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Synonyms

Terahertz-Band Nano-Communications

Definition

Brain-Machine Interfaces (BMIs) refer to communication systems between the
brain and an external device. Desired properties of BMIs include bi-directionality,
high spatial and temporal resolution, low-invasiveness, accuracy and robustness. In
this paper, the different types of BMIs, the state of the art and the future directions
are discussed, in addition to highlighting their key applications.

Historical Background

For many decades, the interaction between humans and machines has been restricted
to the exchange of visual, auditory and tactile information. A conceptual analysis
of the existing human-machine interfaces (HMI) reveals that the amount of useful
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information that can be exchanged between humans and machines is not limited
by the capabilities of the human brain or those of the machine processor, but by the
interfaces between them. Simply stated, from an engineering perspective, the human
being can be modeled as a macro-system with a processing powerhouse, i.e., the
brain, and a collection of peripherals, i.e., the sense organs. All the peripherals have
their own latency limitations, which mainly arise from the fact that they convert a
collection of nano/micro events, i.e., neuronal activity in the form of action-potential
signals, into a macro-sized effect, e.g., moving the fingers to touch a display, or
type some characters in order to control an external machine or as a reaction to an
external auditive or visual command.

While the concept described above enables the macro-system to control the com-
puting system, based on converting the collective nano/micro events, there are also
interactions that occur in the opposite direction, whereby external computing sys-
tems interface to the macro-system (e.g., the brain) and possibly control the neural
activities. This form of interaction is known as a Brain-Machine Interface (BMI).
Over the years, numerous applications have resulted from these two-way interac-
tions, where compensations are made between the computational capabilities of
both systems. Such compensations can be in the form of either the computing sys-
tem analyzing the brain signals and adapting the computing environment, or the
computing system providing added computing power to compensate for shortcom-
ings of the brain. In the first case, brain signals are used to understand the user’s
context which is then used to control machines, such as controlling the vehicle. In
the latter case, this could come in the form of computing systems controlling neu-
roprosthetic devices for disabled patients.

Electrical Brain Machine Interfaces

The most common to date BMISs rely on the collection and excitation of electrical
signals from the brain. Electroencephalogram (EEG) signals have been successfully
utilized to directly control machines without the need of the sense organs Millan et al
(2004). EEG signals can be collected in a non-invasive way, i.e., from outside the
brain, and support high-temporal resolution, i.e., down to the sub-millisecond scale,
but have limited spatial resolution, i.e., cannot be utilized to read the action-potential
signal from a single neuron at a time, and are vulnerable to electrical artifact sources.
Besides EEG-based BMIs, there are other more invasive mechanisms that could be
utilized to enable more robust electrical BMIs, such as intracranial EEG Leuthardt
et al (2006), which is also known as electrocorticogram, and micro-electrode arrays,
which are placed directly on the exposed surface of the brain Hochberg et al (2006).
However, besides their invasiveness, they suffer from several limitations, such as
complex application or unsuitability for long-term use.
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Optical Brain Machine Interfaces

In parallel to the development of the aforementioned approaches, the field of opto-
genetics, i.e., the use of light to interact with genetically modified neurons in the
brain Zemelman et al (2002); Deisseroth (2011); Zhang et al (2007), has experi-
enced a major revolution in the last decade. Optical neural stimulation is considered
to be more beneficial than electrical neural stimulation, because it permits activa-
tion or inhibition of specific types of neurons with sub-millisecond temporal pre-
cision and eliminates electrical artifacts. Current approaches to optogenetics neural
interfaces include the use of optical fibers coupled to lasers or light-emitting diodes
(LEDs) Zorzos et al (2010) and micro-LED arrays McGovern et al (2010). More-
over, optogenetics enable bidirectional interfaces, as light can be utilized both to
control and to measure neuronal activity Kwon et al (2014). However, the size of
existing optical devices makes them invasive, difficult to contact to individual neu-
rons and, ultimately, not suitable for chronic BMIs Marblestone et al (2013).

Wireless Brain Machine Interfaces

In order to overcome the limitations of traditional electrical and optical BMIs, wire-
less BMIs are being developed. In Seo et al (2013), the concept of neural dust was
introduced for the first time. In the envision architecture, miniature electronic de-
vices or dust motes are implanted in the cortex. These devices, which integrate
piezoelectric energy harvesting systems powered by ultrasounds, record the neu-
ral activity from the cortex, and transmit the information to a sub-dural transceiver
mounted under the skull. This device is in charge of controlling the neural dust and
to communicate with the external head-mounted transceiver, where the data is col-
lected. Despite the advantages of this wireless architecture, the fact that it relies on
the principles of electrical BMIs limits its applications.

