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ABSTRACT 
Computer-aided manufacturing (CAM) software allows for the 
generation of toolpaths for computer numerical control (CNC) 
machine tools and enables the creation of sophisticated parts that 
would not otherwise be possible with conventional manual 
machining methods. Voxel-based CAM is a recent approach to 
toolpath planning that enables creation of paths for parts that 
would be difficult to create with traditional CAM software. 
However, the use of voxel-based CAM necessitates the presence 
of powerful hardware (specifically, graphics processing units) in 
order to perform the necessary computations for creating 
toolpaths. The concepts of virtualization and desktop-as-a-
service offer a promising solution to this challenge, as they allow 
for many users to access computer hardware that is hosted on a 
single server. This work investigates the performance impact 
caused by multiple simultaneous users on voxel-based CAM 
deployed in a virtualized environment. The implementation of a 
Python application for multi-user simulation on the virtualized 
platform is described and timing results gathered from a 
sequence of simulations  are presented and analyzed as the 
number of users is varied. The results from these simulations 
demonstrate consistent operational times for a low number of 
simultaneous users before a period of high performance variation 
due to resource sharing. 

INTRODUCTION 
The use of computer-aided manufacturing (CAM) software to 
plan machining operations is essential for the generation of 

toolpaths for modern computer numerical control (CNC) 
machine tools. CAM software reduces the likelihood of 
manufacturing errors in parts that could be introduced by manual 
programming and enables more rapid planning and analysis of a 
machining operation. Traditional CAM software generates 
toolpaths using analytical methods, where the paths are 
represented by parametric curves that follow the three-
dimensional model of a part. This research employs voxel-based 
CAM, a promising alternative to traditional parametric software, 
which represents models as a collection of discrete cubes known 
as voxels. A voxelized part model is effectively a three 
dimensional array of voxels, where the presence or absence of 
material at a given voxel can be represented by a binary value. 
As a result, voxel models are capable of representing any 
geometry without needing to fit a curve to the model’s surfaces. 
Voxel-based CAM has a number of advantages over traditional 
parametric CAM: it is better able to represent complex, freeform 
surfaces that would be difficult to describe with analytical 
curves; it enables simpler collision checking between a cutting 
tool and a workpiece; and the calculation and simulation of 
material removal along a toolpath consists of a simple 
summation of removed voxels [1]. 
 Because the voxel model is a three dimensional array, the 
speed of CAM operations on the model can be accelerated using 
a parallel processing platform. Modern graphics processing units 
(GPUs) are purpose-built for parallel processing, and thus serve 
as an ideal platform for implementation of the algorithms 
necessary for voxel-based CAM [2]; NVIDIA GPUs with 
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compute unified device architecture (CUDA) are an example of 
such a platform. However, not all computing devices have a GPU 
installed, and the purchase of a standalone GPU-equipped 
workstation for each user of the CAM software can be 
prohibitively expensive. Desktop-as-a-service (DaaS) systems 
are an alternative to standalone workstations: using DaaS, 
virtualized desktop environments can be provided to multiple 
simultaneous users using only a single server machine. 
Virtualization of a server with a powerful GPU installed allows 
any user with an Internet connection access to the parallel 
processing platform. From the user’s perspective, the virtual 
desktop behaves like a physical machine; from the 
administrator’s perspective, however, one server can be used to 
economically provide multiple cloud-based virtual machines 
(VMs) to a group of remote users [3]. A hypervisor, such as 
Citrix XenServer, creates and administers instances of the VMs, 
dividing the host environment’s compute resources among the 
guest users. As a result, the powerful computer hardware 
required to efficiently run voxel-based CAM software can be 
made accessible to manufacturing engineers using only one 
GPU. 
 Previous work using NVIDIA’s Kepler GPU architecture 
has demonstrated the feasibility of performing voxel-based 
toolpath planning on GPU-equipped VMs; however, sharing of 
the compute resources on the server machine can be problematic 
and lead to decreased performance of the CAM software [4], [5]. 
The aim of this research is to develop an experimental protocol 
for the automatic performance analysis of voxel-based CAM on 
a cloud-hosted DaaS system equipped with a current-generation 
NVIDIA Maxwell GPU; specifically, the computation times of 
various toolpath planning operations on the DaaS system are 
measured as the number of simultaneous users on the machine is 
varied. Results of these measurements characterize the 
performance degradation caused by large numbers of 
simultaneous users. The resulting data can be used to properly 
design DaaS systems for voxel-based CAM deployment. The 
remainder of this paper is organized as follows: first, the toolpath 
planning algorithms used to benchmark the DaaS system are 
described; second, the methodology for automating performance 
analysis is presented; next, results from running a series of multi-
user trials on a laboratory DaaS system are shown and analyzed; 
and finally, directions for future work are discussed. 

