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ABSTRACT

A new method for intentional islanding of power grids is pro-
posed. based on a data-driven and inherently geometric con-
cept of data depth. The utility of the new depth-based island-
ing is illustrated in application to the Italian power grid. It
is found that spectral clustering with data depths outperforms
spectral clustering with k-means in terms of k-way expansion.
Directions on how the k-depths can be extended to multilayer
grids in a tensor representation are outlined.

Index Terms— Controlled islanding, power grids, com-
plex networks, data depth, tensor projection depth, clustering,
probabilistic geometry

1. INTRODUCTION

Power system vulnerability can be attributed to a wide range
of internal and external causes, including but not limited to
natural calamities, human errors, component and control fail-
ures, and targeted attacks [1, 2]. Partitioning large intercon-
nected power grid networks into smaller subnetworks is a
widely adopted and long standing management procedure,
primarily employed to isolate parts of the grid that are more
prone to failures and, hence, to minimize the risk of cascading
blackouts — i.e., the strategy that is often referred to as inten-
tional, or controlled islanding. In recent years, there has been
an increasing interest in adapting modern methods for net-
work community detection and, in particular, spectral cluster-
ing with k-means, k-medoids, and kernel k-means for graph-
structured data to controlled islanding in power systems (see,
e.g., [3, 4, 5]), thus forming an intrinsic linkage of optimal
power system fragmentation with a vast research field on un-
supervised community detection in complex networks [6].
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Analysis of the underlying probabilistic geometry of grid
networks provides key information for developing optimal
fragmentation strategies and for understanding associated in-
trinsic properties of subgrid reliability and robustness [4, 7,
8]. To gain insight into geometric and spatial characteristics
of the grid, [4] proposes an enhanced version of the spectral
clustering approach for controlled islanding of power grids,
based on a hierarchical representation of the power grid as a
dendrogram with a varying number of islands. In turn, [9]
considers agglomerative hierarchical clustering, that is, start-
ing from a high number of partitions and then merging grid
segments by minimizing a given loss function.

In this paper we introduce a data-driven and inherently
geometric concept of data depth into intentional islanding of
power grids. The key idea of a depth function is to assign a
numeric score to each data point to characterize its centrality
within a given (multivariate or functional) data cloud or its un-
derlying distribution. By simultaneous accounting for proba-
bilistic geometry of the whole data cloud, depth-based anal-
ysis allows us to more systematically assess clusters, outliers
and anomalous structures and, as a result, more efficiently re-
cover latent mechanisms behind data formation and system
functionality. Data depth is a widely adopted tool in multi-
variate analysis, high dimensional and functional data studies
(see, e.g., [10, 11, 12]), but yet remains a largely unexplored
concept in a context of intentional islanding and, in general,
for segmentation of complex networks. In this paper we ex-
plore the k-depths approach of [13] based on L;-depth and its
extension to other depth functions, as an alternative to conven-
tional k-means clustering for controlled islanding of power
grids. We illustrate the utility of depth-based islanding in ap-
plication to the Italian power grid and discuss the extension of
a depth concept to the analysis of multilayer grids in a tensor
representation.

2. BACKGROUND ON GRAPHS AND SPECTRAL
CLUSTERING

Graph Representation of Power Grids We consider an undi-
rected graph G = (V, E)) as a model of a power grid network
with node set V and set of edges E' C V xV, where (7,7) € E
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represents an edge (a transmission line or a transformer) from
node 7 to 7. We assume that G is undirected, i.e., (¢,7) € E
iff (7,47) € E. In this paper, we restrict our analysis to simple
graphs, where no loops and no multiple edges are allowed.
Here n = |V| is the number of nodes.

Since the topological structure of G does not reflect the
functional information about the power grid [1, 4], we can
also consider an edge-weighted graph, or a pair (G,w). Here
w: V x V = Rx>p is an edge weight function such that each
edge ey, € E has a weight wy,, and wy, = EJ. Wyy. Fol-
lowing [7], we consider electrical conductance weights w;;,
defined as a ratio of the number of direct transmission lines
between nodes 7 and j to the geographic distance X;; be-
tween the nodes. Hence, elements of the resulting n x n-
conductance symmetric adjacency matrix A are defined as
Aij = wy; if (4,7) € E and O otherwise. The degree f; of
a node 1 is, hence, defined as f; = Zj wjj. which in the case
of unweighted networks, reduces to a conventional node de-
eree (or number of edges emanating from a node).

