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Abstract— In recent years, numerous research efforts
have been dedicated toward developing efficient implan-
table devices for brain stimulation. However, there are limi-
tations and challenges with the current technologies. They
include neuron population stimulation instead of single
neuron level, the size, the biocompatibility, and the device
lifetime reliability in the patient’s brain. We have recently
proposed the concept of wireless optogenetic nanonet-
working devices (WiOptND) that could address the problem
of long term deployment, and at the same time target single
neuron stimulation utilizing ultrasonic as a mode for energy
harvesting. In addition, a number of charging protocols are
also proposed, in order to minimize the quantity of energy
required for charging, while ensuring minimum number of
neural spike misfirings. These protocols include the simple
charge and fire, which requires the full knowledge of the
raster plots of neuron firing patterns, and the predictive
sliding detection window, and its variant Markov-chain
based time-delay patterns, which minimizes the need for full
knowledge of neural spiking patterns as well as number of
ultrasound charging frequencies. Simulation results exhibit
a drop for the stimulation ratio of ∼ 25% and more stable
trend in its efficiency ratio (standard deviation of ∼0.5%) for
the Markov-chain based time-delay patterns protocol com-
pared with the baseline change and fire. The results show
the feasibility of utilizing WiOptND for long-term implants
in the brain, and a new direction toward precise stimulation
of neurons in the cortical microcolumn of the brain
cortex.

Index Terms— Brain stimulation, optogenetics, nano and
molecular communications.
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I. INTRODUCTION

E
ACH year, the prevalence of neurodegenerative diseases,
such as Alzheimer’s disease, amyotrophic lateral sclerosis

and Parkinson’s disease, is increasing. According to the 2016
World Health Organization (WHO) data statistics, more than
five million Americans are living with Alzheimer’s and it is
predicted that the number will increase to around 16 million
by 2050 [1]. Parkison’s affects 500,000 people in the US
and it will double by 2030 [2]. It has an estimated cost of
20 billion dollars in the US [3] and 13 billion euros in
Europe [4]. This situation demands scientists and researchers
to not only develop prevention programs, but also solutions
that might assist the patients to live a normal lifestyle.
In certain cases, patients with Parkinson’s disease may receive
benefits from brain stimulation by placing Implantable Pulse

Generator (IPG) [5] to the targeted areas of the brain to
treat essential tremor and dystonia symptoms. In the field
of neuroscience, optogenetics is gaining popularity as an
alternative method for neural stimulation. In optogenetics, the
neurons are engineered so that they are sensitive to light
at specific wavelengths in order to have either excitatory or
inhibitory effects [6]. Optogenetics provides an advantage over
the use of electrodes due to its higher precision, less stress
to the cells, and lower noises. These noises may disturb the
neural activity recording process since the recorded signal does
not merely come from the target neurons, but also from the
stimulation electrodes [7]. However, further improvements are
still required to the current solutions. They include the degree
of intrusion through the skull and alternative power supply
compared to the use of batteries. These shortcomings limit
the degree of practicality for the patients in their daily life.

On neural networks, neurons communicate with each other
through the process of action potentials and synapses. The
neuron cell body (soma) connects to other cells using the
dendrites and axons, which receives and transmits signals with
neighbouring cells. The problem arises when this physical
transportation network is impaired due to various problem
such as aging, disease, or the death of cells, among others.
Even a single neuron failure may result in communication
impairments along the cortical circuit. This communication
impairment due to single cell level failure will result in the
discontinued transmission of action potential among cortical
layers as depicted in Fig. 1. In this case, the implementation

1536-1241 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6351-1754
https://orcid.org/0000-0003-4022-3615


860 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. 16, NO. 8, DECEMBER 2017

Fig. 1. Illustration of healthy and disconnected cortical neural networks. Failing of action potential relays will result in disconnected communication
in the cortical column of the cerebral cortex.

of a single neuron level stimulation implant can restore the
neural circuit communication between the layers.

We have recently proposed the concepts of wireless opto-
genetics integrated using nanoscale components [8], which we
term wireless optogenetic nanonetworking devices (WiOptND).
Considering the size of the soma which varies between
4-100µm in diameter, the WiOptND is required to be approx-
imately several hundreds microns in size in order to deliver
the required light intensity needed for the stimulation. Since
our aim is to embed the device into the brain, this means that
this miniaturization will require a light source that can emit
sufficient light intensity, and is powered using energy harvest-
ing [8], [9]. In this paper, we investigate the light propagation
behaviour through the tissue to determine the effective distance
required between the light source and the neurons, and the
energy harvesting technique based on ultrasound vibrations of
piezoelectric nanowires.

In addition, since we anticipate a network of WiOptNDs, a
suitable charging protocol is required to maximize the energy
efficiency and ensure that all devices are charged to minimize
misfiring of the neurons. In particular, since these devices
will be embedded into the cerebral cortex, the charging proto-
col should consider the characteristics of the neural circuit,
and in particular, knowledge of the neural spike sequence.
We propose three protocols, including the simple Charge and

Fire protocol based on utilizing the full knowledge of the raster
plot firing sequence to individually charge each device in the
network, the Predictive Sliding Detection Window protocol
which employs the combination of neural spike prediction
and a more complex circuit for parallel charging in order
to minimize usage of ultrasound frequencies, and its variant
the Markov-Chain based Time-Delay Patterns, which utilizes
knowledge of the neuron population and their connection
probability between the cortical layers to predict the firing
sequence to also minimize the required ultrasound frequencies.

The structure of the paper is as follows: background
information on optogenetics and its biological features are
provided in Sec. II. Going more into the WiOptND, the overall
model and the components are discussed in Sec. III. Light
propagation properties through the brain tissue is discussed in
Sec. IV, while in Sec. V the power management of WiOptND
is presented, particularly focusing on the energy charging
and releasing performance to power the light source. The
charging protocols of the WiOptND nanonetwork is discussed
in Sec. VI. Finally, the paper is concluded in Sec. VII.

