Proceedings of the 2018 Manufacturing Science and Engineering Conference

MSEC2018
June 18-22 2018, College Station, Texas, USA

MSEC2018-6322

AUTOMATED MULTI-USER ANALYSIS OF VIRTUALIZED VOXEL-BASED CAM ON
SHARED GPUS

Roby Lynn
George W. Woodruff School of Mechanical
Engineering
Georgia Institute of Technology
Atlanta, GA, USA

Didier Contis
College of Engineering
Georgia Institute of Technology
Atlanta, GA, USA

ABSTRACT

Computer-aided manufacturing (CAM) software allows for the
generation of toolpaths for computer numerical control (CNC)
machine tools and enables the creation of sophisticated parts that
would not otherwise be possible with conventional manual
machining methods. Voxel-based CAM is a recent approach to
toolpath planning that enables creation of paths for parts that
would be difficult to create with traditional CAM software.
However, the use of voxel-based CAM necessitates the presence
of powerful hardware (Specifically, graphics processing units) in
order to perform the necessary computations for creating
toolpaths. The concepts of virtualization and desktop-as-a-
service offer a promising solution to this challenge, as they allow
for many users to access computer hardware that is hosted on a
single server. This work investigates the performance impact
caused by multiple simultancous users on voxel-based CAM
deployed in a virtualized environment. The implementation of a
Python application for multi-user simulation on the virtualized
platform is described and timing results gathered from a
sequence of simulations are presented and analyzed as the
number of users is varied. The results from these simulations
demonstrate consistent operational times for a low number of
simultaneous users before a period of high performance variation
due to resource sharing.

INTRODUCTION
The use of computer-aided manufacturing (CAM) software to
plan machining operations is essential for the generation of

Tommy Tucker
Tucker Innovations, Inc
Waxhaw, NC, USA

Roberto Leo Medrano
George W. Woodruff School of Mechanical
Engineering
Georgia Institute of Technology
Atlanta, GA, USA

Thomas Kurfess
George W. Woodruff School of
Mechanical Engineering
Georgia Institute of Technology
Atlanta, GA, USA

toolpaths for modern computer numerical control (CNC)
machine tools. CAM software reduces the likelihood of
manufacturing errors in parts that could be introduced by manual
programming and enables more rapid planning and analysis of a
machining operation. Traditional CAM software generates
toolpaths using analytical methods, where the paths are
represented by parametric curves that follow the three-
dimensional model of a part. This research employs voxel-based
CAM, a promising alternative to traditional parametric software,
which represents models as a collection of discrete cubes known
as voxels. A voxelized part model is effectively a three
dimensional array of voxels, where the presence or absence of
material at a given voxel can be represented by a binary value.
As a result, voxel models are capable of representing any
geometry without needing to fit a curve to the model’s surfaces.
Voxel-based CAM has a number of advantages over traditional
parametric CAM: it is better able to represent complex, freeform
surfaces that would be difficult to describe with analytical
curves; it enables simpler collision checking between a cutting
tool and a workpiece; and the calculation and simulation of
material removal along a toolpath consists of a simple
summation of removed voxels [1].

Because the voxel model is a three dimensional array, the
speed of CAM operations on the model can be accelerated using
a parallel processing platform. Modern graphics processing units
(GPUs) are purpose-built for parallel processing, and thus serve
as an ideal platform for implementation of the algorithms
necessary for voxel-based CAM [2]; NVIDIA GPUs with

1 Copyright © 2018 by ASME

compute unified device architecture (CUDA) are an example of
such a platform. However, not all computing devices have a GPU
installed, and the purchase of a standalone GPU-equipped
workstation for each user of the CAM software can be
prohibitively expensive. Desktop-as-a-service (DaaS) systems
are an alternative to standalone workstations: using DaaS,
virtualized desktop environments can be provided to multiple
simultaneous users using only a single server machine.
Virtualization of a server with a powerful GPU installed allows
any user with an Internet connection access to the parallel
processing platform. From the user’s perspective, the virtual
desktop behaves like a physical machine; from the
administrator’s perspective, however, one server can be used to
economically provide multiple cloud-based virtual machines
(VMs) to a group of remote users [3]. A hypervisor, such as
Citrix XenServer, creates and administers instances of the VMs,
dividing the host environment’s compute resources among the
guest users. As a result, the powerful computer hardware
required to efficiently run voxel-based CAM software can be
made accessible to manufacturing engineers using only one
GPU.

