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.
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Abstract Weather forecasting is crucial to both the
demand and supply sides of electricity systems. Tempera-
ture has a great effect on the demand side. Moreover, solar
and wind are very promising renewable energy sources and
are, thus, important on the supply side. In this paper, a large
vector autoregression (VAR) model is built to forecast
three important weather variables for 61 cities around the
United States. The three variables at all locations are
modeled as response variables. Lag terms are used to
capture the relationship between observations in adjacent
periods and daily and annual seasonality are modeled to
consider the correlation between the same periods in
adjacent days and years. We estimate the VAR model with
16 years of hourly historical data and use two additional
years of data for out-of-sample validation. Forecasts of up
to six-hours-ahead are generated with good forecasting
performance based on mean absolute error, root mean
square error, relative root mean square error, and skill
scores. Our VAR model gives forecasts with skill scores
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that are more than double the skill scores of other fore-
casting models in the literature. Our model also provides
forecasts that outperform persistence forecasts by between
6% and 80% in terms of mean absolute error. Our results
show that the proposed time series approach is appropriate
for very short-term forecasting of hourly solar radiation,
temperature, and wind speed.

Keywords Forecasting, Solar irradiance, Wind speed,
Temperature, Vector autoregression, Skill scores

1 Introduction

Electricity supply and demand are greatly influenced by
weather conditions. Temperature, wind speed, and solar
radiation are among the most influential factors. Temper-
ature has a great effect on energy use by individuals and,
thus, on the demand side of the electricity system. Heating
and cooling loads depend largely on ambient temperature.
Wind and solar generation are increasingly important as
renewable energy gains in popularity. Wind power is
growing at a rate of 30% annually, with a worldwide
installed capacity of 283 GW at the end of 2012. The
installed capacity of solar photovoltaic (PV) grew by 41%
in 2012, reaching 100 GW.

However, the limited predictability of wind speed and
solar radiation raises operational challenges for power
systems as the penetrations of these technologies increase.
Accurate very short-term forecasting (i.e., up to 12-hours-
ahead) of the two resources could improve operational
efficiency of power systems. Although it is not the focus of
this work, longer-term weather forecasting is also benefi-
cial for power system planning. For example, Maleki et al.
[1] employ Monte Carlo simulation of wind and solar
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conditions to optimally design a grid-independent hybrid
renewable energy system.

There are many works dealing with weather forecasting,
and Widén et al. [2] provide a comprehensive survey of
forecasting techniques in the literature. Some of these
works forecast temperature, frost, or related financial
derivatives. Others forecast solar radiation, cloud motion,
or solar production. Others still forecast wind speed and
wind production. Here we review some of the literature
that forecast temperature, solar radiation, or wind speed.

Most works focusing on temperature forecasting analyze
financial weather derivatives as the primary application.
Besides atmospheric methods, models attempting to cap-
ture these dynamics can be divided into two categories:
stochastic approaches (Monte Carlo simulation) and time-
series models.

There are numerous examples of the stochastic
approaches [3-5]. Alaton et al. [3] suggest a stochastic
process that describes the evolution of temperature for the
pricing of weather derivatives. Benth and galtyté-Benth [4]
model daily average temperature with a mean-reverting
Ornstein-Uhlenbeck process. Taylor and Buizza [5]
investigate temperature ensemble predictions and compare
them with time-series models.

There are also examples of time-series models [6, 7].
Campbell and Diebold [6] forecast daily average temper-
ature using a nonstructural time-series approach. §altyté—
Benth et al. [7] propose a stochastic model, which includes
trend, seasonality, and mean reversion. Oetomo and
Stevenson [8] review different temperature-forecasting
models, including those relying on autoregressive moving
average (ARMA) processes and Monte Carlo
simulation.

Numerical weather prediction (NWP) models are a
popular approach for solar radiation forecasting, and are
used to generate forecasts up to several days ahead. Most
short-term solar-radiation forecasts range from 30 minutes
to six hours ahead and rely on satellite-derived cloud-mo-
tion forecasts [9-12]. Akarslan et al. [13] incorporate
temperature, extraterrestrial irradiance, and derivatives of
these data with a multi-dimensional linear prediction filter
to improve solar forecasts. Alonso-Montesinos and Batlles
[14] forecast solar radiation up to three hours ahead under a
variety of atmospheric conditions, because such conditions
have a major influence on solar forecasting. Perez et al.
[15] use sky cover predictions as inputs when forecasting
solar radiation. Heinemann et al. [11] and Remund et al.
[16] note that comparing the forecasts of different methods
is useful in providing comparative statistics to validate a
forecasting model.

Wind speeds are typically forecasted several minutes to
several days ahead, with statistical methods being exten-
sively applied. For example, Erdem and Shi [17] use
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ARMA-based approaches. Liu et al. [18] propose a novel
time-series technique that is based on the Taylor Kriging
model. Other works combine multiple numerical tech-
niques to produce ensemble wind forecasts [19-21]. Wang
and Xiong [22] develop a hybrid forecasting method based
on an ARMA process, outlier detection, and fuzzy time
series to forecast the daily wind speed in Taiwan. Jiang
et al. [21] propose a hybrid approach that employs a
Boosting algorithm to improve the forecasting performance
of a traditional ARMA model. They demonstrate the
effectiveness of this technique using wind-production data
from the east coast of Jiangsu Province, China. There are
also some artificial intelligence-based models in the liter-
ature—Li and Shi [23] apply artificial neural networks
(ANN) and Hong et al. [24] forecast wind power and wind
speed up to one-hour ahead with a multi-layer feed-forward
neural network (MFNN). Maleki et al. [25] take an ANN-
based approach to forecasting solar radiation, wind speed,
and temperature in optimizing the operations of a hybrid
solar- and wind-powered water-desalination system. Giebel
et al. [26] provide a detailed review of the techniques that
are available for wind-speed forecasting.

