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Abstract

We show that the conservation laws for the geodesic equation which are associated
to affine symmetries can be obtained from symmetries of the Lagrangian for affinely
parametrized geodesics according to Noether’s theorem, in contrast to claims found
in the literature. In particular, using Aminova’s classification of affine motions of
Lorentzian manifolds, we show in detail how affine motions define generalized symme-
tries of the geodesic Lagrangian. We compute all infinitesimal proper affine symmetries
and the corresponding geodesic conservation laws for all homogeneous solutions to the
FEinstein field equations in four spacetime dimensions with each of the following energy-
momentum contents: vacuum, cosmological constant, perfect fluid, pure radiation, and
homogeneous electromagnetic fields.

1 Introduction

Homotheties of a metric define point symmetries of the Lagrangian for geodesics and
define conservation laws for the geodesic equation via Noether’s theorem [1], [2], [3], [4],
[5]. In most cases the analytic tractability of a system of geodesic equations depends
upon the existence of such conservation laws, or perhaps conservation laws associated
with other geometric structures, e.g., Killing tensors. Affine symmetries are diffeomor-
phisms of a spacetime which preserve the affine connection (see, e.g., [6]). These include
homotheties (and isometries) as a special case, but the group of affine transformations
may include non-homothetic transformations. Affine symmetries which are not homo-
theties are called proper affine symmetries. Affine symmetries act as a transformation
group on the space of solutions of the affinely parametrized geodesic equation [1], [3].
For this reason they are often called affine collineations.

It has been known for some time that there are two conservation laws for the
geodesic equation which are associated to each 1-parameter group of proper affine
symmetries [2], [7]. This may be surprising since proper affine symmetries do not
define point transformations which preserve the geodesic Lagrangian. Indeed these
conservation laws have been characterized as “non-Noetherian” in [7], [8]. To some
extent, the existence of these conservation laws has been understood in the context



of modifications of the Lagrangian formalism such as found in [4] and in [7]. As we
shall show here, one can directly apply Noether’s theorem to the standard Lagrangian
for affinely parametrized geoedesics to obtain the two conservation laws associated to
proper affine symmetries. To do this we use the fact that to account for all conserva-
tion laws of a system of Euler-Lagrange equation one must account for all generalized
symmetries of the Lagrangian [9], [3], [4].! Generalized symmetries need not act as
point transformations, but instead act as infinitesimal transformations on the infinite
jet space of the dependent variables. These symmetries were introduced by Noether
[10]; they generalize point symmetries and contact symmetries. We shall show that
associated to each proper affine motion there are two generalized symmetries of the
geodesic Lagrangian. Noether’s theorem yields the corresponding conservation laws.
Using Aminova’s classification of affine symmetries [11] we explain in some detail how
the infinitesimal transformations associated to affine symmetries manage to define gen-
eralized symmetries of the geodesic Lagrangian. The derivation of the geodesic conser-
vation laws for affine symmetries from Noether’s theorem is the principal result of our
paper.

A number of papers have found affine symmetries for various solutions of the Ein-
stein equations, e.g., [12], [13], [14], [8]. Hall and da Costa [16] have given a classifi-
cation (based upon holonomy groups) of possible affine symmetries which can occur
in four-dimensional spacetimes. The possibilities for electrovacua in four dimensions
have been examined in [18]. As a modest contribution to this body of work and as
an illustration of our results, we calculate all continuous proper affine symmetries and
corresponding conservation laws for all homogeneous solutions to the Einstein-matter
field equations in four dimensions for each of the following energy-momentum con-
tents: vacuum, cosmological constant, perfect fluid, pure radiation, and homogeneous
electromagnetic field. To our knowledge the proper affine symmetries have not been
exhaustively enumerated for all such solutions.

In §2 we will review the fundamentals of affine symmetry and briefly review the
results of Aminova’s classification of continuous affine symmetries of Lorentzian man-
ifolds in any dimension. In §3 we summarize the results we will need from the theory
of generalized symmetries and conservation laws in the context of ordinary differen-
tial equations. We then show how affine symmetries define generalized symmetries of
the geodesic Lagrangian. We apply Noether’s theorem to obtain the corresponding
conservation laws. Finally, in §4 we enumerate all homogeneous solutions of the Ein-
stein equations (in four spacetime dimensions and with the matter content as listed
above) along with all their infinitesimal proper affine symmetries and corresponding
conservation laws.