Previous work using NVIDIA’s Kepler GPU architecture
has demonstrated the feasibility of performing voxel-based
toolpath planning on GPU-equipped VMs; however, sharing of
the compute resources on the server machine can be problematic
and lead to decreased performance of the CAM software [4], [5].
The aim of this research is to develop an experimental protocol
for the automatic performance analysis of voxel-based CAM on
a cloud-hosted DaaS system equipped with a current-generation
NVIDIA Maxwell GPU; specifically, the computation times of
various toolpath planning operations on the DaaS system are
measured as the number of simultaneous users on the machine is
varied. Results of these measurements characterize the
performance degradation caused by large numbers of
simultaneous users. The resulting data can be used to properly
design DaaS systems for voxel-based CAM deployment. The
remainder of this paper is organized as follows: first, the toolpath
planning algorithms used to benchmark the DaaS system are
described; second, the methodology for automating performance
analysis is presented; next, results from running a series of multi-
user trials on a laboratory DaaS system are shown and analyzed;
and finally, directions for future work are discussed.

VOXEL-BASED CAM

This research leverages a software known as SculptPrint [6],
which is a GPU-accelerated voxel-based CAM system for 5-axis
toolpath planning. In SculptPrint, models are represented models
using individual voxels; as pixels are small squares that comprise
a two-dimensional image, voxels are small cubes that compose a
complex three-dimensional model [7]-[9]. With models
represented this way, the accuracy of highly complex shapes and
surfaces is only dependent on individual voxel size. A cross-
section view of a three-dimensional voxel model is shown in
Figure la, and an enlarged view of the voxelized surface
representation is shown in Figure 1b. The dark squares are the
voxels that comprise the surface, and the smooth line through the

a. 2D Cross-Section View of a 3D Voxel Model

SURFACE

ORKPIECE

b. Enlarged View of Surface Voxels
Figure 1. Voxelized Surface Representation

surface voxels represents the equivalent analytical representation
of the surface.

Volumetric Offsetting

Surface offsetting is a critical operation in 5-axis toolpath
planning that determines allowable cutting tool positions in
Cartesian space for a given part geometry. An offset surface is
defined as a surface created from a starting surface where all
points of the offset surface lie A4 constant distance from the
starting surface along the normal direction of the starting surface.
An offset volume is simply the volume that is enclosed by a
surface offset generated from a part model. Offsetting a surface
with a constant equal to the radius of a given tool, perhaps with
an added cutting allowance, enables the generation of an offset
volume that is usable for toolpath planning; in the case of voxel-
based CAM, the offset volume is generated following the
algorithms presented in [10] and [8].

The surface of the offset volume represents the collection of
points where the spherical center of a ball-end cutting tool can
reside without overcutting the target part geometry. In effect, a
contact volume determines the maximum amount of material a
given pass can remove without contacting the final end volume.

c. Cross-Section
View of Offset
Model Volume
Figure 2. Volumetric Offsetting for Toolpath Planning

b. Genem Offset
Volume For Voxel

a. Target Voxel
Model

2 Copyright © 2018 by ASME

Figure 2 demonstrates the use of an offset volume: Figure 2a
shows an example voxel model, which represents the target part;
Figure 2b shows the result of a volumetric offset by the radius of
a certain cutting tool; and Figure 2¢ shows a cross-sectional view
of the same voxel model where the spherical center of a ball-end
tool is following the surface of the offset volume. In this case,
the offset amount is equal to the radius of the cutting tool. Thus,
the tool tip will ﬁ touch the final part surface during
machining. A toolpath can be created along the final offset
surface by connecting adjacent voxel centers with straight lines;
the resulting toolpath will therefore consist of many small linear
movements known as steps.

Accessibility Analysis

In the case of 5-axis machining, the CAM software is responsible
for determining axis commands that control both the position and
orientation of a cutting tool. The five effective degrees of
freedom of the cutting tool are shown in Figure 3. The cutting

-

Figure 3. Degrees of Freedom ior a 5-axis Machine Tool (-
)

tool has three translational degrees of freedom (X, Y and Z) and
two rotational degrees of freedom (6 and ¢). A tool orientation
must be assigned at the beginning and end of every step of
toolpath created using the offset surface. Efficient tool
orientation assignment will result in a toolpath where both rotary
and translational axis accelerations change smoothly.

