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Abstract

LTE in unlicensed spectrum (LTE-U) is a promising approach to overcome the wireless spectrum

scarcity. However, to reap the benefits of LTE-U, a fair coexistence mechanism with other incumbent

WiFi deployments is required. In this paper, a novel deep learning approach is proposed for modeling

the resource allocation problem of LTE-U small base stations (SBSs). The proposed approach enables

multiple SBSs to proactively perform dynamic channel selection, carrier aggregation, and fractional

spectrum access while guaranteeing fairness with existing WiFi networks and other LTE-U operators.

Adopting a proactive coexistence mechanism enables future delay-intolerant LTE-U data demands

to be served within a given prediction window ahead of their actual arrival time thus avoiding the

underutilization of the unlicensed spectrum during off-peak hours while maximizing the total served

LTE-U traffic load. To this end, a noncooperative game model is formulated in which SBSs are modeled

as Homo Egualis agents that aim at predicting a sequence of future actions and thus achieving long-

term equal weighted fairness with WLAN and other LTE-U operators over a given time horizon. The

proposed deep learning algorithm is then shown to reach a mixed-strategy Nash equilibrium (NE),

when it converges. Simulation results using real data traces show that the proposed scheme can yield

up to 28% and 11% gains over a conventional reactive approach and a proportional fair coexistence

mechanism, respectively. The results also show that the proposed framework prevents WiFi performance

degradation for a densely deployed LTE-U network.

Index Terms

LTE-unlicensed (LTE-U); small cell; unlicensed band; long short term memory (LSTM); game

theory; proactive resource allocation

I. INTRODUCTION

LTE in unlicensed bands (LTE-U) has emerged as an effective solution to overcome the scarcity

of the radio spectrum [1]. Using LTE-U, a cellular small base station (SBS) can improve its
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performance by simultaneously accessing licensed and unlicensed bands. However, to achieve

the promised quality-of-service (QoS) improvements from LTE-U, many challenges must be

addressed ranging from effective co-existence with existing WiFi networks to resource allocation,

multiple access, and inter-operator spectrum sharing [1].

If not properly deployed, LTE-U can significantly degrade the performance of WiFi [1].

There has been a number of recent works [2]–[9] that study the problem of enhanced LTE-

U and WiFi coexistence. This existing body of works can be categorized into two groups:

channel access [2]–[5] and channel selection [7]–[9]. The authors in [2]–[4] propose different

channel access mechanisms based on listen-before-talk (LBT) that rely on either an exponential

backoff [2], a fixed/random contention window (CW) size [3], or an adaptive CW size [4].

Nevertheless, an exponential backoff approach leads to unnecessary retransmissions while a fixed

CW size cannot handle time-varying traffic loads thus yielding unfair outcomes. The authors

in [5] develop a holistic approach for both traffic offloading and resource sharing across the

licensed and unlicensed bands but considering one SBS. In [6], the authors study the problem

of resource allocation with uplink-downlink decoupling for LTE-U. The authors in [10] propose

an inter-network coordination scheme with a centralized radio resource management for the

coexistence of LTE and WiFi. However, this prior art is limited to one unlicensed channel and

does not jointly account for channel selection and channel access. In other words, these works

do not analyze the potential gains that can be obtained upon aggregating or switching between

different unlicensed channels. Operating on a fixed unlicensed channel limits the amount of

cellular data traffic that can be offloaded to the unlicensed band and leads to an increase in

the interference level caused to neighboring WiFi access points (WAPs) operating on that same

channel.

In terms of LTE-U channel selection, the authors in [7] propose a distributed approach based on

Q-learning. A matching-based solution approach is proposed in [8], which is both distributed and

cooperative. Moreover, the work in [9] combines channel selection along with channel access.

Despite the promising results, all of these works [7]–[9] consider a reactive approach in which

data requests are first initiated and, then, resources are allocated based on their corresponding

delay tolerance value. Nevertheless, this sense-and-avoid approach can cause an underutilization

of the spectrum due to the impulsive reconfiguration of the spectrum usage that does not account

for the future dynamics of the network. Despite the predominance of the reactive LTE-WiFi

coexistence solutions, cellular data traffic networks are known to exhibit statistically fluctuating
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and periodic demand patterns, especially applications such as file transfer, video streaming and

browsing [11], therefore providing an opportunity for the network to exploit the predictable

behavior of the users to smooth out the traffic over time and reduce the difference between the

peak and the average load. Therefore, in a proactive approach, rather than reactively responding

to incoming demands and serving them when requested, an SBS can predict traffic patterns and

determine future off-peak times so that incoming traffic demand can be properly allocated over

a given time window.

Therefore, the main motivation for adopting a proactive LTE-WiFi coexistence scheme is

to avoid the underutilization of the unlicensed spectrum during off-peak hours. This is mainly

accomplished by either serving a fraction of the LTE-U traffic when requested or shifting part of it

to the future, over a given time window, so as to balance the occupancy of the unlicensed spectrum

usage across time and, consequently, improve its degree of utilization. From the LTE-U network

perspective, this will increase its transmission opportunities on the unlicensed spectrum, reduce

the collision probability with WAPs and other SBSs and, hence, provide a boost for its throughput.

Moreover, a proactive resource allocation scheme can exploit the inherent predictability of the

future channel availability status so as to allocate resources in a window of time slots based on

the predicted requests. This, in turn, can lead to a decrease in the probability of occurrence of a

congestion event while ensuring a degree of fairness to the wireless local area network (WLAN).

The main contribution of this paper is a novel deep reinforcement learning algorithm based

on long short-term memory (RL-LSTM) cells for proactively allocating LTE-U resources over

the unlicensed spectrum. The LTE-U resource allocation problem is formulated as a noncoop-

erative game in which the players are the SBSs. To solve this game, we propose an RL-LSTM

framework using which the SBSs can autonomously learn which unlicensed channels to use

along with the corresponding channel access probability on each channel taking into account

future environmental changes, in terms of WLAN activity on the unlicensed channels and LTE-U

traffic loads. Unlike previous studies which are either centralized [9] or rely on the coordination

among SBSs [4], our approach is based on a self-organizing proactive resource allocation scheme

in which the SBSs utilize past observations of the network state to build predictive models

on spectrum availability and to intelligently plan channel usage over a finite time window.

The use of long short term memory (LSTM) cells enables the SBSs to predict a sequence of

interdependent actions over a long-term time horizon thus achieving long-term fairness among

different underlying technologies. We show that, upon convergence, the proposed algorithm
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Fig. 1: Illustration of the system model. In the above example, 3 SBSs belonging to different operators and 3

unlicensed channels are only shown for simplicity. The channel selection vector over a time window of 3 epochs

is also shown.

reaches to a mixed-strategy distribution which constitutes a mixed-strategy Nash equilibrium

(NE) for the studied game. We also show that the gain of the proposed proactive resource

allocation scheme and the optimal size of the prediction time window is a function of the traffic

pattern of the dataset under study. To the best of our knowledge, this is the first work that exploits

the framework of LSTMs for proactive resource allocation in LTE-U networks. Simulation results

show that the proposed approach yields significant rate improvements compared to conventional

reactive solutions such as instantaneous equal weighted fairness, proportional fairness and total

network throughput maximization. The results also show that the proposed scheme prevents

disruption to WLAN operation in the case large number of LTE operators selfishly deploy

LTE-U in the unlicensed spectrum. In terms of priority fairness, results show that an efficient

utilization of the unlicensed spectrum is guaranteed when both technologies, LTE-U and WLAN,

are given equal weighted priorities for transmission on the unlicensed spectrum.

