics and vulnerability of
power systems.

Index Terms— Power grids, complex network, robust-
ness, subgraphs, motifs, local topological properties

1. INTRODUCTION

The past decade has seen increasing interest in the applica-
tion of tools developed in the interdisciplinary field of com-
plex network (CN) analysis to improve our understanding of
power system behavior (for overviews see, e.g., [1, 2, 3] and
references therein). A power grid can be naturally described
as a graph in which nodes represent, e.g., transformers, sub-
stations or generators, and edges represent electrical connec-
tions. There generally exist two main approaches to analysis
of power systems using CN tools. The first approach is based
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on purely topological properties of a grid network, and the
second hybrid approach aims to incorporate electrical engi-
neering concepts, e.g. impedance, maximum power, etc, into
the CN analysis, which typically results in a representation of
a grid as a weighted directed graph. Both approaches provide
important complementary insights into hidden mechanisms
behind functionality of power systems, and neither approach
can be viewed as a universally preferred method (see [2] for
the detailed overview). In the current paper, we start our anal-
ysis from the viewpoint of topological grid properties.

Among the most widely explored topological character-
istics of power grid networks are node degree distribution,
mean degree, small world properties and, to a lesser extent,
betweenness centrality measures – that is, primarily lower-
order connectivity features that are investigated at the level
of individual nodes and edges. However, a number of re-
cent studies of power system reliability indices and stability
estimation suggest that resilience of the power grid is also
intrinsically connected to higher-order network features, or
network motifs [4, 5]. The core idea is that if a particular sub-
graph structure such as, for instance, a triangle, star, square
or wheel, occurs significantly often, then such a subgraph
likely plays an important role in network functionality. And
while higher-order network features have proven to play a
fundamental role in understanding organization, functionality
and hidden mechanisms behind many complex systems, from
brain connectomes to protein-protein interactions to transporta-
tion congestion [6, 7, 8, 9], systematic analysis of network
motifs in power grids and their impact on system resilience
is still largely understudied [2, 4, 5, 10] but constitutes an
emerging research direction.

In this paper we present a pilot study of motif-based anal-
ysis of power grid structural vulnerability under various types
of intentional attacks. In particular, we consider the dynam-
ics of 4-node connected motifs in six European power grids
under three attack strategies, namely, attacked nodes are se-
lected based on degree centrality, betweenness centralities or
decreasing order of load (i.e., cascading failures). As a refer-
ence, we use a power grid fragility classification of [10] based
on a tail function of the grid degree distribution, that is, the
deviation of the observed grid cumulative degree distribution
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Fig. 1. All connected 4-node motifs.

from an exponential model. We find that local motif-based
properties of fragile and robust networks noticeably differ in
terms of their sensitivity to the type of attack. These pilot
findings suggest that motifs can be useful metrics to charac-
terize a level of power system vulnerability to various types of
attacks and certain motifs can potentially serve as early warn-
ing indicators of system failure.

2. MOTIF-BASED ANALYSIS OF POWER GRIDS

Background on graphs We consider an undirected graph
G = (V,E) as a model of a power grid network. Here V is a
set of nodes, and E is a set of edges. The order and size of G
are defined as the number of nodes and edges in G, i.e., |V |
and |E|, respectively. We assume that if an edge euv ∈ E,
then u 6= v. A graph G is connected if there exists a path
from any node to any other node in G. The distance d(u, v)
is defined as the minimum path length from u to v in G. The
degree of a node u is the number of edges incident to u.

A graph G′ = (V ′, E′) is a subgraph of G (i.e., G′ ⊆ G),
if V ′ ⊆ V and E′ ∈ E. If G′ = (V ′, E′) is a subgraph of G
and E′ contains all edges euv ∈ E such that u, v ∈ V ′, then
G′ is called an induced subgraph of G. Two graphs G′ =
(V ′, E′) and G

′′
= (V

′′
, E

′′
) are called isomorphic if there

exists a bijection h : V ′ → V
′′

such that any two nodes u and
v of G′ are adjacent in G′ if and only if h(u) and h(v) are
adjacent in G

′′
.