The rotary axis positions that define the tool orientation at
every step of a voxel-based toolpath can be determined using the
accessibility map algorithm developed and presented in [10],
[11] and [12]. In SculptPrint, the accessibility map algorithm is
used at each step to check every realizable tool orientation for
collisions between the tool geometry, the workpiece, and the
workholding assembly. The set of realizable tool orientations
consists of the combinations of § and ¢ that do not violate the
physical axis limits of the machine. The creation of an
accessibility map at every step of a toolpath results in a series of
binary images, collectively referred to as access maps, that
define accessible and inaccessible space for each step.
Accessible space is the collection of tool orientations for a given
step that do not result in a collision between the cutting tool
assembly and the workpiece or workholding; in contrast,
inaccessible space is the collection of orientations that do result
in a collision.

A graphical explanation of the accessibility map algorithm
is presented in Figure 4, where two distinct tool orientations are
displayed for a complex part. The green dot representing a given

g

en
180

0 0
-90 ¢)

180 180
0 180 360 0 360

a. An Accessible Point b. An Inaccessible Point
Figure 4. Accessibility Analysis

tool’s @ and ¢ angle positions is located at different coordinates
in the two images. Figures 4a and b show the resulting
accessibility map for this step, where realizable 6 and ¢ angles
are plotted on the horizontal and vertical axes of the map,
respectively. The current tool orientation is denoted by the green
dot on the map. If the dot is located inside the white accessible
space, as it is in Figure 4a, the tool orientation does not result in
a collision; conversely, if the dot is located in the surrounding
black inaccessible space, as it is in Figure 4b, the orientation
results in a collision between the part and the tool. Once the maps
for each step have been determined, an access path can be formed
through accessible space. Figure 5 shows an example curve
through accessible space on sequential accessible maps. The

0o 1 2 3 4 5
0
¢

Figure 5. Access Path Through Accessible Space

resulting access path defines the progression of tool orientation
along the toolpath.

The accessibility map implementation in SculptPrint grants
the user control over the resolution of the maps by
parameterizing the quantization interval of rotary axis position.
For some toolpaths (such as those on a purely convex surface),
low resolution maps may be sufficient; for more complex parts,
such as the one shown in Figure 4, higher resolution maps are
required to ensure the toolpath is collision free. Varying the
resolution of the maps changed the orientation difference per
pixel of the map; a smaller orientation change per pixel provides
more precision within a map, indicating a higher resolution.

3 Copyright © 2018 by ASME

—

GPU VIRTUALIZATION AND RESOURCE SHARING
Virtualization and sharing of GPUs has shown promise as an
effective way to provide access to a parallel processing platform
to remote users through a DaaS strategy. Numerous researchers
have already demonstrated that GPUs distributed through this
strategy accelerate operation performance in a virtual
environment. Vinaya, et al demonstrated that a Xen PCI-
passthrough virtualization configuration performed well, but
required an entire dedicated GPU per VM [13]. Gupta, et al
addressed this concern by developing a front-end virtualization
solution, GViM, that allowed multiple VMs to draw on the power
of a single GPU [14]. Xiao, et al corroborated this approach by
demonstrating VOCL, a framework that supports shared GPUs
between VMs [15]. The development of this approach suggests
the possibility of offshoring scientific or engineering operations
to a cloud-based server equipped with powerful hardware,
bypassing the need for the user to have access to such hardware
locally.

Virtualization of Voxel-Based CAM

Despite the stringent hardware power requirements necessary to
perform toolpath planning with voxel models, successful
deployment of the voxel-based CAM system on a DaaS platform
for an educational environment has been demonstrated by Lynn,
et al [16]-[18]. The educational deployment relied on the
implementation of a GPU-accelerated DaaS system equipped
with an NVIDIA GRID (Kepler) GPU developed in [4] and [5].
The system consisted of two Windows Server 2012 R2 machines
constructed in Georgia Tech’s virtual laboratory (Vlab) and was
successful in providing CAM access to ten simultaneous users.
Windows Server 2012 R2 allows multiple users to share the same
processor, memory, and GPUs on separate desktop sessions,
through the use of Microsoft’s Remote Desktop Protocol (RDP)
[19]. RDP adds a layer of abstraction between the user and the
computer by distributing the computational power of the GPUs
and other hardware on a physical machine across all users [20].
However, this distribution of resources among users results in a
performance impact to any user operations performed on the VM
[21].

