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Abstract

LTE in unlicensed spectrum (LTE-U) is a promising approach to overcome the wireless spectrum
scarcity. However, to reap the benefits of LTE-U, a fair coexistence mechanism with other incumbent
WiFi deployments is required. In this paper, a novel deep learning approach is proposed for modeling
the resource allocation problem of LTE-U small base stations (SBSs). The proposed approach enables
multiple SBSs to proactively perform dynamic channel selection, carrier aggregation, and fractional
spectrum access while guaranteeing fairness with existing WiFi networks and other LTE-U operators.
Adopting a proactive coexistence mechanism enables future delay-intolerant LTE-U data demands
to be served within a given prediction window ahead of their actual arrival time thus avoiding the
underutilization of the unlicensed spectrum during off-peak hours while maximizing the total served
LTE-U traffic load. To this end, a noncooperative game model is formulated in which SBSs are modeled
as Homo Egualis agents that aim at predicting a sequence of future actions and thus achieving long-
term equal weighted fairness with WLAN and other LTE-U operators over a given time horizon. The
proposed deep learning algorithm is then shown to reach a mixed-strategy Nash equilibrium (NE),
when it converges. Simulation results using real data traces show that the proposed scheme can yield
up to 28% and 11% gains over a conventional reactive approach and a proportional fair coexistence

mechanism, respectively. The results also show that the proposed framework prevents WiFi performance
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degradation for a densely deployed LTE-U network.

Index Terms
LTE-unlicensed (LTE-U); small cell; unlicensed band; long short term memory (LSTM); game

theory; proactive resource allocation

I. INTRODUCTION

LTE in unlicensed bands (LTE-U) has emerged as an effective solution to overcome the scarcity

of the radio spectrum [1]. Using LTE-U, a cellular small base station (SBS) can improve its



performance by simultaneously accessing licensed and unlicensed bands. However, to achieve
the promised quality-of-service (QoS) improvements from LTE-U, many challenges must be
addressed ranging from effective co-existence with existing WiFi networks to resource allocation,
multiple access, and inter-operator spectrum sharing [1].

If not properly deployed, LTE-U can significantly degrade the performance of WiFi [1].
There has been a number of recent works [2]-[9] that study the problem of enhanced LTE-
U and WiFi coexistence. This existing body of works can be categorized into two groups:
channel access [2]—[5] and channel selection [7]-[9]. The authors in [2]-[4] propose different
channel access mechanisms based on listen-before-talk (LBT) that rely on either an exponential
backoff [2], a fixed/random contention window (CW) size [3], or an adaptive CW size [4].
Nevertheless, an exponential backoff approach leads to unnecessary retransmissions while a fixed
CW size cannot handle time-varying traffic loads thus yielding unfair outcomes. The authors
in [5] develop a holistic approach for both traffic offloading and resource sharing across the
licensed and unlicensed bands but considering one SBS. In [6], the authors study the problem
of resource allocation with uplink-downlink decoupling for LTE-U. The authors in [10] propose
an inter-network coordination scheme with a centralized radio resource management for the
coexistence of LTE and WiFi. However, this prior art is limited to one unlicensed channel and
does not jointly account for channel selection and channel access. In other words, these works
do not analyze the potential gains that can be obtained upon aggregating or switching between
different unlicensed channels. Operating on a fixed unlicensed channel limits the amount of
cellular data traffic that can be offloaded to the unlicensed band and leads to an increase in
the interference level caused to neighboring WiFi access points (WAPs) operating on that same
channel.

In terms of LTE-U channel selection, the authors in [7] propose a distributed approach based on
Q-learning. A matching-based solution approach is proposed in [8], which is both distributed and
cooperative. Moreover, the work in [9] combines channel selection along with channel access.
Despite the promising results, all of these works [7]-[9] consider a reactive approach in which
data requests are first initiated and, then, resources are allocated based on their corresponding
delay tolerance value. Nevertheless, this sense-and-avoid approach can cause an underutilization
of the spectrum due to the impulsive reconfiguration of the spectrum usage that does not account
for the future dynamics of the network. Despite the predominance of the reactive LTE-WiFi

coexistence solutions, cellular data traffic networks are known to exhibit statistically fluctuating



and periodic demand patterns, especially applications such as file transfer, video streaming and
browsing [11], therefore providing an opportunity for the network to exploit the predictable
behavior of the users to smooth out the traffic over time and reduce the difference between the
peak and the average load. Therefore, in a proactive approach, rather than reactively responding
to incoming demands and serving them when requested, an SBS can predict traffic patterns and
determine future off-peak times so that incoming traffic demand can be properly allocated over
a given time window.

Therefore, the main motivation for adopting a proactive LTE-WiFi coexistence scheme is
to avoid the underutilization of the unlicensed spectrum during off-peak hours. This is mainly
accomplished by either serving a fraction of the LTE-U traffic when requested or shifting part of it
to the future, over a given time window, so as to balance the occupancy of the unlicensed spectrum
usage across time and, consequently, improve its degree of utilization. From the LTE-U network
perspective, this will increase its transmission opportunities on the unlicensed spectrum, reduce
the collision probability with WAPs and other SBSs and, hence, provide a boost for its throughput.
Moreover, a proactive resource allocation scheme can exploit the inherent predictability of the
future channel availability status so as to allocate resources in a window of time slots based on
the predicted requests. This, in turn, can lead to a decrease in the probability of occurrence of a
congestion event while ensuring a degree of fairness to the wireless local area network (WLAN).