The rest of this paper is organized as follows. In Section II, we present the system model.

Section III describes the proposed coexistence game model. The LSTM-based algorithm is

proposed in Section IV. In Section V, simulation results are analyzed. Finally, conclusions are

drawn in Section VI.

II. SYSTEM MODEL

Consider the downlink of an LTE-U network composed of a set J of J LTE-U SBSs belonging

to different LTE operators, a set W of W WAPs, and a set C of C unlicensed channels as shown

in Fig. 1. Each SBS j ∈ J has a set Kj of Kj LTE-U UEs associated with it. We focus on
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Fig. 2: The division of the time domain into multiple time windows T , each of which consists of multiple time

epochs t.

the operation of the SBSs over the unlicensed band, while the licensed spectrum resources are

assumed to be allocated in a conventional way [12]. Both SBSs and WAPs adopt the LBT access

scheme and, thus, at a particular time, a given unlicensed channel is occupied by either an SBS

or a WAP. We consider the LTE carrier aggregation feature using which the SBSs can aggregate

up to five component carriers belonging to the same or different operating frequency bands [13].

This, in turn, would enable the SBSs to operate on multiple unlicensed channels simultaneously

thus maximizing their data rate during a particular transmission opportunity.

Our goal is to jointly determine the dynamic channel selection, carrier aggregation, and

fractional spectrum access for each SBS, while guaranteeing long-term airtime fairness with

WLAN and other LTE-U operators. The main motivation for adopting a long-term fairness

approach is to avoid the underutilization of the unlicensed spectrum by either serving part of

the LTE-U traffic when requested or shifting part of it in the future over a given time window

in a way that would balance the occupancy of the unlicensed spectrum usage across time and,

consequently, improve its degree of utilization. This will subsequently result in an increase in

the transmission opportunities for LTE-U as well as a decrease in the collision probability for

the WLAN. To realize this, we need to dynamically analyze the usage of various unlicensed

channels over a particular time window. To this end, we divide our time domain into multiple

time windows of duration T , each of which consists of multiple time epochs t, as shown in Fig. 2.

Our objective is to proactively determine the spectrum allocation vector for each SBS at t = 0

over T while guaranteeing long-term equal weighted airtime share with WLAN. To guarantee a

fair spectrum allocation among SBSs belonging to different operators, we consider inter-operator

interference along with inter-technology interference. In fact, inter-operator interference is the
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consequence of the selfish behavior of different operators and could result in a degradation in

the spectral efficiency if not managed. Next, we define xj,c,t = 1 if channel c is selected by SBS

j during time epoch t, and 0, otherwise, and αj,c,t ∈ [0, 1]. xj,c,t determines the channel c that

is used by SBS j during time t and αj,c,t is the channel access probability of SBS j on the

unlicensed channel c at time t.

A contention-based protocol is used for channel access over the unlicensed band. In this

protocol, prior to transmission, the SBS applies clear channel assessment to detect the state of

the channel (idle or busy) based on the detected energy level. If the channel is idle, the SBS gets

a transmit opportunity for up to 10 LTE sub-frames; otherwise, it keeps monitoring the channel

until it becomes idle. We consider an exponential backoff scheme for WiFi while the SBSs adjust

their CW size (and thus the channel access probability) on each of the selected channels in a

way that would guarantee a long-term equal weighted fairness with WLAN and other SBSs. In

fact, small CW sizes lead to an increase in the collision probability while large CW sizes result

in too much time spent waiting in idle slots. Therefore, an efficient access method should adapt

the value of the CW to the current traffic conditions.

To derive the throughput achieved by an LTE-U user equipment (UE) and a WAP, we first

define the stationary probability of each WAP w and each SBS j, τw and τj,c,t respectively. The

stationary probability is the probability with which a given base station attempts to transmit in

a randomly chosen slot. Considering an exponential backoff scheme for WiFi, the stationary

probability with which WAPs transmit a packet, τw, will be given by [14]:

τw =
2(1− 2qw)

(1− 2qw)(CWmin + 1) + qwCWmin(1− (2qw)m)
, (1)

where qw is the collision probability of a WAP, m is the maximum backoff stage where CWmax =

2mCWmin. CWmin and CWmax are the minimum and maximum contention window size, respec-

tively. For LTE-U, m=0 since no exponential backoff is considered, and, thus, the stationary prob-

ability of an SBS on a given unlicensed channel c during time epoch t will be τj,c,t = 2
CWj,c,t+1

,

where CWj,c,t is the contention window size of SBS j on channel c during time epoch t.

Therefore, we do not consider a contention stage for LTE-U. Instead, the SBSs adjust their CW

size adaptively to control their channel access probability over the unlicensed band. The collision

probability of a WAP is defined as qw = 1−
∏W

v=1,v 6=w(1− τv)
∏J

j=1(1− τj,c,t), where c is the

channel used by WAP w. The throughput Rw of a WAP w will be:

Rw =
Pw,succ · E[Dw]

Pw,idle · θ + Pw,busy · Tb
, (2)
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where E[Dw] is the expected payload size for WAP w, Pw,succ = τw
∏W

v=1,v 6=w(1− τv)
∏J

j=1(1−

τj,c,t) is the probability of a successful transmission, Pw,idle =
∏J

j=1(1−τj,c,t)
∏W

w=1(1−τw) is the

probability of an idle slot, and Pw,busy = 1−
∏J

j=1(1−τj,c,t)
∏W

w=1(1−τw) is the probability of a

busy slot, regardless of whether it corresponds to a collision or a successful transmission. θ and

Tb are, respectively, the average durations of an idle and a busy slot and, thus, the denominator

in (2) corresponds to the mean duration of a WiFi medium access control (MAC) slot.

The achievable airtime fraction for an LTE-U SBS j on channel c at time t is:

αj,c,t = τj,c,t

J∏
i=1,i6=j

(1− τi,c,t)
W∏
w=1

(1− τw). (3)

The airtime fraction represents the time allocated for an SBS on channel c during time t.

Thus, the total throughput of all Kj,t UEs that are served by SBS j during time epoch t is:

Rj,t =
C∑
c=1

αj,c,trj,c,t, (4)

where

rj,c,t =

Kj,t∑
k=1

Bclog
(

1 +
Pj,c,thj,k,c,t
Ij,c,t +BcN0

)
. (5)

Here, Ij,c,t =
∑W

w=1 Pw,c,thw,k,c,t +
∑J

i=1,i6=j Pi,c,thi,k,c,t is the interference level on SBS j when

operating on channel c during time t and Bc is the bandwidth of channel c. Pj,c,t is the transmit

power of SBS j on channel c during time t. hj,k,c,t is the channel gain between SBS j and UE

k on channel c during time t. N0 is the power spectral density of additive white Gaussian noise.