For the best user experience, the total operation times for
voxel-based CAM should remain sufficiently low so as to not
substantially impact performance. Even though the presence of
more powerful server hardware accelerates CAM operation
performance and offsets the impact that resource sharing causes,
there still exists a quantifiable performance impact that varies
based on the number simultaneous users. This work aims to
characterize this impact using a DaaS system that is more
powerful than the one implemented in previous works; the
resulting performance analysis can be used to provide
recommendations on the user load for a DaaS system for voxel-
based CAM.

EXPERIMENTAL PROTOCOL
The DaaS system developed for this work is a Dell R720
containing two Intel Xeon E5-2680-v3 CPUs, each of which has

eight physical cores and runs on a 2.2 GHz clock. The system
has 192GB of memory, four Intel X520 10GB network adapters,
and one NVIDIA Tesla M60 (Maxwell) GPU. The hypervisor
used in this system is Citrix XenServer 6.5 SP1. The VM used
for performance evaluation was configured with Windows
Server 2012 R2, two virtual CPUs (with four cores each) and
direct passthrough of one of the GPUs on the M60 [22].

Three different voxel models of varying complexity were
used to text both offsetting and accessibility analysis
performance under varying user load. Figures 6a-6¢ show the

a. Wiggle b. Kong c¢. Candle Holder
Figure 6. Voxel Models Used for Analysis

three voxel models used in this work: from left to right, the

models are referred to as the Wiggle, the Kong, and the Candle
Holder, NiHEHEIdAA GRHESE odeiSHSRHOWAT THBIEN. e

Table 1. Surface Complexity Metrics for the Voxel Models Used

for Analysis
Model Number of Number of
Surface Voxels Toolpath Steps
Wiggle
Kong
Candle Holder

computation time for each operation on each model was
measured for each number of simultaneous users to complete one
trial; once the data for all users had been collected, the trial was
repeated 5 times to give a range of measurements.

Automation of Multi-User Analysis

Assembling a large number of human users to simultaneously
test VM performance is logistically difficult, so a Python
application was developed to simulate a typical CAM session
and automate the analysis procedure. The application
implemented Python’s Multiprocessing module to instantiate a
variable number of simultaneous SculptPrint processes, where
each one represented an individual CAM user [23]. Once all the
user processes were created, the application instructed them to
run both offset volume creation and accessibility analysis on the
three different voxel models. This simulates a “worst-case”
scenario in a DaaS configuration, in which all users request the
same operation at the same time. Algorithm 1 describes the
procedure used to simulate the simultaneous users. After the user
processes completed an operation on a part, the Python
application calculated the total time spent to perform the CAM
operation and stored it in an output array.

The Python application simulated a grouping containing a
one to ten simultancous users. Each of these groupings was
designated a trial; the application ran numerous trials to ensure
that detected trends were valid and all time data were averaged

4 Copyright © 2018 by ASME

Algorithm 1: Simulate Multiple Users

Inputs: Number of consecutive users to simulate, numUsers,
number of trials to run, numTrials, and CAM operation to
perform, Operation

Output: Array of data data holding operation times for each
users across each trial

1: | foreach trial in numTrials do
2. Instantiate processes < list of simultaneous
) processes of length numUsers
3: foreach process in processes do
Perform Operation in process
4: simultaneously with each other process in
processes
5. Measure and append total operation time
) for process to data
6: end
7: | end
8: | return data

across the trials. Two correction factors, kofrsetting and Kaccessivility
Maps, Were used to account for the three voxel models’ different
levels of geometric complexity. The first correction factor,
kofrsetiing, Was used to scale the offset time by the number of
surface voxels in the model and is given by Equation 1,

V. -1
Bound.
kOffsetting = {%J (1)

where Vpoundary 1s the summation of volume that is occupied by
boundary voxels and s is the side length of a voxel; multiplying
a given offset time by Kofreting 1S therefore equivalent to dividing
the time by the number of voxels on the surface of the model. As
a result, the reported offset time is actually the offset time per
surface voxel. The correction factor for accessibility maps,
Kaccessibility Maps, 1S given by Equation 2,

k gecessivitityMaps = (z Step;)_l ()

where Step; is a step along the toolpath used for accessibility
analysis. Thus, multiplying access map computation time by
kaccessivility Maps 18 equivalent to dividing the time by the total
number of steps (where each step requires one map to be created)
to yield computation time per accessibility map. The use of these
correction factors enables direct comparison of time results
across different models by normalizing results to a unit
complexity.