Let D be a diagonal matrix of weighted node degrees, i.e.,
T
di = Dy = > Ayj. Then, elements of a normalized graph
J=1
Laplacian are defined as follows: L;; is —w;;/\/did; if i #
j,(2,7) € E; 1. if i = 7, and 0, otherwise.

Spectral Clustering (SC) is one of the most popular tools
for controlled islanding of power grids (see recent reviews
in [4] and [5]). The key idea of SC is to embed a graph G
into a multivariate space R¥. In particular, let k be a given
number of islands (clusters), and let x.;, j = 1,...,k. be
orthogonal eigenvectors of the Laplacian L, corresponding
to the k largest eigenvalues. Form an n x k-matrix X =
[x.1,---,X k], where each row of X, x; = x;., provides a
representation of a node in V in R¥. We can now cluster the
resulting n sample points in R¥ using any appropriate classi-
fier, such as, for instance, k-means, k-medians, or k-medoids.
If the number of islands & is unknown, which is typically the
case in most applications, an optimal k can be identified from
an eigengap analysis, e.g., a scree plot of leading eigenvalues.
Alternatively, hierarchical divisive or agglomerative cluster-
ing can be employed.

Let us provide a succinct description of a k-means algo-
rithm that is arguably the most conventional classifier within
the SC framework. Given data points {x;}7,x; € RP, group
the data {x;}7 into k islands C = {C},...,C}} in such
a way that the within-cluster sum of squares is minimized,
i.e. argming Y F_, Y xec X — el[?, where i, is the k-th
group mean and ||x — gz ||? is the squared Euclidean distance
between x and ;.. (Note that in the case of the SC framework
p = k.) As a function of means and pair-wise Euclidian dis-
tances between X; and group means, the k-means algorithm
is known to be sensitive to outliers and does not account for
an intrinsic geometry of the data.

3. INTENTIONAL ISLANDING WITH DATA DEPTH

To get better insight into geometric properties of a power grid
network, we propose to employ a concept of data depth. A
data depth D(x, -) is a function that measures how closely an
observed point x € RP, p > 2, is located to the “center” of a
certain finite set S € RP, or relative to F, a probability distri-
bution in R?. Depth functions were initially introduced in the
setting of nonparametric multivariate analysis, with the goal
of defining affine invariant or equivariant versions of quan-
tiles, ranks, and order statistics in multidimensional spaces,
where there exists no natural order. Most recently, data depth
methods have received a new stimulus due to their versatil-
ity for robust and distribution-free analysis, classification, and
visualisation of high-dimensional and functional data. Never-
theless, data depth yet remains a largely unexplored tool for
analysis of power grids and controlled islanding, in particular.
There exists a wide range of depth functions that can be se-
lected based on their desirable properties, geometric interpre-
tation, and computational complexity [10, 11]. In this paper,
we primarily focus on the two most commonly used depths,
namely, Mahalanobis and L; functions:

e Mahalanobis (MhD) depth of x with respect to (w.r.t) a set
Sis MhD(x|S) = [1+ (x — u)’Z7Y(x — )], where
p and ¥ are respectively the (sample) mean vector and co-
variance matrix of §. The MhD allows one to easily handle
the elliptical family of distributions, e.g., a Gaussian case.

e The L; depth of x wrt. aset Sis LD(x|S) = 1 —
max[0, ||e(x|S)]| — f(x|S)]. Here f(x|S) = n(x)/ 22, m:
with 5(z) = Zi‘iil n:I(z = x;) and &(x|S) is the aver-
age of the unit vectors from a point X to all observations
in S and is defined as e(x|k) = >, .., mei(X)/ 22, mj
where e;(x) = (x; — x)/||x; — x||. Finally, n;, 2 =
1,..., N, are viewed as weights or as “multiplicities” of
X;, and 1; = 1 if the data set has no ties. If {x;}] has ties,
“multiplicities” 7; can be chosen in such a way that it pre-
serves convexity of C(y) [14]. The idea of 1 — LD(x|k) is
to quantify a minimal additional weight required to assign
X so that x becomes the multivariate L;-median of the data
set x U S [14]. Hence, L; depth provides a robust repre-
sentation of a topological structure of a data cloud S. Since
L is non-zero outside the convex hull of S, it is a feasible
depth choice for comparing multiple clusters [15].