'See reference [9] for a comprehensive exposition of generalized symmetries and Noether’s theorem,
applicable to PDEs and ODEs. See reference [3], [4] for a geometric exposition of the theory of symme-
tries and conservation laws tailored to second order ODEs with applications to projective symmetries and
conservation laws of the geodesic equation as well as to conservation laws associated to Killing tensors.



2 Affine Symmetry

In this section we review the fundamentals of affine symmetry transformations, with an
eye on the applications to the geodesic equation and solutions to the Einstein equations
given in the following sections.
Let (M,g) be a pseudo-Riemannian manifold. The metric uniquely determines
a torsion-free affine connection V from the condition Vg = 0. A diffeomorphism
¢: M — M is an affine symmetry if it preserves this connection, that is, for any tensor
field T
6" (VT) =V (¢T). (2.1)

It is easy to check that homotheties (¢*g = cg, ¢ = const.) are affine symmetries.
Affine symmetries which are not homotheties will be called proper affine symmetries.
The existence of a proper affine symmetry implies the vector space of parallel symmetric
(g) tensor fields has dimension greater than one since h = ¢*g is parallel:

Vh = V(¢"g) = 6" (Vg) = 0. (2.2)

A l-parameter group ¢, of diffeomorphisms is an affine motion if it preserves the
connection for each value of the parameter A. In this case the definition (2.1) can be
replaced with an infinitesimal condition involving the Lie derivative along the affine
vector field Y on M generating the 1-parameter group:

Ly (VT) =V (LyT), VT. (2.3)
This condition is equivalent to
VaVpY ¢ = RqaY", (2.4)

where R%,.q is the Riemann tensor and we are using the abstract index notation.
The affine vector field therefore satisfies an over-determined system of linear partial
differential equations of finite type. For a generic metric g there are no solutions. The
maximum number of solutions is n(n + 1) where n = dim(M). Homothetic vector
fields, defined by

Lyg=cg, c¢= constant, (2.5)

satisfy (2.4). An affine vector field which is not a homothetic vector field will be called
a proper affine vector field. Proper affine vector fields come in equivalence classes:
two proper affine vector fields belong to the same equivalence class if they differ by a
homothetic vector field. In light of (2.3), a proper affine vector field Y defines a parallel
symmetric (g) tensor field h not proportional to the metric via

h = Lyg, Vh =0. (26)

To our knowledge the classification of affine motions is not complete except in
the cases of Riemannian and Lorentzian manifolds. All affine motions of an irreducible
Riemannian manifold are homotheties [15]. In the reducible case, the de Rham theorem
decomposes a Riemannian manifold as a product of a flat manifold and irreducible
Riemannian manifolds of dimension greater than one:

(M,g) = (Mo x My x My x ---x My,go+ g1+ g2+ +9r), (2.7)



where gg is flat and is the restriction of g to the submanifold tangent to the distribution
of parallel vector fields. It follows that affine vector fields generate homotheties in each
irreducible component. In the Lorentzian case, Aminova [11] has shown? that the
preceding result holds, now corresponding to the de Rham-Wu decomposition [17], but
a new possibility arises. A locally irreducible Lorentz manifold (M, g) may admit a
proper affine vector field Y, but only if it admits a parallel null vector field &% and the
affine vector field acts via

Ly gap = agap + Bkoky, Vaiky =0, kok® =0, «,f constant, 5 # 0. (2.8)
In this case there will exist coordinates (w,v,z%), i =1,2,...,n — 2, in which
g= dw@dv—l—dv@dw—i—gu(w,xi)dmi ® da? (2.9)

and, modulo the addition of a homothetic vector field,
Y = wd,. (2.10)

In the Lorentzian case affine motions occur only when either of these two situations
(2.7), (2.9) (or both) arise. The proper affine vector fields are then of 3 types: (I)
homothetic vector fields for the irreducible subspaces, (II) vector fields acting as in
(2.8), or (III) infinitesimal generators of linear “intermixing” transformations among
the coordinates adapted to the parallel vector fields. In case III the affine vector fields
can be put into the form

Y =y0,,w0,, 20y, etc. (2.11)

where w and v are defined in (2.9) and vy, z, etc., denote coordinates on My which
rectify non-null parallel vector fields 9, 0., etc.