II. OPTOGENETICS

Naturally, the communication between neurons is done
both electrically and chemically. In most cases, the electric
signal is used in transferring the information in one single
neuron, while chemical is used in inter-neuronal communi-
cations [10] [11]. The electrical stimulation, action potential,
propagates from dendrites to the axons and stimulates the
release of neurotransmitter for inter-neuronal synapse com-
munications. The most common method in controlling the
neural communications is using electrical and light stimulation
(optogenetics). Comparing both methods, optogenetics gives
higher precision in targeting specific neuron, minimizes the
cell stress as compared to electrical stimulation, and creates
less interference with the surrounding cells.

Optogenetics is a method of artificially manipulating neural
communication using light at a specific wavelength. According
to its characteristics, the optogenetic construct can have either
excitatory or inhibitory effects. Excitatory postsynaptic poten-

tial (EPSP) refers to the case when the cell membrane depo-
larizes as a result of the opening of sodium and calcium ion
membrane channels, causing action potential to be generated.
On the other hand, inhibitory postsynaptic potential (IPSP) is
when the cell membrane hyperpolarizes caused by the opening
of chloride or potassium ion membrane channels which results
in blockage of action potential generation.

In optogenetics, channelrhodopsin-2 (ChR2) exhibits exci-
tatory characteristics. This construct is obtained by genetically
engineering neurons with the opsins from green algae Chlamy-

domonas reinhardtii (Step 1 in Fig. 2) [12]. The blue light
illumination triggers the action potential generation (Step 2
and 3 in Fig. 2). For inhibitory effect, the hyperpolarization can
be done in two ways, using either chloride or proton pumps.
Chloride pump is realized by utilizing the halorhodopsin

(NpHR) from archaeon Natronomonas pharaonis [13]. The
improved version of NpHR is called eNpHR3.0 which can be
activated by green, yellow, or red light (Step 2 and 3 in Fig. 2).
During its activation, chloride ion channel gates open, bringing
chloride ions into the cells. Proton pump is the alternative
of chloride pump to perform the inhibitory effect. To create
proton pumps, there are four types of optogenetics that can be
used. They are archaerhodopsin-3 (Arch) from Halorubrum

sodomense, Mac from the fungus Leptosphaeria maculans,
archaerhodopsin (ArchT) from Halorubrum strain TP009,
and eBR (an enhanced version of bacteriorhodopsin from
Halobacterium salinarum) [14]. In a nutshell, Fig. 2 concludes
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Fig. 2. Steps towards developing an optogenetic neuron and its
stimulation process. The figure also illustrates the depolarization process
where ion pumps are activated.

how the implementation of ChR2 and NpHR affects the gen-
eration of action potentials upon the illumination of blue light
(480 nm) and yellow light (570 nm).

Since the focus of this paper is to excite the neu-
rons, the optogenetic construct that is used is the ChR2,
which is activated by blue light whose wavelength is
approximately 480 nm.

III. SYSTEM MODEL

This section will first describe the devices for each of
the layers of the architecture, and this will be followed by
the device design, including the different components of the
circuitry.

A. Wireless Optogenetic Nanonetworking Architecture

The entire network of the Wireless Optogenetic Nanonet-
working architecture is composed of three layers, which is
adopted from [15] (Fig. 3). The lowest layer is the cerebral cor-
tex where the WiOptNDs are distributed, each are interfaced
to a neuron that requires stimulation as illustrated in Fig. 4.
Cerebral cortex is the gray matter of the brain and is responsi-
ble for sensory, motor, and associated functions. Horizontally,
the cerebral cortex is categorized based on their functional
areas, while vertically, it comprises of six layers containing
different type of neurons, which includes: pyramidal cells,
spiny stellate cells, basket cells, chandelier cells, and smooth

stellate cells [16], each of which can have a WiOptND
interfaced to the cell. The next layer up is the sub-dura

transceiver, which is located on the dura and below the skull,
and communicates with the WiOptND. The role of the sub-
dura transceiver is to emit ultrasound waves which are used to
charge the WiOptND. The sub-dura transceiver contains the
algorithm the determines both the charging and stimulation
sequence of the WiOptND, and this in turn emits the sequence
of ultrasound signals. Above the sub-dura transceiver is the
external transceiver, which communicates with the sub-dura
transceiver (please note that this paper does not focus on
the interactions between the external transceiver and the sub-

dura transceiver). However, for readers who are interested in
design of ultrasonic external device, [17] makes the Internet
of Medical Things (IoMT) ultrasonic patch and compares

Fig. 3. Illustration of the overall architecture of the Wireless Optogenetic
Nanonetwork. The WiOptND are scattered in the various layers of
the cortex, and is charged by the ultrasound signals emitted from the
sub-dura transceiver, which in turn is communicated from the external
transceiver.

Fig. 4. Illustration of a WiOptND that interfaces to an engineered neuron
that is sensitive to light at a specific wavelength.

Fig. 5. Device architecture of the WiOptND, including the internal circuit
diagram.

the performance between ultrasonic link and Bluetooth Low
Energy (BLE). Ultrasonic link outperforms BLE mainly due
to biological tissue propagation.

B. Wireless Optogenetic Nanonetworking Devices

The circuit diagram of the WiOptND is illustrated in Fig. 5.
Acting as the energy harvester, the piezoelectric nanowires
vibrate in response to the radiated ultrasound wave emitted
from the sub-dura transceiver. As the nanowires oscillate,
the AC voltage is generated. In this stage, the mechanical
energy from the ultrasound pressure is converted into electrical
energy in accordance to the piezoelectric material. How-
ever, the ultrasound intensity must abide with the Food and
Drug Administration (FDA) safety regulation stating that the
maximum permissible level is 720 mW/cm2. The generated
AC voltage is converted to DC by using a rectifier. The
converted electrical energy is then stored in the storage capac-
itor which is charged to power the light source component,
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and in our case is a Light Emitting Diode (LED). Since our
aim is to be able to signal each individual WiOptND in
order to charge and trigger the stimulation process, a unique
addressing scheme is required for each device. One approach is
through the utilization of a Voice Operated Switch (VOX) that
responds to different ultrasound frequencies. By integrating
the frequency filter switch, adopted from the VOX, enables
the discharging selection of one particular device, and this is
achieved by integrating a piezo element that is sensitive to
specific resonant frequency.