VOXEL-BASED CAM 
This research leverages a software known as SculptPrint [6], 
which is a GPU-accelerated voxel-based CAM system for 5-axis 
toolpath planning. In SculptPrint, models are represented models 
using individual voxels; as pixels are small squares that comprise 
a two-dimensional image, voxels are small cubes that compose a 
complex three-dimensional model [7]–[9]. With models 
represented this way, the accuracy of highly complex shapes and 
surfaces is only dependent on individual voxel size. A cross-
section view of a three-dimensional voxel model is shown in 
Figure 1a, and an enlarged view of the voxelized surface 
representation is shown in Figure 1b. The dark squares are the 
voxels that comprise the surface, and the smooth line through the 

surface voxels represents the equivalent analytical representation 
of the surface. Upon completion of the toolpath planning 
operation, the voxel-based CAM system creates G-Code suitable 
for execution on a CNC machine tool. 
Volumetric Offsetting 
Surface offsetting is a critical operation in 5-axis toolpath 
planning that determines allowable cutting tool positions in 
Cartesian space for a given part geometry. An offset surface is 
defined as a surface created from a starting surface where all 
points of the offset surface lie at a constant distance from the 
starting surface along the normal direction of the starting surface. 
An offset volume is simply the volume that is enclosed by a 
surface offset generated from a part model. Offsetting a surface 
with a constant equal to the radius of a given tool, perhaps with 
an added cutting allowance, enables the generation of an offset 
volume that is usable for toolpath planning; in the case of voxel-
based CAM, the offset volume is generated following the 
algorithms presented in [10] and [8]. 
 The surface of the offset volume represents the collection of 
points where the spherical center of a ball-end cutting tool can 
reside without overcutting the target part geometry. In effect, a 
contact volume determines the maximum amount of material a 
given pass can remove without contacting the final end volume. 

 
a. 2D Cross-Section View of a 3D Voxel Model 

 
b. Enlarged View of Surface Voxels 

Figure 1. Voxelized Surface Representation 
 

   
a. Target Voxel 

Model 

b. Generated Offset 
Volume For Voxel 

Model 

c. Cross-Section 
View of Offset 

Volume 
Figure 2. Volumetric Offsetting for Toolpath Planning 
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Figure 2 demonstrates the use of an offset volume: Figure 2a 
shows an example voxel model, which represents the target part; 
Figure 2b shows the result of a volumetric offset by the radius of 
a certain cutting tool; and Figure 2c shows a cross-sectional view 
of the same voxel model where the spherical center of a ball-end 
tool is following the surface of the offset volume. In this case, 
the offset amount is equal to the radius of the cutting tool. Thus, 
the tool tip will tangentially touch the final part surface during 
machining. A toolpath can be created along the final offset 
surface by connecting adjacent voxel centers with straight lines; 
the resulting toolpath will therefore consist of many small linear 
movements known as steps. 
Accessibility Analysis 
In the case of 5-axis machining, the CAM software is responsible 
for determining axis commands that control both the position and 
orientation of a cutting tool. The five effective degrees of 
freedom of the cutting tool are shown in Figure 3. The cutting 

tool has three translational degrees of freedom (X, Y and Z) and 
two rotational degrees of freedom (θ and φ). A tool orientation 
must be assigned at the beginning and end of every step of 
toolpath created using the offset surface. Efficient tool 
orientation assignment will result in a toolpath where both rotary 
and translational axis accelerations change smoothly.  
 The rotary axis positions that define the tool orientation at 
every step of a voxel-based toolpath can be determined using the 
accessibility map algorithm developed and presented in [10], 
[11] and [12]. In SculptPrint, the accessibility map algorithm is 
used at each step to check every realizable tool orientation for 
collisions between the tool geometry, the workpiece, and the 
workholding assembly. The set of realizable tool orientations 
consists of the combinations of θ and φ that do not violate the 
physical axis limits of the machine. The creation of an 
accessibility map at every step of a toolpath results in a series of 
binary images, collectively referred to as access maps, that 
define accessible and inaccessible space for each step. 
Accessible space is the collection of tool orientations for a given 
step that do not result in a collision between the cutting tool 
assembly and the workpiece or workholding; in contrast, 
inaccessible space is the collection of orientations that do result 
in a collision. 