Multi-User Volumetric Offsetting Performance

The first CAM operation simulated using the Python application
was the creation of surface offsets. In this phase of the procedure,
up to ten simultaneous users were simulated on the three sample
parts, and each user generated a surface offset with a distance of
3.175 mm. Figure 7 displays the aggregated results of the offset
procedure for the three parts. Operation times were averaged
across each user performing the operation and across the set of

x107

—§— Wiggle Contour

3.5 —4—Kong
—4— Candle Holder

Offset Time (s), per Surface Voxel
(381

0 2 4 6 8 10
Number of Users

Figure 7. Normalized Offset Operation Times for Variable User
Load

trials. Prior to normalization, the operation times varied
significantly due to the different complexity of the parts;
operational times for the Candle Holder were especially high,
due to its irregular geometry creating an increased surface from
which to offset. The resulting data were then normalized using
the kot correction factor. The general relation between the
number of users and the operation times is linear, regardless of
part. The error bars denoting one standard deviation widen with
the increasing number of users, demonstrating increasing
variation in operational times as the number of users increases.
Variability in computation time can be have a large effect on
user experience, as the responsiveness of the system will change
depending on load. Figure 8 shows the computation time

5

4 X 10™
5 1st Trial =
35 2nd Trial g
_ o 3rd Trial g 8
2 o 4th Trial H g
2 4 5th Trial g g
o E g
2
£2.5 g <)
2 i
22 g g ° i
= & o
= g o 8
215} 4 8 g ! 3
= E ; E B 8 & o
&1 E g 8 y
0.5 :
0 i i i i ‘ : ‘ ‘
1 2 3 4 5 6 7 8 9 10

Number of Users

Figure 8. Raw Offset Operation Times for Wiggle Part

response for the offset simulation for the Wiggle part. In this
figure, the times are not averaged across users or trials. The red
highlighted area denotes the range of computation time, which
increases in magnitude as the number of users increases. This
suggests that, although all users are performing identical
operations on the machine simultaneously, the performance

5 Copyright © 2018 by ASME

experienced by some users will be different from that
experienced by others.

Multi-User Accessibility Map Performance
The next operation tested was the creation of accessibility maps
for a generic toolpath. Similar to the results of the offset
operation, the data from the Candle Holder were significantly
higher than for the other parts, due to its irregular geometry.
Normalization of computation time was performed by
multiplying the measured results by kaccessibility Maps from Equation
2. Both low resolution (2 degree orientation change per map
point) and high resolution (1 degree orientation change per map
point) access maps were generated in separate instances of the
experiment to determine the precise impact that map resolution
had on operation times. Because the accessibility map resolution
is a user-defined parameter, it is logical to quantify the
performance of the VM at different map resolutions.

Figure 9 shows the results for the accessibility map
generation experiment, where computation times were averaged

0.09 1
= | —4—Candle Holder, Low Res
S 008 - § - Candle Holder, Hi Res }
5 —$-Kong, Low Res ,f\ 3
i0.07 -‘-}-Kong, Hi Res ,,”, h_‘:-i*r’\
Lo |- Wiggle Contour, Low Res e ‘3/ ~§
£.0.06 1 -§-Wiggle C Hi R Foot ha,
=3 ‘ iggle Contour, Hi Res AT 5
=
*:J)O'OS
£
€ 0.04
QL
=
&0.03
30.02|
0
20.01¢
i: -

8=

5 6 7 8 9 10
Number of Users
Figure 9. Normalized Accessibility Map Generation Times for
Variable User Load

across users and across trials. Several trends can be observed
from these results: the normalized operation times for the higher
resolution maps are larger than the times for the lower resolution
maps by roughly a factor of eight, especially for a higher number
of users, suggesting that access map computation time is not
linearly proportional to the number of map points; the operation
times are linearly increasing for user count less than or equal to
the number of CPUs on the VM (user range 1-4); the operation
times follow a generally increasing trend above four users,
although they do so nonlinearly; and finally, for the majority of
the simulated user range, the operation times increase. However,
when the user count is high enough (above 8 simultaneous
users), the average operation times can actually begin
decreasing; this phenomenon is especially evident in the higher
resolution maps. This behavior is caused by operating system
(OS)-level scheduling of compute resources [24]; because the
experiment only measures the elapsed time of the operation (and
does not start the clock when the operation is requested), the
results suggest that some users are forced to wait until others

o
L¥S]
=

complete. This trend is especially apparent in Figure 10, which
shows the results of sixteen simultaneous users performing the