IV. LIGHT PROPAGATION IN BRAIN TISSUE

As the light emitted from the LED traverses via the brain
tissue, the irradiance or the intensity decreases. Absorption
due to the tissue chromophores increases as the light is
scattered along its propagation path. The main chromophores
in biological tissue include water, lipids, melatonin, oxy-
genated and deoxygenated haemoglobin. Eighty percent of an
average human brain contains water, however, its absorption
coefficient is negligible especially for visible light. The same
phenomenon occurs for lipids as well, since the lipid content
is approximately 5% of the brain [18]. The large percentage
of the brain comprises blood which delivers oxygen from the
lungs to the brain and vice versa. Haemoglobin of red blood
cells contains the highest light absorbing chromophores.

For the light intensity requirement analysis for ChR2 activa-
tion, the Modified Beer-Lambert Law can be used for photon
transport modelling. According to the differential form of
this model, the absorption in the tissue is proportional to the
major chromophores concentration. Furthermore, this model
assumes constant scattering losses and homogeneous semi
infinite medium (tissue) reflected on the absorption factor. The
Differential Pathlength Factor (DPF) is dependent on the light
wavelength λ, absorption coefficient µa , reduced scattering
coefficient µ′

s , and the distance from the source. This factor
can be estimated by [19]:

DP F(λ, d) =
1

2

√

3µ′
s(λ)

µa(λ)

[

1 −
1

1 + d
√

(3µa(λ)µ′
s(λ)

]

. (1)

After obtaining the DPF value, the intensity ratio measured
from the light source can be formulated as:

I (λ, d)

Io(λ)
≡ T (d) = e−µa (λ) d D P F(λ,d)+G(λ), (2)

where Io(λ) is the light source intensity, I (λ, d) is the light
intensity at distance d from the source, and G(λ) is a medium
and geometry dependent constant and largely unknown.

The required light power intensity for ChR2 signal trigger-
ing is 8-12 mW/mm2 [20]. From [21], the absorption coef-
ficient µa and the reduced scattering coefficient µ′

s for brain
tissue are 0.07 mm−1 and 1.404 mm−1, respectively. Based on
these values, the light intensity ratio or transmittance follows
the curve depicted in Fig. 6, which decreases exponentially as
the distance from the light source increases. This phenomenon
occurs due to the absorption and scattering factors which are
represented as the DPF value.

Fig. 6. Intensity ratio as a function of distance from the light source.
The curve is greatly affected by the light absorption and scattering
phenomenon in the brain tissue.

V. ENERGY HARVESTING FOR WIOPTND

A. Piezoelectric Nanowires

The piezoelectric material has been widely used for harvest-
ing energy due to its unique ability to produce electric charge
with respect to the applied mechanical stress. The utilization
of certain piezoelectric material is based on the considera-
tion of the type of application, power requirement, vibration
frequency, and the geometry structure. Some well-known
materials used are lead zirconate titanate (PZT ), aluminum

nitride (AlN), barium titanate (BaTiO3), and zinc oxide (ZnO)
in the form of crystal or nanowires [15], [22], [23]. Taking
into account the energy requirement, the WiOptND uses ZnO
nanowires complemented by thin coating of (<100 µm) of
acrylic Polymethyl methacrylate). The coating is important
to avoid harmful effects on the brain tissue. Related to the
power/energy conversion of the material, the electromechani-
cal coupling coefficient is one important parameter to consider
in deciding the appropriate material and geometry structure to
be used in harvesting the energy [24].

The attenuation experienced by ultrasound wave depends
on the frequency and the depth of the tissue. In this paper,
the maximum frequency used is 3 M H z. For brain tissue,
the attenuation coefficient, α, is 0.435 d B/(cm · M H z) [25].
The effect on the transmitted signal power intensity can be
formulated as follows:

Ind = Is10−(α f d/10), (3)

where Ind and Is are the power intensity levels at the surface
of the energy harvester and the acoustic wave source, respec-
tively, α is the attenuation coefficient of the brain tissue, f is
the ultrasound wave frequency, and d is the distance between
the WiOptND and the sub-dura transceiver.

According to (3), if the ultrasound source emits
720 mW/cm2 wave intensity, the power for a 100 × 100µm2

energy harvester is ∼ 60 mW . This calculation is based on
the 2-mm depth of the cerebral cortex since dense population
of neuron bodies is within this depth (gray matter). While
white matter of the brain is mostly populated by myelinated
axons. The electromechanical conversion occurs in the energy
harvesting element, therefore, its conversion rate needs to be
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taken into consideration. Assuming that the electromechanical
conversion rate, η, is 50% [26], [27], the effective electrical
energy generated is 30 mW . This result can be obtained from:

Pnd = Ind AE H , (4)

Pe = Pndη, (5)

where Pnd and Pe are the power received to vibrate the
nanowires of the energy harvester and the electrical power
after the conversion from mechanical to electrical energy,
respectively, and AE H is the effective surface area of the
energy harvester.