 A graphical explanation of the accessibility map algorithm 
is presented in Figure 4, where two distinct tool orientations are 
displayed for a complex part. The green dot representing a given 

tool’s θ and φ angle positions is located at different coordinates 
in the two images. Figures 4a and b show the resulting 
accessibility map for this step, where realizable θ and φ angles 
are plotted on the horizontal and vertical axes of the map, 
respectively. The current tool orientation is denoted by the green 
dot on the map. If the dot is located inside the white accessible 
space, as it is in Figure 4a, the tool orientation does not result in 
a collision; conversely, if the dot is located in the surrounding 
black inaccessible space, as it is in Figure 4b, the orientation 
results in a collision between the part and the tool. Once the maps 
for each step have been determined, an access path can be formed 
through accessible space. Figure 5 shows an example curve 
through accessible space on sequential accessible maps. The 

resulting access path defines the progression of tool orientation 
along the toolpath.  

The accessibility map implementation in SculptPrint grants 
the user control over the resolution of the maps by 
parameterizing the quantization interval of rotary axis position. 
For some toolpaths (such as those on a purely convex surface), 
low resolution maps may be sufficient; for more complex parts, 
such as the one shown in Figure 4, higher resolution maps are 
required to ensure the toolpath is collision free. Varying the 
resolution of the maps changed the orientation difference per 
pixel of the map; a smaller orientation change per pixel provides 
more precision within a map, indicating a higher resolution. Both 
volumetric offsetting and accessibility analysis are required 
operations for the generation of a toolpath from SculptPrint. 
Each operation is computationally expensive, and thus execution 

  

    
a. An Accessible Point b. An Inaccessible Point 

Figure 4. Accessibility Analysis 

 
Figure 5. Access Path Through Accessible Space 

 

 
Figure 3. Degrees of Freedom for a 5-axis Machine Tool (Tool not 

to Scale) 
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of these operations constitutes a large portion of overall toolpath 
generation time. 

GPU VIRTUALIZATION AND RESOURCE SHARING 
Virtualization and sharing of GPUs has shown promise as an 
effective way to provide access to a parallel processing platform 
to remote users through a DaaS strategy. Numerous researchers 
have already demonstrated that GPUs distributed through this 
strategy accelerate operation performance in a virtual 
environment. Vinaya, et al demonstrated that a Xen PCI-
passthrough virtualization configuration performed well, but 
required an entire dedicated GPU per VM [13]. Gupta, et al 
addressed this concern by developing a front-end virtualization 
solution, GViM, that allowed multiple VMs to draw on the power 
of a single GPU [14]. Xiao, et al corroborated this approach by 
demonstrating VOCL, a framework that supports shared GPUs 
between VMs [15]. The development of this approach suggests 
the possibility of offshoring scientific or engineering operations 
to a cloud-based server equipped with powerful hardware, 
bypassing the need for the user to have access to such hardware 
locally.  
Virtualization of Voxel-Based CAM 
Despite the stringent hardware power requirements necessary to 
perform toolpath planning with voxel models, successful 
deployment of the voxel-based CAM system on a DaaS platform 
for an educational environment has been demonstrated by Lynn, 
et al [16]–[18]. The educational deployment relied on the 
implementation of a GPU-accelerated DaaS system equipped 
with an NVIDIA GRID (Kepler) GPU developed in [4] and [5]. 
The system consisted of two Windows Server 2012 R2 machines 
constructed in Georgia Tech’s virtual laboratory (Vlab) and was 
successful in providing CAM access to ten simultaneous users. 
Windows Server 2012 R2 allows multiple users to share the same 
processor, memory, and GPUs on separate desktop sessions, 
through the use of Microsoft’s Remote Desktop Protocol (RDP) 
[19]. RDP adds a layer of abstraction between the user and the 
computer by distributing the computational power of the GPUs 
and other hardware on a physical machine across all users [20]. 
However, this distribution of resources among users results in a 
performance impact to any user operations performed on the VM 
[21]. 
 For the best user experience, the total operation times for 
voxel-based CAM should remain sufficiently low so as to not 
substantially impact performance. Even though the presence of 
more powerful server hardware accelerates CAM operation 
performance and offsets the impact that resource sharing causes, 
there still exists a quantifiable performance impact that varies 
based on the number simultaneous users. This work aims to 
characterize this impact using a DaaS system that is more 
powerful than the one implemented in previous works; the 
resulting performance analysis can be used to provide 
recommendations on the user load for a DaaS system for voxel-
based CAM.  