In this paper we explore the utility of data depth for in-
tentional islanding of power grids. We consider k-depths for
network community detection, based on Ly depth [13], and
extend this idea to other depth functions. The key idea of
k-depths is that in order to iteratively find “nearest” clusters,
we employ a data depth similarity measure (or a measure of
“centrality” with respect to the whole data cloud), instead of
pairwise Euclidian distances in the k-means algorithm. The
details of the k-depths method are outlined in Alg. 1.
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Algorithm 1: Grid islanding with k-depths and ar-
bitrary depth function D.

Input : weighted power grid G, depth function D.
Output: islanding of G.

1 compute a weighted normalized Laplacian L ;

2 Select a number of islands k, 2 < k < n from the
eigengap analysis of L ;

3 Form an n x k-matrix X = [x.1,...,X x| where
X.j, 3 =1,...,k are k orthogonal eigenvectors of
L, corresponding to the £ largest eigenvalues of L;

4 Normalize rows of X, x; = x;. € R¥:

W =x/||xi|], 1 <i < m;
5 Randomly select K points as initial cluster centers;
6 do
7 Given a cluster assignment and depth function
D, calculate the depth D(z|k) of =,z € R¥
w.r.t. a k-th cluster;

8 Update clusters: Cy, = {x; : D(x;|k) >
D(xilj),¥j,1 < j < K};

9 until the assignment no longer changes;

Note similarly to k-means, k-depths does not rely on dis-
tributional assumptions on eigenvectors of a graph Laplacian
L. This is critical since there yet exists no formal result on
asymptotic distribution of eigenvectors of L, even under the
simplified conditions of the Erdos-Rényi model, and deriva-
tion of such a result remains an open fundamental problem [16,
17]. However, in contrast to k-means, k-depths allows to ac-
count for intrinsic geometry of a power grid network.

Extension to Multi-attribute Partitioning and Tensors
In many modern applications, particularly involving smart grids,
optimal system fragmentation may involve multilayer networks
as well as multi edge-attributes, i.e., the same edge can be as-
signed a set of weights, rather than a single weight w. Such
systems can be naturally represented in a tensor form, that is,
an adjacency matrix for a unidimensional power grid network
becomes a multilayer adjacency tensor. Let us briefly dis-
cuss how the depth-based clustering described above for lin-
ear spaces can be then extended to data in multi-linear, or ten-
sor spaces. Most currently available depth functions for data
in a tensor form are based on flattening the input tensor data
into vectors, which changes the underlying geometry of the
data. Recently, [18] proposes a new tensor projection depth
(TPD) technique that extends the projection depth of [10] di-
rectly to tensor spaces, avoiding vectorization. In particular,
let S € R™ @ R! be a set of observed tensors, that is, S is a
set of m x [-matrices. Then the tensor projection depth of X,
X e R" @R, w.rt. Sis

vIXw — p(vTSw)\
o o(vISw) ’

[vii=llwll=1

TPD(X,S) = (1 -
|

where v € R™, w € R, and p(-) and o(-) are location and
scale measures in R!, respectively. The TPD concept can be
also extended to higher order tensors [18]. Hence, Alg. 1 can
be expanded to islanding of multilayer power grids, via analy-
sis of their (weighted) multilayer adjacency tensor with TPD.
Alternatively, we can flatten the (weighted) multilayer adja-
cency tensor and use Algorithm 1 with MhD or L depth.

4. CASE STUDIES

We illustrate the utility of the k-depths method, in application
to intentional islanding of the power grid of Italy. (Data have
been obtained from the Union for the Coordination of the
Transmission of Electricity (UCTE).) The transmission net-
work of Italy consists of 294 nodes and 252 edges. Since we
have no information on node types (i.e., transformers, genera-
tors, etc), all nodes are treated equivalently. The edge weight
function of the grid is defined as electrical conductance [7].
Following [4], we use expansion and k-way expansion of
islands as a measure of grid zoning performance. That is,
intuitively clustering is expected to deliver islands (subnet-
works) that are cohesive and well connected internally but
sparsely connected externally. For any subset of nodes .S,
S C V, the expansion of S is ¢(S) = d(S)/vol(S), where
d(S) is a boundary of S (ie., d(S) = X ;5 jgswij), and
vol(S) is a volume of S (i.e. wol(S) = >, s fi). In turn,