In this paper, we use time-series methods to model and
generate hourly temperature, wind-speed, and solar-radia-
tion forecasts at 61 locations in the United States. The
three weather variables at the 61 locations are response
variables in a vector autoregression (VAR) model. In
addition to estimating the model, we also conduct out-of-
sample validation to test the quality of the forecasts that
are produced. We compare our forecasting errors to those
that are reported for other techniques in the literature,
including persistence forecasts, showing that our method
performs as well or better.

In light of the existing literature on weather forecasting,
our work makes three contributions. First, we employ a
VAR model, which allows correlations between the three
different weather variables to be captured. This is impor-
tant, because there are likely important correlations
between temperature, wind speed, and solar radiation.
Second, the autoregressive structure of the VAR model
allows temporal autocorrelations, which are important, to
be captured. Finally, the structure of the VAR model also
allows time-lagged correlations between different locations
to be captured. For instance, weather conditions in one
location at time ¢t may be correlated with weather condi-
tions at another location at time ¢ # r. These three features
or our proposed VAR model leads to its outperforming a
number of other forecasting techniques that are reported in
the literature.

The remainder of this paper is organized as follows. In
Sect. 2 we provide descriptive statistics for the three
weather variables. In Sect. 3 the model and estimation
methods are introduced. For a large model of this form, we
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try to find a proper number of residual terms to include to
ensure good forecasting performance while maintaining
reasonable model size and degrees of freedom. Thirty lags
for each time series are utilized and each equation is esti-
mated separately with either ordinary or weighted least
squares. In Sect. 4 we examine the forecasting perfor-
mance up to six-hours ahead and provide comparative
statistics with other models. Conclusions and suggestions
for future research are provided in Sect. 5.

2 Weather data

We use data from the National Solar Radiation Database
(NSRDB), which is produced by the National Renewable
Energy Laboratory, National Climatic Data Center, and
other partners. The NSRDB contains ground-based solar
and meteorological data for 1454 sites around the United
States. Nearly all of the solar data are modeled while
meteorological elements, including wind speed and dry
bulb temperature, are observed values. The hourly solar
data are modeled global horizontal irradiance (GHI), which
is the sum of modeled direct and diffuse solar radiation
received on a horizontal surface, during the 60-minute
period ending at the timestamp. Much of the data come
from a model developed by State University of New York
at Albany that uses Geostationary Operational Environ-
mental Satellite imagery to estimate solar radiation. The
dry-bulb temperature and wind speed are instantaneous
values observed at or near each hour following meteoro-
logical measurement practice. Wind speeds are measured
at 2-m heights. Wilcox [27] provides further details
regarding the NSRDB.

We model hourly wind speed, global solar radiation, and
dry bulb temperature at the 61 locations that are shown in
Fig. 1 in one single VAR model. The 61 locations are
chosen to provide roughly even coverage of the continental
United States. Moreover, locations that are close to popu-
lation centers and areas with good solar and wind resource
availability are also included in the dataset. Data covering
the years 1990-2008 are used, because these data are
complete and do not require any modification. Among the
18 years of hourly data, 16 years are used for model esti-
mation and two years are used for out-of-sample model
validation.

To get an overall feel for the data, Tables 1, 2, and 3
summarize some simple descriptive statistics of the wind
speed, solar radiation, and temperature data, respectively,
at six locations. Temperature data are reported in degrees
Kelvin in Table 3 and throughout this paper. This is
because we use relative root mean square error, which is
not defined for average observations equal to zero, as a
metric for model validation in Sect. 4.

Figures 2, 3, and 4 show wind speed, temperature, and
solar radiation, respectively, in Las Vegas, NM (not to be

Table 1 Descriptive statistics of wind speed data (m/s)

Location Max Median Mean Std. Dev.
Bismarck, ND 22.70 3.60 4.26 2.77
Las Vegas, NM 28.80 4.30 4.74 2.96
Dallas, TX 19.60 4.10 4.59 2.50
Denver, CO 26.80 3.60 3.85 2.25
Chicago, IL 30.08 4.10 4.38 2.31
New York, NY 23.20 4.60 5.05 2.50
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Table 2 Descriptive statistics of global solar radiation data (Wh/m?)

Location Max Median Mean Std. Dev.
Bismarck, ND 975.00 6.00 158.92 242.14
Las Vegas, NM 1073.00 10.00 212.45 296.51
Dallas, TX 1047.00 7.00 194.97 279.82
Denver, CO 1036.00 8.00 181.05 262.89
Chicago, IL 998.00 5.00 155.47 237.70
New York, NY 996.00 6.00 160.79 242.82

Table 3 Descriptive statistics of dry bulb temperature data (K)

Location Min Max Median Mean Std. Dev.
Bismarck, ND 233.15 317.05 279.85 279.46 13.41
Las Vegas, NM  250.35 309.75 28345 283.11 9.71
Dallas, TX 259.85 31645 29375 292.33 9.56
Denver, CO 24755 311.15 283.15 283.03 10.70
Chicago, IL 243775 312.55 283.75 283.44 11.28
New York, NY 25375 31255 286.45 286.38 9.77
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Fig. 2 Time series of wind speed in Las Vegas, NM from 2006 to
2008

confused with the popular gambling destination) from 2006
to 2008. These figures clearly show seasonal patterns for
the three weather variables.