EXPERIMENTAL PROTOCOL 
The DaaS system developed for this work is a Dell R720 
containing two Intel Xeon E5-2680-v3 CPUs,  each of which has 

eight physical cores and runs on a 2.2 GHz clock. The system  
has 192GB of memory, four Intel X520 10GB network adapters, 
and one NVIDIA Tesla M60 (Maxwell) GPU. The hypervisor 
used in this system is Citrix XenServer 6.5 SP1. The VM used 
for performance evaluation was configured with Windows 
Server 2012 R2, two virtual CPUs (with four cores each) and 
direct passthrough of one of the GPUs on the M60 [22]. 

Three different voxel models of varying complexity were 
used to text both offsetting and accessibility analysis 
performance under varying user load. Figures 6a-6c show the 

three voxel models used in this work: from left to right, the 
models are referred to as the Wiggle, the Kong, and the Candle 
Holder. Numeric data on these models is shown in Table 1. The 

computation time for each operation on each model was 
measured for each number of simultaneous users to complete one 
trial; once the data for all users had been collected, the trial was 
repeated 5 times to give a range of measurements.  
Automation of Multi-User Analysis 
Assembling a large number of human users to simultaneously 
test VM performance is logistically difficult, so a Python 
application was developed to simulate a typical CAM session 
and automate the analysis procedure. The application 
implemented Python’s Multiprocessing module to instantiate a 
variable number of simultaneous SculptPrint processes, where 
each one represented an individual CAM user [23]. Once all the 
user processes were created, the application instructed them to 
run both offset volume creation and accessibility analysis on the 
three different voxel models. This simulates a “worst-case” 
scenario in a DaaS configuration, in which all users request the 
same operation at the same time. Algorithm 1 describes the 
procedure used to simulate the simultaneous users. After the user 
processes completed an operation on a part, the Python 
application calculated the total time spent to perform the CAM 
operation and stored it in an output array. 
 The Python application simulated a grouping containing a 
one to ten simultaneous users. Each of these groupings was 
designated a trial; the application ran numerous trials to ensure 
that detected trends were valid and all time data were averaged 

   
a. Wiggle b. Kong c. Candle Holder 

Figure 6. Voxel Models Used for Analysis 
 

Table 1. Surface Complexity Metrics for the Voxel Models Used 
for Analysis 

Model Number of 
Surface Voxels 

Number of 
Toolpath Steps 

Wiggle   
Kong   

Candle Holder   
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across the trials. Two correction factors, kOffsetting and kAccessibility 

Maps, were used to account for the three voxel models’ different 
levels of geometric complexity. The first correction factor, 
kOffsetting, was used to scale the offset time by the number of 
surface voxels in the model and is given by Equation 1, 

 
1

Boundary
Offsetting 3

V
k

s


 

   
 

 (1) 

where VBoundary is the summation of volume that is occupied by 
boundary voxels and s is the side length of a voxel; multiplying 
a given offset time by kOffsetting is therefore equivalent to dividing 
the time by the number of voxels on the surface of the model. As 
a result, the reported offset time is actually the offset time per 
surface voxel. The correction factor for accessibility maps, 
kAccessibility Maps, is given by Equation 2, 

 
 