0.02

), Per Map

20.015
w

o
=)

0.005

(=]
Py

Time Spent Generating Map

2 4 6 8 10 12 14 16
Number of Users

Figure 10. Access Map Generation Times for Simulated Users 1-

16 on Wiggle Part

Wiggle low resolution accessibility map generation procedure.
Figure 11 shows the raw time results for the low-resolution
access map simulation using the Candle Holder part. Similar to
the raw results for the volumetric offset experiment, significant
variation across the conducted trials can be observed. The access

0.03

w

> st Trial | 1
& 2nd Trial o E
% 0.025 > 3rd Trial § § 5
5 > 4th Trial - 3 8
= Sth Trial]
) T H g :
g : SHEEY
=
2 B
on
£0.015 s
E e 8
§ H o]
S
9 0.0l s
2 o
2 o
)
£ 0.005 g s
i\: -]
]
0 -) 9 |
1 2 3 4 5 6 g 8 9 1(

Number of Users
Figure 11. Full Raw Data for the Access Maps Operation on
Candle Holder

map operation was determined to be linear to the number of
CPUs on the machine, and there is very little variation across
users or trials within this range.

DISCUSSION

For a successful deployment voxel-based CAM on a DaaS
system, performance must be considered to ensure user
experience acceptable. Compared to the results from Lynn, et al,
the operational times within this work are significantly lower [5];
this reflects the choice of the more powerful M60 Tesla GPU
within this system configuration over the older GRID K1 card.
Given that GPU compute capability is advancing at a rapid rate,
operational times for voxel-based CAM will become more

6 Copyright © 2018 by ASME

efficient as time progresses. For a low count of simulated users,
the operational times for both offsetting and accessibility
analysis follow a monotonically increasing linear trend with low
variation. This promising result suggests that, if mass
deployment is desired, the operator of the DaaS system should
control user load to keep performance in the linear region for
each operation to guarantee that each user will experience
consistent and predicable performance when running CAM
operations. As user count increases, however, variation in
operation times rise for both offsetting and accessibility analysis.
For a high enough user count, both the mean and range of the
operational may be too unpredictable to provide acceptable user
experience; for these user counts, variation across the separate
trials is high, with some users in a trial performing the test
operations in drastically less time than in other trials. Table 2

Table 2. Mean, Range and Sample Variance of Hi-Res Access Map
Operational Times Across Simulated Users, Candle Holder Part

oer 4 (s) Range (s) 5 (s)

1 4.7425E-4

2 9.3083E-4 2.8043E-7 1.9829E-7
3 1.3482E-3 1.8297E-5 9.6723E-6
4 1.6371E-3 8.9140E-6 3.9167E-6
5 1.9667E-2 1.4547E-4 6.4709E-5
6 1.1897E-2 1.0326E-3 4 9881E-4
7 7.0359E-2 4.4056E-3 1.4983E-3
8 8.8680E-2 1.1019E-3 3.0229E-4
9 7.7385E-2 3.0085E-3 9.1130E-4
10 6.9266E-2 3.7155E-3 1.1652E-3

demonstrates the mean, range, and standard deviation of
normalized hi-res access map operational times for simultaneous
users 1-10 using the Candle Holder part. Analysis of these results
demonstrates that, as expected, average times increase as a
greater number of users causes increased performance
degradation. Of interest, however is that the standard deviation
of operation time between users drastically increases as the
number of simultaneous users increases. This produces
undesirable inconsistencies in operation time caused by OS and
hypervisor resource scheduling, and some users sharing the VM
would see their operations require more time than other users.
While the plots may show some user operations completing
faster than others, in reality the total operation times always
increase; the application only recorded the elapsed time between
the beginning of the operation and its end, as opposed to
recording the time at which the user requested the operation.
From the access map Figures, it is apparent that there exists
some number of simultaneous users past which significant
resource scheduling occurs, as characterized by a nonlinear trend
in operation time. If voxel-based CAM is to be deployed on a
mass-user scale, the number of users should not exceed this
critical number to ensure consistent performance. For the offset
operation, the entire trend was linear, so the count of ten users
was below this critical number. The offset procedure is heavily
dependent on the GPU, whose driver is able to delegate tasks to

be done in parallel; this difference in scheduling explains why
the trend for the offset operation is linear [25]. For the access
map operation, however, the trend was linear for only the first
four users. The explanation for this lower number lies in the
experimental setup for this procedure: the VM environment has
four CPU cores available with which to run CAM operations;
because the Python application used a Multiprocessing module
to spawn the user processes, the application assigned one user
process to each core [23]. Past that, scheduling commenced as
multiple users were assigned to the same core, leading to
nonlinearly increasing operational times.