3 Methodology

A time series approach is proposed in this work to
capture the characteristics of the three weather variables.
Our approach consists of three parts that are integrated with
one another into our overall model: (1) a linear trend, (2) a
seasonal component, which is represented by Fourier series
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Fig. 3 Time series of global solar radiation in Las Vegas, NM from
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Fig. 4 Time series of dry bulb temperature in Las Vegas, NM from
2006 to 2008

and Chebyshev polynomials, and (3) a VAR to model the
stochastic component of the time series. We detail these
three components below.

3.1 Trend

To check for the presence of a linear trend, we run a
simple linear regression of the weather data against hourly
time. Both the intercept and time parameters are significant
at the 1% level (although the estimated time parameter is
small in magnitude). Hence, a linear trend, though slight,
should be included in our model. We represent this trend
component by including a term of the form:

trend, = f, + Bt

in our model.
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3.2 Seasonality

As discussed in Sect. 2 and illustrated in Figs. 2, 3 and
4, there are strong seasonal variations in all three of the
weather variables. Because of the hourly time step in our
data, it is important to model both diurnal and seasonal
seasonality. Because the three weather variables exhibit
different diurnal patterns, we use different approaches to
represent their diurnal seasonality.

For wind and temperature, diurnal seasonality is repre-
sented by a Fourier series of the form:

P

d d
daySeas, = Z {564, cos <2np %) + 05 sin (2np %)}

p=1

where P is the order of the Fourier series, J., and J;, are
coefficients on the cosine and sine terms, respectively, and:

d(t) = (r mod 24) (1)

converts ¢ to hours of the day. Season-of-the-year
seasonality is similarly captured by a Fourier series of
the form:

ﬁ ~
annSeas, = Z [5”; cos <27Tp C;gg)

=1

s d(1)
+ Jyp sin <2np %> ]

where P is the order of the Fourier series and d., and J;,
are coefficients on the cosine and sine terms, respectively,
and:

(2)

a0 =[] ()

where [-] is the ceiling operator, which converts # into days
of the year.

Fourier series can produce a smooth seasonal pattern
with a significant reduction in the number of parameters to
be estimated as compared to dummy variables [6]. To find
the proper order of the Fourier series, we estimate models
with between first- and fifth-order terms. Examining
modeled and observed seasonality with different-ordered
Fourier series shows that a third-order series is sufficient to
capture the seasonality dynamics. We also compare the
forecasting performance of the model with third- and fifth-
order Fourier series, finding them to be similar. This
finding further suggests that third-order terms are suffi-
cient. Thus, we include third-order Fourier series for daily
and season-of-the-year seasonality of wind and
temperature.

The season-of-the-year seasonality of solar radiation is
given by the same Fourier series that is shown in (2). Daily
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seasonality is modeled using second-order Chebyshev
polynomials, as opposed to Fourier series. To define the
Chebyshev polynomials [28] we first convert our inde-
pendent variable, x, where we assume x € [a,b], to the
normalized variable:
2(x —a)

=—7-1
¢ b—a
By definition we have z € [—1,1]. We then define the
Chebyshev polynomials recursively as:

Tj(z) = ZZT/‘—I(Z) - TJ*Z(Z)

where:
To(z) =1
and:
Ti(z) =z

Thus, the second-order Chebyshev polynomial that is used
to model diurnal solar radiation seasonality is given by:

2 —
daySeas, = op + o [(x,at) — 1}

b, —a,

We use Chebyshev polynomials, as opposed to Fourier
series, to model the diurnal seasonality for a number of
reasons. First, we only need to model solar radiation during
daytime hours, because there is (by definition) zero solar
radiation at night. Moreover, solar radiation follows a
predictable diurnal pattern, insomuch as it peaks in the
middle of the day. A second-order Chebyshev polynomial
is better able to produce this shape of a diurnal pattern than
a Fourier series is. This is confirmed by our model
estimates, because second-order Chebyshev polynomials
provide much better goodness-of-fit than Fourier series
do.

Based on these properties of the diurnal pattern, we
define:

d(t) = ry,
Say — Taw)

where d(¢) and ﬁ(t) are as defined in (1) and (3), i) and
Sy are the sunrise and sunset times, respectively, on the

Xt —

day d(¢), and @, and b, are the minimum and maximum
values, respectively, that x, takes on day d(r). Sunrise and
sunset times are computed, based on the day of the year
and geographic coordinates of each location modeled,
using MATLAB functions that are developed by the U.S.
Geological Survey [29].
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3.3 VAR model

VAR is a statistical model that captures the linear
interdependencies among multiple time series. Hence, it is
beneficial in modeling temporal and spatial correlations
among wind speed, solar radiation, and temperature in
different locations. Each variable at each location has an
equation explaining its evolution based on time-lagged
values of all of the weather variables at all locations.