B. Storage Capacitor

The next stage after the energy is produced by the har-
vester and is rectified, is the storage of charge in the micro-
supercapacitor based on the generated voltage Vg from the
ZnO nanowires [28]. The micro-supercapacitor can be based
on the interdigital electrodes of reduced graphene oxide and
carbon nanotube composite [29]. This capacitor is considered
the most efficient for the WiOptND due to its miniature size
and large charge storage capacity. Using the power and voltage
of the energy harvester, the electrical current, ig , flowing in
the circuit can be represented as:

ig =
Pe

Vg

. (6)

The amount of electrical charge, �Q, supplied and stored
in the storage capacitor per charge cycle, tcycle, can be esti-
mated based on the nanowire vibration frequency, f , and the
current, ig , flowing from the energy harvester to the storage
circuit. This value can be obtained from [28]:

�Q = igtcycle =
ig

f
. (7)

C. Charging Cycles

The energy from the capacitor is utilized to power the LED.
For the LED, the minimum light intensity requirement should
be fulfilled and at the same time having the low power demand
in accordance to the power availability in the storage capacitor
is important.

The time duration for charging and discharging period of the
storage capacitor can be represented by the number of cycles,
ncyclecharge and ncycledischarge , and this can be represented as
follows [28]:

ncyclecharge =

⌈

−
VgCcap

�Q
ln

(

1 −

√

2Emax

CcapV 2
g

)⌉

, (8a)

ncycledischarge =

⌈

−
VgCcap

�Q
ln

(

√

2Emax

CcapV 2
g

)⌉

, (8b)

where Emax is the maximum electrical energy that can be
stored in the capacitor, Ccap .

The voltage level in every cycle can also be determined for
both the charging and discharge processes. The instantaneous

TABLE I

SIMULATION PARAMETERS

voltage level in terms of cycle numbers is represented as:

Vcapcharge (ncycle) = Vg

(

1 − e
−

ncycle�Q

VgCcap

)

, (9a)

Vcapdischarge (ncycle) = Vge
−

ncycle�Q

VgCcap . (9b)

D. WiOptND Energy and Power Evaluation

In this section, we numerically evaluate the energy and
power storage circuitry of the WiOptND. The parameters
used for the simulations are presented in Table I. Since the
duration of the charging and discharging of storage capacitor
is sufficiently fast regardless of the 2-mm thickness of the
cerebral cortex layer and operating frequencies variants, the
main concern lies in the electrical specifications of the light
source component and energy harvester. This, in turn, affects
the constant intrinsic values of the storage capacitor.

Our analysis is based on determining the radiated intensity
from the LED in order to obtain desired light intensity on the
target neuron. Fig. 7(a) shows the result of the required emitted
light intensity of the LED to achieve the level inside the range
of optogenetics stimulating intensity, which is 8-12 mW/mm2

with respect to distance. Similar to the previous calculations,
Fig. 7(b) and 7(c) illustrates the effect of the storage capacitor
component to the required light intensity by the optogenetics.
For both charging and discharging processes, higher light
intensity exhibits faster periods related to larger �Q electrical
charge. Fig. 7(d) and 7(e) presents the difference of energy
storage phenomena when the effective area of the energy
harvester is doubled. Larger effective surface area leads to
higher electrical charge supply. However, when the frequency
is varied, no significant change is noticeable in term of energy
in the storage capacitor, which is depicted in Fig. 7(f).

The relation between the charging time duration and the
piezoelectric nanowires surface area with varying ultrasound
frequencies is analyzed in Fig. 8. From this simulation, it can
be observed that the surface area of the energy harvester is
linearly proportional to the generated energy resulting in faster
charging process. As shown in the result, the differences in the
frequencies have no effect on the quantity of stored energy.

VI. SYSTEM CHARGING PROTOCOLS

While the previous sections discussed the functionalities
as well as system performance of each device, this section
will discuss its operation as a network. Fig. 9 illustrates
the heterogeneous nature and density variation of neuronal
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Fig. 7. (a) Intensity at the light source as a function of distance with variations in the required intensity for the optogenetics. (b) Illustration of storage
energy during the charging period as a function of time with light intensity variations, and a constant frequency of 500 Hz at 500µm distance.
(c) Illustration of storage energy during the discharging period as a function of time with light intensity variations, and a constant frequency of 500Hz
at 500µm distance. (d) Illustration of storage energy during the charging period as a function of time with energy harvester effective area variations,
and I(λ, d) of 10mW/mm2 with constant frequency of 500 Hz at 500µm distance. (e) Illustration of storage energy during the discharging period as
a function of time with energy harvester nanowire area variations, and I(λ, d) of 10mW/mm2 with constant frequency of 500Hz at 500µm distance.
(f) Illustration of storage energy charging process with ultrasound frequency variations.

Fig. 8. Illustration of storage energy performance as a function of time
with ultrasound frequency variations. The performance compares the
storage energy performance for two different nanowires surface area.

networks in a cortical cortex. The deployment and topology of
the WiOptNDs are highly correlated to the network structure
and characteristics of the neuronal networks. To represent the
basic system architecture, three element sets should be defined,
i.e., L = {2/3, 4, 5, 6} which represents the set of cortical
layers, F = { f1, f2, f3, ..., fn} which represents the list of
transmitted frequencies, and ND = {ND1, ND2, ND3, ... NDm},
{n, m} ∈ N

∗
≤n is for the set of WiOptNDs signalled by the sub-

dura transceiver, T xsub. Additionally, T xsub(F) represents the
transmitting frequency F emitted by the sub-dura transceiver.
Since multiple devices are concerned, and energy harvesting is
required through the sub-dura transceiver, a charging protocol
is required. The charging protocols that will be discussed in

Fig. 9. WiOptNDs nanonetwork deployed in the cortical microcolumn,
between L2/3 - L6.

this section range from a simple Charge and Fire, to more
complex protocols that will maximize energy efficiency, which
include Predictive Sliding Detection Window and its variant the
Markov-Chain based Time-Delay Patterns protocols.