Since SBSs and WAPs both adopt LBT, then one cell may occupy the entire channel at a given

time thus transmitting exclusively on a given channel c. However, hidden and exposed terminals

could be present on a given channel which can result in interference and thus a degradation in

the throughput.

Given this system model, next, we develop an effective spectrum allocation scheme that

can allocate the appropriate unlicensed channels along with the corresponding channel access

probabilities to each SBS simultaneously over T , at t = 0.

III. PROACTIVE RESOURCE ALLOCATION SCHEME FOR UNLICENSED LTE

A. Proactive Resource Allocation Game

We formulate the resource allocation problem as a noncooperative game G=(J ,Aj, uj) with

the SBSs in J being the players, each of which must choose a channel selection and channel
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access pair aj,c,t =(xj,c,t,αj,c,t) ∈ Aj at t = 0 for each t of the next time window T . The objective

of each SBS j is to maximize its total throughput over the selected channels:

uj(aj,a−j) =
T∑
t=1

C∑
c=1

αj,c,trj,c,t, (6)

where aj = [(aj,1,1, · · · , aj,1,T ), · · · , (aj,C,1, · · · , aj,C,T )] and a−j correspond, respectively to the

action vector of SBS j and all other SBSs, over all the channels C during T . Note that the utility

function (6) of SBS j depends on its actions as well as those of other SBSs which makes the

formulation of a game model suitable for this problem. This is mainly due to the interference

from other SBSs transmitting on the same channel as SBS j as it was shown previously in the

definition of the rate expression in (5). The goal of each SBS j is to maximize its own utility:

max
aj∈Aj

uj(aj,a−j) ∀j ∈ J , (7)

s.t. αj,c,t ≤ xj,c,t ∀c, t, (8)
C∑
c=1

xj,c,t ≤ min(Mc, C) ∀t, (9)

t∑
tT =1

C∑
c=1

αj,c,tTBc ≤
t∑

tT =1

f(Lj,tT ) ∀t, (10)

αw,c,t + αj,c,t +
J∑

i=1,i6=j

αi,c,t ≤ tmax ∀c, t, (11)

xj,c,t ∈ {0, 1}, αj,c,t ∈ [0, 1] ∀c, t, (12)

where Mc is the total number of unlicensed channels which an SBS can aggregate. (8) allows

the allocation of a channel access proportion for SBS j on channel c during t only if SBS j

transmits on channel c at time t. (9) guarantees that each SBS can aggregate a maximum of Mc

channels at a given time t. (10) limits the amount of allocated bandwidth to the required demand

where f(Lj,t) captures the relationship between bandwidth requirement and offered load. (11)

captures coupling constraints which limit the proportion of time used by SBSs and WLAN on

a given unlicensed band to the maximum fraction of time an unlicensed channel can be used,

tmax
1. (12) represents the feasibility constraints.

Given the fact that different operators and technologies have equal priorities on the unlicensed

spectrum, we incorporate the Homo Egualis (HE) anthropological model, an inequity-averse

based fairness model, into the strategy design of the agents [15].

1tmax depends on the channel access method in the unlicensed band and should be strictly less than 1 in the case of LBT,

otherwise, the channel will always be sensed busy and devices would not be able to access it.
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Definition 1. Inequity aversion is the preference for fairness and resistance to incidental inequal-

ities. In other words, it refers to the willingness of giving up some material payoff in order to

move in the direction of more equitable outcomes.

In an HE society, agents focus not only on maximizing their own payoffs, but also become

aware of how their payoffs are compared to other agents’ payoffs [15], [16]. Therefore, their

utility function is influenced not only by their own reward, but also by envy and altruism. An

agent is altruistic to others if its payoff is above an equitable benchmark and is envious of the

others if its payoff exceeds that benchmark and therefore, an unfair distribution of resources

among agents results in disutility for inequity-averse agents. The HE concept comes from the

anthropological literature in which Homo sapiens evolved in small hunter-gatherer groups without

a centralized governance [15].

In fact, we incorporate the notion of airtime fairness in the modeling of our HE agents. The

average airtime per radio system is considered as one of the most important fairness metrics in

the unlicensed band and is the focus of this work [17]. Our motivation for considering a time-fair

channel allocation scheme is to overcome the rate anomaly problem that arises when different

nodes use distinct data rates, which leads to the slowest link limiting the system performance [4],

[17], and [18]. Therefore, to model our players as HE agents, we consider the following two

coupling constraints for the allocated airtime fraction on each channel c for each SBS j:

1

wj,c

1

T

∑T
t=1 αj,c,t∑T
t=1 L̄j,t

=
1

wi,c

1

T

∑T
t=1 αi,c,t∑T
t=1 L̄i,t

∀c ∈ Ĉj, i ∈ Ŝj,c(i 6= j), (13)

1

T

∑T
t=1

∑
n∈Sc,t αn,c,t

PLTE

∑T
t=1

∑
n∈Sc,t L̄n,t

=
1

T

∑T
t=1 αw,c,t

PWiFi

∑T
t=1 Lw,c,t

∀c ∈ Ĉj , (14)

where Ĉj is the subset of channels used by SBS j during T . Sc,t is the subset of SBSs that are

transmitting over channel c, c ∈ Ĉj , during time t and Ŝj,c is the subset of other neighboring

SBSs, i 6= j, that are using the same channel c ∈ Ĉj as SBS j during T . L̄j,t = Lj,t−
∑

c′ f(αj,c′,t)

corresponds to the remaining traffic that needs to be served by SBSs j with Lj,t being the total

aggregate traffic demand of SBS j on channel c during time epoch t. f(.) corresponds to the

served traffic load as a function of the airtime allocation. c′ represents all the set of channels

except channel c. αw,c,t = min(f(Lw,c,t), tmax−αj,c,t−
∑

i∈Sj,c,t αi,c,t) is the airtime allocated for

WLAN transmissions over channel c during time t. PWiFi and PLTE correspond to the priority

metric defined for each technology when operating on the unlicensed band. These parameters

allow adaptation of the level of fairness between LTE-U and WLAN.
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Constraint (13) represents inter-operator fairness which guarantees an equal weighted airtime

allocation among SBSs belonging to different operators on a given channel c. The adopted

notion of fairness is based on a long-term weighted equality over T , as opposed to instantaneous

weighted equality. wj,c =
∑T

t=1 xj,c,t is the weight of SBS j on channel c during T and thus

different SBSs are assigned different weights on each channel c based on the number of time

epochs t a given SBS j uses that particular channel. (14) defines an inter-technology fairness

metric to guarantee a long-term equal weighted airtime allocation over T for both LTE-U and

WiFi. Therefore, (13) and (14) reflect the inequity aversion property of the SBSs.

In fact, the optimal value of T , which corresponds to the time window size that allows the

maximum achievable throughput for LTE-U as compared to the reactive approach, is dataset

dependent. Next, we characterize the optimal value of T under a uniform traffic distribution.

Proposition 1. For a uniform traffic distribution, the optimal value of T is equal to 1.