3 Affine Symmetries and Conservation Laws of the
Geodesic Equation

In this section we will obtain the principal result of this paper: a derivation of the
conservation laws associated to affine symmetries from Noether’s theorem. To this
end, we begin with some definitions from the geometry of differential equations and
the calculus of variations, which have been specialized to the case of one independent
variable [9] (see also [3], [4]).

3.1 Preliminaries

Let C be the bundle of curves on M. Let J be the infinite jet bundle of curves in
M [19]. Using a coordinate chart z® on U C M, and a parameter s for the curve,
local coordinates on C are (s,2%). A curve in M is then a cross section, z% = u®(s),
of C. Local coordinates on J are denoted by (s,z*,&*,&%,...). The cross section
x® = u“(s) extends to a cross section of J via

du® ., d*u®
T s U T s

nes

x* =u(s), & (3.1)

2See also the results of Hall in four dimensions [16].



Functions on J are denoted by

flz] = f(s,x,2,%,...). (3.2)
The total derivative, D: C®(J) — C*>(J), is defined by

_of [ of .., Of

v+ ..., (3.3)

and represents the “total time derivative” along a curve ® = u®(s) in the sense that

(D) = = (Tl (3.4

S

The tangent space at a given point in J is spanned by

0 0 0 0
{as’ P AT } (35)

A vector field v on J is called a generalized vector field if it takes the form (in a local
coordinate chart)

v = a[x]2 +bo‘[x]%.

In the calculus of variations, generalized vector fields correspond to infinitesimal vari-
ations of curves z® = u®(s) via

(3.6)

du(s) = b*u(s)] — T alu(s)]. (3.7)

Given a generalized vector field v, its infinite prolongation prv is the extension to J
given by

b=t . (3.8)

9
D D

prv =v + cf[x]
where
¢t = D (b*[x] — a[z]z®) + a[z]E®, & = D? (b°[x] — alz]E®™) + alz] T, ... (3.9)

The prolongation of v describes the extension of the variation (3.7) to all derivatives
of the curve, e.g.,

5 (d%a(s)) = gfu(s)] - T o)) = D? (101a] - alali”) - (310)

ds? ds3 z=u(s)
From equation (3.9) it is clear that, in general, the infinitesimal transformation of a
quantity involving n derivatives of the curve will involve derivatives of the curve of
order greater than n. Consequently, the infinitesimal transformation defined by a gen-
eralized vector field requires the entire jet bundle for its definition. The corresponding
transformation group on the set of curves — cross sections of C — is constructed by solv-
ing an auxiliary system of PDEs [9]. A restricted class of infinitesimal transformations
is generated by vector fields which can be defined entirely on the bundle of curves C



and generate a transformation group of C. These are the point transformations, which
arise when the components of v only depend upon (s, z%):

alz] = a(s,x), bY[z] =b%(s,z). (3.11)
A generalized vector field (3.6) with a[z] = 0 is called an evolutionary vector field.

The prolongation of an evolutionary vector field ve, = o[z] 8% takes the simple form:

PrVey = O’[IL’]% + (Da[x})% + (DQJ[:U])% +oee (3.12)

In general, an evolutionary vector field v = o® [x]a% defines an infinitesimal variation
of a curve % = u®(s) according to:

du®(s) = o*u(s)]. (3.13)

The total derivative is associated to a generalized vector field % + ¢ 830 whose

infinite prolongation is:

g ., 0
D—%—i—x Oz

D D

The prolongation of a generalized vector field (3.6) can always be decomposed into the
sum of the prolongation of an evolutionary vector field and a total derivative:

prv = a[z]D + prvey, (3.15)

where

0
Oxe’
is called the evolutionary representative of v. The evolutionary representative of a
vector field generating a point symmetry is of the form

Vey = (b%[z] — a[z]z®)

(3.16)

0

Oze’

Vey = [b%(s,2) — a(s, )] (3.17)
for some functions a(s, z) and b*(s,z) on C.
Let z¢ = u®(s) be a curve in U parametrized by s. This curve is an affinely

parametrized geodesic if and only if it satisfies

d?>u® duP du?