A. Charge and Fire Protocol

For this protocol, the sub-dura transceiver transmits one
frequency, fi ∈ F , which corresponds to one specific
WiOptND when stimulation of a neuron is required. Consid-
ering s(L[n], t) is the firing state of a neuron of nth layer in
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Fig. 10. Charge and Fire scans the neural spike sequence, and employs
one-to-one relation between frequency transmission from the sub-dura
transceiver, and the WiOptND that needs to be charged to stimulate a
neuron. More than one neural spikes in a single time-slot leads to a
misfiring event.

time slot t , s ∈ {0, 1}, the frequency transmission process
could be translated as s[L[y], t] = 1 → T xsub ( fn).
The protocol operating principle is as follows: The full neu-
ron firing sequence raster plot knowledge is held inside the
sub-dura transceiver. The sub-dura transceiver also has the
knowledge of which WiOptND device is interfaced to a spe-
cific neuron. Based on a time-division access scheme, as the
sub-dura transceiver scans through the raster plot and encoun-
ters a spike, it emits an ultrasound frequency fi to charge the
device. The design of the circuitry is very simple, as soon as
the ultrasound frequency is emitted, it immediately charges to
the full capacity of the micro-supercapacitor, E[n, t] → Emax ,
which in turn discharges and powers the LED. This leads to the
illumination of the neuron. Based on our analysis in Fig. 7(b),
the ultrasound wave emission will last approximately 1 ms in
order to fully charge the micro-supercapacitor to maximum
capacity.

As an example, Fig. 10 illustrates how this protocol handles
the firing pattern for three WiOptNDs. As shown in the figure,
each of the WiOptND has a unique ultrasound frequency,
which is based on the specific resonant frequency of the
piezo element of the VOX. At approximately t5, a mis-
firing occurs for WiOptND3 and this is due to the clash in
time-slot with the WiOptND1 (in our proposed approach, the
sub-dura transceiver can only emit ultrasound with a single
frequency). While the protocol is very simple, and requires
very basic circuitry, the major drawback is that the sub-
dura transceiver is required to emit ultrasound signals at a
unique frequency that corresponds to a device. This also
becomes a major challenge, when we consider that the piezo
element for addressing will also require different resonant
frequencies that have considerable spacings to not lead to
overlap with signaling other devices. However, by utilizing
the photoacoustic effect of the intermediate material which
has the property of rapid heating and thermoelastic expansion,
the sub-dura transceiver can generate the desired ultrasound
frequencies by adjusting the optical pulse duration and beam
width [30]. Another limitation is that the sub-dura transceiver
is required to have full knowledge of the raster plots for all
the cortical micro-column functionalities.

B. Predictive Sliding Detection Window

Since ultrasound signals will emanate to the entire region
of the nanonetwork, this also means that all devices will
automatically get charged each time a sub-dura transceiver

emits an ultrasound signal. However, the fact that each device
requires a unique resonant frequency addressing scheme,
means that in the Charge and Fire protocol, the sub-dura
transceiver will still need to signal each device. This results
in excessive energy depletion of the sub-dura transceiver,
and waste of repeated charging signals that are emitted to
devices that have already been charged. At the same time,
the diverse charging frequencies may be limited by the piezo
element technologies that is used for the addressing scheme.
Therefore, to address this issue, this section presents the
Predictive Sliding Detection Window, which aims to, (1) lower
the number of frequencies that are required to signal to
all the WiOptNDs, and (2) minimize the emitted ultrasound
frequencies from the sub-dura transceiver to lower the energy
depletion, by exploiting a parallel charging scheme. In the
case of (1), the different devices should respond to the same
ultrasound frequency to charge multiple devices.

1) Parallel Charging: Fig. 11 illustrates an example of
the Predictive Sliding Detection Window charging protocol.
In this example, there are three different WiOptND devices
and three ultrasound charging frequencies. As illustrated in
Fig. 11 (a), each of the frequencies and the WiOptND devices
forms a matrix Mii that represents a random simulated pattern
with respect to time. For example, ultrasound frequency f1
signals WiOptND2 in the first time-slot, t = t0, followed by
WiOptND3 after one time-slot delay, t = t0 + 1, and finally
WiOptND1 after another time-slot delay, t = t0 + 2. This
means that if ultrasound frequency f1 is emitted at t0, there
needs to be a time delay for WiOptND3 and WiOptND1 before
they can discharge to light the LED and stimulate the neuron.
Frequencies f2 and f3 utilize similar three time-slot durations
but implementing different pattern predictions as illustrated in
Fig. 11 (a). The total frequencies and time-slots of one pattern
can be dubbed as the size of the sliding detection window.

In Fig. 11 (b) - (f) the sliding detection window protocol is
illustrated. The objective here is to slide the detection window
and find the overlaps between the neuron firing sequence
and time-slot of the pattern prediction for discharging the
device. Starting at t1 in Fig. 11 (b), the pattern prediction
sequence for frequency f1 perfectly matches to the sequence of
spikes for WiOptND1 and WiOptND3. Compared to the other
frequencies, the pattern of f1 is able to accommodate parallel
charging for most of the devices (2 out of 3). As the sliding
window moves along, it continuously checks prediction matrix
to decide which frequency pattern is the most compatible to
be emitted. Fig. 11 (c) shows that for all the three frequencies,
only one pattern matches to a device with a neural spike,
which is WiOptND2. Moving the sliding detection window
along in Fig. 11 (d), the pattern of f2 overlaps with two neural
spikes of WiOptND1 and WiOptND3. The remaining process
is illustrated for Fig. 11 (e) and (f).

Algorithm 1 explains in more detail the Predictive Sliding

Detection Window protocol. Initialization of the number of
patterns and time-delays can be represented as the array matrix
P[1..n] where n is the total amount of neural spiking patterns.
Based on the pattern prediction process, matrix Mi j is obtained
which will be compared with the known neural spikes within
each window. Before moving to the next phase, this protocol
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Fig. 11. Illustration of Sliding Detection Window mechanism utilizing three different frequencies/patterns. (a) presents the predicted patterns for
3 different frequencies for 3 WiOptNDs with respect to time. (b)- (f) illustrates the sliding window with respect to time, and the frequency used to
charge the devices. The selected frequency is based on the highest number of parallel devices that can be charged in that window.

makes sure if the first time-slot of the detection window con-
tains at least a spike. Afterwards, matrix Mi j will be truncated
so that the size is matched with the matrix of the patterns.
This truncated matrix Mii is compared against all the patterns
and the highest number of overlapping pattern is selected
by emitting the corresponding frequency. Finally, when the
selected frequency fi has been radiated, corresponding spikes
will be omitted and the protocol will analyze the next time-slot
until it reaches the end of the pattern sequence.