Proof. Under a uniform demand model, the traffic load for each of SBS j and WAP w is an

independent and identically distributed (i.i.d.) sequence of random variables which implies that

all requests of the same user are statistically indistinguishable over time. In our model, WAPs are

passive in that their channel selection action is fixed and, thus, the activity on a given channel

is characterized by the level of activity of WAPs operating on that channel. In that case, the

WLAN traffic load on each channel also follows a uniform distribution. At the convergence

point, (8)-(14) are satisfied and, hence, the average airtime allocated to the LTE-U network on

channel c over the time window T will be:
1

T

T∑
t=1

∑
j∈Sc,t

αj,c,t =
PLTE

PWiFi

∑T
t=1

∑
j∈Sc,t L̄j,t∑T

t=1 Lw,c,t

1

T

T∑
t=1

αw,c,t ∀c ∈ C, (15)

However, for the case of uniform traffic demand, the channel selection vector over T is the

same for each SBS because the network state is the same for every t in T . Moreover, if an

SBS aggregates multiple channels, then its load on each channel is the same for each t in T .

This implies that L̄j,t for each SBS j is uniform over T and thus
∑T

t=1

∑
j∈Sc,t

L̄j,t∑T
t=1 Lw,c,t

=
∑

j∈Sc,t
L̄j,t

Lw,c,t
.

Consequently, (15) can be written as:
1

T

T∑
t=1

∑
j∈Sc,t

αj,c,t =
PLTE

PWiFi

∑
j∈Sc,t L̄j,t

Lw,c,t

1

T

T∑
t=1

αw,c,t ∀c ∈ C, (16)

When T = 1, the airtime allocated to the LTE-U network on channel c will be:∑
j∈Sc,t

αj,c,t =
PLTE

PWiFi

∑
j∈Sc,t L̄j,t

Lw,c,t
αw,c,t ∀t, c ∈ C, (17)
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Over a fixed time window T , the average airtime allocated to the LTE-U network on channel

c can be written as:
1

T

T∑
t=1

∑
j∈Sc,t

αj,c,t =
1

T

T∑
t=1

( PLTE

PWiFi

∑
j∈Sc,t L̄j,t

Lw,c,t
αw,c,t

)
(18)

=
PLTE

PWiFi

∑
j∈Sc,t L̄j,t

Lw,c,t

1

T

T∑
t=1

αw,c,t ∀c ∈ C. (19)

(19) is equivalent to (16) and, hence, our proposed framework does not offer any gain for the

LTE-U network when considering a time window T larger than 1 in the case of a uniform traffic

pattern. This completes the proof. �

From Proposition 1, we conclude that the gain of our proposed long-term fairness notion is

evident in the case of traffic fluctuations. Under a uniform traffic distribution, the SBSs cannot

make use of future off-peak times to shift part of their traffic forward in time and, hence, the gain

is limited to predicting the network state for the next time epoch only. It is also worth noting

that the gain of the proactive scheduling approach decreases in the case of a highly congested

WLAN network. This is mainly due to the fact that the system becomes more congested with

incoming requests, thereby restricting the opportunities of shifting part of the LTE-U load in the

future.

B. Equilibrium Analysis

Our game G belongs to the family of generalized Nash equilibrium problems (GNEPs) in

which both the objective functions and the action spaces are coupled. To solve the GNEP,

we incorporate the Lagrangian penalty method into the utility functions thus reducing it to a

simpler Nash equilibrium problem (NEP). The resulting penalized utility function will be given

by, ∀(j ∈ J ):

ûj(aj ,a−j) =
T∑

t=1

C∑
c=1

αj,c,trj,c,t−ρ1,j

C∑
c=1

T∑
t=1

(
min(0, tmax − αw,c,t − αj,c,t −

J∑
i=1,i6=j

αi,c,t)
)2

−ρ2,j

∑
c∈Ĉj

∑
i∈Ŝj,c(i6=j)

1

T 2

(
1

wj,c

∑T
t=1 αj,c,t∑T
t=1 L̄j,t

− 1

wi,c

∑T
t=1 αi,c,t∑T
t=1 L̄i,t

)2

−ρ3,j

∑
c∈Ĉj

1

T 2

( ∑T
t=1

∑
n∈Sc,t αn,c,t

PLTE

∑T
t=1

∑
n∈Sc,t L̄n,t

−
∑T

t=1 αw,c,t

PWiFi

∑T
t=1 Lw,c,t

)2

, (20)
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where ρ1,j , ρ2,j and ρ3,j are positive penalty coefficients corresponding to constraints (11), (13),

and (14), respectively. For our reformulation, we consider equal penalty coefficients for all players

for each coupled constraint, ρ1,j = ρ1, ρ2,j = ρ2 and ρ3,j = ρ3. This allows all SBSs to have

equal incentives to give up some payoff in order to satisfy the coupled constraints. To determine

the values of ρ1, ρ2 and ρ3, we adopt the incremental penalty algorithm in [19] where it has

been shown that there exists some penalty parameters ρ∗l = [ρ∗1, ρ
∗
2, ρ
∗
3] at which the coupled

constraints can be satisfied.

In our game G, αj,c,t is a continuous variable bounded between 0 and 1, however, for a

particular network state, we are interested only in a certain region of the continuous space

where the optimal actions are expected to be. Therefore, we will propose a sampling-based

approach to discretize αj,c,t in Section IV. Under such a discretization of the action space, we

turn our attention to mixed strategies in which players choose their strategies probabilistically.

Such a mixed-strategy approach enables us to analyze the frequency with which players choose

different channels and channel access combinations. In fact, the optimal policy is often stochastic

and therefore requires the selection of different actions with specific probabilities [20]. This, in

turn, validates our choice of adopting a mixed strategy approach as opposed to a pure strategy

one that is oriented towards finding deterministic policies. A player can possibly choose different

possible actions with different probabilities which enables it to play a combination of strategies

over time. Moreover, unlike pure strategies that might not exist for a particular game, there

always exists at least one equilibrium in mixed strategies [21].

Let ∆(A) be the set of all probability distributions over the action space A and pj =

[pj,a1 · · · , pj,a|Aj |
] be a probability distribution with which SBS j selects a particular action

from Aj . Therefore, our objective is to maximize the expected value of the utility function,

uj(pj,p−j) = Epj [ûj (aj,a−j)] =
∑
a∈A ûj(aj,a−j)

∏J
j=1 pj,aj

.

Definition 2. A mixed strategy p∗=(p∗1, · · · ,p∗J)=(p∗j ,p
∗
−j) constitutes a mixed-strategy Nash

equilibrium if, ∀j ∈ J and ∀pj ∈ ∆(Aj), uj(p∗j ,p
∗
−j) ≥ uj(pj,p

∗
−j).

Here, we note that any finite noncooperative game will admit at least one mixed-strategy

Nash equilibrium [21]. To solve for the mixed-strategy NE of our game G, we first consider the

simpler scenario in which the number of SBSs is less than the number of unlicensed channels.

Then, we develop a learning algorithm to handle the more realistic scenario in which the number

of SBSs is much larger than the number of unlicensed channels.
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Remark 1. If the number of SBSs is less than the number of available unlicensed channels

(i.e., J ≤ C), then the mixed-strategy NE solution will simply reduce to a pure strategy that is

reached when all SBSs occupy disjoint channels during each time epoch of the time window T .