As a result, a VAR model is able to capture three
important types of autocorrelations in the data. The first is
temporal autocorrelation in an individual weather variable
(e.g., the time-f temperature at location n may be correlated
with the time-t' temperature at the same location, where
' # 1). The second is cross-correlation between individual
weather variables (e.g., the time-r temperature at loca-
tion n may be correlated with contemporaneous solar
radiation at the same location). The third is temporal
autocorrelation and cross-correlations between locations.
For instance, the time-¢ temperature at one location may be
correlated with contemporaneous or temporally-offset
temperature at another location. Along the same lines, the
VAR model can also capture correlations between vari-
ables, locations, and time (e.g., temperature at one location
may be correlated with time-lagged solar radiation at
another location). Thus, the VAR is highly flexible in terms
of relationships among the weather data that can be
captured.

VAR models assume that all of the response variables
are stationary. Thus, it is important to test our time-series
data for stationarity before fitting the proposed VAR
model. Augmented Dickey—Fuller (ADF) tests against
trend-stationary alternatives are applied to 16 years of
weather data for several of the locations modeled. The
ADF tests are conducted after removing the seasonal
components that are discussed in Sect. 3.2. Our results
show that the data are trend-stationary with p-values
smaller than 0.01 for all locations. Moreover, our model
includes a linear trend term which is statistically signifi-
cant, as discussed in Sect. 3.1. Inclusion of this term
removes any long-term trend from the response variables
(especially temperature). The results of the ADF tests and
the inclusion of the linear trend suggest that stationarity is
not an issue with our data. The ADF tests further favor the

trend-stationary alternative. This suggests that determinis-
tic trends, which are what we model through the linear and
seasonality terms that are discussed in Sects. 3.1 and 3.2,
are more appropriate than stochastic trends.

Modeling the three weather variables at 61 locations in a
single VAR gives 183 response variables in total. Given
the large model size, it is important to determine a suit-
able number of autoregressive lags and which time-lagged
values to include in the model. To do this, we regard one
week’s lag as the maximum number to be considered. We
estimate multiple VAR models with up to 168 lags using
two response variables only. After estimating several pairs,
we find that regardless of the distance between locations,
autoregressive lags of 1 and multiples of 24 are significant
for most location pairs. This lag structure give us the
spatial relationship among locations.

Akaike and Bayesian information criteria (AIC and
BIC) are further used to determine the lag structure. AIC
and BIC provide estimates of the information lost when a
given model is used to represent the process that generates
a given dataset. Smaller AIC and BIC values indicate a
better relative model fit to the data. Due to the extreme size
(and computational burden) of a 61-location VAR model,
AICs and BICs are calculated for single-location VAR
models. A single-location VAR model only has three
response variables, as opposed to 183 for a 61-location
VAR model. The single-location models are estimated
using two years of hourly weather data. The lag structures
that are estimated, which are listed in Table 4, are
VAR(24), VAR(48), VAR(72), VAR(96), VAR(120),
VAR(168), VAR(1-24, 48, 72, 96, 120, 144, 168).
Table 4 summarizes AIC and BIC values of these VAR
models using weather data from Los Angeles, CA.

The VAR(1-24, 48, 72, 96, 120, 144, 168) has the
lowest BIC, which penalizes the number of parameters
more strongly than AIC. This result, favoring the
VAR(1-24, 48, 72, 96, 120, 144, 168) structure, is
consistent across the locations that are modeled. Thus, to
fully capture the relationship between observations in
adjacent periods, we use a VAR model with lags one
through 24 and multiples of 24 up to 168 of the form:

Y, = trend, + daySeas, + annSeas, + ZA;YH + U,
leL

Table 4 AIC and BIC for VAR models for Los Angeles, CA with different lag structures

Criteria Lag structure
1-24 1-48 1-72 1-96 1-120 1-168 1-24, 48, 72, 96, 120, 144, 168
AIC 291856 290222 289888 289784 289708 289865 290991
BIC 293706 293751 295095 296669 298272 301786 293260
STATE GRID
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where Y, = (yl_,,yz_”...,))183_,,)T7 is a 183 x 1 vector of
hour-r response variables; L= {1,2,...,24,48 72,96,
120, 144,168} is the set of lags modeled; A; are 183 x 183
coefficient matrices for the lagged response variables; U, =

(ulg,,uzg,,...,ulggil)T, is a 183 x 1 vector of residuals.
Because our data set covers 16 years of hourly observa-
tions, we have t = 1,2, ..., 140256.

3.4 Parameter estimation

A VAR model of the size that is proposed is difficult to
estimate as a whole system due to computational and
memory limitations of computers (the entire system con-
sists of more than 25 million equations). Because the
model is actually a seemingly unrelated regression system,
we solve this problem by estimating each equation sepa-
rately. The data that are used for estimation are hourly
observations from 1991 to 2006. The variance/covariance
matrix of the residuals is calculated after the estimation.

For wind and temperature, ordinary least squares is used
for parameter estimation. Weighted least squares is applied
for solar radiation. The weights assigned to night observa-
tions are zero whereas weights of one are given to daytime
observations. We do this because the VAR model is only
used to forecast solar radiation during the day—solar radi-
ation is fixed equal to zero during the night because, by
definition, there is no sunlight at night. By applying these
weights, the estimated coefficients are better for forecasting
solar radiation during the day because nighttime observa-
tions are ignored. As discussed in Sect. 3.2, we calculate
sunrise and sunset times for each location based on geo-
graphic coordinates and the day of the year.

Figure 5 shows the residuals of the three weather vari-
ables in Chicago, IL and Las Vegas, NM. It is clear that the
residuals display heteroskedasticity. However, Durbin’s
alternative test reveals no serial correlation in the residuals.