1
StepAccessibilityMaps ik



   (2) 

where Stepi is a step along the toolpath used for accessibility 
analysis. Thus, multiplying access map computation time by 
kAccessibility Maps is equivalent to dividing the time by the total 
number of steps (where each step requires one map to be created) 
to yield computation time per accessibility map. The use of these 
correction factors enables direct comparison of time results 
across different models by normalizing results to a unit 
complexity.  
Multi-User Volumetric Offsetting Performance 
The first CAM operation simulated using the Python application 
was the creation of surface offsets. In this phase of the procedure, 
up to ten simultaneous users were simulated on the three sample 
parts, and each user generated a surface offset with a distance of 
3.175 mm. Figure 7 displays the aggregated results of the offset 
procedure for the three parts. Operation times were averaged 
across each user performing the operation and across the set of 

trials. Prior to normalization, the operation times varied 
significantly due to the different complexity of the parts; 
operational times for the Candle Holder were especially high, 
due to its irregular geometry creating an increased surface from 
which to offset.  The resulting data were then normalized using 
the kOffset correction factor. The general relation between the 
number of users and the operation times is linear, regardless of 
part. The error bars denoting one standard deviation widen with 
the increasing number of users, demonstrating increasing 
variation in operational times as the number of users increases.  

Variability in computation time can be have a large effect on 
user experience, as the responsiveness of the system will change 
depending on load. Figure 8 shows the computation time 

response for the offset simulation for the Wiggle part. In this 
figure, the times are not averaged across users or trials. The red 
highlighted area denotes the range of computation time, which 
increases in magnitude as the number of users increases. This 
suggests that, although all users are performing identical 
operations on the machine simultaneously, the performance 

Algorithm 1: Simulate Multiple Users 
 
Inputs: Number of consecutive users to simulate, numUsers, 
number of trials to run, numTrials, and CAM operation to 
perform, Operation 
Output: Array of data data holding operation times for each 
users across each trial 
 

1: foreach trial in numTrials do 

2:  Instantiate processes ← list of simultaneous 
processes of length numUsers  

3:  foreach process in processes do 

4: 
  Perform Operation in process 

simultaneously with each other process in 
processes 

5:   Measure and append total operation time 
for process to data 

6:  end 
7: end 
8: return data 

 

  
Figure 7. Normalized Offset Operation Times for Variable User 

Load 

 
Figure 8. Raw Offset Operation Times for Wiggle Part 
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experienced by some users will be different from that 
experienced by others. 
Multi-User Accessibility Map Performance 
The next operation tested was the creation of accessibility maps 
for a generic toolpath. Similar to the results of the offset 
operation, the data from the Candle Holder were significantly 
higher than for the other parts, due to its irregular geometry. 
Normalization of computation time was performed by 
multiplying the measured results by kAccessibility Maps from Equation 
2. Both low resolution (2 degree orientation change per map 
point) and high resolution (1 degree orientation change per map 
point) access maps were generated in separate instances of the 
experiment to determine the precise impact that map resolution 
had on operation times. Because the accessibility map resolution 
is a user-defined parameter, it is logical to quantify the 
performance of the VM at different map resolutions. 
 Figure 9 shows the results for the accessibility map 
generation experiment, where computation times were averaged 

across users and across trials. Several trends can be observed 
from these results: the normalized operation times for the higher 
resolution maps are larger than the times for the lower resolution 
maps by roughly a factor of eight, especially for a higher number 
of users, suggesting that access map computation time is not 
linearly proportional to the number of map points; the operation 
times are linearly increasing for user count less than or equal to 
the number of CPUs on the VM (user range 1-4); the operation 
times follow a generally increasing trend above four users, 
although they do so nonlinearly; and finally, for the majority of 
the simulated user range, the operation times increase. However, 
when the user count is high enough (above 8 simultaneous 
users), the average operation times can actually begin 
decreasing; this phenomenon is especially evident in the higher 
resolution maps. This behavior is caused by operating system 
(OS)-level scheduling of compute resources [24]; because the 
experiment only measures the elapsed time of the operation (and 
does not start the clock when the operation is requested), the 
results suggest that some users are forced to wait until others 

complete. This trend is especially apparent in Figure 10, which 
shows the results of sixteen simultaneous users performing the 

Wiggle low resolution accessibility map generation procedure. 
 Figure 11 shows the raw time results for the low-resolution 
access map simulation using the Candle Holder part. Similar to 
the raw results for the volumetric offset experiment, significant 
variation across the conducted trials can be observed. The access 

map operation was determined to be linear to the number of 
CPUs on the machine, and there is very little variation across 
users or trials within this range. 