Algorithm 1 Predictive Sliding Detection Window
1: Initialize P[1...n] 	 where n is total number of available

frequencies
2: Mi j ← Pattern Prediction

3: for a = 1 to j do

4: Mii ← M[:, a : a − 1 + column(P[b])]

5: if M[:, 1] �= 0 & Mii �= 0 then

6: for b = 1 to n do

7: simT est ← compare Mii == P[b]]
8: end for

9: max Sim ← max(simT est)

10: tempFiringSlot ← 2 × P[max Sim] − Mii

11: Mii ← tempFiringSlot

12: end if

13: end for

2) Circuitry: The challenge is that since each device is inter-
faced to different neurons that spike at different time-slots, the
charging process must consider the timing difference between
the spikes when a single charging ultrasound frequency is
emitted. This means that when an ultrasound frequency is
emitted at t0+ j , a time-delay for a predicted overlap at
t > t0+ j is required for the circuit. This time delay will
count down until the specific time-slot has arrived, at which
point the charge will be released from the capacitor to light

the LED. This could be achieved by adding a time-delay
circuitry that extends over the original circuit presented in
Fig. 5, and used in the Charge and Fire protocol. The circuit
design of the WiOptND for the Predictive Sliding Detection

Window is illustrated in Fig. 12. Depending on the detected
frequency, the VOX switches on the desired time delay relay.
As the switch closes, the capacitor C1 is charged to forward
bias the zener diode DZ . This process activates the transis-
tor T1 whose collector is connected to the relay. To prevent
the relay clicking, the capacitor T2 is used to keep the base
bias steady. The diode D1 is to prevent counter-electromotive
force (CEMF) as the transistor T1 switched off. In this circuit,
the value of C1 determines the time delay period. In this
circuit, the time-delay relay circuit is situated between the
storage capacitor and the LED. The number of frequency-
dependent switch and time-delay relay pairs corresponds to
the number of operating frequencies used in the system. For
instance, the set of frequencies F ={ f1, f2, f3, ..., fi },
where the complete pattern that can be formed using i number
of frequencies is i ! (factorial of i ). However, the designated
number of patterns are kept as an independent variable during
the design process and currently it does not support real-time
tuning.

3) Neural Spike Prediction: One limitation with the Charge

and Fire protocol, is that the sub-dura transceiver is required
to have the full knowledge of the raster plot neural spike
sequence. This could be a major challenge, given that the
sequence changes for variations in activities (this will be
illustrated later in Sec. VI-B.4, when we demonstrate the
changes in the raster plot of the macaque monkey’s visual
cortex). Since the Predictive Sliding Detection Window pro-
tocol is already predicting the neural spikes, one approach is
to augment the protocol with existing neural spike prediction
solutions. In particular, since the sliding window is required
to scan future spikes, a prediction process can be integrated.
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Fig. 12. WiOptND circuit diagram with integrated time-delay relay for the
Predictive Sliding Detection Window protocol and its variant the Markov-
Chain based Time-Delay Patterns protocol.

Fig. 13. Example deployment of the WiOptND nanonetwork in the Brain
Visual Cortex. The neural circuit connection to the V1 primary visual
cortex is impaired, requiring the deployment of WiOptNDs, where its
coordinated stimulation will compensate for the failed neurons.

Numerous research has investigated prediction processes for
neural spikes, where in majority of the cases in-vivo neuronal
system have been known to contain patterns that corresponds
to a certain stimulus [31]. For example, when retinal cells

receive visual information, this data is conveyed through the
optic nerve and stimulates neurons firing in the V1 primary

visual cortex. The pattern of the neural spikes is directly
related to the light intensity, and determines four related
parameters which includes the time of occurrence, number
of spikes, jitter periods, and number of jitters [32]. In this
paper, we employ this specific neural spike prediction process
which is illustrated in Fig. 13. In this scenario, a light to
electrical converter will wirelessly transmit signals to the
external transceiver based on changes in the light intensity,
which is then transmitted to the sub-dura transceiver, and this
is used to guide the charging protocol.

Based on the mathematical model in [32], the pattern
prediction maps of the firing rate and spiking sequence is
formulated as follows:

r(t) = δ(h(t)) − θ)ḣ(t)H (ḣ(t)) (10)

considering

h(t) = g(t) + a(t) +

∫ t

−∞

r(τ )(1 + b(τ ))P(t − τ ) dτ (11)

g(t) =

∫ t

−∞

s(τ )F(t − τ ) dτ (12)

H (x) =

{

1, if x > 0

0, otherwise,
(13)

TABLE II

SIMULATION PARAMETERS

where r(t) is the sum of delta function spikes at one particular
time instance when h(t) crosses the threshold θ with a positive
gradient slope. The function g(t) defines the filtered time
domain response for stimulus s(t) and is obtained from the
convolution operation with filter F(t). The parameters a(t)

and b(t) represent Gaussian noises, while P(t) is a feedback
potential. This particular model has proved to perform well
when compared with real neural spiking patterns.

4) Evaluation: In this section, we evaluate the performance
of the Predictive Sliding Detection Window protocol, and
compare this to the Charge and Fire protocol, using the light
stimulated neural spike prediction model of [32] as a case
study. We will first define the metrics that is used in our
evaluation. The total neural spike misfiring number, nmis , is
represented as:

nmis =

T
∑

t=0

|L|
∑

y=0

[ |L|
∑

k=0

[min(s(L[y], t), s(L[k], t))

]

+H [L[y], t]

(14)

where

H [n, t] =

{

0, if E[n, t] < Emax ,

1, if E[n, t] = Emax .
(15)

which represents whether the stored energy E[n, t] is sufficient
to turn on the LED at time t , by comparing it to the required
energy Emax .