To show this, we consider two cases depending on whether or not carrier aggregation is

enabled. Let Mc = 1. Consider the state in which each SBS is operating on a different unlicensed

channel. If SBS j changes its channel from c to c′ on which SBS i is transmitting, then it would

have to share channel c′ with SBS i in an equal weighted manner (based on the inter-operator

fairness constraint). This leads to a decrease in the reward function of SBS i on channel c′ (and

potentially for SBS j), which makes SBS i deviate to another channel that is less occupied (e.g.,

c). Therefore, a given strategy cannot be a best response (BR) strategy for SBS i in case it results

in its transmission on the same channel as SBS j. Therefore, all strategies that result in more

than one SBS occupying the same channel are dominated by the alternative where different SBSs

transmit on disjoint channels and hence cannot correspond to BR strategies. Consequently, at the

NE point, all SBSs play their BR strategies that would result in each SBS occupying a disjoint

channel. Similarly for Mc > 1. If SBS j transmits on multiple channels, then aggregating a

channel that is already occupied by SBS i would make SBS i change its operating channel to

a less congested one. This implies that an SBS would not aggregate more channels unless they

are not occupied by other SBSs.

Therefore, we can conclude that our proposed scheme results in having less number of SBSs

on each of the unlicensed bands. This leads to a lower collision probability on each channel and

a better coexistence with WLAN. Moreover, enabling carrier aggregation does not necessarily

allow LTE to offload more traffic to the unlicensed band. On the other hand, our proposed

scheme can avoid causing performance degradation to WLAN in case a large number of LTE

operators deploy LTE-U in the unlicensed bands.

Now, when J > C, multiple SBSs will then potentially have to share the same channel. In

this case, the mixed-strategy NE is challenging to characterize, and therefore, next, we propose

a learning-based approach for solving our game G. Given the fact that each SBS needs to learn

a sequence of actions over the time window T at t = 0 based on a sequence of previous network

states, the proposed learning algorithm must be capable of generating data that is sequential

in nature. This necessitates the knowledge of historical traffic values as well as future network

states for all the time epochs of the following time window T . Moreover, in order to satisfy the
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long-term fairness constraints (13) and (14), future actions cannot be assumed to be independent

due to the long-term temporal dependence among these actions. Conventional reinforcement

learning algorithms such as Q-learning and multi-armed bandit take as an input the current state

of the network and enable the prediction of the next state only and therefore do not account

for the interdependence of future actions [22]. To learn several steps ahead in time, recursive

learning can be adopted. However, such an approach uses values already predicted, instead

of measured past values which produces an accumulation of errors that may grow very fast.

In contrast, deep learning techniques, such as time series prediction algorithms, are capable of

learning long-term temporal dependence sequences based on input sequences [23]. This is viable

due to their adaptive memory that allows them to store necessary previous state information to

predict future events. Therefore, next, we develop a novel time series prediction algorithm based

on deep learning techniques for solving the mixed-strategy NE of our game.

IV. RL-LSTM FOR SELF-ORGANIZING RESOURCE ALLOCATION

The proposed game requires each SBS to learn a sequence of actions over the prediction

time window T , at t = 0, without any knowledge of future network states. This necessitates a

learning approach with memory for storing previous states whenever needed while being able to

learn a sequence of future network states. Employing LSTMs is therefore an obvious choice for

learning as they are capable of generating data that is sequential in nature [23]. Consequently,

we propose a novel sequence level training algorithm based on RL-LSTM that allows SBSs to

learn a sequence of future actions at operation time based on a sequence of historic traffic load

thus maximizing the sum of their future rewards.

LSTMs are a special kind of “deep” recurrent neural networks (RNNs) that are capable of

storing information for long periods of time and hence learning the long-term dependency within

a given sequence [24]. In essence, LSTMs process a variable-length sequence y = (y1, y2, ..., ym)

by incrementally adding new content into a single memory slot, with gates controlling the extent

to which new content should be memorized, old content should be erased, and current content

should be exposed. Unlike conventional RL techniques (e.g., Q-learning) that can learn the

action for the next state only, LSTM networks are capable of predicting a sequence of future

actions [23]. Predictions at a given time step are influenced by the network activations at previous

time steps thus making LSTMs suitable for our application in which an action at time t depends
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on all previous and future actions within the current window T . The total number of parameters

W in a standard LSTM network with one cell in each memory block is given by:

W = nc × nc × 4 + ni × nc × 4 + nc × no + nc × 3 (21)

where nc is the number of memory cells, ni is the number of input units, and no is the number of

output units. The computational complexity of learning LSTM models per weight and time step

is linear i.e., O(1). Therefore, the learning computational complexity per time step is O(W ) [25].

Consequently, we consider an end-to-end RL-LSTM based approach to train the network to

find a mixed-strategy NE of the game G. LSTMs have three types of layers, one input and one

output layer as well as a varying number of hidden layers depending on the dataset under study.

For our dataset, adding more hidden layers does not improve performance and thus one layer is

sufficient. Moreover, in order to allow a sequence to sequence mapping, we consider an encoder-

decoder model. The encoder network takes the input sequence and maps it to a vector of a fixed

dimensionality. The encoded representation is then used by the decoder network to decode the

target sequence from the vector. Fig. 3 summarizes the proposed approach. The traffic encoder

takes as an input the historical traffic loads and learns a vector representation of the input time-

series. The multi-layer perceptron (MLP) summarizes the input vectors into one vector. In our

scheme, an MLP is required to encode all the vectors together since a particular action at time

t depends on the values of all other input vectors (i.e., traffic values of all SBSs and WLAN

on all the unlicensed channels). The action decoder takes as an input the summarized vector to

reconstruct the predicted action sequence. All SBSs have the same input vector for the traffic

encoders and thus they share the same traffic encoders. On the other hand, SBSs learn different

action sequences and thus different SBSs use different action decoders.

In the first step, we need to train the neural networks in order to learn the parameters of the

algorithm that would maximize the proposed utility function. Therefore, the proposed algorithm

is divided into two phases, the training phase followed by the testing phase. In the former, SBSs

are trained offline before they become active in the network using the architecture given in

Fig. 3. The input dataset represents the WiFi traffic load distribution on the unlicensed channels

as well as the SBSs traffic load collected over several days. On the other hand, the testing

phase corresponds to the actual execution of the algorithm after which the parameters have been

optimized and is implemented on each SBS for execution during run time.
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Fig. 3: Proposed framework.

For the training phase, we train the weights of our neural network using a policy gradient

approach that aims at maximizing the expected return of a policy. This is achieved by representing

the policy by its own function approximator and updating it according to the gradient of the

expected reward with respect to the policy parameters [20]. Consider the set M of M history

traffic sequences corresponding to either an SBS or WiFi on each unlicensed channel, where

M = J + C. Let hm,t ∈ Rn and hj,t ∈ Rn be, respectively, the hidden vectors of the traffic

encoder m and action decoder of SBS j at time t. hm,t and hj,t are then computed by:

hm,t=φ (vm,t,hm,t−1) , hj,t=φ (vj,t,hj,t−1) , (22)

where φ refers to the LSTM cell function [24] being used, and vm,t is the input vector. For the

encoder, vm,t =
[
L̂m,t

]
is the history traffic value. For the decoder, vj,t = [W de(xj,t−1)||αj,c,t−1]

is the vector of the previous predicted action where e() maps discrete value to a one-hot vector,

W d ∈ Rn×Nx is a matrix that is used to transform the discrete actions of each of the unlicensed

channels into a vector, and Nx is the number of discrete actions. In our approach, we learn the

channel selection vector for all the channels simultaneously and thus xj,t = [xj,1,t, · · · , xj,C,t].

