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We employed eye-tracking to investigate how
performing different tasks on scenes (e.g., intentionally
memorizing them, searching for an object, evaluating
aesthetic preference) can affect eye movements during
encoding and subsequent scene memory. We found that
scene memorability decreased after visual search (one
incidental encoding task) compared to intentional
memorization, and that preference evaluation (another
incidental encoding task) produced better memory,
similar to the incidental memory boost previously
observed for words and faces. By analyzing fixation
maps, we found that although fixation map similarity
could explain how eye movements during visual search
impairs incidental scene memory, it could not explain
the incidental memory boost from aesthetic preference
evaluation, implying that implicit mechanisms were at
play. We conclude that not all incidental encoding tasks
should be taken to be similar, as different mechanisms
(e.g., explicit or implicit) lead to memory enhancements
or decrements for different incidental encoding tasks.

Introduction

Memory for scenes, objects, and faces can be formed
without trying, a phenomenon called incidental memory
(Coin & Tiberghien, 1997; Craik, 2002; Craik &
Lockhart, 1972; Hollingworth & Henderson, 2002).
For example, after searching for objects in scenes,
people retain visual information of those objects

(Castelhano & Henderson, 2005; Williams, Henderson,
& Zacks, 2005) and scenes (Wolfe, Horowitz, &
Michod, 2007) without explicit instruction to memorize
them. Often, intentional encoding creates stronger
memory compared to incidental encoding (e.g., Beck,
Levin, & Angelone, 2007; Tatler & Tatler, 2013);
however, previous research has demonstrated that
incidental memory can be better than intentional
memory. People had better memory for searched
objects within naturalistic scene contexts than for the
objects that they were explicitly asked to memorize
(Draschkow, Wolfe, & Võ, 2014; Josephs, Draschkow,
Wolfe, & Vo, 2016). Evaluating the pleasantness or
likability of faces without explicit instruction to
memorize them has also resulted in better memory than
intentionally memorizing them (Bernstein, Beig, Sie-
genthaler, & Grady, 2002; Grady, Bernstein, Beig, &
Siegenthaler, 2002; Smith & Winograd, 1978; War-
rington & Ackroyd, 1975). Together, these studies
established task effects (e.g., visual search vs. inten-
tional memorization) on visual memory (for a review,
see Coin & Tiberghien, 1997; Võ & Wolfe, 2015), but
two important questions remain. The first is determin-
ing what the mechanisms are that make incidental
memory more (or less) successful than intentional
memory. The second is whether all forms of incidental
memory formation (e.g., visual search vs. aesthetic
evaluation) depend on the same mechanisms.

Utilizing eye-tracking, explicit mechanisms have
been proposed to explain task effects on incidental
visual memory. An increased number of fixations was
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related to greater subsequent recognition for natural
scenes (Loftus, 1972), objects (Pertzov, Avidan, &
Zohary, 2009; Tatler & Tatler, 2013), and faces (Bloom
& Mudd, 1991), suggesting that tasks requiring more
elaborate inspection (e.g., when judging likability of
faces vs. their gender) can lead to enhanced encoding
(Anderson & Lynne, 1979; Winograd, 1981). In
addition, where viewers look and attend to during
inspection may affect visual memory. Different viewing
tasks have been shown to influence the extent and type
of visual information attended to during viewing
(Castelhano, Mack, & Henderson, 2009; Henderson,
2003; Kardan, Henderson, Yourganov, & Berman,
2016; Rothkopf, Ballard, & Hayhoe, 2007; Triesch,
Ballard, Hayhoe, & Sullivan, 2003), opening the
possibility that some portion of the task effects on
incidental memory can be attributed to the deployment
of visual attention (Hollingworth, 2012; Olejarczyk,
Luke, & Henderson, 2014; Tatler & Tatler, 2013).

Previous research has also suggested diverse implicit
mechanisms that may facilitate incidental encoding.
One proposal, the depth of processing theory (Craik,
2002; Craik & Lockhart, 1972), posited that more
semantic/cognitive operations are a form of ‘‘deeper
processing/encoding,’’ thereby creating stronger mem-
ory traces. However, determining which operations are
deep is neither simple nor agreed upon (Baddeley,
1978) and, worse, can be circular (i.e., tasks that lead to
better memory are assumed to involve deeper encod-
ing). Moreover, for scenes, making semantic (i.e.,
living/nonliving) decisions failed to produce better
memory than intentional memorization (Grady, Mc-
Intosh, Rajah, & Craik, 1998), evidence that is counter
to the depth of processing theory.

Recent research proposes more mechanistic expla-
nations. Task-relevant objects in a scene were found to
be better remembered than the task-irrelevant objects
in the same scene even when controlling for viewing
duration (Castelhano & Henderson, 2005). These
results suggest that viewing tasks may affect the
extraction (Võ & Wolfe, 2012) and/or the retention
(Maxcey-Richard & Hollingworth, 2013) of visual
information within fixations. In doing so, top-down
goals may have prioritized task-relevant information
over task-irrelevant information (Draschkow & Võ,
2016; Tatler et al., 2013; Tatler & Tatler, 2013). In
addition, viewing tasks (e.g., visual search) may have
contributed to better integration of bottom-up visual
information and contextual scene semantics, leading to
stronger memory representations than intentional
encoding (Draschkow et al., 2014; Josephs et al. 2016;
Võ & Wolfe, 2015). Self-related processing of infor-
mation (Rogers, Kuiper, & Kirker, 1977) and, sur-
prisingly, merely making a voluntary choice (Murty,
DuBrow, & Davachi, 2015) have been shown to
enhance memory. As encoding and retrieval processes

are interdependent (Kolers, 1973; Morris, Bransford, &
Franks, 1977; Roediger & Guynn, 1996; Tulving &
Thomson, 1973), retrieval activities should be examined
to fully understand memory performance. These
studies suggest that there are many factors that may
increase visual memory from incidental encoding.

By reanalyzing previous eye-tracking data (Luke,
Smith, Schmidt, & Henderson, 2014; Nuthmann &
Henderson, 2010; Pajak & Nuthmann, 2013), the
current study aims to investigate factors that affect
intentional and incidental scene memory, and impor-
tantly, aims to differentiate contributions of explicit
and implicit mechanisms. We compared an intentional
memorization task and two different incidental encod-
ing tasks: (a) a visual search task (Castelhano &
Henderson, 2005; Draschkow et al., 2014; Holling-
worth, 2012; Josephs et al., 2016; Olejarczyk et al.,
2014; Võ & Wolfe, 2012; Williams et al., 2005) and (b)
an aesthetic preference evaluation task (Bernstein, Beig,
Siegenthaler, & Grady, 2002; Coin & Tiberghien, 1997;
Craik, 2002; Craik & Lockhart, 1972; Grady et al.,
2002; Smith & Winograd, 1978; Warrington &
Ackroyd, 1975), both of which were known to
modulate incidental memory. Similarly, Wolfe et al.
(2007) used the intentional memorization, visual
search, and preference evaluation tasks to study scene
memory, although they did not compare those tasks
directly.

To study possible mechanisms for these different
incidental and intentional encoding task effects on
scene memory, we systematically compared eye move-
ments during natural scene encoding, eye movements
during retrieval, and subsequent scene memory be-
tween the intentional memorization, visual search, and
aesthetic preference evaluation tasks. Specifically, we
examined the number of fixations and fixation maps
(Henderson, 2003; Pomplun, Ritter, & Velichkovsky,
1996; Wooding, 2002) obtained while participants were
performing the viewing tasks. Comparing fixation maps
within and across tasks could be useful to interrogate
the spatial manifestation of overt attention for different
tasks and to investigate the role of visual attention in
the formation of incidental and intentional memory. To
perform this investigation, we examined the fixation
maps of each scene viewed by a group of participants
who were then tested for subsequent scene memory,
which we call G1 hereafter. We compared those
participant’s fixation maps to the averaged fixation
maps from a different group of participants who were
told to memorize the presented scenes but not later
tested on them (i.e., no subsequent scene memory test);
we call this group G2M. By establishing such template
fixation maps for scene encoding, we were able to
quantify the deployment of visual attention on a trial-
by-trial basis, allowing us to implement trial-level
generalized linear mixed-effect models (GLMMs) that
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can isolate effects of viewing tasks, fixation counts, and
visual attention, respectively. This procedure mimics
analyses from recent eye-tracking studies, which used
linear mixed-effect model analyses to study task effects
on fixation durations (Einhäuser & Nuthmann, 2016;
Nuthmann, 2017) and object memory (Draschkow &
Võ, 2016; Josephs et al., 2016; Tatler et al., 2013). We
also examined the relationship between scene memory
and scene aesthetic preference by collecting scene
preference ratings from a group of participants that
were recruited online, called G3, because scene
aesthetics are known to be significantly associated with
scene memorability (Isola, Xiao, Parikh, Torralba, &
Oliva, 2014).

We found that scene memorability decreased after
visual search (one incidental memory task) compared
to intentional memorization and that the scene
preference task (another incidental memory task)
produced the greatest memory (outperforming even
intentional memorization). Although the number of
fixations was significantly associated with scene mem-
ory, it could not explain the changes in scene
memorability across tasks. By analyzing fixation maps,
we found that the allocation of overt attention could
fully explain why visual search impairs incidental scene
memory, but it could not explain why the preference
task boosts scene memory. Therefore, we conclude that
not all incidental-encoding tasks are similar as different
mechanisms lead to memory enhancements or decre-
ments for different incidental encoding tasks.