Network motifs and their measures Analysis of higher-
order structures of G, or multiple-node subgraphs, provides
invaluable insights into network functionality and organiza-
tion beyond the trivial scale of individual vertices and edges.
A motif here is broadly defined as a recurrent multi-node sub-
graph pattern that tends to appear more often than would be
expected in a randomized network. Network motifs were in-
troduced by [6] in conjunction with the assessment of stabil-
ity and robustness of biological networks, and later have been
studied in a variety of contexts (for overviews see [9, 11]).

Formally, let Gk = (Vk, Gk) be a k-node subgraph of G.
If there exists an isomorphism between Gk and G′, G′ ∈ G,
we say that there exists an occurrence, or embedding of Gk

in G. A motif signature fG(Gk) is a number of occurrences
of Gk in G. If a subgraph Gk occurs more frequently than
expected by chance, it is called a network motif [6]. Figure 1
shows all connected 4-node motifs. The significance of mo-
tifs for a particular network can be measured by calculating

motif concentrations and Z-scores. In Z-score the number of
appearances of a motif in the observed network is compared
with the corresponding quantity for a randomized network:
Z = MR −M/s, where M is the mean number of specific
motif occurrences in B replicated randomized networks, s is
the corresponding sample standard deviation, and MR is the
observed number of motifs in the specific power system net-
work. In this study randomized networks are simulated using
a configuration model [12]. The concentration (Ci) of n-node
motif type i is the ratio between its number of appearances
(Ni) and the total number of n-node motifs in the network:
Ci = Ni/

∑
iNi, where

∑
iNi is the total number of n-node

motifs.
Conventional graph characteristics and vulnerability

metrics The vulnerability of a power grid network can be de-
scribed in terms of a drop in its performance when a disruptive
event emerges. According to [2], the common topology-based
vulnerability/robustness metrics are: degree distribution, av-
erage path length (APL), diameter (D), clustering coefficient
(CC), betweenness centrality (BC), etc., as noted above.

The node degree of a network is characterized by a proba-
bility mass function P (k) indicating the probability that a ran-
domly selected node has k links. As suggested by [13], higher
heterogeneity of power grids and, in particular, higher devi-
ations from the Poisson distribution, tends to imply higher
fragility. Power grid networks are assumed to follow expo-
nential cumulative degree distributions [10]. That is, the prob-
ability that a node chosen uniformly at random has a degree
k or higher follows: P (K ≥ k) = C exp (−k/γ), where C
is a normalization constant, k is the node degree and γ is a
characteristic parameter. According to [13] and [10], a power
grid is robust if γ < 1.5 and fragile if γ > 1.5.

Robustness under attacks In robustness under attacks,
the aim is to evaluate how a network behaves when a fraction
of random or selective nodes are removed. If the node to be
removed at each step is selected at random, then the strategy
is called a random attack. In the case of intentional attacks,
the targeted nodes to be removed are selected based on their
properties. For instance, if the nodes are selected in the de-
creasing order of their degree or betweenness centrality, the
resulting attack is called a degree based attack or between-
ness based attack, respectively. Finally, in a cascading attack,
nodes are targeted in the decreasing order of their loads. Typ-
ically the vulnerability of a network is measured on the basis
of the remaining connectivity, largest subgraph size, D, APL,
etc., after each node removed with different attack strategies.
In this study we focus on remaining motif distributions un-
der different targeted attacks, e.g., degree based, betweenness
based and cascade attacks. More specifically, our goal is to
analyze the decay rate of a specific motif concentration under
different types of attacks and enhance our understanding of
local robustness properties of the corresponding network. Al-
gorithm 1 provides an outline of how motif concentrations are
calculated under degree based attacks. The method is similar
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under betweenness based attacks, except V is sorted by de-
scending order of betweenness centralities. Under cascading
attacks, betweenness is recalculated after each node removal.
Finally, under a random error (attack), nodes are removed ran-
domly.