To learn the mixed strategy of our proposed game, we need to initialize the action space

with a subset of the continuous action space of αj,c,t. A naive approach for working with

continuous action spaces is to discretize the action space; however, this approach would lead to

combinatorial explosion and thus the well known problem of “curse of dimensionality” when

highly discretizing our space and a loss in the accuracy of the predicted action when considering

less discretized values. Therefore, we consider a sampling-based approach where we first define

a probability distribution for the continuous variable αj,c,t and for the discrete variable xj,c,t in

order to deal with the large discrete action space as T increases. We use a softmax classifier to

predict the distribution for the discrete variable xj,t and a Gaussian policy for the distribution of
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the continuous variable αj,c,t. For the Gaussian policy, the probability of an action is proportional

to a Gaussian distribution with a parameterized mean and a fixed value for the variance in our

implementation. The variance of the Gaussian distribution defines the area around the mean from

which we explore the action space. For our implementation, the initial value of the variance is set

to 0.06 in order to increase exploration and then is decreased linearly towards 0.02. Therefore,

defining probability distributions for our variables allows the initialization of the action space

Aj by sampling Z actions from the proposed distributions. This enables the SBSs to learn more

accurate transmission probabilities for αj,c,t, as opposed to fixed discretization, thus satisfying

the fairness constraints. The hidden vector hj,t in the decoder is used to predict the t-th output

actions xj,t and αj,c,t. The probability vector over xj,t and αj,c,t can be defined, respectively, as:

xj,t|xj,<t, αj,c,<t, L̂t ∼ σ (W xhj,t), (23)

µj,c,t = S (W µhj,t), αj,c,t ∼ N (µj,c,t,Var(αj,c,t)), (24)

where µj,c,t and Var(αj,c,t) correspond to the mean value and variance of the Gaussian policy

respectively, W x ∈ R|Va|×n,W µ ∈ Rn are parameters, σ(.) is the softmax function σ(b)q =

ebq∑O
o=1 e

bo
for q = 1, · · · , O, and S(.) is the sigmoid function where S(b) = 1

1+e−b and is used

to normalize the value to (0, 1). αj,c,t is computed only when xj,c,t = 1. The probability of the

whole action sequence for SBS j, given a historic traffic sequence L̂, pj,aj |L̂, is given by:

pj,aj |L̂ =
T∏
t=1

p
(

(xj,t, αj,c,t)|xj,<t, αj,c,<t, L̂t
)
, (25)

where L̂t=(L̂1,t, · · · , L̂M,t), xj,<t=[xj,1, · · · ,xj,t−1], and µj,c,<t=[µj,c,1, · · · , µj,c,t−1].

Our goal is to maximize the exact expectation of the reward ûj(aj,a−j) over the action space

for the training dataset. Therefore, the objective function can be defined as:

max
aj∈Aj

∑
D

uj(pj,p−j), (26)

where D is the training dataset. For this objective function, the REINFORCE algorithm [26] can

be used to compute the gradient of the expected reward with respect to the policy parameters,

and then standard gradient descent optimization algorithms [20] can be adopted to allow the

model to generate optimal action sequences for input history traffic values. Specifically, Monte

Carlo sampling is adopted to compute the expectation.

In particular, we adopt the RMSprop gradient descent optimization algorithm for the update

rule [27]. The learning rate of a particular weight is divided by a running average of the

magnitudes of recent gradients for that weight. The RMSprop update rule is given by:
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Algorithm 1 Training phase of the proposed approach.
Input: J ;W; C; L̂j,t∀j ∈ J , t; L̂w,c,t∀c ∈ C , t.
Initialization: The weights of all LSTMs are initialized following a uniform distribution with arbitrarily small values.

Training: Each SBS j is modeled as an LSTM network.

while Any of the coupled constraints is not satisfied do

for Number of training epochs do

for Size of the training dataset do

Step 1. Run Algorithm 2 to compute the best actions for all SBSs.

for j=1:J do

Step 2. Sample actions for SBS j based on the best expected actions of other SBSs.

Step 3. Use REINFORCE [26] to update rule and compute the gradient of the expected value of the reward function.

Step 4. Update model parameters with back-propagation algorithm [28].

end for

end for

end for

Step 5. Using the incremental penalty algorithm, check the feasibility of the coupled constraints and update the values of ρl accordingly.

end while

Algorithm 2 Testing phase of the proposed approach.
Input: J ;W; C; L̂j,t∀j ∈ J , t; L̂w,c,t∀c ∈ C , t.
for For each SBS j do

Step 1. Traffic history encoding: The history traffic of each SBS and WLAN activity on each channel is fed into each of the M LSTM

traffic encoders.

Step 2. Vector summarization: The encoded vectors are transformed to initialize action decoders.

Step 3. Action decoding: Action sequence is decoded for each SBS j.

end for

E[g2]t = γE[g2]t−1 + (1− γ)g2
t , (27)

θt+1 = θt −
λ√

E[g2]t + ε
gt, (28)

where θt corresponds to the model parameters at time t, gt is the gradient of the objective function

with respect to the parameter θ at time step t, E[g2]t is the expected value of the magnitudes of

recent gradients, γ is the discount factor, λ is the learning rate and ε is a smoothing parameter.

On the other hand, the testing phase corresponds to the actual execution of the algorithm on

each SBS. Based on historical traffic values, each SBS learns the future sequence of actions

based on the learned parameters from the training phase. For practicality, we assume knowledge

of historical measurements of the WiFi activity on each of the unlicensed channels through long-
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term channel sensing2 [5] and of other SBSs by exchanging past traffic information via the X2

interface. Consequently, the proposed algorithm offers a practical solution that is amenable to

implementation. The training and the testing phases are given in Algorithms 1 and 2 respectively.

It is important to note that guaranteeing the convergence of the proposed deep learning

algorithm is challenging as it is highly dependent on the hyperparameters used during the training

phase. It has been shown in [30] that the learning rate and the hidden layer size are the two most

important hyperparameters for the convergence of LSTMs. For instance, using too few neurons in

the hidden layers results in underfitting which could make it hard for the neural network to detect

the signals in a complicated data set. On the other hand, using too many neurons in the hidden

layers can either result in overfitting [31] or an increase in the training time that could prevent

the training of the neural network. Overfitting corresponds to the case when the model learns

the random fluctuations and noise in the training data set to the extent that it negatively impacts

the model’s ability to generalize when fed with new data. Therefore, in this work, we limit our

contribution to providing simulation results (see Section V) to show that, under a reasonable

choice of the hyperparameters, convergence is observed for our proposed game. In such cases,

it is important to characterize the convergence point of our proposed algorithm, which is given

as follows.