the k- i tant i k) = 1 S.
e k-way expansion constant is p(k) 3119‘123}( él%xkqb( i)s

and lower values of p(k) are preferred. Finally, via a gener-
alization of the Cheeger inequality, p(k) can be bounded as
Ae/2 < da(k) < O(k?)y/ Ak, where 0 = Ay < Ap < --- <
Ay are eigenvalues of L [19, 20]. The left-hand side of the in-
equality provides a lower bound on the k-way expansion for
any partitioning of G into k zones.

We now apply SC, based on k-means and k-depths with
L, and Mahalanobis depth functions, to the power grid in
Italy. (We also considered k-depths with the projection depth
of [10]. The resulting islands were generally similar to that
of L1, and hence are omitted for brevity.) Since all clustering
methods exhibit sensitivity to initial centers, we perform 500
replications and report the attained minimum of p(k). Fig. 1
depicts examples of partitioning the Italian grid into 5 zones,
based on k-means and k-depths with L, and MhD functions.
Table 1 shows that the SC with k-depths consistently outper-
forms SC with k-means. In particular, in all cases, geometri-
cally enhanced k-depths islanding provides lower k-way ex-
pansion constants p(k) than the ones delivered by k-means,
with the highest improvement of 27% yielded by k-depths
with MhD for k of 3. For k of 4 and 5, the best delivered re-
sults of k-depths for p(k) are 1.54% and 1.65%, respectively,
which are 17% and 15% lower than p(k) of k-means, respec-
tively. For the lower number of islands (i.e., k of 3), k-depths
with MhD exhibits the most accurate performance, and for
k of 4 and 5, k-depths with L; depth outperforms all con-
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Fig. 1: Examples of islanding the Italian power grid network into 5 zones: with k-means (left panel), k-depths with L (central

panel) and k-depths with Mahalanobis (right panel).

Table 1: Summary of the k-way expansion constant p(k),
k = 3,4 for islanding of the Italian power grid, based on SC
with k-means and k-depths with L; and MhD depths; Az /2
is a theoretical lower bound from the Cheeger inequality.

#of Theoretical k-means k-depths  k-depths
islands £ bound '\T" with L;  with MhD
3 0.06% 1.23% 0.96% 0.89%

4 0.18% 1.86% 1.54% 1.64%

5 0.24% 1.95% 1.65% 1.75%

sidered islanding methods. These findings can be potentially
explained by the fact that for a lower number of clusters, lead-
ing eigenvalues of L tend to more closely follow a Gaussian
distribution, and hence k-depths with MhD yields the most
competitive results; while for a higher number of islands, the
more outlier resistant L;-depth becomes a preferred choice.
In addition, we find that SC with k-depths tends to outper-
form SC with k-means for sparser power grid networks, and
to deliver similar results for denser graphs (results are omitted
for brevity). However, even for dense grids, SC with k-means
remains sensitive to the choice of initial centers of islands, and
performance of k-means can be stabilized if the initial centers
are selected via k-depths. Hence, we can conclude that SC
with k-depths is a preferred choice for intentional islanding
of sparse power grids, and for denser grids, conventional is-
landing approaches can benefit from initialization via the data
depth clustering.

5. CONCLUSION AND DISCUSSION

We have introduced the robust and inherently geometric con-
cept of data depth to investigate spatial properties and in-
ternal connectivity of power grid networks. We have found
that for sparser networks, zone fragmentation using a depth-

based (dis)similarity measure, tends to deliver more cohesive
islands than conventional methods, based on a Euclidian met-
ric. The current study aims to serve as a starting point for fur-
ther analysis of probabilistic geometry and its role in power
grid functionality. In particular, the depth-based (dis)similarity
measure can be naturally combined with the hierarchical ap-
proaches of [4, 21]. Furthermore, stability and reliability of
a grid fragmentation can be studied w.r.t. inference based on
multiple depth functions. Finally, depth tools in multilinear
spaces can be expanded to study high-dimensional probabilis-
tic geometry of grids with multi edge-attributes, power grid
motif tensors, and multilayer networks of smart grids, follow-
ing their Laplacians and adjacency tensor embeddings.
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