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Abstract: We present a two-dimensional ultra large aperture optical phase array (OPA) with
160x160 elements enabled with optical microelectromechanical system (MEMS). The random

access beamsteering up to 4.4°x4.6° scanning range at 1550nm is demonstrated.© 2018 The Author(s)
OCIS codes: (120.5060) Phase modulation; (230.4685) Optical microelectromechanical devices (110.5100) Phased-array
imaging systems

1. Introduction

Two-dimensional (2-D) optical phased arrays (OPA’s) have many applications such as solid-state LiDAR (light
detection and ranging), computational imaging/microscope, 3-D display and 3-D brain imaging. Silicon photonics
provide only 1-D OPA, with the other axis scanned by wavelength tuning. Liquid crystal OPA’s are commercially
available but they are too slow for LIDAR and some other applications. Micro-electro-mechanical-system (MEMS)
offers many advantages for OPA, including fast response time and low power consumption. Previous
demonstrations of MEMS OPA include 1-D micromirrors with piston [1] and tilt motion [2], 2-D OPA with piston
mirrors operating at infrared (1550nm) [3] and UV [4]. Most MEMS OPA’s use piston mirrors with parallel-plate
actuators. However, large vertical displacement (> 0.5 wavelength) is difficult to realize due to the pull-in effect,
especially for longer wavelength operations. Recently, a novel dispersion-free optical phase shifter was reported
using a lateral-moving grating element [5]. This grating phase shifter is particularly suitable for 2-D MEMS OPA
because the array is completely flat and the phase shift is independent of wavelength. Large displacement can be
realized by combdrive actuators. Here we report on a 2-D MEMS phased array with 160x160 individually
addressable pixels. The MEMS actuators are hidden underneath the grating phase shifters to achieve high fill factor
(91.8%). Random access beam pointing in two directions have been demonstrated, with a field of view of 4.4°x4.6°.

2. Grating based MEMS Optical Phase Array

The fabricated 2-D MEMS optical phased array has 160x160 elements, covering an aperture of 3.2x3.1mm?. The
photograph of the fabricated OPA is shown in Fig. 1(a). The schematic and the principle of the 2-D grating OPA is
shown in Fig. 1(b). An optical beam is incident at 65° from the surface normal, and the main output beam at -1
diffraction order emits at 40° for 955nm-pitch grating. Moving the grating along the grating vector direction creates
an optical phase shift in the -1** order beam. The phase shift is equal to Ax/p, where Ax is the lateral displacement
and p is the grating pitch. Note that the phase shift is independent of wavelength (hence dispersion-free).
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Fig. 1. (a) Photograph of the fabricated 2-D MEMS OPA (b) Schematic of the grating-based 2-D optical phase array.
The scanning electron micrographs (SEMs) of the OPA are shown in Fig. 2. It consists of a 2-D array of

grating pixels, each pixel is 20x19.1um?. The field of view (FOV) is 4.4°x4.6° at 1550nm wavelength. Larger scan
angle can be obtained using 4-f or holographic optics while maintaining the number of resolvable spots. The area of
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the grating phase shifter is 19.7x17.8um?, correspondign to a fill factor of 91.8% . A travel range of £0.475um is
needed to achieve 2pi phase shift. This is achieved at +16V bias to the combdrive actuators. The close-up view of
the pixel in F1g 2(b) clearly shows the gratings as well as the release holes to fae1l1tate wet HF release
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Fig. 2. SEMs of the High fill-factor 2-D grating based MEMS OPA. (a) Top view of the pixel array, (b) Close-up view of the individual
phase shifter element.

3. Beamsteering Results

We have performed beamsteering experiments with various phase maps using a laser source at 1550nm
wavelength. A diffraction-limited beam is observed when there is no bias on the OPA (Fig. 3(a)). This indicate the
starting phase and height of the OPA are very uniform across the array. No compensation is needed. Fig. 3(b) shows
the measured far-field pattern when the OPA is programmed to have alternating 0/pi phase shifts in the X-direction.
Two beams at +2.3° are observed. Fig. 3(c) shows 4 steered beams from alternating O/pi phase shifts in both
directions. The separations are 4.6° and 4° in the X and Y directions, respectively. The beam patterns agree very
well with theoretical prediction. This shows the capability of the OPA for 2-D beamforming.
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Fig. 3. Experimental measurement of the MEMS OPA beamsteering. From left to right: (a) diffraction pattern when the OPA is at zero
bias. Only the main lobe is visible. (b) Diffraction pattern when OPA has alternating 0/pi phases in X direction. Two lobes at +2.3° are
visble. (c) Diffraction pattern when OPA has alternating 0/pi phases in both X and Y direction. Four lobes are observed.
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