Methods

Datasets

The current study is based on a previously collected
eye-tracking dataset (Luke et al., 2014; Nuthmann &
Henderson, 2010; Pajak & Nuthmann, 2013), which has
been used in prior publications (Einhäuser & Nuth-
mann, 2016; Kardan, Berman, Yourganov, Schmidt, &
Henderson, 2015; Kardan et al., 2016; Luke et al., 2014;
Nuthmann, 2017; Nuthmann & Henderson, 2010). A
subset of the dataset (i.e., 36 participants who were
tested for scene memory—G1) was analyzed in
Nuthmann & Henderson (2010), and the full data (i.e.,
72 participants—both G1 and G2) were analyzed in
Einhäuser & Nuthmann (2016), Luke et al. (2014),
Nuthmann (2017), Kardan et al. (2015), Kardan et al.
(2016), and Pajak & Nuthmann (2013). A new dataset
(G3) was collected in this study to obtain preference
ratings for scenes so that we can examine the
relationship between scene memory and scene prefer-
ence. Because this study is a reanalysis of a previously
collected dataset, the sample sizes were determined for

different analysis purposes. Here we report all exper-
imental conditions, measures, data exclusions, and data
losses. All of our analysis code can be downloaded from
the Center for Open Science (https://osf.io/2k6zs/).

Participants

Two groups of 36 undergraduate students (G1 and
G2) from the University of Edinburgh participated in
the lab experiment. Both G1 and G2 participants
performed the first phase (Encoding phase) of the
experiment in which viewing task was manipulated, and
shortly after the Encoding phase, only G1 participants
engaged in the second phase testing scene recognition
(Test phase). All 72 participants had 20/20 corrected or
uncorrected vision, were naive to the purposes of the
experiment, and provided informed consent as admin-
istered by the Institutional Review Board of the
University of Edinburgh.

In addition, 60 adults (G3) participated in the online
experiment via the online labor market Amazon
Mechanical Turk (AMT), in which workers complete
human intelligence tasks (HITs) for requestors. Worker
qualifications included location in the United States, a
HIT approval rate greater than or equal to 98%, and
number of HITs approved greater than or equal to
1,000. The participants were recruited using TurkPrime
(Litman, Robinson, & Abberbock, 2017), and partic-
ipation was allowed only between 10 a.m. to 6 p.m.
CST. G3 participants were also naive to the purpose of
the experiment, and provided informed consent as
administered by the Institutional Review Board of the
University of Chicago. Sample size was set based on
our goal of more than 50 valid ratings per scene, which
has yielded highly reliable ratings in our previous
research (Ibarra et al., 2017; Kotabe, Kardan, &
Berman, 2016, 2017). All experiments adhered to the
Declaration of Helsinki guidelines.

Stimuli

In the Encoding phase and in the online experiment,
135 full-color (32 bit) 8003 600 pixel photographs of
real-world, indoor and outdoor scenes were used. Each
scene contained one predefined search object. Search
targets were chosen such that they occurred only once
in the scene, did not appear at the center of the scene,
were not occluded, and were large enough to be easily
recognized. The resulting mean object width and height
was 2.828 (SD¼ 0.848) and 2.778 (SD ¼ 0.888),
respectively. The scene images are available from the
author J. M. H. upon request. In the Test phase, 66 of
those scenes were presented in an identical form (‘‘old’’
stimuli in the recognition task), and the other 66 scenes
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were presented in a horizontally mirrored form
(‘‘altered’’ stimuli in the recognition task), and the
remaining three scenes were not presented. In addition,
22 new scenes (‘‘new’’ stimuli in the recognition task)
were presented in the Test phase. In this paper, we
present the results of the 132 scenes that were used in
both the Encoding and Test phases.

Lab experiment apparatus and procedures

Participants sat 90 cm away from a 21-in. CRT
monitor and placed their head on a chin and forehead
rest. The scenes were displayed full screen in their
native resolution and subtended 25.88 3 19.48 in visual
angle. Eye movements were recorded from the right
eye, although viewing was binocular, via an SR
Research (Ottawa, Ontario, Canada) Eyelink 1000 eye
tracker with a sampling rate of 1000 Hz. The
experiment was controlled with SR Research Experi-
ment Builder software. The eye tracker was calibrated
using the built-in nine point calibration routine. The
calibration was not accepted until the average error was
less than 0.498 and the maximum error was less than
0.998. Participants were recalibrated at the start of each
block.

In the Encoding phase, the 135 scenes were split into
three blocks of 45, and the scene split was the same
across participants. During each block, participants
were instructed to perform one of three tasks on the
scenes presented for 8 s: (a) memorize the scene for a
subsequent old/new recognition test, (b) search for an
object, or (c) make an aesthetic preference judgment.
All scenes were presented for 8 s. The task assignment
and order of each block were determined by a dual-
Latin square design and counterbalanced across
participants. Participants viewed each scene for 8 s and
performed the viewing tasks assigned to each block
while their eye movements were recorded. Within each
task block, the scenes were presented in a random
order. The participants completed all three blocks.

During the scene memorization task block, partici-
pants were asked to intentionally memorize the scenes
for 8 s but were not required to make any responses
during encoding. During the search task block, an
object name was presented (Ariel font, vertical height
of 1.628) for 800 ms followed by a central fixation cross
for 200 ms and the scene for 8 s. If the participant
located the search target, they responded by pressing a
trigger on a controller (Microsoft Sidewinder). The
scene remained on the screen until the 8 s was over. The
search task started with three practice trials. The
behavioral results showed that in 88.3% of the search
trials, the target was found by the participant, as
confirmed by their fixation coordinates when they
pressed the response key to indicate that the object was

found. During the aesthetic preference task block,
participants were instructed to examine each scene and
then rate how much they liked it. After each scene, a
response screen appeared asking the participant to
respond on a four-point like/dislike affective rating
scale (1 ¼ dislike, 4¼ like). Responses were made via
four buttons on the controller. However, those ratings
were lost due to a coding error, and therefore could not
be used in the preference analysis. So, we conducted a
separate preference task, which will be described below.
The preference task started with three practice trials.

After a short break, G1 engaged in the Test phase, a
scene recognition task. Before the task, participants
were informed that their memory would be tested for
all the scenes they had previously encountered, not just
the scenes they had been instructed to remember in the
memorization block. In each trial, a scene was shown
for 3 s, and participants were asked to identify whether
the scene was ‘‘old’’ (encountered in the Encoding
phase during any block, not just the memorization
block, and presented in an identical form), ‘‘altered’’
(encountered in the Encoding phase but presented in a
horizontally mirrored form), or ‘‘new.’’ A total of 154
scenes, consisting of seven categories of 22 scenes—old
and memory, old and search, old and preference,
altered and memory, altered and search, altered and
preference, and new—were used in the recognition task.

Eye movement analyses

Raw eye movement data from the Encoding phase
were preprocessed using Eyelink Data Viewer (SR
Research, Toronto, Canada). Saccades were defined
with a 508/s velocity threshold using a nine-sample
saccade detection model. Fixations were excluded from
analysis if they were preceded by or co-occurred with
blinks, were the first or last fixation in a trial, or had
durations less than 50 ms or longer than 1200 ms. For
each scene and each participant, discrete fixations (blue
crosses in Figure 2a) and fixation durations during the
8 s of scene viewing were identified. The fixation count
is the number of discrete fixations, regardless of their
duration, that landed on the scenes. Excluding outlier
trials (outside 62 SD range), in which fixation counts
were � 14 (218 trials) or � 34 (52 trials), did not change
the results.

The fixation map analyses were performed using
custom MATLAB (The MathWorks, Natick, MA)
scripts. First, an individual fixation map (Henderson,
2003; Pomplun et al., 1996; Wooding, 2002) of a
participant viewing a scene (the upper row in Figure
2d) was constructed by convolving a Gaussian kernel
over its duration-weighted fixation locations. The full
width at half maximum of the Gaussian kernel was set
to 28 (i.e., r ¼ 0.858) to simulate the central foveal
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vision (Rayner, 1998) and to take into account the

measurement errors of video-based eye trackers (Choe,

Blake, & Lee, 2016; Drewes, Zhu, Hu, & Hu, 2014;

Wyatt, 2010). Then a template fixation map for

memorizing a scene was constructed by averaging the

individual fixation maps of G2 participants who saw

that scene during the intentional memorization (G2M).

Before averaging, each fixation map was normalized so

that the sum of all pixel intensities of a map equaled

one. Finally, the individual fixation maps of G1

participants who saw a scene during the memorization

(G1 Memory; G1M), search (G1 Search; G1S), and

preference (G1 Preference; G1P) task blocks, respec-

tively, were compared to the template fixation map for

encoding that scene. The fixation map similarity (to the

template map) of an individual fixation map is the

Fisher z-transformed correlation coefficient between

the vectorised individual map and the vectorised

template map.

To quantify the ability of an ideal observer to predict

whether a scene would be correctly recognized in the

subsequent test based on the fixation counts and the

fixation map similarity, we performed receiver operat-

ing characteristic (ROC) curve analyses (Swets, 1973).

ROC curves were constructed by plotting the rate of

correctly recognized trials that were predicted to be

correct (i.e., Hit) against the rate of incorrect trials that

were predicted to be correct (i.e., False alarm) at

various threshold settings. The area under curve

(AUC), which is equivalent to the probability of the

correct prediction for a given pair of correct and

incorrect trials, of the ROC curves was calculated.

Whether the observed AUC values were statistically

significant was tested using a permutation test, in which

the null distribution was constructed by randomly

shuffling the correctness label of each trial, generating

ROC curve based on the new labels, calculating AUC,

and repeating the procedure for 10,000 times.

Figure 1. The effects of viewing tasks on scene memory. (a) Within-participant comparisons of the average recognition accuracy of

each participant in the Test phase. G1S, G1M, and G1P are the visual search, intentional memorization, and preference evaluation

tasks, respectively, in which G1 participants performed and viewed the scenes. Circles indicate each participant, and the dotted lines

are identity lines. (b) Within-scene comparisons of the average recognition accuracy of each scene in the Test phase. Circles indicate

each scene. To discern overlapping data points, the points were jittered by adding a small random noise. (c) Estimated task effects

(i.e., beta coefficients) of the search task (upper) and preference task (lower) on scene memory. Seven different trial-level,

generalized linear mixed-effects (GLMM) analyses were performed (Models A–M; see Table 1 for the model description). The error

bars indicate 95% CI of the estimates.
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To investigate the factors affecting scene memory,
we ran the trial-level Generalized Linear Mixed Effects
Model (GLMM) analyses using the Statistics and
Machine Learning Toolbox in MATLAB. We opted
for the GLMM because it allows controlling for
different scenes and participants simultaneously
(Baayen, Davidson, & Bates, 2008). In each model, the
dependent variable was the correctness of single trials
in the scene recognition task (1: correct, 0: incorrect),
and the binomial distribution was used to specify the
dependent variable. Individual analyses contained
different effects, which are described in the Results
section. When running GLMMs with a binomial
distribution, the assumption of normally distributed
residuals is no longer required, and the residual
diagnostic plots often used for transforming variables
in the standard, linear mixed-effect models are not
applicable. So, we used the z-scored variables for
simplicity and better interpretability (Schielzeth, 2010).

