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ABSTRACT

The amount of data that can be gathered from a machining
process is often misunderstood, and even if these data are
collected, they are frequently underutilized. Intelligent uses of
data collected from a manufacturing operation can lead to
increased productivity and lower costs. While some large-scale
manufacturers have developed custom solutions for data
collection from their machine tools, small- and medium-size
enterprises need efficient and easily deployable methods for
data collection and analysis. This paper presents three broad
solutions to data collection from machine tools, all of which
rely on the open-source and royalty-free MTConnect protocol:
the first is a machine monitoring dashboard based on Microsoft
Excel; the second is an open source solution using Python and
MTConnect; and the third is a cloud-based system using Google
Sheets. Time studies are performed on these systems to
determine their capability to gather near real-time data from a
machining process.

INTRODUCTION

The astonishing production of data has revolutionized
many fields such as media, finance, healthcare and
manufacturing. Experts now point out to a 4300% increase in
annual data generation by 2020 [1]. Manufacturing produces
more data than any other field, and thus the shifting to a smart
and networked factory is essential to realizing higher
productivity and efficiency [2]. Advances in both data
collection standards and the networks to support those standards
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has enabled the optimization of production, equipment
utilization and product quality while simultaneously decreasing
energy consumption.

Machining is a decades-old manufacturing process that is in
wide use because it is rapidly implementable, flexible and
capable of producing high-quality parts from a wide range of
materials. Historically, machining was performed on manual
equipment that required an operator to turn handwheels to
control the motion of a cutting tool. Today, the vast majority of
production machining is done with computer numerical control
(CNC) machine tools that use servomotors to create tool
motion. As CNC machine tools rely on sensor feedback to
control the cutting process, the output from these sensors can be
harnessed to perform analysis of the machining process. These
sensor data can be used to determine the production rate of a
given machine, its current status and in the identification of
potential problems with the machine itself. However, the
collection of sensor data from the machine tool may present
problems if a manufacturer is attempting to integrate data from
many different types of equipment. Recently, machine tool
builders have been embracing MTConnect as the method of
choice for transmitting data from different types of CNC
machines. MTConnect is an open-source, royalty-free
communication protocol that allows for collection of sensor
data from manufacturing equipment through a network
connection. While MTConnect is gaining traction in some
facilities, there is a lack of cost-effective and easily deployable
tools to make use of the data collected from MTConnect.
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Effective use of data generated by a manufacturing
operation necessitates deployment of a system that can collect,
store and utilize data from manufacturing equipment. These
three steps, while dependent on one another, each require
separate tools to implement. In the data collection stage,
acquisition systems must be deployed to measure output from
sensors on manufacturing equipment. Using MTConnect,
standalone data acquisition systems are no longer required;
rather, data collection can be performed by a computer that is
on the same network as the machine tool to be monitored.
Storage of the collected data can be performed by a database
that is also networked with the data acquisition computer. Data
storage allows for manufacturers to study historical trends,
make predictions and analyze problems. Finally, visualization of
both current and historical measurements is necessary to allow
manufacturers to make use of the data.

Many large-scale  manufacturers have developed
propriectary methods for data collection storage from their
manufacturing equipment, but these systems are highly-
customized and purpose-built for a particular manufacturing
operation. Many smaller producers do not have access to a cost-
effective method of data collection from their manufacturing
equipment, and thus much of the data generated in their
production operations goes unused [3]. Small- and medium-size
producers need lightweight and efficient ways to both collect
and analyze the data generated by their processes. The recent
trend towards free or open-source software allows for the
development of a system that does not rely on proprietary and
expensive commercial software. Additionally, open-source
software can be freely modified by the user, which allows for
customizability. This paper describes the development and
implementation of multiple rapidly-deployable machine
monitoring solutions that enable online near real-time data
feedback and visualization.

BACKGROUND
The MTConnect Standard

The MTConnect Standard is an open-source and royalty-
free protocol for data transmission from manufacturing
equipment. The standard is a read only, XML format which
allows for communication from machine to machine and
machine to operator. In its basic use, the standard uses Hyper
Text Transport Protocol (HTTP) to return data in a web browser
using commands such as /current and /sample [4]. These
commands ask an MTConnect-compatible device to return a
webpage that contains data collected by the sensors in the
device. For example, issuing a current command would cause
the device to return the most up-to-date readings of all data
items it has available. An example of how the MTConnect data
is accessed would be by typing into the browser
machine IP:port/current or machine IP:port/sample, where
machine IP is the IP address of the machine to be monitored
[4]. An example of the XML data output from the machine tool
when given an HTTP request is shown in Figure 1. This output
is showing a few different components of the machine. The