— 3 —— =0 3.18

ds? + 5y (w) ds ds ’ (3.18)
where I'g_ (u) are the Christoffel symbols of the metric-compatible connection evaluated
along the curve. The equations (3.18) are equivalent to the Euler-Lagrange equations
of the Lagrangian L: J — R for affinely parametrized geodesics:

... 1 Cor
L= =59(0,8) = =3 gap(2)i%i". (3.19)



The equation of motion (3.18) and all its differential consequences defines a submanifold
E C J called the prolonged equation manifold. In the coordinates (s,z%,z,&%,...)
on J the equations for £ are

i = -T% (2)ai7, % =D (-T%,(2)ai7), - . (3.20)

We now define a conservation law as a quantity built from any parametrized curve
z® = u®(s) and its derivatives to any order which becomes independent of s when
the curve satisfies the geodesic equation (3.18). (The conserved quantity may depend
explicitly upon s.) This means that the conservation law is a function on J whose
total derivative vanishes when evalutated on the prolonged equation manifold.

Definition 1. A function Q: J — R defines a conservation law for a system of
differential equations with prolonged equation manifold £ if

(DQ)| =0. (3.21)

A familiar example of a conservation law for the affinely parametrized geodesic
equation is provided by the Lagrangian itself:

1
L= _igaﬂ(x)j:%ﬁ. (3.22)
We have
1
bL= _§ga5»vm’a$ﬁﬁ - gaﬁiaiﬂ = _QCMSF(;BW‘iaiﬁi7 - 9&6$a5ﬁ67 (3.23)

which vanishes when evaluated on £ as defined in (3.20).
Noether’s theorem establishes a correspondence between conservation laws and
symmetries of the Lagrangian provided the notion of “symmetry” is as follows.

Definition 2. A generalized vector field (3.6) defines a generalized symmetry of a
Lagrangian L if the infinitesimal transformation it defines leaves L unchanged up to a
total derivative, that is, there exists a function G: J — R such that

prv(Liz]) + L[z]D(a[z]) = DG[z]. (3.24)

Notice that the left hand side of (3.24) is just the Lie derivative of L along prv,
taking account of the fact that the Lagrangian is a density of weight one on the real line
with coordinate s, or equivalently that L ds is a 1-form. A straightforward calculation
establishes the following convenient result [9].

Proposition 1. A generalized vector field defines a generalized symmetry of a La-
grangian if and only if its evolutionary representative does.

For evolutionary vector fields the condition for symmetry of the Lagrangian is (3.24)
with a[z] = 0.

The connection between symmetries and conservation laws, first proved by Noether,
when specialized to first-order Lagrangians for ODEs is as follows [10], [20], [4], [9].



Theorem 1. (Noether’s Theorem) The function Q: J — R defines a conservation
law for the Euler-Lagrange equations of L if and only if there exists a generalized
vector field v defining a generalized symmetry (3.24) of L. With vey = 0%[z] aia and

L = L(s,z,), the conservation law is given by
oL
Qlal = 550
For a general version of the theorem and proof, applicable to a general Lagrangian,
and suitable for ODEs or PDEs, see [9] (see also [4] in the ODE context).

The conservation law defined by (3.22) can be obtained from Noether’s theorem by
virtue of the point symmetry

“_q. (3.25)

= % = Ve = —:'co‘a;ia. (3.26)
It is a classical result that spacetime isometries define symmetries and conservation
laws for geodesics. This can be seen as follows. A 1-parameter family of isometries
dx: M — M, ¢3g = g, A € R, of a spacetime (M, g) is generated by a Killing vector
field £ on M satisfying L¢g = 0. This vector field lifts to an evolutionary vector field,

0
v =€)

generating a point transformation of C and corresponding to the infinitesimal transfor-
mation of curves % = u®(s) given by

du(s) = &% (u(s)). (3.28)

The vector field (3.27) defines a (point) symmetry of the Lagrangian (3.19) for affinely
parametrized geodesics:

A%

(3.27)

1 o
prv(L) = —§(L§ga5)x i’ = 0. (3.29)
From Theorem 1 the conservation law is
Q = —gapdE®. (3.30)

It is straightforward to verify directly that D@ = 0 on the prolonged equation manifold
€ (see (3.20)).