As for random effects, the by-participant random
intercepts and slopes for the viewing tasks and the by-
scene random intercepts were included, and the random
effects covariance matrices were reported, following the
guidelines of Barr, Levy, Scheepers, and Tily (2013)
and of Matuschek, Kliegl, Vasishth, Baayen, and Bates
(2017). In fitting the models, the binomial distribution
was specified for the dependent variable, and Laplace
approximations were used to approximate the likeli-
hood (Bolker et al., 2009). All models converged to a
stable solution.

Online experiment procedures

To investigate the relationship between scene mem-
orability and aesthetic preference, we conducted an
online version of the aesthetic preference task on AMT
and collected the scene ratings from a larger pool of

Figure 2. Illustration of the fixation map analyses. (a) Discrete fixation locations of a scene from three different participants, who were

performing the visual search (G1S), intentional memorization (G1M), and preference evaluation (G1P) tasks, respectively. G1S

participants were asked to locate a roller skate around the center. Each blue cross represents a fixation, and the numbers in the left

bottom indicate the fixation counts. (b) The effects of viewing tasks on fixation count. Left: The fixation counts for each scene were

averaged across participants within task. Circles indicate the scenes with outlier values. Right: The differences in fixation count

between G1S versus G1M and G1P versus G1M. The error bars indicate 95% CI of the means. ** p , 0.001 (paired t test). (c) The

effects of fixation count on scene memory. Top row: All (i.e., G1S, G1M, and G1P) trials. Bottom row: G1M trials only. Left panels:

Contrasts of the histograms of fixation count of each trial between the correct recognition trials (green) and the incorrect recognition

trials (red). Right panels: Receiver operating characteristic curves. The horizontal and vertical axes specify the rate of false alarms (i.e.,

the incorrect trials that were wrongly classified as correct) and hits (i.e., the correct trials that were correctly classified), respectively.

** p , 0.001 (permutation test). (d) Fixation map similarity analysis. Top row, individual fixation maps overlapped on the original

image. The individual fixation maps were constructed by convolving a Gaussian kernel over its duration-weighted fixation locations

(see Methods). The color corresponds to the fixation density, thus the red areas indicate dense fixations toward those regions across

participants. The fixation map similarity is the Fisher z-transformed correlation coefficient between the individual map and the

template map (bottom). The template map was constructed by averaging the individual fixation maps of G2 participants who saw that

scene during the intentional memorization (i.e., G2M). (e) The effects of viewing tasks on fixation map similarity. (f) The effects of

fixation map similarity on scene memory.
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participants, G3. First, participants were taken to a
web page containing a consent form and showing only
high-level information about the purpose of the study.
While participants viewed this page, all 135 scenes were
preloaded to prevent loading delay during the task.
Once preloading was complete, participants could
agree to the consent form and proceed to the
experiment. Next, participants were taken to an
instruction page where they were told that they would
be presented a series of 135 indoor and outdoor scenes
and that we wanted them to rate how much they
disliked or liked each scene using an affective rating
scale with four options: ‘‘Dislike,’’ ‘‘Somewhat Dis-
like,’’ ‘‘Somewhat Like,’’ and ‘‘Like.’’ A screenshot of
the rating scale was shown to help them prepare. Then,
participants started the preference task. Each scene was
presented one by one on a plain white background
along with text asking ‘‘How much do you dislike or
like this scene?’’ and the four-point like/dislike rating
scale. The scene images were dynamically resized to be
presented in the maximal size, accommodating for
different monitor resolutions of each participant, while
still allowing the text and the rating scale to be seen on
the same page without scrolling down. Participants
interacted with the rating scale by clicking on radio
buttons that were attached to each option, and they
could provide a preference rating at any time.
Immediately after submitting a rating, the next scene
was loaded automatically until all the scenes were
rated. The order of scene presentation was randomized
for each participant. After the task, participants were
asked for demographic information and feedback on
the study. Finally, participants were given a random
code that they had to submit on AMT to verify their
completion of the experiment.

Data and code availability

The eye-tracking dataset is available from the author
J.M.H. upon request. The fixation map analyses were
performed using custom MATLAB scripts, which are
available at https://osf.io/2k6zs/. All statistical tests
were performed using MATLAB R2015b. The fitglme
function was used to perform GLMM analyses, the
corrcoef function was used to calculate the effect size
(95% CI) of Pearson’s correlations, and the polyfit and
polyconf functions were used to calculate the 95%
confidence band of a regression. The effect size of t tests
is reported with Hedges’ g (Hedges, 1981), the
standardized difference between the means of the two
groups, and its 95% CI were calculated using the MES
toolbox v1.4 (Hentschke & Stüttgen, 2011), which can
be obtained from https://www.mathworks.com/
matlabcentral/fileexchange/32398. The intraclass cor-
relation was calculated using the ICC function, which

can be obtained from https://www.mathworks.com/
matlabcentral/fileexchange/22099.

Results

Task effects on scene memory

We first examined whether there were differential
effects among the incidental encoding tasks (i.e., visual
search and aesthetic preference evaluation) and the
intentional encoding (i.e., intentional memorization)
task on scene memory. In the Encoding phase, G1
participants viewed each scene for 8 s and were asked to
perform one of three tasks on the scene: (a) Try to
memorize it (G1M), (b) search for an object in the scene
(G1S), or (c) evaluate aesthetic preference for the scene
(G1P). Each participant performed all three tasks,
viewing 45 scenes in each task (see Methods for details).
Shortly after the Encoding phase, their memory for all
of the scenes was assessed using a recognition task. We
used the recognition accuracy from G1M as baseline
intentional memory and compared it with the subse-
quent incidental memory from G1S and G1P on a
within-participant (Figure 1a) and a within-scene basis
(Figure 1b). Compared to the memorization task
condition, participants’ overall recognition perfor-
mance was poor in the search task condition (the upper
panel in Figure 1a): paired t(35) ¼ 4.28, p , 0.001,
Hedges’ g¼ 0.64 [0.34, 1.01]; and better in the
preference task condition (the lower panel in Figure
1a): paired t(35)¼ 5.22, p , 0.001, Hedges’ g ¼ 0.88
[0.54, 1.29]. Also, we found that a scene was less
recognized (i.e., less memorable) if it was seen in the
search task than if it was seen in the memorization task
(the upper panel in Figure 1b): paired t(131)¼5.17, p,
0.001, Hedges’ g ¼ 0.42 [0.27, 0.59]. Similar to the
incidental memory boost observed in words and faces,
we found that rating a scene’s aesthetic value during
encoding significantly increased its memorability com-
pared to the intentional memorization (the lower panel
in Figure 1b): paired t(131)¼6.75, p, 0.001, Hedges’ g
¼ 0.53 [0.37, 0.71].

To estimate and quantify task effects on scene
memory, we conducted a trial-level GLMM analysis,
which allows controlling for different scenes and
participants simultaneously. As expected, our simplest
trial-level GLMM analysis (Model A in Table 1)
established those task effects by showing significant
regression coefficients for the variables associated with
viewing tasks (Figure 1c). In this analysis, the
dependent variable was the correctness of all 4,752
trials in the recognition test (1: correct, 0: incorrect).
The fixed effects were the viewing task type (G1S,
G1M, and G1P), scene orientation (i.e., whether a
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scene was horizontally flipped in the recognition test),
and their interaction. Also, the by-participant random
intercepts and slopes for the tasks and the by-scene
random intercepts were entered into the model. This
model (df ¼ 4746) explained 27.14% of the variance
(adjusted R2), and the full results are presented in
Supplementary Table 1. Model A confirmed a signif-
icant negative effect of the search task (b ¼�0.58
[�0.90, �0.25], p , 0.001) and a significant positive
effect of the preference task (b¼ 0.86 [0.49, 1.23], p ,

0.001) on scene memory compared to intentional
memorization. Also, the model showed that presenting
scenes in a flipped form during test (i.e., the scene
orientation effect) significantly decreased their recog-
nition (b ¼�1.04 [�1.44, �0.65], p , 0.001). The
interaction between task type and scene orientation was
not significant, F(2, 4746) ¼ 1.61, p ¼ 0.20.

In the following sections, we examined the number
of fixations and the fixation maps obtained while
participants were performing the viewing tasks to
investigate possible attentional mechanisms for these
different incidental and intentional encoding task
effects on scene memory.

Examination of fixation count

Previously, it was shown that an increased number of
fixations was related to greater subsequent recognition
for natural scenes (Loftus, 1972), objects (Pertzov et al.,
2009; Tatler & Tatler, 2013) and faces (Bloom &Mudd,

1991). Therefore, we examined whether fixation count
(i.e., the number of discrete fixations that landed on the
scene during viewing; Figure 2a) could explain the task
effects on scene memory. To do so, we first checked the
relationships between the viewing task and fixation
counts (Figure 2b) and between fixation counts and
scene memory (Figure 2c). Then we conducted a trial-
level GLMM analysis (Model B in Table 1) to examine
whether fixation counts affected the estimation of the
search task and the preference task effect coefficients
(the vertical axes in Figure 1c).