4 Forecasting and validation

To validate our model, we generate out-of-sample
forecasts and compare the performance of our VAR model
to a number of benchmark competitors. In doing so, we
consider forecasts that are up to six hours ahead and use
two years of out-of-sample data covering the years 2007
and 2008. As noted in Sect. 3.2, we fix solar radiation
forecasts equal to zero between sunset and sunrise on each
day. We further truncate any negative forecasts equal to
zero, because it is physically impossible for these values to
be negative. Evaluation of solar forecasts is restricted to
daylight hours, because nighttime solar radiation is not
challenging to forecast.

STATE GRID

We use two types of benchmark competitors in this
validation. One compares the performance of our VAR
model to other forecasting techniques appearing in the
literature. This is a ‘more desirable’ benchmark competitor,
because it allows our model to be directly contrasted with
others. However, there are two issues with focusing
exclusively on direct comparisons to other models. First,
other models may be applied in different regions, where
forecasting some weather variables may be easier or more
difficult. For example, temperatures may be more
stable and easier to forecast in one region compared to
another. This could make one model appear better than
another, due solely to the underlying weather conditions
where the models are applied. Second, there may be dif-
ferences in the weather variables being forecasted. For
instance, our model relies on the NSRDB for wind speeds,
which are measured at a 2 m height. Other works may use
wind speeds at greater heights. Differences in wind speeds
and patterns at different heights may also confound dif-
ferences when comparing our model performance to other
methods that are reported in the literature.

For these two reasons, we also compare the performance
of our VAR model to persistence-type forecasting methods
(cf. Sect. 4.1 for further discussion). Comparisons of our
VAR model to persistence-type forecasts can partially
control for the effects of regional and weather-variable
differences in assessing the forecasting capability. More-
over, persistence-type methods are commonly used in
assessing forecasting performance [30].

Numerous metrics are used in the literature to evaluate
forecast accuracy. These include mean absolute error
(MAE), root mean square error (RMSE), and relative root
mean square error (RMSE%). We use all three of these
metrics in our validation. To define these metrics, we let F;
and O; denote forecast and observed values, respectively,
of a given variable in hour i and N the number of out-of-
sample forecasts used. MAE is then defined as:

1 N
N;|Fi_0i|

RMSE is defined as:
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Fig. 5 Residuals for Chicago, IL and Las Vegas, NM from 1991 to 2006

In addition to these metrics, it is also common to
benchmark one forecasting model to another reference
model. Such a benchmark provides what is known as a skill
score. The benefit of a skill score is that it can mitigate
some of the issues that are associated with directly
comparing the forecasting performance of our model to
performance metrics that are reported in the literature (i.e.,
issues associated with the models being applied to different
regions or to different weather variables). A skill score is
typically defined in terms of a metric used to evaluate
forecast accuracy (e.g., MAE, RMSE, and RMSE%). The
metric used is referred to as the score. Let ¢ represent the
score of the model being benchmarked and g, the score of

LY.}
K2

OF s
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the reference model (to which the model being
benchmarked is compared). Also define o, as the score
of a perfect model (i.e., one with no forecast error). The
skill score is defined as:

g — o,

o, — 0y

The skill score indicates the fractional improvement in the
score from using the benchmarked model relative to the
reference model. A perfect forecast would have a skill
score of 1. We use MAE and RMSE as scores and per-
sistence forecast models (cf. Sect. 4.1 for further discus-
sion) as the reference forecast in our analysis. We fix

3
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0, = 0 with both the MAE and RMSE scores, reflecting
zero forecast error in the perfect model.

4.1 Persistence forecasts

We compare two kinds of persistence-type forecasting
methods to our VAR model. The persistence-type methods
are also used as reference models in computing skill scores.
The first persistence-type method is the simple persistence
model, which we denote the SP model. The SP model relies
upon the weather condition at the current time to forecast
future conditions. Letting O; denote the hour-i observation,
the SP forecast of the hour-(i + Ai) weather variable gen-
erated at hour i is defined as O;. That is, the SP model
assumes that the weather variable has the same value at
hour (i + Ai) as it does at hour i. This persistence forecast
is applied to all three weather variables for comparison
with the VAR model.

We also use the clearness persistence forecast, which is
proposed by Marquez and Coimbra [30], which we denote
the CP model, to provide an additional benchmark for solar
irradiance forecasts that are generated by our VAR. The
CP model relies on extraterrestrial solar radiation and takes
the solar zenith angle as an input. Let 0; represent the solar
zenith angle at hour i. We then define hour-i extraterrestrial
solar radiation as:

S; = Ccos(6;)

where C = 1367 W/m? is the solar constant. The CP
forecast of the hour-(i + Ai) solar irradiance is then given
by:

Siyai

0;-
S;

We use the hourly mean solar zenith angle that is recorded
in the NSRDB to generate our CP forecasts.

4.2 Results

Tables 5, 6, and 7 summarize the forecasting perfor-
mance of our VAR model in producing wind, solar, and
temperature forecasts, respectively, These comparisons are
made on the basis of the different metrics that are dis-
cussed above (i.e., MAE, RMSE, and RMSE%). The
table reports the average (among the 61 locations mod-
eled), minimum, and maximum MAE for the three weather
variables. Average RMSE and RMSE% are reported as
well.