3.2  Symmetries and conservation laws associated to affine vector fields

We now turn to one of the principal results of this paper: affine motions define gener-
alized symmetries of the Lagrangian for affinely parametrized geodesics.

Theorem 2. Let Y be an affine vector field on the pseudo-Riemannian manifold
(M, g). Define h = Lyg. The generalized vector fields

v = hg(x)jzﬂa% (3.31)
vo = (Y(z) — shg(x)x'ﬁ) 83‘1 (3.32)

define generalized symmetries of the Lagrangian (3.19).



Proof. The proof goes by direct computation. We use

Gapy = GasT %y + 9ol o (3.33)

hagu = Uhahus = Thuhan =0, (3.34)

prvy(z®) = hga'rﬁ, (3.35)

prvy(°) = bl &7 + hlic, (3.36)

prvi(L) = —haei®i® — hap @i a" + 50" 57 h2 gas . — %gamhga':%%ﬁ (3.37)
prva(z®) =Y — shgi’, (3.38)

prva(i®) = Y247 — h§i’ — sD(h3i”) (3.39)

prva(L) =— gagzba(Y’gﬂ'c'V - hga'c’y — shPz7 — shfﬁug'c”g'c")

1
— 59087 (Y7 = sh) )i qP (3.40)

Combining all these relations reveals in each case

prvy(L) = D(—%hag(x)a'so‘gb’g), (3.41)
prva(L) = D(%shaguo‘uﬁ). (3.42)
O O

The existence of the two conservation laws for the geodesic equation associated to
an affine motion [2], [7] now follows from an application of Noether’s theorem.

Corollary. LetY be an affine vector field on the pseudo-Riemannian manifold (M, g).
Define h = Lyg. The following quantities are conservation laws for the affinely
parametrized geodesic equation:

Q= %hag(:c)j:ax'ﬁ, (3.43)
Q2 = Yo (2)i — 5Q1. (3.44)

Proof. This follows from Theorem 2 and Theorem 1 applied to v; and vy with the
function G given by —3hap(x)#*d” and §shapi®d”, respectively. It can also be veri-
fied directly by computing D@ in each case and checking that this derivative vanishes
on the prolonged equation manifold £ by virtue of Vh = 0. O O

Theorem 2 proves that affine motions define generalized symmetries of the La-
grangian for affinely parametrized geodesics. In the following we shall show in some
detail how this occurs via the classification of affine symmetries due to Aminova [11].

Recall that an affine vector field either generates a 1-parameter group of homotheties
or a l-parameter group of proper affine symmetries. The proper affine motions have



been classified in [11] and define bona fide generalized symmetries via Theorem 2.
In the case of homotheties, the vector fields in Theorem 2 reduce to evolutionary
representatives of point symmetries because h = ¢ in this case. Let us begin by
explicitly describing the point transformations associated to homothetic vector fields.
If the affine vector Y field generates a 1-parameter group of homotheties ¢;: M — M,
t e R,

prg=c'g, Lyg=y, (3.45)
the corresponding point transformation @El): C — C generated by vi = ¢ aga in

Theorem 2 is given by a translation of s:
(1) ay _ «
O, (s,2%) = (s —t,x%). (3.46)

Of course, the Lagrangian 1-form L ds with L given in (3.19) has manifest symmetry
under translation in s. The point transformation <I)§2): C — C generated by vy =
(Y — sj:a)a% is given by

o7 (s,2%) = (e's, 67 (2)), (3.47)

corresponding to the homothetic mapping of M onto itself along with a rescaling of
the affine parameter. This transformation is also a symmetry of L ds: the homothety
has the effect of rescaling the metric in (3.19) which is compensated by the rescaling
of s. In the special case where Y generates an isometry, vy vanishes while vy reduces
to the lift (3.27) of the infinitesimal generator of the isometry to C.

We now explain in detail how proper affine motions of Lorentz manifolds yield the
generalized symmetries displayed in Theorem 2. According to reference [11], if Y is a
proper affine vector field then (I) it acts by homothety on irreducible components in a de
Rham-Wu decomposition (2.7) and/or (II) it acts via (2.8) on an irreducible Lorentzian
component, and/or (III) it acts by the intermixing transformations generated by vector
fields of the form (2.11). We now examine each of these cases.