CONCLUSIONS

This research presented experimental simulation of simultaneous
users running voxel-based CAM software in a DaaS VM
environment. An application used to automate the experimental
procedure was developed and presented; the resulting time
results for two important CAM operations were measured under
variable user load; and the resulting data were plotted and
analyzed to assess the performance impact that simultaneous
user load has on overall operation performance. The modular
automated analysis method developed in this work can be used
to benchmark performance of other toolpath planning operations
as virtualized CAM gains more prominence, and the results of
this research can be used to guide designs of new DaaS systems
for HPC-accelerated CAM delivery.

Future continuation of this work will focus on improving the
DaaS system deployed at Georgia Tech to incorporate more
powerful hardware, such as Pascal and Volta GPUs.
Additionally, the number of physical CPU cores installed in the
system will be increased to improve accessibility analysis
performance and to determine if the linear range of operation can
be extended. While the experimental protocol described in this
work simulated identical operations on the same parts, future
protocols will involve different simultaneous operations on
different parts. Other essential voxel-based CAM operations will
be evaluated with the Python application to determine how their
performance is affected by user load. Upon further data
collection, models will be developed to enable the prediction of
operation performance given a number of users and a part of
given complexity.

ACKNOWLEDGMENTS
This work was supported by NSF grants [IP-1631803, CMMI-
1646013 and DGE-1650044.

REFERENCES

[1] D. Jang, K. Kim, and J. Jung, “Voxel-Based Virtual Multi-
Axis Machining,” The International Journal of
Advanced Manufacturing Technology, vol. 16, no. 10,
pp- 709-713, 2000.

[2] M. M. Hossain, T. M. Tucker, T. R. Kurfess, and R. W.
Vuduc, “A GPU-parallel construction of volumetric
tree,” Proceedings of the 5th Workshop on Irregular
Applications: Architectures and Algorithms. ACM,
Austin, Texas, pp. 1-4, 2015.

[3] M. Gottschlag, M. Hillenbrand, J. Kehne, J. Stoess, and F.

7 Copyright © 2018 by ASME

Bellosa, “LoGV: Low-Overhead GPGPU
Virtualization,” in 2013 I[EEE 10th International
Conference on High Performance Computing and
Communications & 2013 IEEE International
Conference on Embedded and Ubiquitous Computing
(HPCC EUC), 2013, pp. 1721-1726.

[4] R. Lynn, D. Contis, M. Hossain, N. Huang, T. Tucker, and
T. Kurfess, “Extending Access to HPC
Manufacturability =~ Feedback Software through
Hardware-Accelerated Virtualized Workstations,” in
International Symposium on Flexible Automation (ISFA
2016), 2016.

[5] R.Lynn,D. Contis, M. M. Hossain, N. Huang, T. M. Tucker,
and T. R. Kurfess, “Voxel Model Surface Offsetting for
Computer-Aided Manufacturing using Virtualized High-
Performance Computing,” Journal Of Manufacturing
Systems, vol. 43, pp. 296-304, 2016.

[6] Tucker Innovations Inc, “SculptPrint - The Subtractive 3D
Printing Application.” www.sculptprint3d.com.

[7] M. M. Hossain, T. M. Tucker, T. R. Kurfess, and R. W.
Vuduc, “Hybrid Dynamic Trees for Extreme-Resolution
3D Sparse Data Modeling,” in 2016 IEEE 30th
International Parallel and Distributed Processing
Symposium, IPDPS 2016, 2016, pp. 132—-141.

[8] D. Konobrytskyi, M. M. Hossain, T. M. Tucker, J. A.
Tarbutton, and T. R. Kurfess, “5-Axis Tool Path Planning
Based On Highly Parallel Discrete Volumetric Geometry
Representation: Part I Contact Point Generation,”
Computer-Aided Design and Applications, pp. 1-14,
2017.