The values that are reported in Tables 5, 6, and 7 are
compared with results that are reported in the literature for
other forecasting techniques in Sect. 4.3. As noted before,
there are important caveats in directly comparing
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Table 5 Average, minimum, and maximum (among 61 locations
modeled) MAE, RMSE, and RMSE% of wind forecasts produced by
VAR model

Forecast horizon MAE (m/s) RMSE (m/s) RMSE% (%)
Mean Min Max Mean Mean
1-hour ahead 1.03  0.18 1.39 1.38 37.29
2-hours ahead 1.18 036 1.69 1.58 42.67
3-hours ahead 1.28 054 191 1.70 46.02
4-hours ahead 1.35 0.67 206 1.79 48.37
5-hours ahead 140 074 217 1.85 50.11
6-hours ahead 144 079 227 1.90 51.46

Table 6 Average, minimum, and maximum (among 61 locations
modeled) MAE, RMSE, and RMSE% of solar forecasts produced by
VAR model

Forecast MAE (Wh/m?) RMSE (Wh/m?) RMSE%
horizon (%)

Mean Min  Max Mean Mean
1-hour 65.08 40.69 89.94 100.27 29.19
ahead
2-hours 79.84 49.12 107.12 117.58 34.23
ahead
3-hours 88.34 53.52 115.56 127.86 37.22
ahead
4-hours 93.37 5599 120.94 134.33 39.10
ahead
5-hours 96.30 57.17 123.50 138.40 40.29
ahead
6-hours 97.99 57.75 124.86 140.81 40.99
ahead

Table 7 Average, minimum, and maximum (among 61 locations
modeled) MAE, RMSE, and RMSE% of temperature forecasts pro-
duced by VAR model

Forecast horizon MAE (K) RMSE (K) RMSE% (%)
Mean Min Max Mean Mean
1-hour ahead 0.68 031 1.06 0.95 0.33
2-hours ahead 098 0.63 141 134 0.47
3-hours ahead 122 0.87 1.77 1.65 0.58
4-hours ahead 1.42 098 210 1.89 0.66
5-hours ahead 1.57 1.05 241 2.09 0.73
6-hours ahead 1.70 1.10 2.67 2.25 0.79

forecasting performance of our model to others in the
literature.

Tables 8 and 9 summarize the average MAE and
RMSE, respectively, of the VAR model in producing
temperature, solar-radiation, and wind-speed forecasts.
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Table 8 Average (among 61 locations modeled) MAE of VAR and
SP models

Forecast horizon Temperature  Solar radiation Wind speed

(K) (Wh/m?) (/s)

VAR SP VAR SP VAR SP
1-hour ahead 068 099 6508 11839 1.03 1.10
2-hours ahead 0.98 177 7984 20493 1.18 1.36
3-hours ahead 122 250 8834 287.09 128 1.6
4-hours ahead 1.42 318 9337 364.19 135 1.73
5-hours ahead 1.57 380 9630 43493 140 1.88
6-hours ahead 170 436 9799 498.09 144 201

Table 9 Average (among 61 locations modeled) RMSE of VAR and
persistence-type models

Forecast Temperature ~ Solar radiation (Wh/m?) Wind speed

horizon (K) (m/s)
VAR SP VAR SP CP VAR SP

1-hour 0.95 1.40 100.27 152.15 109.07 138 1.55

ahead

2-hours 1.34 241 117.58 24521 14423 158 1.87

ahead

3-hours 1.65 334 127.86 331.84 186.62 1.70 2.13

ahead

4-hours 1.89  4.18 134.33 408.26 23480 1.79 234

ahead

5-hours 2.09 493 13840 472.87 284.11 185 2.52

ahead

6-hours 225 559 140.81 525.10 329.87 190 2.67

ahead

They also summarize the average MAE and RMSE of the
SP model. The tables show that the VAR outperforms the
SP model, by between 6% and 80%, especially when the
forecasting horizon increases. This is also illustrated in
Fig. 6, which shows the average RMSE of the different
models as a function of the forecasting horizon.

Tables 10 and 11 report skill scores on the basis of
MAE and RMSE, respectively, using the SP model as the
reference model. The skill scores obtained for our VAR
model are compared to skill scores that are reported in the
literature in Sect. 4.4.

4.3 Comparative studies
Our VAR model provides good forecasting performance
compared to other methods reported in the literature,

showing that our model can be used for providing very
short-term forecasts of temperature, wind speed, and solar

@ Springer

STATE GRID

400
— VAR
—o—CP
350} S
300}
£ 250l
g
% 200}
150}

100

1 2 3 4 5 6
Forecast horizon (hour)

Fig. 6 Average (among 61 locations modeled) RMSE of solar
radiation forecasts produced by VAR, CP, and SP models

Table 10 MAE-based skill scores of VAR model using SP model as
reference model

Forecast horizon Temperature Solar radiation ~ Wind speed
1-hour ahead 0.31 0.43 0.06
2-hours ahead 0.45 0.61 0.13
3-hours ahead 0.51 0.69 0.18
4-hours ahead 0.55 0.74 0.22
5-hours ahead 0.59 0.78 0.26
6-hours ahead 0.61 0.80 0.28