MTConnect agent is what is responsible for collecting the data
from the machine and creating the webpage to be sent when a
request is received. Each time a current or sample command is
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j’zgure 1. MTConnect Output using the Current Command

issued to the machine, the MTConnect agent will first create a
header for the XML file to be returned. The first line in the
header is the timestamp of the data, the second line displays the
agent that is sending the data to the computer and browser, and
the next line says which version of MTConnect the data is
formatted in. The bufferSize is the number of data items that
can be stored in the agent’s circular buffer. Data items in the
buffer are organized by sequence number, which indicates a
datum’s place in the buffer. The first sequence number is the
first instance of data in the buffer and the last sequence number
is the last instance of data in the buffer. If the sample command
is used, then data are returned between those sequence numbers.
The next sequence number is then the beginning of the next
available sequence of data. After the header, the actual data is
then displayed with respect to the header.

MTConnect provides access to a wide range of variables
such as load, position, program name and the emergency stop
status. Each of these data items are organized according to the
definition of the MTConnect standard. In the standard,
machines and other factory equipment are defined as Devices.
In the MTConnect output, the device acts as a title before
displaying the data; in Figure 1, the device is a Mazak 5-axis
machining center. The universally unique identifier (UUID)
directly corresponds with one machine and would also appear in
the header. [5]. The next grouping of terms are the components
of the Device, which are predefined in the MTConnect schema
and are typically grouped based on certain attributes of the
machine [6]. Some components on the machine as defined by
MTConnect are the controller and the linear and rotary axes. In
Figure 1, the component displayed is rotary axis B, which
corresponds to the B-axis of this particular 5-axis milling
machine. All of the data items corresponding to that axis are
displayed underneath. The data items change depending on the
component. For the controller component, the data items will
include tags such as machine status, program execution state
and the current tool ID. Components such as the linear and
rotary axes will have data items such as axis load and position.
Data items can be sorted into three different categories: Sample,
Event and Condition [7]. Sample refers to values sent to the
agent and then read at a specific time. A sample data item could
refer to the load or the position on a certain axis. Event refers to
the state that the machine is sending to the agent. Finally, the
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condition data items refer to the machine’s ability to function.
Conditions can include variables such as emergency stop.
MTConnect follows a simple protocol of processing data
sent to the agent from the machine controller. The machine
controller, using what is called the adapter, sends the
MTConnect data to the agent using transmission control
protocol (TCP) [8]. The signal flow of MTConnect data from
the machine tool and to a user application is shown in Figure 2.

Device

M Adapter

Agent

L

Figure 2. MTConnect Signal Flow from Device to Application

Application

The adapter can be software implemented on a modern CNC, or
it can be a hardware adapter suitable for use on older machine
tools. The agent then reformats the data from the adapter based
on XML schema. The XML schema are typically stored in an
XSD file [4]. The agent then corresponds the schema with the
decices.xml file to output data. The Devices. XML file houses
the machine-specific data items [7]. As data are sent to the
agent over time, data items are matched to their corresponding
elements in the XML file. The adapter sends the data in the
following format: timestamp | (data item ID, Name or Source) |
data output [7]. Data not displayed in this format is not usable
by the agent and will report an error. On many modern CNC
machine tools, the adapter is pre-installed and capable of
sending machine data to an agent. A simple network connection
between the machine tool and the factory network will allow
users to make use of MTConnect data.

Related Work Using MTConnect

The concept of cyber-physical systems (CPS) in
manufacturing spans a number of interrelated fields, including
big data, networked manufacturing and cloud computing [9].
One of the key elements in a networked manufacturing system
is the connection of manufacturing equipment to other devices
on a factory’s network; this allows manufacturers to leverage
and communicate with their shop floors more easily. Modern
facilities are increasing connectivity throughout the factory
using various network strategies that can lead to higher
productivity [10], [11]. However, for effective networking
within the factory, manufacturing equipment must be capable of
communicating using a common protocol. MTConnect is
frequently the protocol of choice for machine tool applications,
as it is widespread and simple to use [12]. For these reasons,
MTConnect has been implemented in many applications
previously. Atluru and Deshpande performed a study on the