In case (I), in coordinates adapted to the product, the Lagrangian decomposes
according to (2.7),

1 .. 1 . | r .
L= _7g(x7x) = _790(‘%0’%0) - 791(-,1:17‘%1) - 797“(1'7‘7”7“)’ (348)
2 2 2 2
and the action of the symmetry is to rescale each of the metrics g;, i = 1,...,r, with a

corresponding rescaling of the affine parameter, as discussed above when a homothety
of the entire metric was considered. See (3.47). The action of the symmetry on the
first term in (3.48) is as follows. Introduce coordinates which rectify a basis of parallel
vector fields so that the metric takes the form

go=€edz®@dr+dy®@dy+---, (3.49)
where € = +1. The proper affine vector fields can be chosen to take the form

Y = yd,. (3.50)

10



We then have

0 0]
52 p .51
vy yaeremay (3.51)
vo = (y — esy)% + esx'(,%. (3.52)
The corresponding portion of the Lagrangian transforms as

r . ..
prviy (—290(x7x)) = D(—eiy), (3.53)

r .. ..
prvs (—29()({,67:1;‘)) = D(esiy). (3.54)

In case (II) it is convenient to use the coordinates #® = (v, w, %) introduced in
(2.9), (2.10). The Lagrangian (3.19) is given in such coordinates by

1 o
L= —in — igij(w,xk)x'lj:]. (3.55)
The infinitesimal symmetry transformation is generated by
.0
vy = 2w% (3.56)
vy = (w — 2511'1)2 (3.57)
> v ’

yielding the symmetries of L
prvi(L) = D(—()?), prva(L) =D [s(w)?]. (3.58)

Finally, in case (III), aside from irreducible components and their affine symmetries
of type (I), we have a metric of the form

g =06apdp™ @ dp® + dw @ dv + dv @ dw + g (w, 2)dz" @ dz7. (3.59)
The intermixing transformations are of the form
Y = wd,a. (3.60)

The infinitesimal transformations with, for example, A = 1 are given by

o L0
—w a9 61
Vi w8x1+p v (3:61)
vy = (w — sw)% - 5,61%. (3.62)
The Lagrangian
1 -
L=—3 (6ap™pP + 200 + gij(w, 2)2°27) (3.63)
transforms as
prvyi(L) = D(—p"b), prve(L) = D(sp'i). (3.64)

11



4 Affine Motions and Conservation Laws for Homo-
geneous Solutions of the Einstein Equations

A number of authors have found affine motions for various solutions of the Einstein
equations, e.g., [12], [13], [14], [8]. Besides the classification of affine motions due to
Aminova [11], Hall and da Costa used a classification of holonomy groups to deter-
mine which affine symmetries may occur in a four-dimensional spacetime [16]. The
possibilities for electrovacua in four dimensions have been examined in [18]. In this
section we calculate all proper affine motions which arise for homogeneous solutions of
the Einstein field equations. This provides a complete characterization of proper affine
motions for all homogeneous solutions of the Einstein equations with matter content
given by vacuum, Einstein, perfect fluid, and electromagnetic field. We also give the
corresponding conservation laws for affinely parametrized geodesics.

Homogeneous spacetimes admit a transitive group of isometries. All homogeneous
solutions to the Einstein equations,

Gab + Agab = KTaba (41)

are known for the following cases: vacuum (Tp, = 0 = A); Einstein (T, = 0, A # 0);
homogeneous perfect fluids,

Ty = (0 +p)VaVo + pgap,  p,p = const., V,V*=-1, A=0; (4.2)
pure radiation,
Top = ®koky, @ =const., A=0, k.k*=0; (4.3)

and homogeneous electromagnetic fields,

Ty = F,°Fpe — igachchd, VeF,=0=V,Fy, A=0. (4.4)
The 4-velocity, radiation vector, and electromagnetic field satisfy LV = 0, L¢k = 0,
L¢F = 0, where ¢ is any Killing vector field, L¢g = 0. All these solutions can be found
in reference [21].