Regarding the relationship between the tasks and
fixation counts, the participants made a smaller number
of fixations in the search task than in the memorization
task (Figure 2b): paired t(131)¼ 8.25, p , 0.001,
Hedges’ g¼ 0.91 [0.68, 1.17], compared on a scene-by-
scene basis, and made a comparable number of
fixations in the preference task: paired t(131)¼1.89, p¼
0.06, Hedges’ g ¼ 0.22 [�0.00, 0.46]. Regarding the
relationship between fixation counts and scene memo-
ry, correct recognition trials were associated with
significantly greater fixation counts during encoding
than incorrect recognition trials (left panels in Figure
2c): ANOVA correct (green) versus incorrect (red)
trials, F(1, 4750)¼ 168.6 for all trials; F(1, 1582)¼ 93.9
for only intentional memorization (G1M) trials, both
ps , 0.001, consistent with previous research (Bloom &
Mudd, 1991; Loftus, 1972). Also, receiver operating
characteristic (ROC) analyses (see Methods) confirmed
that whether a scene would be correctly recognized
later could be predicted using fixation counts at levels

Model Fixed effectsa DF Adj. R2 BICb

A Viewing taskc 3 scene orientationd 4746 27.14% 4730.2

A* Viewing task 3 scene orientation þ task engagement duratione 4745 27.17% 4735.4

B Viewing task 3 (scene orientation þ fixation countf) 4743 29.96% 4667.8

C Viewing task 3 (scene orientation þ fixation map similarityg) 4743 28.90% 4704.0

D Viewing task 3 (scene orientation þ fixation count þ fixation map similarity) 4740 31.10% 4660.5

E Viewing task 3 (scene orientation þ scene preference
h
) 4743 27.34% 4742.8

F Viewing task 3 (scene orientation þ fixation count þ fixation map similarity þ scene

preference)

4737 31.18% 4675.7

M Viewing task 3 scene orientation 3 encoding-recognition fixation map similarityi 4740 33.74% 4670.1

Table 1. Summary of trial-level generalized linear mixed-effects model (GLMM) analyses. Notes: Dependent variable: the correctness
of all 4,752 trials in the recognition task (1: correct, 0: incorrect). All models included the by-participant random intercepts and slopes
for the viewing tasks and the by-scene random intercepts, i.e., (1þ Viewing Task j Participant)þ (1 j Scene) in the Wilkinson-Rogers
(Wilkinson & Rogers, 1973) notation. In fitting the models, the binomial distribution was specified for the dependent variable, and
Laplace approximations were used to approximate the likelihood. All models converged to a stable solution. a The fixed effects were
specified in the Wilkinson-Rogers notation. b The Bayesian information criterion (Schwarz, 1978). c The types of viewing task—
intentional memorization (G1M), visual search (G1S), and preference evaluation (G1P) tasks—were entered as nominal effects.
d Whether the scene was presented in an identical form or in a horizontally mirrored form was coded (0: identical, 1: mirrored). e The
normalized task engagement durations. During the memorization and preference tasks, we assumed that a participant was fully
engaged in scene viewing for 8 s during a trial, so we entered 1 for the G1M and G1P trials. During the search task, we assumed that a
participant was engaged in during search, so we entered the search duration / 8 s (range: 0–1) for the G1S trials.

f
The z-scored

fixation counts during 8 s of viewing the scene (Figure 2c) were entered. g The z-scored similarity values between the individual
fixation map and template map (Figure 2f) were entered. h The z-scored scene preference ratings obtained from G3 were entered.
i The z-scored similarity values between the encoding and recognition fixation maps of each individual (Figure 6a) were entered.
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significantly above chance (right panels in Figure 2c):
area under curve (AUC) ¼ 0.61 for all trials and 0.64
for G1M trials, both ps , 0.001 from permutation
testing.

To examine the extent to which fixation counts could
explain the task effects on scene memory, we conducted
a trial-level GLMM analysis (Model B in Table 1), in
which fixation count and its interactions with task type
were added to Model A as fixed effects. Model B (df¼
4743) explained 29.96% of the variance, and the full
results are presented in Supplementary Table 2. Model
B showed a significant positive effect of fixation counts
(b ¼ 0.75 [0.57, 0.94], p , 0.001) and significant
interactions between the tasks and fixation counts (bs¼
�0.49 [�0.71, �0.28] and�0.45 [�0.69, �0.21] for the
search and preference tasks, respectively; both ps ,
0.001). However, the effects of search and preference

tasks on scene memory both remained significant in
Model B (Figure 1c): bs¼�0.51 [�0.85,�0.17] and 0.82
[0.44, 1.19], p¼ 0.003 and , 0.001, respectively.

These GLMM results can be illustrated by correlat-
ing fixation count and scene memory (Figure 3). The
correlation between fixation count and recognition
accuracy was strongest in the memorization task:
Pearson’s r(130)¼0.34 [0.17, 0.48], p, 0.001 (the G1M
panel in Figure 3a); and decreased in the search and
preference tasks: Pearson’s r(130)¼ 0.12 [�0.06, 0.28]
and 0.25 [0.08, 0.40], ps ¼ 0.19 and 0.004, respectively
(the G1S and G1P panels), consistent with a significant
positive effect of fixation counts and significant
negative task interactions in Model B. Also, the
memorability changes across tasks in each scene were
significantly correlated with the fixation count changes
from memorization (Figure 3b): Pearson’s r(130)¼ 0.22

Figure 3. Results for the fixation count. (a) Relationships between the fixation count and recognition accuracy within each task. Each

circle represents a scene. The solid lines are the significant regression lines (ps , 0.001 and 0.004 for the G1M and G1P panels,

respectively), the dashed line is the nonsignificant (p ¼ 0.19) regression line, and the gray shades represent the 95% confidence

bands. (b) Comparisons of the differences in fixation count and recognition accuracy between tasks. The solid lines are the significant

regression lines (ps ¼ 0.01 and 0.001 for the G1S vs. G1M and G1P vs. G1M panels, respectively). The areas marked with a black

square were zoomed and presented at the right side.
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[0.05, 0.38] and 0.28 [0.11, 0.43], ps¼0.01 and 0.001, for
the search and preference tasks, respectively. But, when
fixation counts were controlled for across tasks, we still
observed the memorability change intercepts that were
significantly different from 0 (the zoomed panels in
Figure 3b), i.e., there were still significant task effects.
Together, these results show that fixation counts were
significantly associated with scene memory and inter-
acted with viewing tasks (e.g., a stronger effect in the
memorization task), but could not explain away the
variance due to the main effect of task-type.

Examination of fixation map similarity

Next, we examined the relationship between the
viewing tasks, scene memory, and individual fixation
maps. By measuring where viewers look in scenes (i.e.,
not just fixation counts, but locations and durations of
those fixations), eye-tracking enables the examination
of the allocation of overt attention under different
viewing tasks (Castelhano et al., 2009; Henderson,
2003; Kardan et al., 2016), which can be illustrated with
fixation maps (Henderson, 2003; Wooding, 2002). In
relating fixation maps and scene memory, we assumed
that scene regions that are highly fixated during
intentional memorization are memory-relevant and
support scene encoding. This assumption is based on
the fact that ocular targeting is guided by both bottom-
up information and top-down goals (Henderson, 2007,
2011, 2013). The average of the individual G2M (i.e.,
G2 participants intentionally memorizing a scene)
fixation maps provided information for where the
memory-relevant regions were in a scene (e.g., the
bottom panel in Figure 2d), so we used the averaged
map as a template for encoding that scene. We
hypothesized the more overt attention allocated to
those memory-relevant regions during scene encoding,
the better scene memory would be. This hypothesis is
based on the supposition that visual attention is
necessary for visual memory (Castelhano & Henderson,
2005; Draschkow et al., 2014; Hollingworth, 2012;
Hollingworth & Henderson, 2002; Olejarczyk et al.,
2014; Tatler & Tatler, 2013; Williams et al., 2005;
Wolfe et al., 2007).

The extent to which the memory-relevant regions
were attended by a participant during encoding a scene
was quantified by calculating the fixation map similarity
(i.e., the Fisher z-transformed correlation coefficients;
Figure 2d) between the participant’s fixation map and
the template fixation map for encoding that scene.
Regardless of the viewing tasks, the averaged G2M
fixation map was used as the template for comparison.
The search and memorization tasks often produced
qualitatively different fixation maps. For example,
when asked to locate a roller skate, participants looked

at objects in the scene that are related to roller skates
such as people’s feet and shoes (G1S panel in Figure
2a), yielding a different pattern of fixations compared
to attempting to memorize the scene. As such, the
similarity of G1S fixation maps to the template fixation
map was significantly lower than that of G1M fixation
maps (Figure 2e): paired t(131)¼ 19.2, p , 0.001 across
scenes, Hedges’ g ¼ 2.13 [1.82, 2.50], compared on a
scene-by-scene basis. In contrast, and somewhat
paradoxically, the preference task resulted in signifi-
cantly higher fixation map similarity, although small
(see the right panel of Figure 2e), than the memoriza-
tion task itself: paired t(131)¼ 3.48, p , 0.001 across
scenes, Hedges’ g ¼ 0.18 [0.08, 0.29].

We then examined the relationship between fixation
map similarity and scene memory. Consistent with our
hypothesis, correct recognition trials were associated
with significantly higher fixation map similarity than
were incorrect recognition trials (left panels in Figure
2f): ANOVA correct (green) versus incorrect (red)
trials, F(1, 4750)¼ 204.6 for all trials; and F(1, 1582)¼
29.9 for G1M trials, both ps , 0.001. ROC analyses
also showed that whether a scene would be correctly
recognized later could be predicted using fixation map
similarity significantly above chance (right panels in
Figure 2f): area under curve (AUC)¼ 0.63 for all trials
and 0.59 for G1M trials, both ps , 0.001 from
permutation testing. These results suggest that the more
one attends to memory-relevant regions, the better
encoded that scene will be for subsequent test.