[9] J. A. Tarbutton, T. R. Kurfess, T. Tucker, and D.
Konobrytskyi, “Gouge-free Voxel-Based Machining for
Parallel Processors,” The International Journal of
Advanced Manufacturing Technology, vol. 69, no. 9, pp.
1941-1953, 2013.

[10]R. Lynn, M. Dinar, N. Huang, J. Yu, J. Collins, C. Greer, T.
Tucker, and T. Kurfess, “Direct Digital Subtractive
Manufacturing of Functional Assemblies Using Voxel-
Based Models (in Press),” ASME Journal of
Manufacturing Science and Engineering, 2017.

[11]D. Konobrytskyi, “Automated CNC Tool Path Planning and
Machining Simulation on Highly Parallel Computing
Architectures,” Clemson University, 2013.

[12]N. Wang and K. Tang, “Five-axis tool path generation for a
flat-end tool based on iso-conic partitioning,” Computer-
Aided Design, vol. 40, no. 12, pp. 1067-1079, 2008.

[13]M. S. Vinaya, N. Vydyanathan, and M. Gajjar, “An
evaluation of CUDA-enabled virtualization solutions,”
in 2012 2nd IEEFE International Conference on Parallel,
Distributed and Grid Computing, 2012, pp. 621-626.

[14]V. Gupta, A. Gavrilovska, K. Schwan, H. Kharche, N. Tolia,
V. Talwar, and P. Ranganathan, “GViM: GPU-
accelerated virtual machines,” Proceedings of the 3rd
ACM Workshop on System-level Virtualization for High
Performance Computing. ACM, Nuremburg, Germany,

pp. 17-24, 2009.

[15]S. Xiao, P. Balaji, Q. Zhu, R. Thakur, S. Coghlan, H. Lin, G.
Wen, J. Hong, and W.-C. Feng, “VOCL: An Optimized
Environment for Transparent Virtualization of Graphics
Processing Units.”

[16]R. Lynn, K. W. Jablokow, N. Reddy, C. Saldana, T. Tucker,
T. W. Simpson, T. Kurfess, and C. Williams, “Using
Rapid Manufacturability Analysis Tools to Enhance
Design-for-Manufacturing Training in Engineering
Education,” in ASME 2016 International Design
Engineering Technical Conferences & Computers and
Information in Engineering Conference (IDETC/CIE
2016),2016.

[17]1R. Lynn, C. Saldana, T. Kurfess, S. N. R. Kantareddy, T.
Simpson, K. Jablokow, T. Tucker, S. Tedia, and C.
Williams, “Toward Rapid Manufacturability Analysis
Tools for Engineering Design Education,” Procedia
Manufacturing, vol. 5, no. 44th SME North American
Manufacturing Research Conference (NAMRC 44), pp.
1183-1196, 2016.

[18]R. Lynn, K. Jablokow, C. Saldana, T. Tucker, and T. Kurfess,
“Enhancing Undergraduate = Understanding of
Subtractive =~ Manufacturing through Virtualized
Simulation of CNC Machining,” in 2017 ASEE Annual
Conference and Exposition, 2017.

[19]J. Kouril and P. Lambertova, “Performance analysis and
comparison of virtualization protocols , RDP and
PColP,” in ICCOMP’10 Proceedings of the 14th WSEAS
international conference on Computers. part of the 14th
WSEAS CSCC multiconference, 2010, vol. 11, pp. 782—
787.

[20]J. Li, Q. Wang, D. Jayasinghe, J. Park, T. Zhu, and C. Pu,
“Performance overhead among three hypervisors: An
experimental study using hadoop benchmarks,” in
Proceedings - 2013 IEEE International Congress on Big
Data, BigData 2013, 2013, pp. 9-16.

[211“GPU Acceleration for Windows Server OS,” Citrix
Product Documentation, 2017.

[22]1“NVIDIA and Citrix: Graphics-Accelerated Virtual
Desktops and Applications.” NVIDIA Whitepaper,
2014.

[23]“Python Multiprocessing Module,” Python Software
Foundation, 2017. .

[24]A. Gupta, A. Tucker, and S. Urushibara, “The Impact of
Operating System Scheduling Policies and
Synchronization Methods on the Performance of Parallel
Applications,” Proceedings of SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, vol. 19, no. 1, pp. 120-132, 1991.

[25]P. Micikevicius, “Performance Optimization: Programming
Guidelines and GPU Architecture Reasons Behind
Them,” in NVIDIA GPU Technology Conference (GTC),
2013.

8 Copyright © 2018 by ASME