The neural spike misfiring ratio, stimulation efficiency ratio,
and stimulation ratio can be formulated as:

γmis (L[y]) =
nmis

∑T
t=0 s[L[y], t]

(16)

ηst im(L[y]) = 100% − γmis(L[y]) (17)

γst im(L[y]) =

∑T
t=0 |T xsub[ fn, t]|
∑T

t=0 s[L[y], t]
(18)

where
∑T

t=0 |T xsub[ fn, t]| is the total number of frequency
transmission during period of T .

As mentioned above, the time-delay patterns affect the
matching probability to the predicted neural spike sequence
and this is related to the number of ultrasound resonant
frequencies. In order to evaluate the protocols, simulations
were conducted in Matlab with the parameters presented in
Table II. The results presented in Fig. 14(a) and 14(b), compare
the performance of the Charge and Fire and Predictive Sliding

Detection Window protocols with respect to variations in the
spike frequencies.

The results show that improved performance results from
higher neural firing rate as the stimulation ratio decreases.
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Fig. 14. Comparison of the stimulation and efficiency ratio for the
randomly chosen patterns of the Predictive Sliding Detection Window
and Charge and Fire protocols. The simulation generates the average
and standard deviation values for WiOptNDs deployed in four layers of
the cortical column of the cerebral cortex.

Stimulation ratio (18) defines how many times the sub-dura
transceiver transmits the frequencies in comparison to the total
amount of neural spikes. However, in terms of stimulation
efficiency ratio (17) which defines the total amount of spikes
successfully targeted during the stimulation process compared
to the total amount of spikes, the randomness in the results is
observed, and this can be attributed to the randomly chosen
pattern predictions used.

Fig. 15(a) and 15(b) presents the performance analysis when
the number of ultrasound frequencies/patterns and number of
devices are varied. The number of devices has significant
effect on the stimulation ratio, while the number of frequen-
cies/patterns does not make a significant impact. This is due
to the increased possibility of targeting multiple neural spikes
based on using a smaller number of frequency transmission.

Our evaluation also considers how the changes in the firing
patterns can affect the misfiring ratio. In this evaluation, we
utilized the raster plot of the Middle Temporal Cortex neurons
of a macaque monkey when the visual image is dynamically
changed. Fig. 16(a) illustrates two disks with moving dots that
were used in the experiments. The initial image is presented
on the left, where dots from Direction 1 and 2 are slowly
moving from the center to the circle perimeter. This movement
is later shifted as shown in the disk on the right. As we can

Fig. 15. The effect of the radiated ultrasound frequency quantity and
the number of WiOptNDs on stimulation and efficiency ratio for Predictive
Sliding Detection Window. Utilizing higher number of ultrasound frequen-
cies/patterns does not have significant effect on the stimulation ratio, but
it results in each stimulation process to be more efficient by targeting the
desired neurons. (a) Stimulation ratio vs Spike frequency. (b) Stimulation
efficiency ratio vs Spike frequency.

see from the raster plot in Fig. 16(b), this small change in the
image can totally change the sequence of neural spike patterns.
This raster plot is related to the visual stimulus s(t), which
based on the model in (10) will yield to the predicted sequence
r(t) [33]. Tuning curve represents the graphical presentation
of the neurons as a result of changes in the stimuli. For
example, the tuning curve can provide firing rate fluctuation
information as the angle of stimulus is varied (Fig. 16(a)).
As the spike frequency increases, both stimulation and mis-
firing events are more likely to occur. This is simulated in
Fig. 16(c) and 16(d) for both the Predictive Sliding Detection

Window and the Charge and Fire protocols. However, we
can observe that for lower spike frequencies, the Charge and

Fire protocol experiences less misfirings since it scans each
time-slots one by one, unlike the Predictive Sliding Detection

Window, which uses the time-slot pattern matching based on
the size of the window. The lower stimulation number in the
plots also indicates the smaller number of radiated ultrasound
signals from the sub-dura transceiver.

C. Markov-Chain Based Time-Delay Patterns

While the previous section demonstrated the benefits of
the Predictive Sliding Detection Window protocol, one issue
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Fig. 16. (a) The illustration of bi-directional stimuli separated
by 60° for achromatic random-dots pattern that is visually observed by a
macaque monkey. (b) The raster plot simulation generated based on the
experiment. As shown in the raster plot, both directions affect the neuron
spike frequency response [33]. (c) and (d) presents the simulation results
from the number of misfiring before and after the frequency transition for
both the Predictive Sliding Detection Window and the Charge and Fire
protocols.

is the generation of the pattern prediction sequences, which
was randomly generated. In order to improve the accuracy,
knowledge of the connectivity in the cortical layers could be
utilized to determine the firing order patterns between neurons

Fig. 17. Markov Chain model of inter and intra-layer connectivity for the
cortical column.

of each layer. This could be used to minimize the inaccuracies
between the pattern prediction and the target neural spikes,
which in turn minimizes the energy expenditure from the sub-
dura transceiver. This section will discuss how the connectivity
knowledge of the different neurons in the cortical layers can
be utilized to improve the time-delay patterns.

Cortical columns of the brain gray matter are characterized
by highly sophisticated connections for both the intra and
inter layers. This complexity is largely based on the large
number of neurons with over 125 trillions of synapses in the
cortex alone [34]. There is an immeasurable effort from the
neuroscience community in modelling cortex connections, and
one proposal is a discrete-time Markov chain with |L| states,
each representing one layer of the cortical column. The
transition probability matrix Pr is characterized by |L| × |L|

elements, and P should satisfy ∀i, j, Pri, j ∈ [0, 1], and,
∀i,

∑|L|
j=1 Pri, j = 1. The markov chain representing the

connectivity between the six layers of the cortical column is
represented in Fig. 17 [35].