smart machine platform initiative (SMPI) test-bed with a GE-
Fanuc controller in order to data monitor the machine tool [13].
The MTConnect adapter on this controller was built in C++ and
would transfer machine data to the MTConnect agent in the
XML format. This study validated the use of MTConnect in a
shop floor environment. The data was gathered using a program
written using the Ruby on Rails platform and stored in a
SQLite3 database. The MTConnect data was then used in a
Java application in order to reduce volumetric error for machine
tool metrology. Franca, Torrisi and Bottene used MTConnect
data in order to collect machine tool probe results from an
inspection routine [14]. The MTConnect adapter for this study
was developed in C# in order to transfer machine data to the
agent. A Java program was developed to receive the XML data
from the agent using HTTP requests. The Java application
parsed the XML file to separate the desired information. In
contrast to these two local implementations, Edrington, et al
demonstrated a web-based monitoring system using MTConnect
[15]. The MTConnect agent used in this study was given
Internet access by assigning it a global static IP. The agent was
then monitored using the DMG Mori Seiki Messenger server.
The Messenger gathered the agent’s data, analyzed and stored
them in a database; additionally, ax XML file was produced and
hosted to enable users to monitor the data with any internet-
enabled device. The current work presents both local and cloud
implementations of MTConnect-based machine tool monitoring
systems that are capable of collecting data output from multiple
machines. These systems were developed using a variety of
tools to enable efficient data collection, storage and
visualization.

The current work presents both local and cloud
implementations of MTConnect-based machine tool monitoring
systems that are capable of collecting data output from multiple
machines. These systems were developed using a variety of
tools to enable efficient data collection, storage and
visualization. The data collected using these systems can be
used to monitor production status of machine tools historically
or in a dashboard format. The remainder of this paper is
organized as follows: first, a Microsoft Excel implementation of
a machine monitoring system is presented; next, a solution
relying on a MySQL database is discussed and analyzed; finally,
options for migration to a cloud solution are presented and
analyzed.

MICROSOFT EXCEL IMPLEMENTATION

Wescoat and Lynn demonstrated an interactive and rapidly-
deployable machine tool monitoring system that was built using
Microsoft Excel at the International Manufacturing Technology
Show 2016 [16]. This implementation organized data in a
dashboard format that would allow both managers and machine
operators to reliably check and save machine data. Additionally,
the dashboard would allow an operator to easily check all of the
machines under his or her management. Another reason for
creating a multiple machine dashboard is implementation for an
automated machine cell. As parts are run through the machine
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cell, operators cannot check parts without stopping the other
machines in the cell and losing production time. Utilizing a
dashboard populated by MTConnect data, operators can
effectively and efficiently check multiple machines.

The platform for the Operator Dashboard was Microsoft
Excel. Excel is a powerful tool that allows for both back-end
VBA code development and front-end analytics using cell
formulas. The first step in the creation of a machine database
and interactive website was the use of the front- and back-end
tools. Excel served as both the database of data and the front
panel that interacted with the machine operators, engineers and
managers. The machines’ MTConnect agents provided easily-
accessible data at a specific time interval using the VBA code
and query tables from Excel. Excel has a built in XML parser
that is able to process and map data to specific cells.

As an example of MTConnect data usage, utilization pie
charts were created by measuring the amount of time that a
given machine spent in different execution states. The execution
state defines whether the machine is stopped, in manual mode
or running full production. The dashboard displayed this pie
chart to track the percentage of a work shift that each machine
is in a specific state. The output of the dashboard is shown in

Machine Current Status

Program, Model, Tool

| | PROPELLER

OP10

] | Propeller

/s

l Recent Utilization

Remaining Time

Figure 3. Typical Output of Machine Performance Based on
MTConnect Data

Figure 3. Managers and operators can utilize this pie chart to
easily make sure that their machines are being optimized.

The Excel solution was both easily implementable and low
cost, as Excel is a common item in the workplace. The
dashboard can be uploaded and after going through the setup
process can run smoothly over the course of a work shift. The
data collected by the dashboard can also be sent to other
networked dashboards to be analyzed and stored separately.

MYSQL IMPLEMENTATION

Machine monitoring systems can also be implemented
using open-source tools that do not require access to Microsoft
Excel. An implementation of a Linux-based server as the
MTConnect client was created to demonstrate the usefulness of
these open-source tools in the manufacturing environment.
These tools can be used for the three crucial steps in a
successful machine monitoring application: data collection,
storage and visualization. A Python application was developed

that to send HTTP requests to the MTConnect agent and receive
the resulting XML data. The application will then parse the data
to the desired information and store them in a local MySQL
database. The web server also provides a secured read-only
remote access to the data stored in the database.