DISCUSSION 
For a successful deployment voxel-based CAM on a DaaS 
system, performance must be considered to ensure user 
experience acceptable. Compared to the results from Lynn, et al, 
the operational times within this work are significantly lower [5]; 
this reflects the choice of the more powerful M60 Tesla GPU 
within this system configuration over the older GRID K1 card. 
Given that GPU compute capability is advancing at a rapid rate, 
operational times for voxel-based CAM will become more 

 
Figure 9. Normalized Accessibility Map Generation Times for 

Variable User Load 

 
Figure 10. Access Map Generation Times for Simulated Users 1-

16 on Wiggle Part 

 
Figure 11. Full Raw Data for the Access Maps Operation on 

Candle Holder 
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efficient as time progresses. For a low count of simulated users, 
the operational times for both offsetting and accessibility 
analysis follow a monotonically increasing linear trend with low 
variation. This promising result suggests that, if mass 
deployment is desired, the operator of the DaaS system should 
control user load to keep performance in the linear region for 
each operation to guarantee that each user will experience 
consistent and predicable performance when running CAM 
operations. As user count increases, however, variation in 
operation times rise for both offsetting and accessibility analysis. 
For a high enough user count, both the mean and range of the 
operational may be too unpredictable to provide acceptable user 
experience; for these user counts, variation across the separate 
trials is high, with some users in a trial performing the test 
operations in drastically less time than in other trials. Table 2 

demonstrates the mean, range, and standard deviation of 
normalized hi-res access map operational times for simultaneous 
users 1-10 using the Candle Holder part. Analysis of these results 
demonstrates that, as expected, average times increase as a 
greater number of users causes increased performance 
degradation. Of interest, however is that the standard deviation 
of operation time between users drastically increases as the 
number of simultaneous users increases. This produces 
undesirable inconsistencies in operation time caused by OS and 
hypervisor resource scheduling, and some users sharing the VM 
would see their operations require more time than other users. 
While the plots may show some user operations completing 
faster than others, in reality the total operation times always 
increase; the application only recorded the elapsed time between 
the beginning of the operation and its end, as opposed to 
recording the time at which the user requested the operation. 

From the access map Figures, it is apparent that there exists 
some number of simultaneous users past which significant 
resource scheduling occurs, as characterized by a nonlinear trend 
in operation time. If voxel-based CAM is to be deployed on a 
mass-user scale, the number of users should not exceed this 
critical number to ensure consistent performance. For the offset 
operation, the entire trend was linear, so the count of ten users 
was below this critical number. The offset procedure is heavily 
dependent on the GPU, whose driver is able to delegate tasks to 

be done in parallel; this difference in scheduling explains why 
the trend for the offset operation is linear [25]. For the access 
map operation, however, the trend was linear for only the first 
four users. The explanation for this lower number lies in the 
experimental setup for this procedure: the VM environment has 
four CPU cores available with which to run CAM operations; 
because the Python application used a Multiprocessing module 
to spawn the user processes, the application assigned one user 
process to each core [23]. Past that, scheduling commenced as 
multiple users were assigned to the same core, leading to 
nonlinearly increasing operational times. 

CONCLUSIONS 
This research presented experimental simulation of simultaneous 
users running voxel-based CAM software in a DaaS VM 
environment. An application used to automate the experimental 
procedure was developed and presented; the resulting time 
results for two important CAM operations were measured under 
variable user load; and the resulting data were plotted and 
analyzed to assess the performance impact that simultaneous 
user load has on overall operation performance. The modular 
automated analysis method developed in this work can be used 
to benchmark performance of other toolpath planning operations 
as virtualized CAM gains more prominence, and the results of 
this research can be used to guide designs of new DaaS systems 
for HPC-accelerated CAM delivery. 
 Future continuation of this work will focus on improving the 
DaaS system deployed at Georgia Tech to incorporate more 
powerful hardware, such as Pascal and Volta GPUs. 
Additionally, the number of physical CPU cores installed in the 
system will be increased to improve accessibility analysis 
performance and to determine if the linear range of operation can 
be extended.  While the experimental protocol described in this 
work simulated identical operations on the same parts, future 
protocols will involve different simultaneous operations on 
different parts. Other essential voxel-based CAM operations will 
be evaluated with the Python application to determine how their 
performance is affected by user load. Upon further data 
collection, models will be developed to enable the prediction of 
operation performance given a number of users and a part of 
given complexity. 
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