Theorem 1. If Algorithm 1 converges, then the convergence strategy profile corresponds to a

mixed-strategy NE of game G.

Proof. In order to prove this theorem, we first need to show that the solution of the adopted multi-

agent learning algorithm converges to an equilibrium point. In fact, every strict Nash equilibrium

is a local optimum for a gradient descent learning approach but the reverse is not always true

(Theorems 2 and 3 in [32]). Therefore, to show that a gradient-based learning method guarantees

convergence of our proposed game to an equilibrium point, we define the following lemma.

Lemma 1. The square of a linear function is convex. It follows that the payoff function of player

j defined in (20) is an affine combination of convex functions, and hence is convex. Therefore,

2We assume knowledge of WLAN historical traffic via long-term channel sensing for each of the C unlicensed channels using

Simple Network Management Protocol (SNMP) statistics [29]. To realize this, an SNMP agent with multiple interfaces can run

on each SBS to monitor the traffic values (i.e., byte counts) for periods of five minutes. This traffic is the total amount of bytes

received and sent from all clients associated with each WAP during a particular time interval.
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a gradient-based learning algorithm for our game G allows the convergence to an equilibrium

point of that game.

Lemma 1 is the consequence of the convexity of the players’ payoffs where it has been

shown in [33] that under certain convexity assumptions about the shape of payoff functions,

the gradient-descent process converges to an equilibrium point. However, convergence is only

guaranteed under a decreasing step-size sequence [34]. Therefore, given the fact that we employ

an adaptive learning rate method satisfying the Robbins-Monro conditions (λ > 0,
∑∞

t=0 λ(t) =

+∞,
∑∞

t=0 λ
2(t) < +∞), one can guarantee that under suitable initial conditions, our proposed

algorithm converges to an equilibrium point.

Moreover, following the penalized reformulation of our game G, one can easily show that

a strategy that violates the coupled constraints cannot be a best response strategy. From [19],

there exists ρ∗l such that the incremental penalty algorithm terminates. Therefore, there exists

a mixed strategy for which the coupled constraints are satisfied at ρ∗l . In that case, there is no

incentive for an SBS to violate any of the coupled constraints, otherwise, its reward function

would be penalized by the corresponding penalty function. Hence, all strategies that violate the

coupled constraints are dominated by the alternative of complying with these constraints. Since

in the proposed algorithm, the optimal strategy profile results in maximizing Epj [ûj (aj,a−j)],

we can conclude that the converged mixed-strategy NE is guaranteed not to violate the coupled

constraints and hence it corresponds to a mixed-strategy NE for the game G. Therefore, our

proposed learning algorithm learns a mixed strategy of the game G, by using a deep neural

network function approximator to represent strategies, and by averaging those strategies via

gradient descent machine learning techniques.

�

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a 300 m × 300 m square area in which we randomly deploy

a number of SBSs and WAPs that share 7 unlicensed channels. We use real data for traffic loads

from the dataset provided in [35] and divide it as 80% for training and 20% for testing. During

the training phase, we randomly shuffle examples in the training dataset in order to prevent cycles

when approximating the reward function. Table I summarizes the main simulation parameters.

All statistical results are averaged over a large number of independent runs.
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Table I:
SYSTEM PARAMETERS

Parameters Values Parameters Values

Transmit power (Pt) 20 dBm BW (channel) 20 MHz

CCA threshold -80 dBm Noise variance 92 dBm/Hz

Path loss 15.3 + 50 log10(m) SIFS 16 µs

Hidden size (encoder) 70 DIFS 34 µs

Hidden size (decoder) 70 CWmin 15 slots

time epoch (t) 5 min CWmax 1023 slots

Action sampling (Z) 100 samples ACK 256 bits

History traffic size 7 time epochs PLTE, PWiFi 1, 1

Learning rate (λ) 0.01 LSTM layers 1

Learning rate decay (γ) 0.95 tmax 0.9
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Fig. 4: The average throughput gain for LTE-U upon applying a proactive approach (with varying T ) as compared

to a reactive approach.

Fig. 4 shows the average throughput gain, compared to a reactive approach, achieved by the

proposed approach for different values of T under three different network scenarios. Intuitively,

a larger T provides the framework additional opportunities to benefit over the reactive approach,

which does not account for future traffic loads. First, evidently, for very small time windows, the

proactive approach does not yield any significant gains. However, as T increases, LTE-U network

utilizes statistical predictions for allocating resources and thus the gains start to become more

pronounced. For example, from Fig. 4, we can see that, for the case of 4 SBSs and 4 channels,

the gain increases from 2% to 20% as T increases from 2 to 5, respectively. Eventually, as T

grows, the gain of our proposed framework remains almost constant at the maximum achievable
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Fig. 5: The proportion of load served over LTE-U as a function of T .

value. This corresponds to the minimum value of T required to allow the LTE-U network smooth

out its load over time and thus achieve maximum gain while guaranteeing fairness to WLAN.

In Fig. 5, we evaluate the proportion of LTE-U served load for different values of T . Fig. 5

shows that, as T increases, the proportion of LTE-U served traffic increases. For example, the

proportion of served load increases from 82% to 97% for the case of 4 SBSs and 4 channels.

Clearly, the gain of the LTE-U network stems from the flexibility of choosing actions over a

large time horizon T . Unlike a reactive approach that allocates resources at time t based on the

current network state only, our proposed proactive scheme takes into account future predictions

of the network state along with the current state. Therefore, the optimal policy will balance the

instantaneous reward and the available information for future use and thus maximizing the total

load served over time. Based on the results given in Fig. 4 and Fig. 5, we can see that T = 8

is a suitable value of T for the studied dataset.

Fig. 6 shows the average airtime allocated for the LTE-U network as a function of T for

our proposed scheme as well as the centralized solution considering a proportional fairness (PF)

utility function subject to constraints (8)-(12) with T = 1. The centralized solution is obtained

using the branch-and-bound algorithm in [36]. From Fig. 6, we can see that for small values of

T , the PF allocation offers higher airtime allocation for the LTE-U network. For example, for

the scenario of 4 SBSs and 4 channels, PF offers airtime gains of 7% and 5% as compared to

our proposed approach for T = 1 and 2 respectively. However, as T increases, our proposed

scheme achieves more transmission opportunities for the LTE-U network as compared to the
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Fig. 6: The average airtime allocated for LTE-U (with varying T ) for our proposed scheme as well as that of the

centralized proportional fairness utility maximization.
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Fig. 7: The average airtime allocated for LTE-U (with varying T ) for our proposed scheme as well as that of the

centralized total network throughput utility maximization.

PF solution. For instance, for the scenario of 2 SBSs and 2 channels, our proposed scheme

achieves an increase of 11% in the transmission opportunities for T ≥ 8. This gain stems from

the proactive resource allocation approach that allows more flexibility in spectrum allocation as

T increases. Note that the resulting problem for the PF solution is a mixed integer nonlinear

optimization problem (MINLP) and therefore, finding its solution becomes challenging for larger

network scenarios due to the polynomial computational complexity.