Having established the effect of fixation map
similarity on scene memory, we examined the extent to
which fixation map similarity can explain the task
effects on scene memory. We conducted two GLMM
analyses (Models C and D in Table 1). In Model C,
fixation map similarity and its interactions with task
type were added to Model A as fixed effects. Model C
(df ¼ 4743) explained 28.90% of the variance, and the
full results are presented in Supplementary Table 3.
Model C showed a significant positive effect of fixation
map similarity on scene memory (b¼0.29 [0.13, 0.46], p
, 0.001) and nonsignificant interactions between the
search task and fixation map similarity (b¼0.15 [�0.08,
0.38], p¼ 0.19) and between the preference task and
fixation map similarity (b¼ 0.08 [�0.16, 0.33], p¼ 0.51).
Interestingly, Model C showed a nonsignificant effect
of the search task (b ¼�0.16 [�0.51, 0.19], p¼ 0.36;
Figure 1c) but still a significant effect of the preference
task (b ¼ 0.83 [0.46, 1.20], p , 0.001). Similar results
were obtained in Model D, in which fixation count,
fixation map similarity, and their interactions with task
were added to Model A as fixed effects. Model D (df¼
4740) explained 31.10% of the variance, and the full
results are presented in Supplementary Table 4.
Consistent with Model C, Model D showed a
significant effect of the preference task (b ¼ 0.79 [0.41,
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1.17], p , 0.001) and a nonsignificant effect of the
search task (b¼�0.19 [�0.55, 0.18], p¼ 0.32) while
replicating significant effects of fixation count (b¼ 0.72
[0.54, 0.91], p , 0.001) and fixation map similarity (b¼
0.22 [0.06, 0.39], p¼ 0.008).

These GLMM results can be illustrated by correlat-
ing the fixation map similarity and scene memory
(Figure 4). The correlation values between the fixation
map similarity and recognition accuracy were 0.23
[0.06, 0.38] (p¼ 0.01) for the search task, 0.32 [0.16,
0.47] (p , 0.001) for the memorization task, and 0.34
[0.18, 0.48] (p , 0.001) for the preference task (Figure
4a). Also, the memorability changes across tasks in
each scene were significantly correlated with the
differences in fixation map similarity across tasks
(Figure 4b): Pearson’s r(130)¼ 0.24 [0.07, 0.39] and
0.20 [0.03, 0.36], ps¼ 0.006 and 0.02, for the search and
preference tasks, respectively. When fixation map

similarity was controlled for across tasks, we still
observed a significantly positive intercept in the
preference task but not in the search task (the zoomed
panels in Figure 4b). Together, these results show that
the similarity between individual fixation maps during
inspection and the template fixation map for encoding
(i.e., the averaged G2M fixation map) could explain
why the search task decreased scene memory but not
why the preference task boosted scene memory.

Examination of the visual search task

During the visual search task, participants scanned
for the cued objects in the scenes for 3.47 s on average
(SD ¼ 2.26 s across 1,584 trials) but viewed the scenes
for 8 s total because those scenes remained on the
screen even after participants’ responses. So, partici-

Figure 4. Results for the fixation map similarity. (a) Relationships between the fixation map similarity and recognition accuracy within

each task. Each circle represents a scene. The solid lines are the significant regression lines (p ¼ 0.01 for the G1S panel, and ps ,

0.001 for the G1M and G1P panels), and the gray shades represent the 95% confidence bands. (b) Comparisons of the differences in

fixation map similarity and recognition accuracy between tasks. The solid lines are the significant regression lines (ps¼0.006 and 0.02

for the G1S vs. G1M and G1P vs. G1M panels, respectively). The areas marked with a black square were zoomed and presented at the

right side.
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pants spent a large and variable portion of the time
without a clear instruction during the search task,
which might have contributed to the poor memory
performance and the large variance in recognition
accuracy in the search task, assuming that the amount
of time spent on the encoding tasks determines the
resulting scene memory. Therefore, we tested two
hypotheses that are derived from this assumption.

The first hypothesis is that the short and variable
search duration can explain the poor and variable scene
memory from G1S. To test this, we conducted a trial-
level GLMM analysis (Model A* in Table 1), in which
the task engagement duration (i.e., the search duration
in the search task and the scene presentation duration
of 8 s for the memorization and preference tasks) was
added to Model A as fixed effects. Model A* (df ¼
4745) explained 27.17% of the variance, and the full
results are presented in Supplementary Table 5.
However, Model A* showed significant effects of the
search and preference tasks on scene memory (Figure
1c): bs ¼�0.80 [�1.19, �0.40] and 0.86 [0.49, 1.23],
respectively, both ps , 0.001; and a nonsignificant
effect of visual search duration (b¼�0.42 [�0.86, 0.02],
p¼ 0.06), rejecting the first hypothesis.

The second hypothesis is that the search duration is
positively associated with scene memory within the

search task. We found that correct recognition trials
(green in Figure 5a) were associated with significantly
shorter visual search duration than incorrect (red)
recognition trials: Search RT¼ 3.36 6 2.17 s and 3.67
6 2.41 s for correct and incorrect, respectively;
ANOVA correct versus incorrect trials within G1S,
F(1, 1582) ¼ 7.13, p ¼ 0.008. Although the ROC
analysis based on the search duration (the right panel in
Figure 5a) failed to predict whether a scene would be
correctly recognized later at levels significantly above
chance (AUC ¼ 0.47 for G1S trials, p ¼ 0.07 from
permutation testing), a more sensitive GLMM analysis
(Model S1 in Table 2; see Supplementary Table 6 for
the full results) confirmed a significant negative effect
of search duration on scene memory (Figure 5b): b ¼
�0.68 [�1.20,�0.16], p¼ 0.01. Also, the effect of search
duration remained significantly negative in Model S2 (b
¼�1.41 [�2.01, �0.80], p , 0.001; see Supplementary
Table 7 for the full results), in which the fixation counts
during 8 s were added to Model S1. Note that due to
high correlation values between the search duration
and fixation counts before and after search, Pearson’s
rs ¼ 0.962 [0.958, 0.966] and �0.66 [�0.69,�0.63],
respectively, both ps , 0.001, we opted to include only
the overall fixation counts in Model S2, which were still
significantly correlated with the search duration, r¼

Figure 5. The effects of search duration and the fixation map similarity during and after search on scene memory in the visual search

task (G1S). (a) The effect of search duration on scene memory. Left panel: Contrasts of the histograms of search duration of each G1S

trial between the correct recognition trials (green) and the incorrect recognition trials (red). Dashed vertical line indicates the

response window of 8 s, and the trials without response during 8 s were plotted on the right side of that line. Right panel: ROC curve.

The horizontal and vertical axes specify the rate of false alarms (i.e., the incorrect trials that were wrongly classified as correct) and

hits (i.e., the correct trials that were correctly classified), respectively. (b) Estimated effect (i.e., beta coefficients) of search duration

on scene memory. Three different trial-level GLMM analyses were performed (Models S1–3; see Table 2 for the model description).

The error bars indicate 95% confidence interval of the estimates. (c) Relationships between the search duration and fixation map

similarity. Each circle indicates a trial. Fixation map similarity during (or after) search was calculated with the individual fixation maps

that were generated using the fixations made during (or after) search. The x axis of the After search panel was reversed (i.e., 8 s:

search duration) and named to Free-viewing time to indicate that there was no clear instruction to participants. The solid lines are the

significant regression lines (ps , 0.001 for both). The 95% confidence bands were omitted for clarity. (d) The effects of fixation map

similarity during and after search on scene memory. Left panels: Contrasts of the histograms of fixation map similarity between the

correct recognition trials (green) and the incorrect recognition trials (red). Right panels: ROC curves. ** p , 0.001 (permutation test).
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0.38 [0.34, 0.42], p , 0.001. This negative relationship
between the search duration and scene memory rejects
the second hypothesis and challenges the original
assumption that the longer one is engaged in the
encoding task, the better the encoding becomes, at least
if the task is a visual search task.

To examine how participants were processing the
scenes during and after search, we examined the
fixation map similarity during and after search and their
relationship to search duration. The fixation map
similarity during (or after) search was calculated in the
same manner (Figure 2d) but using the individual
fixation maps that were generated from the fixations
during (or after) search. Regarding the three different
fixation map similarity values, we found that the
similarity values during and after search were weakly
correlated with each other (Pearson’s r(1348) ¼ 0.06
[0.00, 0.11], p¼0.04) and that the similarity values from
the full 8 s data mainly reflected the similarity after
search (Pearson’s r¼ 0.83 [0.82, 0.85], p , 0.001). The
correlation between the similarity from the 8 s and that
during search was 0.47 [0.43, 0.51], p , 0.001.
Regarding the relationships between the fixation map
similarity and search duration (Figure 5c), we found
that the fixation map similarity during and after search
both increased with viewing time (Pearson’s rs¼ 0.18
[0.13, 0.23] and 0.35 [0.30, 0.39], respectively, both ps ,
0.001), which was either the search duration or free-
viewing duration; but the association was stronger in
the after-search, free-viewing condition: ANCOVA
F(1, 2930) ¼ 92.54, p , 0.001). Regarding the
relationship between fixation map similarity and scene
memory, the fixation map similarity after search, but
not that during search, could predict whether a scene

would be correctly recognized later (Figure 5d): AUCs
¼ 0.51 and 0.62, ps¼ 0.37 and , 0.001 from
permutation testing, for during and after search,
respectively. A GLMM analysis (Model S3 in Table 2;
see Supplementary Table 8 for the full results)
confirmed a significant positive effect of fixation map
similarity after search on scene memory (b¼ 0.35 [0.16,
0.55], p , 0.001) and a nonsignificant effect of fixation
map similarity during search (bs¼�0.02 [�0.19, 0.14], p
¼ 0.80). Moreover, the effect of search duration became
nonsignificant in Model S3 (Figure 5b): bs ¼�0.07
[�1.01, 0.88], p ¼ 0.89 after adding fixation map
similarity during and after search as fixed effects.
Together, these results suggest that successful scene
encoding happened not during the visual search task
but rather after visual search when participants began
fixating on memory-relevant regions, providing an
explanation to the puzzling negative relationship
between search duration and ensuing scene memory.