Table 11 RMSE-based skill scores of VAR model using SP model as
reference model

Forecast horizon Temperature Solar radiation ~ Wind speed
1-hour ahead 0.32 0.34 0.11
2-hours ahead 0.44 0.52 0.16
3-hours ahead 0.51 0.61 0.20
4-hours ahead 0.55 0.67 0.24
5-hours ahead 0.58 0.71 0.27
6-hours ahead 0.60 0.73 0.29

radiation. The average (across the 61 locations modeled)
performance of our model is comparable to other works.
Moreover, our model performs significantly better at some
locations, as indicated by the minimum values of the MAE
that are reported in Tables 5, 6, and 7. Tables 5, 6, and 7
also suggest that our VAR model provides relatively robust
weather forecasts up to six-hours ahead.
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Perez et al. [15] forecast wind speed using a blended
ensemble, which consists of the Weather Research and
Forecasting Single Column Model and time series forecasts
that are calibrated with Bayesian model averaging. The
MAEs of their hour-ahead wind speed forecasts are
between 0.9m/s and 0.95m/s during the day and are
between 1.01 m/s and 1.07 m/s overnight. Erdem and Shi
[17] compare four approaches that are based on an ARMA
method for hour-ahead wind forecasting. Their method has
MAESs ranging from 0.8 m/s to 2.3m/s. Li and Shi [23]
present a comparison study on the application of different
ANN in hour-ahead wind-speed forecasting and measure
forecasting performance in terms of MAE and RMSE. The
best MAE and RMSE among the locations that they model
are 0.950 m/s and 1.254 m/s, respectively. Chen et al. [20]
produce wind-speed forecasts using a Gaussian process that
is applied to the outputs of an NWP model. Their hour-
ahead and five-hours-ahead forecasts have RMSEs of
1.8 m/s and 2.2 m/s, respectively. Hong et al. [24] produce
hour-ahead wind-speed forecasts using their cascaded
MFNN method with MAEs of 1.12 m/s in the summer,
1.22m/s in the winter, 1.13m/s in the spring, and
1.03m/s in the autumn.

More short-term solar radiation forecasting is done
using cloud motion derived from satellite images
[11, 12, 19]. Perez et al. [12] report an increase in the
RMSE% from 25% to 42% as the forecasting horizon goes
from hour-ahead to six-hours-ahead. Traiteur et al. [19]
compare their forecasts against single point ground-truth
stations and report RMSEs that vary from 68 Wh/m? to
120Wh/m? for hour-ahead forecasts and 140 Wh/m? to
200 Wh/m? to six-hour-ahead forecasts. Erdem and Shi
[17] generate one-, two-, and three-hours-ahead solar
forecasts and report RMSE%s of 23%, 32%, and 38%,
respectively. Remund et al. [16] compare short-term global
radiation forecasts of three different models and find that
ECMWEF (Global Model of the European Centre for
Medium-Range Weather Forecasts) is the best, with an
RMSE% that stays at about 38% for one- to five-hours-
ahead forecasting. The RMSEs of one- to three-hours-
ahead forecasts of global radiation that are produced by
Alonso-Montesinos and Batlles [14] are all greater than
100 W /m?, except for those under clear-sky conditions.

Taylor and Buizza [S] compare point forecasts of daily
air temperature generated by six different models to actual
observations. The best MAE of an hour-ahead forecast that
they report is 0.9 K, as opposed to an average of 0.68 K that
is generated by our model. Smith et al. [31] develop an
ANN model to predict air temperature at hourly intervals
from one to twelve hours ahead. Their network is trained
using data from sites that are selected to encompass a broad
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range of conditions. The MAEs of one- to six-hour-ahead
predictions, averaged from two evaluation datasets, are
0.53K, 0.87K, 1.15K, 1.37K, 1.59K, and 1.77 K, which
are similar to the forecasting performance of our VAR
model.

4.4 SKill scores comparison

As discussed before, direct comparison of MAE or
RMSE among different datasets provides a limited picture
of forecasting performance. This is because forecasting
performance is governed, in part, by the local climate
conditions of the region in question. If one is comparing
forecasts from different regions, differences in MAE,
RMSE, and other scores may be confounded by the effects
of climate. Moreover, differences in the underlying
weather variables being forecasted can confound forecast-
ing performance. We use skill scores to allow for a more
clear comparison of our VAR model to other forecasting
methods that are reported in literature.

Perez et al. [12] forecast short-term hourly average GHI
one to six hours ahead. Their method uses cloud motion
derived from consecutive geostationary satellite images.
They compare the forecasts that are generated by their
model to one year of ground measurements. They also
report RMSEs for forecasts that are generated by their
model at seven locations in the United States and the
RMSEs of forecasts that are generated by a CP model.
Using these reported RMSEs, we compute skill scores for
their solar forecasts and compare them to the skill scores of
solar forecasts that are generated by our VAR model across
the 61 locations that we model (using a CP model as the
reference model in both cases). Figure 7 compares the
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Fig. 7 RMSE-based skill score of VAR model and model proposed
by Perez et al. [12] for solar radiation forecasting using CP model as
reference model
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RMSE-based skill score of our model to that proposed by
Perez et al. [12] for different forecast horizons. It is clear
that the two models perform similarly up to two hours
ahead. However, our model outperforms that of Perez et al.
[12] for longer forecasting horizons.