Recently, in Wirdatmadja et al (2017), the first wireless BMI based on wireless
optogenetic nanonetworking devices (WiOptND) was proposed. WiOptND enables
accurate, robust, high-throughput and minimally-invasive BMIs by leveraging the
state of the art in nanophotonics, nanoelectronics and wireless communication. The
fundamental idea is to replace existing micro-LED arrays and micro-photodetector
arrays used in optical BMIs by a network of coordinated nano-devices, which are
able both to excite individual neurons as well as to measure their activity. In this
application, a network of collaborative WiOptNDs is utilized both to excite multiple
neurons according to incoming commands as well as to collect, process and transmit
accurate neuronal activity in real time. Each nano-device is equipped with an opti-
cal nano-transceiver Feng et al (2014) and nano-antenna Nafari and Jornet (2017),
which is able to both emit and detect optical radiation at a pre-established frequency
or wavelength. As in Seo et al (2013), WiOptNDs are acoustically powered and
remotely controlled through the sub-dural transceiver.
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Fig. 1 The WiOptND architecture consists of: (i) a network of coordinated nano-devices able
to optogenetically excite and measure the response of neurons; (ii) an intermediate transceiver in
charge of both controlling the nano-devices in order to generate different neuron excitation patterns
as well as acoustically powering them; and (iii) an external transceiver in charge of acoustically
powering the intermediate transceiver and interfacing it with the actual BMI user.

Many benefits in this approach exist. First, the very small size of optical nano-
antennas Dorfmuller et al (2010); Nafari and Jornet (2017), below one micrometer
in the largest dimension, enables the possibility to measure the neuronal activity in
a single neuron, with very high accuracy. Moreover, the total size of each individual
nano-device, up to a few cubic micrometers at most Akyildiz and Jornet (2010),
minimizes the invasiveness of this approach when compared to existing optogenetics
approaches, which require bulky lasers or optical fibers. Moreover, by operating
at optical frequencies, much higher temporal resolution than traditional electrical
BMIs can be achieved. For example, while the main features of action potential
signals are in the millisecond scale, the possibility to measure those signals with
much higher temporal resolution, such as a few microseconds or even less, may
unveil new high-frequency time-transients in the action potential signal propagation,
which could shine new light into the exploration of neuronal path-ways. This also
enables potentially much faster BMIs. For the time being, however, electrical and
optogenetic BMIs are at an early stage, in which some of the system components
have been developed and tested, but a fully functional BMI has not been realized.
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Future Directions

To enable practical long-term implantable wireless BMIs there are several bottle-
necks that need to be overcome.

o From the hardware perspective, the major challenges are in terms of the miniatur-
ization of the neural dust motes. Nano-lasers, nano-antennas and nano-photodetectors
are needed to excite and monitor neural activity through optogenetics. For the
time being, the smallest laser experimentally demonstrate to date Feng et al
(2014), is a micro-ring laser with 10 um in diameter. Given the average size
of a neuron cell body, tens of micrometers, current nano-lasers should be able
to achieve single neuron resolution, provided that they are near it (otherwise,
light spreading would result into the illumination of multiple neurons). Optical
nano-antennas can be utilized to then overcome this problem. Besides the optics,
piezoelectric energy harvesting nano-systems Wang (2008); Wang et al (2017)
and minimal computational and data storage capabilities are needed.

e From the communications perspective, effective communication protocols to op-
erate the WiOptNDs devices are needed. Addressing of individual nano-devices,
precise triggering of the optical stimulation, accurate collection of information,
are crucial tasks to be performed reliably and with energy efficiency in mind.
When developing such protocols, the physics of the intra-body channel, which
affects the propagation of optical signals for optogenetic excitation and mea-
surement Wirdatmadja et al (2018) as well as of the acoustic signals required to
power the nano-devices Donohoe et al (2016), need to be taken into account. As
important as their impact on the signal power, their impact on time distortion and
synchronization needs to be studied Noel et al (2018).

e In all cases, human factors need to be taken into account. For the time being,
the advanced BMIs (i.e., anything beyond EEG signals collection from over the
skull), have been primarily tested in in-vitro cell cultures or animals. One of
the promising approaches relies on the use of cerebral organoids, i.e., artificially
grown, in-vitro, miniature organs resembling the brain. These organoids repro-
duce the exact behavior of the brain and are the basis of recent breakthroughs in
neuroscience Stachowiak et al (2017). Beyond in-vitro testing, the implantation
of the devices needs to be optimized. Beyond surgery, the combination of nasal
injection and self-assembly techniques for nano-devices are being considered.

Key Applications

e BMIs can significantly improve the quality of life of people with disabilities, by
providing them a transformative way to interact with the environment and restor-
ing functional abilities and even cognition. For example, the direct control of
machines from the brain can help to overcome the limitations in the “interfaces”
between them, namely, the sensor organs or locomotion apparatus.
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e BMIs can help to broaden the understanding of the developmental- and aging-
related diseases, such as Schizophrenia or Alzheimer, whose origin lies at com-
munication problems between consecutive neurons, and, ultimately, enable trans-
formative treatments.

e BMIs can help to control specific types of neurological disorders, which to date
have been a major challenge. A good example is epilepsy. The development to-
wards using miniaturized neural dust motes that can be implanted deep into the
brain, coupled with optogenetics, can provide a mechanism of controlling neu-
rons at a single cell level. This means that by understanding the source of the
epilepsy, controls can be developed to suppress the seizure signaling.

e BMIs can help to augment people’s brain power going into the future. New con-
cepts such as Targeted Neuroplasticity Training can emerge, whereby the com-
puting power capabilities is augmented with the brain’s training process. This
could enhance the brain with new skills, and also provide people the abilities to
acquire new skills where they previously lacked.

Cross-references

Nanonetworks
Nanoscale Terahertz Communications
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