Data Collection

An MTConnect client application was developed in Python
to collect data from networked machine tools by sending HTTP
requests to the MTConnect agents of the machines. Python was
chosen as the platform with which to develop the application, as
it is a free and open-source software. Python has many
attractive qualities; for instance, it is both easy to read and
relatively simple to write thanks to the rich, well-designed built-
in libraries and the availability of many third-party open-source
libraries and modules.

Communication between the MTConnect client application
and the MTConnect agents was accomplished using the TCP/IP
protocol. As is standard practice with TCP/IP communication,
the client initiates a TCP/IP connection with the HTTP server
that it wishes to retrieve data from. In this case, the servers are
the MTConnect agents of the machine tools to be monitored.
The client sends /current commands to the agents to get up-to-
date XML pages containing real-time data. The HTTP requests
were performed using Python Requests, an HTTP library for
Python [17]. To address issues of cyber security, the
MTConnect client runs on a front-end Linux computer and
communicates with the CNC machines through a local Ethernet
network. Such system is inexpensive to implement, immune to
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to Database

Datacenter

| T e |
Subnetwork ‘ Subnetwork

‘ 192.168.12.0/24 130.207.32.0/24

Internet
Gateway

=
0| =
‘ =
‘ E | Firewall

|= MTConnect Client

MySQL server

Application

Figure 4. Network Architecture

external security threats and has low network latency. The
architecture of the local network that was designed and
implemented for this system is shown in Figure 4.

4 Copyright © 20xx by ASME



The MTConnect client is a multi-threaded application that
allows asynchronous data collection from multiple different
machines. The multithreaded application makes the data
collection from each machine independent from the other ones;
it is not necessary to wait for one machine to answer before
polling the data from the other machines; additionally, the

/*Create a n empty list of Threads
threads =[]
/*Create a list of machines IP addresses
ip_list =[IP]
/* Create a Thread for every IP address and execute the
function main_script(IP)
forip inip list:

threads[new thread(IP)]

Figure 5. Multithreaded Data Collection

multi-threaded application is resistant to incidents, such as
communication interruptions or machine shutdowns. The
pseudo-code describing the procedure for launching a thread for
each individual machine is shown in Figure 5.

In the case that the HTTP server of an agent doesn't
respond due to a shutdown, the thread tries to reestablish a
connection every second using the Python event scheduler [18].
This not only allows for the capture of connection errors, but
also data collection and storage resumes almost immediately
once the agent is back online. The design of this application
allows for near real-time knowledge of factory-floor machine
status data. The application is modular, as it is simple to adjust
as more machines need to be added. The addition of a new
machine to the system is as simple as connecting the machine to
the switch on the shop floor and adding its IP address to the list
of IP addresses to be monitored in the Python script.

Once the XML data has been received from the agent, the
Python application parses the XML into a form that is suitable
for storage in a database. Fortunately, Python does not suffer
from a scarcity in XML libraries. For this implementation, the
ElementTreeXML API was used to parse the XML file pass the
data along to a database. To gather data as quickly as possible,
each thread sends a new HTTP request to the MTConnect agent
it is monitoring immediately after completion of the previous
request and parse.

Results and Analysis of Data Collection

Time taken by the application to gather and parse the
MTConnect XML files can affect the performance of the
system, and must be analyzed to determine how quickly the
application can record new data. The time taken by each of the
main functions of the MTConnect client application was
measured for one thread to enable future optimization of the
application. Sequences of code that take relatively long amounts
of time to execute can be targeted first when attempting to
improve the performance of the code. Due to network
fluctuations and the fact that the data in the current XML file

returned by the agent are not static, the time taken in each step
of the data collection procedure has some variability. A total of
10 measurements were taken and the average and standard
deviation of those measurements are shown in the second
column of Table 1. The reported data show that getting the

Table 1. Performance of Data Collection Application

. . Percentage of
Function Average Time (s) Total Time (%)
HTTP GET 0.0042 £ 0.0002 0.47 £0.023
Parsing 0.0501 £ 0.0009 5.68 £0.102
Total 0.8818 £0.1601 —

current MTConnect XML file from the HTTP server is only
0.47% of the total execution time of the whole application. This
is expected, since the server and the client are close and part of
the same LAN. Parsing the XML file takes 5.68% of the total
time which is acceptable as parsing is considered among the
main functions done in order to collect the data and store it. The
rest of the time taken by the application is due to
communication with and insertion into the database.