Comparison of the fixation maps during
encoding and retrieval

Previous memory research suggests that the degree
of match between encoding and retrieval conditions
affects memory performance (Roediger & Guynn,
1996; Rugg, Johnson, Park, & Uncapher, 2008). For
example, color improved the recognition of natural
scenes only when the colored scenes were used at both
encoding and retrieval (Spence, Wong, Rusan, &
Rastegar, 2006). In addition, the match between
encoding and retrieval was shown to have a larger

Model Fixed effects DF Adj. R2 BIC

S1 Scene orientation þ search durationa 1581 34.19% 1883.3

S2 Scene orientation þ search duration þ fixation countb 1580 37.32% 1891.5

S3 Scene orientation þ search duration þ fixation count þ fixation map similarity during

searchc þ fixation map similarity after searchd
1344 40.19% 1673.7

S4 Scene orientation þ search duration þ fixation count þ fixation map similarity during

search þ fixation map similarity after search þ scene orientation 3 encoding-recognition

fixation map similaritye

1342 61.40% 1695.6

Table 2. Summary of trial-level GLMM analyses for the visual search task. Notes: Dependent variable: the correctness in the
recognition task (1: correct, 0: incorrect). For Models S1 and S2, all 1,584 G1S trials were entered. For Model S3, the 1,350 G1S trials
with at least one fixation in both during and after search were entered. All models included the by-participant random intercepts and
slopes for all fixed effects and the by-scene random intercepts. For example, the random effect specification of Model S2 is (1þ Scene
orientationþ Search durationþ Fixation count j Participant)þ (1 j Scene) in the Wilkinson-Rogers notation. In fitting the models, the
binomial distribution was specified for the dependent variable, and Laplace approximations were used to approximate the likelihood.
All models converged to a stable solution.

a
The search duration was normalized to the range [0, 1] by dividing 8 s, i.e., the scene

presentation duration. b The z-scored fixation counts during 8 s of viewing the scene were entered. c The z-scored similarity values
between the template map and the individual fixation maps that were generated using the fixations made during search were
entered. d The z-scored similarity values between the template map and the individual fixation maps that were generated using the
fixations made after search were entered. Note that the number of trials entered into Model S3 is smaller the analysis was limited to
the trials that have both the fixation map similarity values during and after search. e The z-scored similarity values between the
encoding and recognition fixation maps of each individual (Figure 6a) were entered.
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influence on prospective memory performance than

characteristics of encoding and retrieval, such as

encoding instructions and retrieval targets (Hannon &

Daneman, 2007). Therefore, we examined whether

fixation map similarity between encoding and recogni-

tion (Figure 6a) was associated with scene memory,

hypothesizing that the higher the encoding-recognition

fixation map similarity, the greater the likelihood of

successful recognition. We also sought to determine

whether encoding-recognition fixation map similarity

could explain the observed task effects. In doing so, we

separately analyzed the trials in which the identical

scenes were presented in the recognition test and those

in which the horizontally mirrored scenes were

presented (see Methods) because scene orientation

affects the eye movement patterns.

Encoding-recognition fixation map similarity for the

identical scenes was 0.36 6 0.11 (M 6 SD across 66

scenes), 0.45 6 0.10, and 0.47 6 0.12 for the search,

memorization, and preference tasks, respectively (Fig-

ure 6b). As expected, encoding-recognition fixation

map similarity for the horizontally-mirrored scenes

Figure 6. The effects of encoding-recognition fixation map similarity on scene memory. (a) The encoding-recognition fixation map

similarity analysis. Top row, the same individual fixation maps during encoding as in Figure 2d. Bottom row, the individual fixation

maps during the recognition test from the same individuals. The encoding-recognition fixation map similarity is the Fisher z-transformed

correlation coefficient between the encoding fixation maps (top) and recognition fixation maps (bottom), which are from the same

scene. (b) The effects of viewing tasks and scene orientation (i.e., identical or horizontally-mirrored) on encoding-recognition fixation

map similarity. The similarity values for each scene were averaged across participants within task. Circles indicate the scenes with

outlier values. * p , 0.01, ** p , 0.001 (paired t test). (c) The relationship between encoding-recognition fixation map similarity and

scene memory in the all (i.e., G1S, G1M, and G1P) trials. Top row: The trials in which the identical scenes were used in the recognition

test. Bottom row: The trials in which the horizontally mirrored scenes were used in the recognition test. Left panels: Contrasts of the

histograms of encoding-recognition fixation map similarity of each trial between the correct recognition trials (green) and the

incorrect recognition trials (red). Right panels: ROC curves. ** p , 0.001 (permutation test). (d) The relationship between encoding-

recognition fixation map similarity and scene memory in the G1M trials. (e) The relationship between encoding-recognition fixation

map similarity on scene memory in the G1S trials.
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(0.13 6 0.07, 0.19 6 0.09, and 0.22 6 0.10, for the
search, memorization, and preference tasks, respec-
tively), was lower when the horizontally mirrored
scenes (indicated with ‘‘Mirrored’’ in Figure 6b through
e) were presented in the recognition test. When
comparing between the tasks, the encoding-recognition
similarity was lower in the search task than in the
memorization task (Figure 6b): paired t(65)¼ 5.39 and
5.54, both ps , 0.001, Hedges’ g¼ 0.79 [0.47, 1.14] and
0.73 [0.47, 1.02], for the identical and mirrored scenes,
respectively, compared on a scene-by-scene basis, and
higher in the preference task: paired t(65) ¼ 2.69 and
4.80, p ¼ 0.009 and , 0.001, Hedges’ g ¼ 0.25 [0.08,
0.44] and 0.38 [0.23, 0.38].

Next, we asked whether encoding-recognition fixa-
tion map similarity could explain the variance in
recognition accuracy across all trials regardless of the
tasks. We found that correct recognition trials were
associated with significantly greater encoding-recogni-
tion fixation map similarity than incorrect recognition
trials (left panels in Figure 6c): ANOVA correct (green)
versus incorrect (red) trials, F(1, 2374)¼106.37 and p,
0.001 for the identical trials, F(1, 2374)¼ 8.15 and p¼
0.004 for the mirrored trials. Also, ROC analyses
confirmed that whether a scene would be correctly
recognized later could be predicted using encoding-
recognition fixation map similarity at levels signifi-
cantly above chance in the identical trials (right panels
in Figure 6c): Area under curve (AUC)¼ 0.66 and p ,

0.001 for the identical trials; and AUC ¼ 0.53 and p ¼
0.06 for the mirrored trials, seemingly supporting the
importance of encoding-retrieval similarity in explain-
ing subsequent scene memory.

We then asked whether encoding-recognition fixa-
tion map similarity could explain the variance in
recognition accuracy within each viewing task, hy-
pothesizing that it would do so if it determines scene
memory. In the memorization and preference tasks, the
encoding-recognition fixation map similarity and scene
memory were not significantly associated; encoding-
recognition similarity was not significantly different
between correct and incorrect trials in the memoriza-
tion task (left panels in Figure 6d): ANOVA correct
versus incorrect trials, F(1,790)¼ 2.71 and 1.16, ps¼
0.10 and 0.28, for the G1M identical and mirrored
trials, respectively; and the preference task, F(1, 790)¼
0.13 and 1.21, ps¼ 0.72 and 0.27, for the G1P identical
and mirrored trials, respectively. Accordingly, encod-
ing-recognition similarity failed to predict whether a
scene would be correctly recognized later in the
memorization task (right panels in Figure 6d; AUC ¼
0.54 and 0.47, ps¼0.08 and 0.95, for the G1M identical
and mirrored trials, respectively) and in the preference
task (AUC¼ 0.50 and 0.52, ps¼ 0.46 and 0.23, for the
G1P identical and mirrored trials, respectively). In
addition, we failed to find a significant relationship

between encoding-recognition similarity and scene
memory in the G1S mirrored trials (bottom panels in
Figure 6e): ANOVA correct versus incorrect trials, F(1,
790) ¼ 2.74, p ¼ 0.10; AUC ¼ 0.54, one-tailed,
uncorrected p¼ 0.04. However, within the G1S
identical trials, encoding-recognition similarity and
scene memory were significantly associated (top panels
in Figure 6e): ANOVA correct versus incorrect trials,
F(1,790) ¼ 117.9, p , 0.001; AUC¼ 0.76, p , 0.001.
Moreover, adding encoding-recognition similarity and
its interaction with scene orientation to Model S3
(Model S4 in Table 2; Supplementary Table 9 for the
full results) could explain 20% of additional variance in
scene memory from G1S. These results suggest that
encoding-retrieval similarity could only explain signif-
icant variance in the visual search task and could not
explain the memory boost exhibited by the preference
task.

To examine the extent to which encoding-recogni-
tion fixation map similarity could explain the task
effects on scene memory, we conducted a trial-level
GLMM analysis (Model M in Table 1), in which
encoding-recognition similarity and its interactions
with task type and scene orientation were added to
Model A as fixed effects. Model M (df ¼ 4740)
explained 33.74% of the variance, and the full results
are presented in Supplementary Table 10. Model M
showed a nonsignificant main effect of encoding-
recognition similarity (b¼ 0.12 [�0.11, 0.36], p¼ 0.30),
consistent with Figure 6d; and significant interactions
between the search task and encoding-recognition
similarity (b¼1.06 [0.71, 1.40], p, 0.001); and between
the search task, encoding-recognition similarity, and
scene orientation (b ¼�0.67 [�1.18, �0.15], p ¼ 0.01),
consistent with Figure 6e, which showed a significant
relationship within the G1S identical trials but not
within the G1S mirrored trials. However, the effects of
search and preference tasks on scene memory both
remained significant in Model M (Figure 1c): bs¼
�0.41 [�0.78,�0.05] and 0.91 [0.49, 1.34], p¼ 0.03 and
, 0.001, respectively, suggesting that encoding-recog-
nition fixation map similarity could not explain the
memorability changes across tasks.

Examination of scene aesthetic preference

In searching for factors contributing to the memo-
rability boost by the aesthetic preference task, we
examined the influence of scene aesthetics, which has
previously been found to be significantly (although
negatively) associated with scene memorability (Isola et
al., 2014). To do so, we collected scene preference
ratings in a separate online study (see Methods) from a
larger pool of participants, G3. As we aggregated
individual raters’ preferences to estimate the overall
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preference of each scene, we checked interrater
reliability using Shrout and Fleiss’s Case 2 (i.e., a two-
way random effects model) intraclass correlation
formula for average measures (Shrout & Fleiss, 1979),
in which scene and rater are both modeled as random
effects. The interrater reliability was 0.96 [0.94, 0.97], p
, 0.001, which falls in the conventionally ‘‘excellent’’
range (Cicchetti, 1994). The mean aesthetic preference
rating of the scenes was 2.57 (SD¼ 0.59; note that the
scene preference was rated on 4-point scale, 1¼ dislike,
and 4 ¼ like).