Using the Differential Geometry package [22] we have calculated all the affine vector
fields and first integrals for this class of solutions. The analysis has two parts. First,
one directly solves the equations arising from infinitesimal invariance of the Christoffel
symbols in the given coordinate chart:

LyI‘gﬂ =0. (4.5)
It is straightforward to extract from the solution space of (4.5) a basis for the set
of proper affine vector fields (modulo homotheties). Second, the results are checked
against the dimension of the vector space of solutions to (4.5), which can be computed
a priori as follows.

The linear system of equations (2.4) determining Y is of finite type, so that all
second and higher order derivatives of Y are determined by Y and its first derivatives.

12



The dimension of the vector space of solutions in a neighborhood of a point p € M can
be determined by successively differentiating equation (2.4) and expressing the result
in terms of Y and VY at p. This defines a system of linear equations for the n(n + 1)
dimensional vector space of data Y (p) and VY (p). If r is the rank of this linear system,
then the vector space of solutions to (2.4) is of dimension n(n + 1) — r.

In the following, we list the results of this analysis for all homogeneous solutions
of the Einstein equations with matter content as described above. We follow the enu-
meration of these solutions as given in reference [21]. We present the line element of
the metric, a basis for the vector space of proper affine vector fields (modulo homo-
thetic vector fields), and the corresponding conservation laws for geodesics, calculated
according to Corollary 3.2.

Solution: Minkowski spacetime. Coordinates z® = (¢, z,y, 2).
Line element: ds? = —dt? + da? + dy® + dz?
Proper affine vector fields: z0,, yd,, 20., z*o;, 20,1 > j, 2' = (2,9, 2) .

First integrals: (i%)?, 2%i® — s(i%)?; {4?, o't — sti®; @137, 2'a7 — silid, i > j

Solution: de Sitter, and anti-de Sitter spacetime; eq. (8.33) in [21]. Coordinates

z® = (t,2,y,2)
Line element: ds?> = U2 (fdt2 +dz? + dy? + dzz); U=1+ %K(x2 +y? 4+ 2% —t2),
K #0.

Proper affine vector fields: 7
First integrals: 7

Solution: Petrov vacuum solution; eq. (12.14) in [21]. Coordinates z* = (¢, x,y, ).
Line element: k%ds? = da? + e~ 2%dy? + e®[cos v/3x(dz? — dt?) — 2sin /3x dz dt]
Proper affine vector field: 3

First integrals: 7

Solution: FEinstein spaces arising as a product of 2-dimensional spaces of constant
curvature, 5% x S% and H? x H?; eq. (12.8) in [21]. Coordinates z® = (¢, z,y, 2).

Line element: ds? = A%[dz? + Y2 (x, k1)dy?] + B?[dz? — ¥?(z, ko)dt?], where k; =
ke =41, 1/A2=1/B%*>=A, %(x,1) =sin(x), X(x,—1) = sinh(x),

Proper affine vector field: 3
First Integrals: 3

Solution: Einstein space of Petrov type N; equation (12.34) in [21]. Coordinates
z® = (u,2,y,2).
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Line element: ds* = 3dz?/|A| + ee*dz? + e~ 2*(dy? + 2dudz), A <0, ¢ = 1.
Proper affine vector fields: 3
First integrals: 7

Solution: Einstein space of Petrov type III; equation (12.35) in [21]. Coordinates
x* = (u,x,y, 2).

Line element: ds? = 3dz2/|A| + e**dx? + 4e*dz dy + 2¢~2*(dy® + dudz), A < 0.
Proper affine vector fields: 3
First integrals: 7

Solution: Plane wave electrovacuum; eq. (12.12) with e = 0 in [21]. Coordinates
= (u,v,§,).

Line element: ds? = — [2a(§2e*2iw B2 4 2b2EE| du? — 2du dv + 2dE dE

Proper affine vector field: Y =u 0,

2 2

First integrals: «°, ut — su

Solution: Plane wave electrovacuum; eq. (12.12) with € = 1 in [21]. Coordinates
‘/L.a = (u7 /1)7 57 g)'

Line element: ds?> = — [2a(§26_2”“ + 5262”“) + 2b%€€| du® — 2e%du dv + 2dE d

Proper affine vector field: Y =¢* 0,

First integrals: e%“u2, e2¥(

0 — sU?)