Data Storage

MySQL Community Edition is a free and open-source
database with many advantages such as scalability, high
performance and data protection. A user that has all rights on
the database is able to create the tables and store the data. The
database tables were designed based on the fact that all of the
data shown on the MTConnect XML page were to be stored,
offering flexibility for later use. Moreover, the database must
allow retrieval of the data in an efficient way, regardless of the

data_id BIGINT PK
machine_id BIGINT FK
component_id BIGINT FK
entity_type VARCHAR
timestamp TIMESTAMP
type VARCHAR

type2 VARCHAR

subtype VARCHAR

+ name VARCHAR H—
entity_id BIGINT
sequence BIGINT
value VARCHAR

PRIMARY id

machine_id IBIGNT PK
creation_tine TIMESTAMP
name VARCHAR
uuid VARCHAR

[\

component_id BIGINT PK
name VARCHAR
PRIMARY id

PRIMARY id

Figure 6. Relational Database Structure
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number of the machines on the shop floor and the amount of
data already in the database.

A one-to-many relationship is one such that each row in a
table is linked to one or more rows in another table. There is a
one-to-many relationship between a machine and its
accompanying data; there is also a one-to-many relationship
between a component stream and the data it contains. As a
result, a relational database was created based on three tables: a
machines table, a component stream table and an entity table
that contains all the data. The one-to-many relationship allows
frequently used information to be saved only once in a table and
referenced many times in all other tables. The design of the
database is shown in Figure 6. More tables could have been
created to have a normalized database, but that would require
the frequent joining of different tables. Because the join method
is costly operation, denormalizing a part of the database helps
to expedite queries that require many table joins. MySQL
executes joins between tables using a nested-loop algorithm that
reads rows from the first table in a loop one at a time, passing
each row to a nested loop that processes the next table in the
join [19]. This process is repeated as many times as there
remain tables to be joined. Locating a record is quite a costly
operation which may take dozens of times as long as the pure
record scanning depending on the size of the table.

The main difficulties that were faced during the process of
storing data reside in the fact that some data formats are
different for different machines. For example, the timestamp of
one machine tool on the network had one more digit than
another machine tool, which necessitates processing of the
timestamp into the proper format for the MySQL database.
Furthermore, the MTConnect server sends the same data if it
receives a request while some of data have not changed.
Therefore, a method to avoid storing duplicated data is required
before inserting in the database.

Results and Analysis of Data Storage

Considering that the aim of a machine tool monitoring system is
to collect and store near real-time data as quickly as possible,
the speed of the application at every step is crucial. The main
functions related to the database on the MTConnect client are
INSERT queries, which store data into the database; SELECT
commands, which gather records from the database; and
COMMITs, which upgrade the database. Each of these

Table 1. Performance of Database

. . Percentage of
Function Average Time (s) Total Time (%)
INSERT 0.0304 £0.0414 3.45+4.704

Table Checks 0.0068 +0.0052 0.771 £ 0.590
COMMIT 0.7440 £0.0532 84.37 £ 6.033

operations was timed for this implementation, and the results of
ten trials are presented in Table 2. Since the machines and the

component_stream tables are small, the time taken to perform
the SELECT query is negligible.

The INSERT query is made after parsing a line of the
MTConnect XML data and stores the entire line into a row in
the database with each data item in the corresponding column.
The INSERT is then executed as many times as there are lines
of available data in the XML file. Since the database is local to
the data collection computer, the INSERT takes only 3.45% of
the total execution time. Before inserting the data in the
database, some checks are performed to ensure the relations
between the tables. The time taken to perform these checks is
shown in the second row of the table. The first check is the
comparison of the machine name in the XML file to the
machine names stored in the machines table. If the current
machine does not exist, a new row is created and the new
machine is stored automatically. The same process is done with
component streams. This offers flexibility when adding new
machines to monitor, as no operator involvement is needed to
create space for a new machine in the database. If either the
machine or component stream is already stored in the machine
or component stream tables, the machine id is retrieved and
kept in a local variable to be used as a foreign key when the
INSERT is executed.

The COMMIT statement ends a transaction with the
relational database and makes all changes visible to other users.
This is done in a series of operations. First, a new log record
describing the COMMIT to the log in RAM is added; next, all
log records that have not been written to the disk, including the
most recent record, are written to the disk; finally, the
COMMIT is completed once the operating system reports that
the disk write was successful. As multiple threads are inserting
data into the database simultaneously, it is necessary to
COMMIT after every INSERT. This process takes a significant
amount of the total time reported in the table.