Marquez et al. [32] predict GHI at temporal horizons of
30, 60, 90, and 120 minutes. They use a hybrid method that
combines information from processed satellite images with
ANN. They apply their forecasting method to data from
two distinct locations in the San Joaquin Valley. The raw
data are captured at 30-second intervals and are then
averaged to 30-minute intervals. Inman et al. [33] sum-
marize the forecast skill of these two ANN-based models
compared to a clear-sky-deviation persistence model.
These comparisons are summarized in Table 12. The input
variables for Models 1 and 2 are data from satellite images
and lagged GHI data, respectively. Although Marquez et al.
[32] and Inman et al. [33] examine forecasts at 30-minute
intervals, it is nevertheless helpful to compare the perfor-
mance of their model to our VAR using the same number
of forecasting steps. For our VAR model, the skill scores of
solar forecasts between one and four time steps ahead are
0.08, 0.18, 0.31, and 0.43. The one-time-step-ahead solar
forecasts generated by our VAR model have a lower skill
score than those produced by the model of Marquez et al.
[32]. However, our remaining solar forecasts have higher
skill scores than the corresponding forecasts that are pro-
duced by their model.

Abdel-Aal et al. [34] forecast mean hourly wind-speeds
at Dhahran, Saudi Arabia using group method of data
handling abductive networks. The overall MAE for one-
hour-ahead forecasts produced by their model is 0.85 m/s.
Their method achieves an 8.2% MAE reduction compared
to hourly persistence forecasts, giving an MAE-based skill
score of 0.08. For six-hour-ahead forecasts, the MAE of
their method is 1.20m/s. This corresponds to an MAE-
based skill score of 0.15 using a day-to-day persistence
model as the reference model. Abdel-Aal et al. [34] con-
clude that the relative improvements of their model com-
pared to persistence forecasts exceed those reported for a

Table 12 RMSE-based skill scores of solar radiation forecasts pro-
duced by ANN-based models of Marquez et al. [32] using CP model
as reference model reported by Inman et al. [33]

Forecast horizon Skill score

Model 1 Model 2
30-minutes ahead 0.12 0.16
60-minutes ahead 0.14 0.18
90-minutes ahead 0.23 0.23
120-minutes ahead 0.24 0.30
STATE GRID
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Table 13 MAE-based skill scores of wind speed forecasts produced
by model of Abdel-Aal et al. [34] and VAR model using SP model as
reference model

Forecast horizon Abdel-Aal et al. [34] model VAR model
1-hour ahead 0.08 0.06
6-hours ahead 0.15 0.28

number of machine learning approaches that are discussed
in the literature. Table 13 reports the MAE-based skill
scores of wind speed forecasts produced by the method that
is proposed by Abdel-Aal et al. [34] and our VAR method,
using a persistence model as the reference model. The
tables show that our VAR model performs similarly for
one-hour-ahead forecasts but performs better for six-hour-
ahead forecasts.

Sfetsos [35] compares a number of approaches to fore-
cast mean hourly wind speed. These approaches include
traditional linear ARMA models, the feed forward and
recurrent neural networks, and more exotic approaches,
such as adaptive neuro-fuzzy inference systems and neural
logic networks. Sfetsos [35] identifies a neural logic net-
work that incorporates logic rules as having the least error
(among those surveyed), with an RMSE-based skill score
of about 0.05. Our VAR model has an RMSE-based skill
score for one-hour-ahead wind forecasts of 0.11 (cf.
Table 11), which is better than the performance of the
neural logic network model. Wang et al. [36] predict wind
speed using an ANN-based method and then adjust the
results according to long-term patterns. Their wind-speed
data are sampled every twenty minutes. Compared to an SP
model, the RMSE-based skill scores of their four- and six-
hour-ahead forecasts are 0.16 and 0.13, respectively, which
are lower than our VAR model. Fonte et al. [37] present an
ANN-based method to predict average hourly wind speed.
The RMSE-based skill score of one-hour-ahead forecasts
for their model is 0.1 using an SP model as the reference
model. The comparable skill score for our VAR model is
0.2.

5 Conclusion

In this paper, we propose a time series VAR model to
forecast temperature, solar radiation, and wind speed at
61 locations around the United States. The proposed VAR
model structure captures multiple types of temporal and
cross-sectional autocorrelations in and between weather
variables and locations. This is a novelty compared to other
forecasting techniques that are in the literature. The fore-
casting performance is good for all three weather variables.
Given the influence of the three weather variables on

STATE GRID ELECTRIC POWER RESEARCH INSTITUTE



A vector autoregression weather model for electricity supply and demand modeling

775

electricity systems, the model is able to provide proper
inputs for electricity-supply and -demand modeling.

The consideration of spatial relationship allows the
model to provide cromulent forecasts. The VAR model
proposed is also flexible in size. The forecasting perfor-
mance is similar when it is used to forecast the three
weather variables for fewer locations (results for these
more limited models are excluded for sake of brevity). We
also show that the VAR model performs similarly to or
better than other methods proposed in the literature,
including persistence forecasts.

Another important contribution of this paper is that it
shows that a time series approach can be used to provide
robust short-term solar radiation forecasts with good fore-
casting performance.

This work does suggest several areas of future research.
Although the VAR model proposed provides good fore-
casts, it may be redundant given its large size. Each
equation has about five thousands parameters to be esti-
mated. Not every one of these parameters contributes to the
overall forecast. Thus, it may be possible to further cus-
tomize the model and its autoregressive structure to better
exploit the correlations in the data. There may also be
additional exogenous variables that could be added to the
model to embiggen its performance. That being said, the
currently proposed model performs as well as or outper-
forms other models that are proposed in the literature. The
residuals also display heteroskedasticity, which weighted
or generalized least-squares techniques may reduce.
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