To examine the relationship between scene memory
and preference ratings, we conducted a GLMM
analysis (Model E in Table 1), in which scene
preference and its interactions with task type were
added to Model A as fixed effects. Model E (df¼ 4743)
explained 27.34% of the variance, and the full results
are presented in Supplementary Table 11. Model E
showed a nonsignificant effect of scene preference on
scene memory (b ¼ 0.11 [�0.09, 0.30], p ¼ 0.28) and a
significant interaction between the search task and
scene preference (b ¼ 0.20 [0.03, 0.37], p¼ 0.02),
suggesting that higher preferred scenes were more
remembered in the search task relative to the memo-
rization task. However, the effects of search and
preference tasks on scene memory both remained
significant in Model E (Figure 1c): bs¼�0.56 [�0.88,
�0.24] and 0.88 [0.51, 1.25], respectively; both ps ,
0.001), suggesting that the scene preference ratings
could not explain the memorability changes across
tasks.

Finally, the full model (Model F, df ¼ 4737, R2 ¼
31.18%; Table 3), in which fixation counts, fixation

map similarity, and scene preference, and their
interactions with task type were added to Model A as
fixed effects, summarizes our findings in a comprehen-
sive manner (see Supplementary Table 12 for the
random effects covariance parameters). Model F
confirmed significant positive effects of fixation count
(b ¼ 0.72 [0.53, 0.91], p , 0.001) and fixation map
similarity (b¼ 0.22 [0.06, 0.39], p ¼ 0.008) on scene
memory and a nonsignificant effect of scene preference
rating (b ¼ 0.13 [�0.06, 0.32], p¼ 0.19). Importantly,
Model F confirmed a nonsignificant effect of the search
task (b¼�0.19 [�0.56, 0.18], p¼ 0.31; Figure 1c) and a
significant positive effect of the preference task (b ¼
0.81 [0.43, 1.19], p , 0.001).

Discussion

Here, we used eye-tracking and trial-level GLMM
analyses to systematically compare how performing
different viewing tasks on scenes affects their subse-
quent memorability. Incidental scene memory de-
creased after visual search and increased after aesthetic
preference evaluation compared to intentional memo-
rization (Figure 1). The three viewing tasks also
resulted in different eye-movement patterns and dif-
ferent deployments of overt visual attention. Relating
fixation counts to scene memory, we found that fixation
counts were significantly associated with overall scene
memory (Figure 2c), consistent with previous research
(Bloom & Mudd, 1991; Loftus, 1972; Pertzov et al.,
2009; Tatler & Tatler, 2013), but could not fully explain

Predictor b coefficient SE(b) t(4737) p

Intercept (G1M) 1.83 [1.44, 2.21] 0.19 9.37 , 0.001

Task type: G1S �0.19 [�0.56, 0.18] 0.19 �1.02 0.31

Task type: G1P 0.81 [0.43, 1.19] 0.19 4.16 , 0.001

Scene orientation �1.10 [�1.48, �0.71] 0.20 �5.58 , 0.001

Fixation count 0.72 [0.53, 0.91] 0.10 7.52 , 0.001

Fixation map similarity 0.22 [0.06, 0.39] 0.08 2.63 0.008

Scene preference 0.13 [�0.06, 0.32] 0.10 1.32 0.19

G1S 3 scene orientation 0.10 [�0.26, 0.45] 0.18 0.54 0.59

G1P 3 scene orientation �0.28 [�0.69, 0.14] 0.21 �1.31 0.19

G1S 3 fixation count �0.53 [�0.75, �0.31] 0.11 �4.73 , 0.001

G1P 3 fixation count �0.49 [�0.74, �0.25] 0.13 �3.91 , 0.001

G1S 3 fixation map similarity 0.14 [�0.10, 0.38] 0.12 1.16 0.25

G1P 3 fixation map similarity 0.09 [�0.16, 0.34] 0.13 0.67 0.50

G1S 3 scene preference 0.15 [�0.03, 0.32] 0.09 1.64 0.10

G1P 3 scene preference 0.13 [�0.06, 0.33] 0.10 1.34 0.18

Table 3. Results of GLMM analysis: Model F (the full model). Notes: Dependent variable: the correctness of all 4,752 trials (1: correct
recognition, 0: incorrect recognition). The by-participant random intercepts and slopes for the viewing tasks and the by-scene random
intercepts, i.e., (1þ Viewing Task j Participant)þ (1 j Scene) in the Wilkinson-Rogers notation, were included in the model. In fitting
the models, the binomial distribution was specified for the dependent variable, and Laplace approximations were used to
approximate the likelihood. df ¼ 4737. R2 (adjusted) ¼ 31.18%. 95% CIs are stated beside the bs.
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the changes in scene memorability due to tasks (Figure
3). Relating attention allocation to scene memory, we
found that fixation map similarity was significantly
associated with overall scene memory (Figure 2f) and,
importantly, explained why visual search decreases
scene memory (Figure 4). However, it was not
significantly associated with the memorability boost in
aesthetic preference evaluation. Additionally, we found
that the search durations (Figure 5), encoding-recog-
nition fixation map similarity (Figure 6), and scene
preference ratings, respectively, could not explain the
task effects on scene memorability. Together, these
results demonstrate the importance of examining where
individuals fixate in a scene and not just how many
fixations individuals make.

We investigated if the locations where viewers fixated
during encoding influenced scene memory by analyzing
fixation maps (Figure 2d through f), which provided
rich spatial information. When intentionally memoriz-
ing a scene, participants allocated overt attention in a
consistent manner, as evidenced by the high level of
similarity (0.65 6 0.25, mean 6 SD across trials)
between the individual G1M fixation maps and the
template fixation map for encoding (i.e., the averaged
G2M fixation map). Ocular targeting is guided by both
bottom-up information and top-down goals (Ballard &
Hayhoe, 2009; Henderson, 2007, 2011, 2013), so
regions that are highly fixated upon are likely memory-
relevant and support scene encoding. We consistently
found significant positive associations between the
deployment of visual attention and scene memory
(Figure 2f), suggesting that the more a viewer’s
attention is diverted away from the memory-relevant
regions, the less effective the encoding (both intentional
and incidental) of those scenes becomes. Importantly,
fixation map similarity was able to explain the decrease
in scene memorability in the search task (Models C, D,
and F in Figure 1c), in which participants attended
more to the search-relevant-and-memory-irrelevant
regions (e.g., shoes in the G1S panel in Figure 2a). By
providing a mechanistic link between fixation maps
during encoding and subsequent scene memory, our
results extend research for how visual attention aids
scene memory (Castelhano & Henderson, 2005;
Draschkow et al., 2014; Hollingworth, 2012; Holling-
worth & Henderson, 2002; Olejarczyk et al., 2014;
Tatler & Tatler, 2013; Williams et al., 2005; Wolfe et
al., 2007).

In the visual search task, participants spent a large
and variable portion of the free-viewing time looking at
the scenes without a clear instruction, as those scenes
remained on the screen after their responses (i.e., after
the search object had been found). Although not
intended, this provided an interesting opportunity to
examine the relationship between search duration, i.e.,
the time spent on the encoding task, and resulting scene

memory. We found a significantly negative effect of
search duration (or a significantly positive effect of
free-viewing duration; unfortunately we could dissoci-
ate one from the other in the current study) on scene
memory (Figure 5b). To dig deeper into this result, we
investigated how participants were processing the
scenes during and after search by examining fixation
map similarity during and after search and their
relationships to scene memory. Interestingly, we found
that fixation map similarity during search failed to
predict whether a scene would be correctly recognized
later (Figure 5d). Based on previous research suggest-
ing that viewing tasks may affect the extraction (Võ &
Wolfe, 2012) and/or the retention (Maxcey-Richard &
Hollingworth, 2013) of visual information and that
top-down goals may have prioritized task-relevant
information over task-irrelevant information (Drasch-
kow & Võ, 2016; Tatler et al., 2013; Tatler & Tatler,
2013), we speculate that the visual search task
prioritized search-related operations during search,
which could increase memory for those specific objects,
but doing so reduces the extraction and retention of
overall scene visual information that is irrelevant to
search but critical for incidental encoding of the scene
in totality. When the visual search task is completed
(i.e., the search object is found), however, the priority
of encoding-related operations is normalized and
incidental scene encoding resumes during free-viewing
(i.e., the viewing time remaining after the search object
has been found). As such, the fixation map similarity
after search increased with free-viewing time (Figure
5c) and was positively associated with incidental scene
memory. Moreover, fixation map similarity during and
after search fully explained the negative effect of search
duration on scene memory, strengthening the relation-
ship between fixation map similarity and scene mem-
ory. These results suggest that our search task
condition was actually a combination of the search task
and free-viewing, and that scene memory was inciden-
tally formed while participants were free-viewing the
scenes without a clear instruction, providing a cau-
tionary remark on designing incidental encoding tasks.
Also, the precise relationship between the time spent on
visual search and resulting incidental scene memory
should be examined in a new study that is not
confounded by free-viewing after the search object was
found.