Data Visualization

A front-end website that enables data visualization was
implemented to utilize the near real-time data in the MySQL
database. A website was chosen to allow for simple accessibility
and user-friendly interface. To allow visualization of machine
data by factory personnel, the website can display updated
graphs of various data items from the machines’ MTConnect
output. A Python program using the Flask API was used on the
web server to retrieve the data from the database. Remote
database access was needed to allow the Flask application to
retrieve the data from the database; the MySQL server allows
for remote access to a user that is given specific privileges on a
specific database. Thus, the webserver was set up as a read-only
user and given access to the database. Once the Flask

[{"machine id": 1, "creation time": "2016-09-08
16:39:35", "machine_name": "Mazak"}, {"machine id":
2, "creation_time": "2016-09-09 19:02:51",
"machine name": "OKUMA.Lathe"}]

Figure 7. Example of JSON Data from the Database
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application retrieved the required data from the database, they
were used to generate plots for use in the factory. The Data-
Driven Documents (D3.js) library was used for plotting the data
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Figure 8. Equipment

in the browser. In order to make the data suitable for use with
D3, the data were parsed into the JSON format before being
passed to the D3 JavaScript in templates. Figure 7 shows an
example of JSON data of the machines table.

Figure 8 shows the first page of the website, which displays
the list of equipment on the shop floor. The images of the
equipment are used as links to the page specific to the selected
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| Pogram |

Multus

Figure 9. Rolling Menus for each Machine

equipment. Figure 9 shows the rolling menus that display the
list of the programs that have run on the machine. Graphs of
various data items can be displayed by program, allowing for
analysis of the machining process throughout the run. An
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Figure 10. Spindle Speed Chart

example of a plot of the spindle speed data over time for a
given lathe program is shown in Figure 10.

System Optimization

Optimization of both execution time and storage efficiency
is crucial for near real-time applications. The MTConnect client
application was designed to run as fast as possible by avoiding
unnecessary operations. For instance, the connection to the
database is done only once for each thread, and maintained as
long as the application is running. Additionally, instead of
storing the entire MTConnect current page after every HTTP
request to the machine, only the available data items that have
changed since the last request are stored. In order to avoid
storing duplicate data, the two possible solutions were explored:
the first was to delete and replace old data if it exactly matched
data obtained by a newer /current request. The data were
considered to be unique if the follow three criteria were met: the
machine id matched the previous data set, the timestamp was
newer than the previous data set, and the sequence number was
different from the previous data set. Although this solution is
simpler to code and allows functionality with all data sets, it is
time consuming as its execution speed is dependent on the size
of the database. The second, and more efficient, solution was
avoiding MySQL queries and using a local dictionary that was
updated every time a data record was stored. To ensure data
integrity, a database commit was executed after every insert.
Although this procedure is time consuming, it ensures data
recovery is possible and guarantees that the available data are
actually correct. Committing was performed after inserting all
the data of a component stream, as it is more efficient than
committing after every row.

MIGRATION TO A CLOUD SOLUTION

Globalization is one of the common challenges of
manufacturing and has increased the need of cloud
manufacturing (CM) [9]. The benefits of CM include
decreasing the costs and increasing the scalability of a
manufacturing process by providing access to the resources
through the cloud [20]. Providing the data to any Internet-
connected devices anywhere in the world is one the main
advantages of the cloud concept. As a result, in order to access
the stored data, there is no need to connect to the local networks
and databases. Internet-enabled devices can access the data with
commonly used protocols, such as HTTP. Since MTConnect
uses standard XML and HTTP protocols, it is highly compatible
with web communications.

Providing a reliable database can be expensive and
challenging. Additionally, companies providing cloud services
usually update their systems frequently to provide the fastest
and most reliable services to their customers. Therefore, the use
of cloud services could eliminate the need of manufacturer to
purchase servers and manage their own database. Another
advantage of a cloud solution is cloud computing (CC), which
enables the construction of web apps that run scripts and
programs on the cloud. Using CC, some applications may not
need to have a separate computer for data analysis, as it could
be done on a cloud platform.
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Three different methods of publishing MTConnect data to
the cloud, specifically to Google Sheets, are described below. In
order to communicate with a Google Sheet, the creation of a
web app using Google Scripts is required. The data to be
published on a given spreadsheet can then be transmitted with a
HTTP request to the web app. Cloud solutions demonstrated
below are categorized based on whether the machine is
connected to the Internet or if it is only accessible using a local
network.