Fig. 7 shows the average airtime allocated for the LTE-U network as a function of T for

our proposed scheme as well as the centralized solution considering a total network throughput
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Fig. 8: LTE/WLAN airtime ratio as a function of the LTE/WLAN traffic ratio for 3 different values of Mc (Mc = 1,

2 and 3). The number of unlicensed channels is fixed to 7 and the number of SBSs is equal to 2 and 7 in (a) and

(b) respectively.

(TNT) utility function subject to constraints (8)-(12) with T = 1. From Fig. 7, we can see that

our proposed resource allocation scheme offers higher transmission opportunities for LTE-U for

all values of T as compared to the centralized solution considering a TNT utility function. For

example, for the case of 4 SBSs and 4 channels, the gain for our proposed approach can reach

up to 52% for T ≥ 8. This is due to the fact that the TNT utility function does not take fairness

into account thus leading to a decrease in the LTE-U performance in the case of high WiFi

offered load.

Fig. 8 shows the value of the LTE/WLAN airtime ratio under varying LTE/WLAN traffic ratio

and for different values of Mc. We consider two different scenarios with varying number of SBSs

(2 and 7 SBSs for scenarios (a) and (b) respectively), while the number of unlicensed channels

is fixed to 7. Fig. 8 shows that inter-technology fairness is satisfied. This can be clearly seen in

scenario (b) for the case of Mc = 1. For instance, when the traffic ratio is 1, LTE/WLAN airtime

ratio is 1 and thus equal weighted airtime is allocated for each technology (given that PLTE = 1

and PWiFi = 1). From Fig. 8, we can also see that enabling carrier aggregation impacts the

resource allocation outcome. In fact, we can see that a considerable gain in terms of spectrum

access time can be achieved with carrier aggregation. For instance, in the case of 2 SBSs and

2 channels, the LTE/WLAN airtime ratio increases from 0.84 for Mc = 1 to 1.7 and 2.4 for

Mc = 2 and 3 respectively for the value of 0.6 for LTE/WLAN traffic ratio. On the other hand,

this gain decreases as more SBSs are deployed and for a densely deployed LTE-U network, there
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Fig. 9: The proportion of LTE-U served traffic load as a function of the number of SBSs and for different number

of unlicensed channels (C = 2, 4, and 7).

is no need to aggregate more channels. This can be seen from (b) where the LTE-U network

gets the same airtime share for Mc = 1, 2 and 3 (as also shown in Remark 1).

Moreover, Fig. 8 shows that deploying more SBSs does not necessarily allow more airtime

for the LTE-U network. For example, LTE/WLAN airtime ratio of scenarios (a) and (b) cor-

responding to 0.6 LTE/WLAN traffic ratio is equal to 0.84 and 0.6 respectively for Mc = 1.

Consequently, the proposed scheme can avoid causing performance degradation to WLAN in

the case LTE operators selfishly deploy a high number of SBSs.

Fig. 9 investigates the proportion of served LTE-U traffic for different network parameters.

From Fig. 9, we can see that, as the number of SBSs increases, the proportion of LTE-U served

traffic, relative to its corresponding offered load decreases thus avoiding degradation in the

WLAN performance in the case of a densely deployed LTE-U network. Moreover, reducing the

number of unlicensed channels leads to a decrease in the proportion of LTE-U served traffic.

Although the number of available unlicensed channels are not players in the game, they affect

spectrum allocation action selection for each SBS. As the number of channels increases, the

action space for the channel selection vector increases, thus giving more opportunities for an

SBS to serve more of its offered load.

Fig. 10 shows the total network served traffic load as well as that of LTE-U and WiFi as a

function of the priority fairness ratio on the unlicensed band (PLTE/PWiFi) for three different

network scenarios considering T = 6. From Figs. 10 (b) and (c), we can see that more LTE-

U and less WiFi traffic load is served as PLTE/PWiFi increases and thus the priority fairness
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Fig. 10: The proportion of the (a) total network served traffic load (b) LTE-U served traffic load and (c) WiFi

served traffic load as a function of the priority fairness ratio on the unlicensed band, (PLTE/PWiFi).

parameters PLTE and PWiFi can be regarded as network design parameters that can be adjusted

in a way that would avoid LTE-U from aggressively offloading traffic to the unlicensed bands

in the case of high LTE-U traffic load. Moreover, from Fig. 10 (a), we can see that the optimal

value of the priority fairness ratio PLTE/PWiFi is 1. At PLTE/PWiFi = 1, the total network served

traffic load is maximized while guaranteeing equal weighted airtime use of the unlicensed band

for both technologies thus allowing an efficient utilization of the unlicensed spectrum. Therefore,

our proposed spectrum sharing scheme achieves both efficiency and fairness.

Fig. 11 shows the average value of airtime allocated to the LTE-U network as a function of

the number of epochs required for the network to converge while considering different values

for the learning rate. The learning rate determines the step size the algorithm takes to reach the

minimizer and thus has an impact on the convergence rate of our proposed framework. Moreover,

an epoch, which consists of multiple iterations, is a single pass through the entire training set,

followed by testing of the verification set. From Fig. 11, we can see that for λ = 0.1, our

proposed algorithm requires more than 50 epochs to approximate the reward function, while, for

λ = 0.01, it only needs 20 epochs. In fact, for λ = 0.1, we can see that our proposed algorithm

fluctuates around a different region of the optimization space. Clearly, a learning rate that is too

large can cause the algorithm to diverge from the optimal solution. This is because too large

initial learning rates will decay the loss function faster and thus make the model get stuck at a

particular region of the optimization space instead of better exploring it. On the other hand, a

learning rate that is too small results in a low speed of convergence. For instance, for λ = 0.0001

and λ = 0.00005, our proposed algorithm requires ∼ 40 epochs to converge. Therefore, although
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Fig. 11: The average airtime allocated for LTE-U as a function of the number of epochs for different values of the

learning rate.

we use an adaptive learning rate approach, the optimization algorithm relies heavily on a good

choice of an initial learning rate [37]. In other words, the initial value of the learning rate should

be within a particular range in order to have good performance. Choosing a proper learning

rate is an important key aspect that has an impact on the solution as well as the convergence

speed. The optimal value of the initial learning rate is dependent on the dataset under study,

where for each dataset, there exists an interval of good learning rates at which the performance

does not vary much [30]. A typical range of the learning rate for the dataset under study falls

approximately between 0.0005 and 0.01, requiring ∼ 20 epochs.

VI. CONCLUSION

In this paper, we have proposed a novel resource allocation framework for the coexistence of

LTE-U and WiFi in the unlicensed band. We have formulated a game model where each SBS

seeks to maximize its rate over a given time horizon while achieving long-term equal weighted

fairness with WLAN and other LTE-U operators transmitting on the same channel. To solve this

problem, we have developed a novel deep learning algorithm based on LSTMs. The proposed

algorithm enables each SBS to decide on its spectrum allocation scheme autonomously with lim-

ited information on the network state. Simulation results have shown that the proposed approach

yields significant performance gains in terms of rate compared to conventional approaches that

considers only instantaneous network parameters such as instantaneous equal weighted fairness,

proportional fairness and total network throughput maximization. Results have also shown that
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our proposed scheme prevents disruption to WLAN operation in the case large number of LTE

operators selfishly deploy LTE-U in the unlicensed spectrum.
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