Even though synapses can be stimulated from different lay-
ers of the cortical column containing the WiOptND nanonet-
works, the misfiring of neural spikes may still occur. This
scenario can result from the frequent number of optogenetic
excitation that occurs in layers with high connection distrib-
ution, which will result in the WiOptNDs of that layer to be
discharged more frequently. Therefore, the selection of these
layers with high centrality for charging will highly depend on
the probability of connectivity between the layers as illustrated
in Fig. 17, and this particular property can be utilized to
improve the Predictive Sliding Detection Window protocol.

We can calculate the distribution of a connection either
entering to a layer (pre-synaptic synapse - Prpre) or leaving a
layer (post-synaptic synapse - Prpost ). For the Markov chain
depicted in Fig. 17, the difference between the two is in
the transition probabilities. The probability of the connection
distribution L[y] for layer y can be represented as:

Pr(L[y]) = E[Prpre(L[y]) + Prpost (L[y])], (19)

where E[.] is the expected value, Ppre(.) is the probability of
a pre-synaptic connection and Ppost(.) is the probability of a
post-synaptic connection for a layer. These probabilities can
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TABLE III

CONNECTION FLOW PROBABILITY AMONG CORTICAL LAYERS

TABLE IV

RANK AND CONNECTION PATTERN

be calculated in the same way, but ultimately the behaviour is
different due to the transition probability values. Therefore,

Pr(.)(L[y]) =

∑|L|
k=0 Pr(L[k]|L[y])

∑|L|
n=0

∑|L|
m=0 Pr(L[n]|L[m])

. (20)

Using the Pr(L[y]), the predefined time-delay patterns can
be adjusted based on the max{∀Pr(L[y])}. According to the
number of cortical layers, there are |L|! possible patterns to
be selected from. The connection probability is summarized
in Table III. An example of a single connection comparison is
between Pr(L[5] → L[6]) = 0.325 and Pr(L[5] → L[4]) =

0.15, which means that the connection flow from layer V to
layer VI is more probable than to layer IV. For this reason, in
the connection ranking process, a connection from Layer V to
layer VI will be placed higher. Table IV presents a partial table
of the ranks for all the feasible connection patterns of the four
layers in the cortical column. The combination of connection
chain probability is used for the ranking process. Based on the
analysis, the pattern of L[5] → L[4] → L[6] → L[2/3] is
ranked the highest, while the L[6] → L[2/3] → L[4] → L[5]

is ranked the lowest. By listing all the |L|! = 4! = 24 possible
connections (Table IV), each predicted sequence patterns can
be assigned to the available frequencies. For a frequency set
of F = { f1, f2, f3, ..., fi }, there are i individual frequencies
which can be mapped to i ranked sequences in the list.

Based on the predefined connection ranking table that is
used to define the pattern predictions for selected frequencies,
simulations in MATLAB was conducted and the results are
presented in Fig. 18. The stimulation ratio shows stable
decreasing trend with respect to the neuronal spiking rate.
However, lower stimulation ratio does not always translate to
higher efficiency if it results in higher number of spike misfir-
ing. This is reflected in the stimulation efficiency ratio result.
The efficiency ratio of Charge and Fire protocol experiences
steep decrement as the the firing rate increases, where we can

Fig. 18. Comparison of the stimulation and efficiency ratio of predefined
patterns for the Markov-Chain Time Delay Patterns and the Charge
and Fire protocols. The simulation generates the average and stan-
dard deviation values of devices deployed in four layers of the cortical
column of the cerebral cortex. (a) Stimulation ratio vs Spike frequency.
(b) Stimulation efficiency ratio vs Spike frequency.

see that when the firing rate reaches 130 H z, the Markov-

Chain based Time Delay Patterns with 5 patterns starts to
outperform the Charge and Fire protocol. This is due to the
nature of the sliding detection window protocol in targeting
several firing sequences of the neurons based on low number
of ultrasound frequency charging. Compared to the randomly
chosen pattern simulation (Fig. 14), the stimulation efficiency
is higher with smaller standard deviation showing consistent
improvement.

VII. CONCLUSIONS

The increased attention towards brain stimulation has
attracted researchers to search for innovative solutions that can
enable long-term deployment as well as design of miniaturized
devices that can self-generate power. At the same time, the
emergence of optogenetics has provided a new approach for
precise stimulation at the single neuron level. In this paper,
we propose the WiOptND that is constructed from nanoscale
components and can be embedded into the cortex of the
brain to stimulate neurons using light. A thorough description
of the circuitry, as well as the components, are presented,
including mechanisms of generating power through ultrasonic
wave vibrations. The paper presented simulation results on the
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behaviour of optical light transmission and its effect on the
brain tissue, as well as the energy performance of the device
based on variations of ultrasonic frequencies and circuitry
devices (e.g. capacitors and piezoelectric nanowire area).
A number of charging protocols have also been evaluated
ranging from the simple Charge and Fire to the Predictive

Sliding Detection Window, and its variant the Markov-Chain

Time Delay Patterns. The Predictive Sliding Detection Win-

dow utilizes predicted patterns of ultrasound frequencies to
match to the neural spike patterns. The difference between
the protocols is to improve energy efficiency by lowering
the number of ultrasound emissions from the sub-dura trans-
ceiver while ensuring that neural spike misfiring ratio is low.
In particular, the Markov-Chain Time Delay Patterns extension
protocol resulted in the best performance. However, when the
efficiency ratio is considered, the protocol highly depends on
the neural spike rate and number of applied predicted patterns.
The results from our simulation study have demonstrated the
feasibility of using the WiOptND nanonetworks for long term
deployments in the brain in order to stimulate neurons and
provide new approaches for treating neurological diseases.
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