Method 1: Publishing Data from Machines Not Connected to
the Internet

In this method, a program running on a computer
connected to a local network sends HTTP requests to an

JSON Data

[/, /s -J
TT - m -

Internet-Connected Devices

XML

Machine Tool Local Computer

Figure 11. Publishing Data from Local Machines to Internet

MTConnect agent to receive the machine’s data in the XML
format. The data can be either parsed locally and then
transferred to the web app, or it can be sent to the web app and
then parsed in the cloud. The architecture for this solution is
shown in Figure 11. In order to send the whole data with the
HTTP request as a parameter, the received XML should be
converted to a HTTP compatible format such as JSON. The
web app will then be able to parse the JSON data and insert
them into a spreadsheet. Both historical and current data can be
retrieved from the spreadsheet by sending HTTP requests to the
web app which provides access to the data for all internet
connected devices.

Method 2: Uploading the MTConnect XML to a Host

Similar to the previous method, this method relies on a
computer connected to the local network. In this case, the
computer is used to execute a program that sends HTTP
requests to MTConnect agents and directly upload the returned
XML files to a web host. The architecture for this method is
shown in Figure 12. This configuration Internet-connected
devices to have direct access to the XML file generated by
MTConnect in a near real-time. As a result, the machine tools
are not connected to the Internet; however, Internet-connected

devices can collect the data by reading the XML file from the
host server. A web app, such as a Google Apps Script Web App,
can read the XML file from the host, parse the data, and publish
the information in a Google spreadsheet or to a cloud database.
In addition to getting the latest data from the XML file, both

Web Host
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Internet-Connected Devices
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Figure 12. Publishing MTConnect XML on a Host

current and historical data can be retrieved from the spreadsheet
by sending HTTP requests to the web app as was done in the
first method.

Method 3: Publishing Data from Internet-Connected Machines
In this method, the MTConnect agent has a public static IP.
Therefore, since the agent is connected to the internet, there is

Machien Tool

v I -

Internet-Connected Devices

Figure 13. Publishing Data from Internet-Connected Machines

no need for a separate computer to gather the data. Instead, a
web app such as a Google Apps Script can communicate
directly with the agent using HTTP requests, receive the XML
file, parse the received data, and store them in a cloud database.
The architecture for this method is shown in Figure 13. Similar
to the other two methods, the web app can also provide the
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Figure 14. Published Data on a Google Sheet

current status as well as historical data of the machine to the
other Internet-connected devices.

Performance Analysis of Cloud System

The first two methods discussed above were implemented
and studied to determine their performance in a shop floor
environment. A C# program was written that performed all
communication and parsing of the data. The program
communicated with the agent using HTTP requests and then
parsed and converted the received XML into JSON. Next, it
transferred the JSON string with a HTTP request to a web app
written in Google Scripts. The web app received the data,
parsed it and published it into a specified Google Sheet. A
screenshot of the published data to the Google Sheet is shown
in Figure 14. Timings for different tasks of this method for
inserting eight elements in Google Sheet are also shown in
Table 3. As discussed in the first method, part of the script of

Table 3. Experimental Results of Transmitting JSON to the Web App
and Parsing the Data in the Cloud

For the second method, a Linux computer with two
network cards was used. One card was connected to the local
machine shop’s network and the other was connected to the

Table 4. Experimental Results of Parsing the Data Locally and
Transmitting them to the Google Sheet

Percentage of

Task Average Time () | o\~ (%)
Parse XML 0.0010£0.0005 | 0.02610.0130
Elements

Serially Transmit
Elements to
Google Sheet

3.8320 £+ 0.2800 99.9739 + 7.305

Total 3.8330+0.2805 -

Percentage of

Task Time (5) Total Time (%)
Local Conversion
T e | 0.0002+0.0001 | 0.0075 +0.0019
Transmit JSONt0 | 5576 1 02400 | 19.8695 + 9.0488
Web App

Parse and Insert

into Spreadsheet 2.1251+0.3805

80.1229 + 14.3460

Total 2.6523 £ 0.6206 -

this web app was dedicated to transmitting the data as the HTTP
response. The data, therefore, could be retrieved by
communicating with the web app.

As discussed in the first method, the data could also be
parsed locally and then transferred to their corresponding cells
on the Google Sheet. The timing results of this experiment,
which parsed eight elements and published them one-by-one to
the Google Sheet are shown in Table 4. Comparing the total
time in Tables 3 and 4, it is apparent that parsing the data
locally and sending each element with an HTTP request to the
spreadsheet is less efficient; in this case, local parsing and serial
transmission requires approximately 144% more time than
transmitting the whole data set and parsing it in the cloud.