Solution: Bertotti-Robinson electrovacuum; eq. (12.16) in [21]. Coordinates % =
(t,z,0,0).

Line element: ds* = k? [d§? + sin®(0)d¢? + dz? — sinh2(x)dt2]

Proper affine vector field: 3

First integrals: 7

Solution: Pure radiation®; equation (12.36) in [21]. Coordinates z = (u, v, z,y).
Line element: ds? = dz? + dy? + 2dudv — 2e*°*du?, p = const. # 0

Proper affine vector fields: y9,, ud,, ud,

First integrals: 32, yy — sy?, @2, utt — st2, 43, uy — sty

3This pure radiation solution is actually an electrovacuum with an inhomogeneous electromagnetic field
[23].
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Solution: Einstein static universe (and its hyperbolic analog). Perfect fluid source; eq.
(12.9) and (12.24) in [21]. Coordinates (t,r, 6, ¢).

Line element:
ds* = a® [dr? + £%(r, k)(d0® + sin® 0d¢?)| — dt?, k= =£1. (4.6)

Proper affine vector fields: Y =t 9,
First integrals: {2, tf — st?

Solution: Godel spacetime. Perfect fluid source; eq. (12.26) in [21]. Coordinates x® =
(t,z,y,2).

Line element: ds? = a?[dz? + dy? + 1e**dz* — (dt + e*dz)?]

Proper affine vector fields: Y =y0,

First integrals: 92, yy — sy

Solution: Unimodular group. Farnsworth-Kerr class I. Perfect fluid source; eq. (12.27)
in [21]. Coordinates z = (¢, z,y, z).

Line element: ds®> = a?[(1 — k)(w")? + (1 + k)(w?)? + 2(w?)? — (dt + V1 — 2k2w3)?],
dw® = €%’ Aw®, 0 < |k| < %

Proper affine vector fields: 7

First integrals: 3

Solution: Unimodular group. Farnsworth-Kerr class II. Perfect fluid source; eq. (12.28)
in [21].

Line element: ds? = a?[(1 — k)(wh)? + (1 + k)(w?)? + (du + V1 — 2k2w3)? — 2(w3)?],
dw' = W2 AW dw? = w3 ANW?dwd = w2 AWt 1 < 4k% < 2,

Proper affine vector fields: 7

First integrals: 7

Solution: Unimodular group. Farnsworth-Kerr class III. Perfect fluid source; eq. (12.29)
in [21].

Line element: ds* = a?[(1 — s)(w!)? + (1 + 5)(w?)? + du? — 2(w?)?], dw! = W? A WP,
dw? = w3 Aw!, dw? =w? AW, |s] < 1.

Proper affine vector fields: Y = ud,

First integrals: 2, ut — su?.

Solution: Non-unimodular group. Perfect fluid source; eq. (12.30) in [21] with generic
value for parameter s. Coordinates z¢ = (¢, z,y, 2).

Line element: ds? = a?[4(Ae?*dt + BeP?dx)?/b? + (eF7dy)? + dz? — (e*dt + eP?dx)?],
A=1(1-B),B=1(14p8), F =1-5% b= 2s(2—5%), 8% = 14+2s?(1—5%)(3—s?) > 0,

1 2
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Proper affine vector fields: 7
First integrals: 7

Solution: Non-unimodular group. Perfect fluid source; eq. (12.31) in [21] with generic
value for parameter s. Coordinates =% = (¢, x,y, 2).

Line element: ds? = a?[e*dz? +e*2dy? +dz? — 1(b—1/b)%e*(dt + z dx)?], b = V2s(2 —
§7), F=1-s% 1 <s2<2

Proper affine vector fields: 7

First integrals: 7

Solution: Non-unimodular group. Perfect fluid source; eq. (12.32) in [21] with generic
value for parameter s. Coordinates =% = (¢, x,y, 2).

Line element:
ds* = a® [(eFZdy)2 +dz? + €*((cos kz — 2ksin kz)dt
+ (2k cos kz +sin kz)dx)?/b* — e*(cos kz dt + sin kz dm)ﬂ ,

b:\/ﬁs(2—82), F=1-5¢% <s2<2

DO =

Proper affine vector fields: 7
First integrals: 7
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