Inspired by the encoding-retrieval match principle
(Roediger & Guynn, 1996; Rugg et al., 2008), we
investigated if fixation map similarity between en-
coding and recognition influenced scene memory.
First, we found that greater encoding-recognition
fixation map similarity in the search task was related
to better scene memory (Figure 6e). We suggest that
encoding-recognition fixation map similarity in the
search task reflects whether the searched scenes
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successfully reinstated the context of visual search
during the memory test because, if successful, partic-
ipants will also remember the searched objects and
look at them during recognition. In this context, the
searched objects are highly informative retrieval cues,
which can easily distinguish the searched scenes from
memory (Nairne, 2002) and overcome weak encoding
from the search task and/or a limited capacity
retrieval process (Beck, Peterson, & Angelone, 2007;
Beck & van Lamsweerde, 2011). Therefore, if encod-
ing-recognition similarity is high for a searched scene,
its recognition will be more likely to be successful.
Also, an additional 20% of variance in scene memory
from G1S was explained by including the effect of
encoding-recognition similarity (Model S4), suggest-
ing that whether the search context was successfully
reinstated substantially contributed to incidental scene
memory from visual search. At least in visual search,
our eye-tracking results dovetail with recent func-
tional neuroimaging studies (Danker, Tompary, &
Davachi, 2017; Ritchey, Wing, LaBar, & Cabeza,
2013; Wing, Ritchey, & Cabeza, 2015), which suggest
that successful reinstatement of encoding-related
neural activity can help successful retrieval. However,
the relationships between encoding-recognition simi-
larity and scene memory were nonsignificant in the
memorization and preference tasks (see Figure 6d)
although the overall encoding-recognition similarity
was higher in those tasks than in the search task. This
is consistent with recent research suggesting that the
absolute level of encoding-retrieval match alone
cannot predict memory performance and that the
diagnostic value of retrieval cues is important (Goh &
Lu, 2012; Nairne, 2002; Poirier et al., 2012). Our
results could be explained if the retrieval cues (i.e.,
fixated regions during the memory test) in the
memorization and preference task conditions were
salient regions, which are more likely to attract
fixations regardless, thus resulting in the high level of
encoding-recognition similarity, but those cues were
less helpful in recognizing the specific scenes that were
encoded during the tasks. Moreover, we found that
encoding-recognition similarity could not explain the
observed task effects in scene memory (Model M),
suggesting that the effects of viewing tasks are mainly
limited to encoding.

When evaluating scene preference, participants had
better memory for those scenes, even though they
were not explicitly asked to memorize them. Evalu-
ating the pleasantness or likability of a face has been
shown to enhance incidental memory compared to
intentional memorization (Bernstein et al., 2002;
Grady et al., 2002; Smith & Winograd, 1978;
Warrington & Ackroyd, 1975), but few studies
compared the effect of preference evaluation to
intentional memorization of natural scenes. One such

study (Grady et al., 1998) compared intentional
picture memory to incidental memory from making
semantic (e.g. living/nonliving) or nonsemantic (e.g.,
size of picture) judgments on pictures and reported
that intentional memorization produced the greatest
memory. Importantly, however, they did not test
incidental memory in a preference judgment task.
Another study (Wolfe et al., 2007), which reported
poor incidental scene memory after visual search,
also used a preference judgment task (i.e., rating the
likeability) as a viewing task for scenes and textures
and reported a slight increase in resulting memory
after preference judgments compared to intentional
memorization. Wolfe et al. (2007) used an old/new
recognition task, and their participants showed the
high recognition performance of d 0 around 3 in both
conditions, perhaps limiting the memory boosting
effect of preference evaluation. Our study establishes
the memory enhancing effect of preference judgments
on natural scenes, extending the incidental memory
boost to a new stimulus, while simultaneously
demonstrating memory decrements for another form
of incidental encoding, i.e., visual search.

It is important to try to understand how prefer-
ence evaluation increased incidental scene memory.
The memory boost due to the preference task could
not be explained by fixation counts or the spatial
manifestation of visual attention (the preference task
effect panel in Figure 1c), suggesting that memory-
facilitating processes operated at an implicit level
during preference evaluation. Based on previous
research, we speculate three possible implicit mech-
anisms: (a) Evaluating scene preference may have
involved more scene semantic processing, which can
facilitate incidental scene encoding by improving the
consolidation of bottom-up visual information
(Draschkow et al., 2014; Josephs et al., 2016; Võ &
Wolfe, 2015); (b) evaluating preference may have
increased self-related processing, resulting in more
semantic elaboration of the scenes and helping to
organize of the information being processed (Rogers
et al., 1977; Symons & Johnson, 1997); and lastly, (c)
preference judgments may have activated the brain’s
reward circuitry and thus enhanced memory (Bie-
derman & Vessel, 2006; Yue, Vessel, & Biederman,
2007), but this explanation is complicated given that
scene preference ratings could not explain the
memory boost from the preference task. However,
the very act of making a preference rating, indepen-
dent of the actual preference rating generated, could
boost memory. In line with this idea is a study that
showed that making a voluntary choice (independent
of any rating) enhances memory via the striatum
(Murty et al., 2015), a region involved in decision
making and subjective evaluation (Bartra, McGuire,
& Kable, 2013), and thus could enhance memory just
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by making an evaluation of a stimulus. Regardless,
further research to test these possible mechanisms in
order to better understand how scene memory was
enhanced by the act of preference evaluation could
lead to many interesting applications in psychology,
education, and marketing research.

Conclusions

In summary, our results show that the deployment of
overt attention and attentional elaboration can explain
why some incidental encoding tasks, such as visual
search, will worsen memory compared to intentional
memorization. In contrast, scene preference yielded
enhanced memory above intentional encoding, while
preserving very similar deployments of overt attention.
As such, the incidental-encoding boost for preference
likely draws upon more implicit encoding mecha-
nisms—of which, we highlighted at least three possi-
bilities. Together, these results suggest that factors
affecting incidental memory could be different for
different incidental encoding tasks and that implicit
and explicit mechanisms of incidental memory should
be differentiated.

Keywords: visual memory, eye movements, incidental
memory, visual search, aesthetic preference

Acknowledgments

This work was supported in part by grants from the
TFK Foundation, the John Templeton Foundation
(University of Chicago Center for Practical Wisdom
and the Virtue, Happiness and Meaning of Life
Scholars Group), and NSF Grant BCS-1632445 to M.
G. B., and by NSF Grant BCS-1151358 to J. M. H. We
thank the editor and the reviewers for their thoughtful
comments.

Commercial relationships: none.
Corresponding author: Marc G. Berman.
Email: bermanm@uchicago.edu.
Address: Department of Psychology, The University of
Chicago, Chicago, IL, USA.

References

Anderson, J. R., & Lynne, M. R. (1979). An
elaborative processing explanation of depth of
processing. In S. Cermak & F. Craik (Eds.), Levels

of processing in human memory (pp. 385–404).
Hillsdale, NJ: Lawrence Erlbaum Associates.

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008).
Mixed-effects modeling with crossed random ef-
fects for subjects and items. Journal of Memory and
Language, 59(4), 390–412.

Baddeley, A. D. (1978). The trouble with levels: A
reexamination of Craik and Lockhart’s framework
for memory research. Psychological Review, 85(3),
139–152.

Ballard, D. H., & Hayhoe, M. M. (2009). Modelling the
role of task in the control of gaze. Visual Cognition,
17(6–7), 1185–1204.

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J.
(2013). Random effects structure for confirmatory
hypothesis testing: Keep it maximal. Journal of
Memory and Language, 68(3), 255–278.

Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The
valuation system: A coordinate-based meta-analy-
sis of BOLD fMRI experiments examining neural
correlates of subjective value. NeuroImage, 76, 412–
427.

Beck, M. R., Levin, D. T., & Angelone, B. L. (2007).
Change blindness blindness: Beliefs about the roles
of intention and scene complexity in change
detection. Consciousness and Cognition, 16(1), 31–
51.

Beck, M. R., Peterson, M. S., & Angelone, B. A.
(2007). The roles of encoding, retrieval, and
awareness in change detection. Memory and Cog-
nition, 35(4), 610–620.

Beck, M. R., & van Lamsweerde, A. E. (2011).
Accessing long-term memory representations dur-
ing visual change detection. Memory and Cognition,
39(3), 433–446.

Bernstein, L. J., Beig, S., Siegenthaler, A. L., & Grady,
C. L. (2002). The effect of encoding strategy on the
neural correlates of memory for faces. Neuro-
psychologia, 40(1), 86–98.

Biederman, I., & Vessel, E. A. (2006). Perceptual
pleasure and the brain. American Scientist, 94(3),
247–253.

Bloom, L. C., & Mudd, S. A. (1991). Depth of
processing approach to face recognition: A test of
two theories. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 17(3), 556–565.

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S.
W., Poulsen, J. R., Stevens, M. H. H., & White, J.-
S. S. (2009). Generalized linear mixed models: A
practical guide for ecology and evolution. Trends in
Ecology & Evolution, 24(3), 127–135.

Castelhano, M. S., & Henderson, J. M. (2005).

Journal of Vision (2017) 17(12):8, 1–22 Choe et al. 19

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/936521/ on 10/12/2017



Incidental visual memory for objects in scenes.
Visual Cognition, 12(6), 1017–1040.

Castelhano, M. S., Mack, M. L., & Henderson, J. M.
(2009). Viewing task influences eye movement
control during active scene perception. Journal of
Vision, 9(3):6, 1–15, doi:10.1167/9.3.6. [PubMed]
[Article]

Choe, K. W., Blake, R., & Lee, S.-H. (2016). Pupil size
dynamics during fixation impact the accuracy and
precision of video-based gaze estimation. Vision
Research, 118, 48–59.

Cicchetti, D. V. (1994). Guidelines, criteria, and rules
of thumb for evaluating normed and standardized
assessment instruments in psychology. Psychologi-
cal Assessment, 6(4), 284–290.

Coin, C., & Tiberghien, G. (1997). Encoding activity
and face recognition. Memory, 5(5), 545–568.

Craik, F. I. M. (2002). Levels of processing: Past,
present, and future? Memory, 10(5–6), 305–318.

Craik, F. I. M., & Lockhart, R. S. (1972). Levels of
processing: A framework for memory research.
Journal of Verbal Learning and Verbal Behavior,
11(6), 671–684.

Danker, J. F., Tompary, A., & Davachi, L. (2017).
Trial-by-trial hippocampal encoding activation
predicts the fidelity of cortical reinstatement during
subsequent retrieval. Cerebral Cortex, 27(7), 3515–
3524. doi.org/10.1093/cercor/bhw146.
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