Internet. C# code was executed on the computer that sent HTTP
requests to MTConnect agents, received XML files and
uploaded them to a host using Secure File Transfer Protocol
(SFTP). This method had an approximate update speed of
2.1041 £ 0.1660 seconds over the course of eight trials. Using
this method, all Internet-connected devices can get access to the
original XML file on the host, even though the machine tool is
not directly connected to the Internet. Additionally, an Android
app was developed that displayed the MTConnect data that

% © m80% 5:58 PM
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AccumulatedTime 2590705.0
2016-11-15T22:56:53.114669Z x:TOTAL, yltime
EmergencyStop TRIGGERED
2016-11-15T22:57:21.8649287 null, estop
Warning ATC ARM DRIVER

MALF.
2016-11-15T22:45:16.267954Z null, logic
Warning SOFT LIMIT

2016-11-15T22:42:38.6485052 null, system

Device: Mazak

Availability AVAILABLE

2016-11-15T22:57:21.260355Z2 null, ava

AssetChanged UNAV,
Aie1  319:32.03.099551Z null, d1 1

Figure 15. Android App for Displaying MTConnect Data from a
Web Host

were collected using this method. A screenshot of the Android
app is shown in Figure 15.

DISCUSSION AND FUTURE WORK

There are advantages and disadvantages for both local and
cloud solutions. Either solution could be the best choice
depending on the type of application. One of the main
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advantages of storing the data locally is cybersecurity. Inserting
and retrieving data from a local database is not only faster than
a cloud solution, but it also does not introduce additional
security vulnerabilities that are introduced by an Internet
connection. Additionally, isolating the machines from external
devices and from the Internet is crucial. Many machine tools
run legacy operating systems and are left completely vulnerable
to modern cybersecurity threats. In the local database solution
presented in this work, the CNC machines were only exposed to
a small local network and thus were isolated from external
threats.

In the local implementation, the data management server
that ran the MTConnect client application and the database was
equipped with two network cards. This allowed the server to
communicate with the CNC machines’ subnetwork while also
communicating with the larger factory network to host the
visualization webpage. Another solution that isolates the CNC
machines from the factory network is to use a managed network
switch. A production-hardened hardware platform, the Mazak
SmartBox, has been installed on the factory floor and will be
the focus of future work in this area. The SmartBox, shown in
Figure 16, connects manufacturing equipment and allows data

Figure 16. Mazak SmartBox

collection safely by isolating the machines on independent
virtual local area networks (VLANS). It is also possible to
separate the machines on the shop floor by groups using
multiple different VLANS to limit possible attacks.

The SmartBox has a separate VLAN for an embedded
Linux kernel that operates as an MTConnect agent to collect
data from multiple machine adapters. This allows for the
MTConnect agents built into the machine tools to be shielded
from the outside network. This is an example of fog computing,
where computational power is decentralized and distributed
throughout a network. Fog computing is a promising concept
for the future of the Internet-of-Things (IoT) and big data. The
Linux core is accessible from the outside network to allow
devices to access manufacturing data, and only this core, not the

machine tools, will be affected in the case of a cybersecurity
breach.

While the local solution has distinct advantages over the
cloud solutions, implementation of a local solution necessitates
both the purchase and management of database hardware and
other servers. Additionally, remote access must be configured
for the users who are granted some privileges on the database.
Only computers inside the VPN can access the database and a
firewall is configured on the MySQL server to filter by IP
address. Easy access to the stored data from Internet-connected
devices outside the local network might be challenging or even
sometimes impossible, as not all devices are compatible with all
databases. The cloud solutions presented in this work are free to
use and provide an attractive alternative to the local solution.
Future studies will explore larger-scale cloud implementations
of MTConnect-based monitoring systems in order to further
explore their suitability in a manufacturing environment.

CONCLUSION

To address the need for a smart manufacturing shop floor,
MTConnect machine monitoring systems were developed and
presented in this paper. These systems were used to collect data
from multiple CNC machine tools and display those data on
user-friendly and accessible interfaces. Three distinct tools were
developed and described: a machine dashboard based on
Microsoft Excel dashboard; an MTConnect client application
written in Python that interfaced with a MySQL database and
custom website; and various cloud solution and an
accompanying Android application. Results from time studies
on the performance of these tools were presented, analyzed and
discussed. Solutions for optimization to improve the speed of
data collection were implemented and presented. Issues of
cybersecurity were addressed, and ideas for future work were
presented and analyzed for viability.
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