Algorithm 1: Degree based attack tolerance of net-
works based on motifs concentrations.

Input : Power grid G = (V,E).
Output : Motif concentrations under targeted attacks.

1 Nk-number of Vk motif in G, k = 1, . . . , 5 ;
2 Concentration, Ck = Nk/

∑
k Nk ;

3 Dv-degree centrality of a node v. Calculate Dv , ∀v ∈ V ;
4 T (G)← sorted V by Dv (descending) ;
5 for i = 1 to |T (G)| do
6 V = V − T (i) ;
7 E = E − {(x, y) ∈ E : x = T (i) or y = T (i)} ;
8 Calculate Nk for k = 1, . . . , 5 ;
9 Calculate concentration Ck[i] = Nk/

∑
k Nk ;

10 end;

3. CASE STUDIES

Data In this project we study electricity transmission net-
works of two European countries, e.g., Germany and Italy
(the same power grid data analyzed by [14]), and four Euro-
pean power system operators, e.g., RTE, Amprion, 50 Hertz,
and TenneT. The transmission network of Germany consists
of 445 nodes (power stations/sub-stations) and 567 edges, and
is the sparsest among the considered networks. The transmis-
sion network of Italy has 273 nodes and 375 edges. RTE is
the French high-voltage transmission system, formed by 190
nodes and 224 edges. Amprion is one of the six transmis-
sion system operators in Germany, with 193 nodes and 252
edges. 50Hertz operates the transmission grid in the north-
ern and eastern part of Germany, with a direct connection to
Poland, the Czech Republic, and Denmark. The 50Hertz net-
work has 63 nodes and 82 edges. Finally, TenneT operates in
the Netherlands and Germany, and is formed by 79 nodes and
80 edges. Data for Germany and Italy are obtained from the
Union for the Coordination of the Transmission of Electricity
and data for the four system operators are obtained from the
SciGRID [15].

Conventional CN robustness analysis Table 1 presents
conventional network-based vulnerability metrics for the six
power grids. Table 1 suggests that mean degree, APL, D,
CC and BC for Germany, Italy, and TenneT tend to be lower
than the respective metrics for RTE, Amprion and 50Hertz.
In addition, Table 1 shows the estimated fragility parameter
γ, resulting from approximating the cumulative degree distri-
bution of each grid with an exponential model [13, 10]. We
find that the electricity transmission system of Germany and
Italy are robust with γ of 1.324 and 1.204, respectively. The
TenneT power system is on the border of robustness with γ of
1.501. Finally, RTE, Amprion and 50Hertz tend to be fragile
with γ ≈ 2, and 50Hertz appears to be the most fragile grid

with the highest γ of 2.13.

Table 1. Vulnerability metrics for the six power grids.

Power γ Mean APL D CC BC
System Degree
Germany 1.32 2.58 11.75 30 0.07 2335.80
Italy 1.21 2.81 9.74 28 0.08 981.85
TenneT 1.50 2.03 5.33 12 0.10 78.71
RTE 1.86 2.36 8.05 20 0.17 379.91
Amprion 1.98 2.61 7.01 18 0.09 530.10
50Hertz 2.13 2.60 5.15 14 0.15 120.60

Motif-based robustness analysis We start from the con-
centrations and Z-scores for different 4-node motifs that ap-
pear in the six European power grids. Since motif distribu-
tions are highly skewed, standard z- and t-quantile are no
longer appropriate. Hence, we compare the observed motif
Z-scores with critical values obtained from parametric boot-
strap under a configuration model as a reference. All grids but
TenneT and 50Hertz, have statistically significant concentra-
tions of V1 to V5 motifs, with respect to a reference configu-
ration model. No grid exhibits a V6 motif.

In cases of TenneT and 50Hertz, we find that both grids
deliver non-significant concentrations of detour motifs (i.e.,
V4 and V5). At the same time, the more robust TenneT has
also a non-significant concentrations of low connectivity tree-
like dead end motifs, V2; while the most fragile 50Hertz has
a statistically significant concentration of a tree-like motif V2.

Remarkably, in their studies of European power grid net-
works, the authors of [10] find that power system fragility
seems to increase as the elements of the grid become more
interconnected and the number of {3, 4}-node subgraph pat-
terns such as stars and triplets, begins to increase. Indepen-
dently, based on the analysis of synthetic power grids and
a case study of the Northern European power system, [4]
and [5] show that an abundance of tree-like dead-end 4-node
subgraph patterns leads to a loss of stability and degradation
of resilience. More recently, [16] which studies the impact
of removing transmission lines with a high betweenness cen-
trality, suggests that fewer connections imply higher security.
Hence, the motif analysis of TenneT and 50Hertz may imply
that there exists some balance in representation of low con-
nectivity tree-like and detour motifs, resulting in a relatively
stable system. However, there likely exists some functional
nonlinear interaction among low connectivity and detour mo-
tifs and network robustness.

To assess the vulnerability of the six power grid networks,
we investigate the dynamics of motif distributions under de-
gree based targeted attacks. Fig. 2 shows the remaining motif
concentrations after each node removed under degree based
attacks. From Fig. 2, we find that motifs in the RTE and Am-
prion networks disappear more quickly as nodes are removed
than do the motifs of the Germany and Italy networks. Fur-
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Fig. 2. Dynamics of 4-node motif concentrations under de-
gree based attacks.

thermore, there is a marked distance among motif concentra-
tion curves in the Germany and Italy networks, whereas, the
gap between curves in the RTE and Amprion networks are
narrower. This also suggests that the motif disappearing rate
for the Germany and Italy power grids are slower than those
for the RTE and Amprion power grids. According to the re-
sults in Table 1, we know that the Germany and Italy power
grids are robust but the RTE and Amprion power grids are
fragile. Therefore we can say that the motifs disappear more
quickly as the nodes are removed in the fragile networks than
do motifs of the robust networks.

Furthermore, Fig. 3 shows that, for Germany, which is
classified as a robust network, there exist significant differ-
ences among the decay rates of motif concentrations of V2 and
V4 under different intentional attacks. However, for Amprion,
which is classified as a fragile network, motif curves under all
types of attacks are much closer to each other. These results
suggest that the local motif structures of fragile and robust
networks are sensitive with respect to the attack strategy and
considered motif. Analysis for other types of networks (i.e.,
Italy, RTE, TenneT and 50Hertz), attacks and 4-node motifs
are omitted for brevity, but mirror the conclusions above. (For
the detailed study of all six power grids see [17]).

4. CONCLUSION AND DISCUSSION
Vulnerability of power systems is a very active research area,
and grid robustness depends on many known and latent fac-
tors. Furthermore, notions of grid robustness are not univer-
sal, and the same grid can exhibit different vulnerability prop-
erties under different types of intentional attacks and random
failures. In this paper we have investigated the dynamics of
higher order topological properties of grid networks, namely,
motifs, under various types of attacks. In particular, although
even basic {3, 4}-node motifs have been proven to unravel
hidden mechanisms behind functionality and stability of var-
ious complex systems (see [6, 11, 18] and reference therein),
including a limited number of motif-based vulnerability stud-
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Fig. 3. Persistence of motif concentrations under different
targeted attacks.

ies in power networks [5, 10], to our knowledge, there exists
no previous study of motif-based analysis of power systems
under attacks. In this pilot study we have focused on motif-
based analysis of local power grid vulnerability under random
and intentional attacks. We have found that the dynamics
of distributions of 4-node motifs under various attacks dif-
fer with respect to the global tail-based grid classification of
power grid fragility proposed in [10]. In particular, we have
found that robust and fragile power systems exhibit different
degrees of local sensitivity and degradation with respect to
the type of attack and the type of motif. Hence, motif char-
acteristics such motif concentrations can be potentially used
as alternative local metrics of fragility under attacks as well
as early warning indicators of system degradation and failure.
In the future, we plan to further expand this study into a hy-
brid analysis of local motif-based topological and functional
properties of weighted power grid networks.
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