The main contribution of this paper is a novel deep reinforcement learning algorithm based
on long short-term memory (RL-LSTM) cells for proactively allocating LTE-U resources over
the unlicensed spectrum. The LTE-U resource allocation problem is formulated as a noncoop-
erative game in which the players are the SBSs. To solve this game, we propose an RL-LSTM
framework using which the SBSs can autonomously learn which unlicensed channels to use
along with the corresponding channel access probability on each channel taking into account
future environmental changes, in terms of WLAN activity on the unlicensed channels and LTE-U
traffic loads. Unlike previous studies which are either centralized [9] or rely on the coordination
among SBSs [4], our approach is based on a self-organizing proactive resource allocation scheme
in which the SBSs utilize past observations of the network state to build predictive models
on spectrum availability and to intelligently plan channel usage over a finite time window.
The use of long short term memory (LSTM) cells enables the SBSs to predict a sequence of
interdependent actions over a long-term time horizon thus achieving long-term fairness among

different underlying technologies. We show that, upon convergence, the proposed algorithm
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Fig. 1: Illustration of the system model. In the above example, 3 SBSs belonging to different operators and 3
unlicensed channels are only shown for simplicity. The channel selection vector over a time window of 3 epochs
is also shown.
reaches to a mixed-strategy distribution which constitutes a mixed-strategy Nash equilibrium
(NE) for the studied game. We also show that the gain of the proposed proactive resource
allocation scheme and the optimal size of the prediction time window is a function of the traffic
pattern of the dataset under study. To the best of our knowledge, this is the first work that exploits
the framework of LSTMs for proactive resource allocation in LTE-U networks. Simulation results
show that the proposed approach yields significant rate improvements compared to conventional
reactive solutions such as instantaneous equal weighted fairness, proportional fairness and total
network throughput maximization. The results also show that the proposed scheme prevents
disruption to WLAN operation in the case large number of LTE operators selfishly deploy
LTE-U in the unlicensed spectrum. In terms of priority fairness, results show that an efficient
utilization of the unlicensed spectrum is guaranteed when both technologies, LTE-U and WLAN,
are given equal weighted priorities for transmission on the unlicensed spectrum.

The rest of this paper is organized as follows. In Section II, we present the system model.
Section III describes the proposed coexistence game model. The LSTM-based algorithm is
proposed in Section IV. In Section V, simulation results are analyzed. Finally, conclusions are

drawn in Section VI.

II. SYSTEM MODEL

Consider the downlink of an LTE-U network composed of a set 7 of J LTE-U SBSs belonging
to different LTE operators, a set VW of W WAPs, and a set C of C' unlicensed channels as shown
in Fig. 1. Each SBS j € J has a set K; of K; LTE-U UEs associated with it. We focus on
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Fig. 2: The division of the time domain into multiple time windows 7', each of which consists of multiple time

epochs ¢.

the operation of the SBSs over the unlicensed band, while the licensed spectrum resources are
assumed to be allocated in a conventional way [12]. Both SBSs and WAPs adopt the LBT access
scheme and, thus, at a particular time, a given unlicensed channel is occupied by either an SBS
or a WAP. We consider the LTE carrier aggregation feature using which the SBSs can aggregate
up to five component carriers belonging to the same or different operating frequency bands [13].
This, in turn, would enable the SBSs to operate on multiple unlicensed channels simultaneously
thus maximizing their data rate during a particular transmission opportunity.

Our goal is to jointly determine the dynamic channel selection, carrier aggregation, and
fractional spectrum access for each SBS, while guaranteeing long-term airtime fairness with
WLAN and other LTE-U operators. The main motivation for adopting a long-term fairness
approach is to avoid the underutilization of the unlicensed spectrum by either serving part of
the LTE-U traffic when requested or shifting part of it in the future over a given time window
in a way that would balance the occupancy of the unlicensed spectrum usage across time and,
consequently, improve its degree of utilization. This will subsequently result in an increase in
the transmission opportunities for LTE-U as well as a decrease in the collision probability for
the WLAN. To realize this, we need to dynamically analyze the usage of various unlicensed
channels over a particular time window. To this end, we divide our time domain into multiple
time windows of duration 7', each of which consists of multiple time epochs ¢, as shown in Fig. 2.
Our objective is to proactively determine the spectrum allocation vector for each SBS at ¢ =0
over 1" while guaranteeing long-term equal weighted airtime share with WLAN. To guarantee a
fair spectrum allocation among SBSs belonging to different operators, we consider inter-operator

interference along with inter-technology interference. In fact, inter-operator interference is the



consequence of the selfish behavior of different operators and could result in a degradation in
the spectral efficiency if not managed. Next, we define z;., = 1 if channel c is selected by SBS
j during time epoch ¢, and 0, otherwise, and «;.; € [0, 1]. ;. determines the channel ¢ that
is used by SBS j during time ¢ and «; ., is the channel access probability of SBS j on the
unlicensed channel c at time ¢.

A contention-based protocol is used for channel access over the unlicensed band. In this
protocol, prior to transmission, the SBS applies clear channel assessment to detect the state of
the channel (idle or busy) based on the detected energy level. If the channel is idle, the SBS gets
a transmit opportunity for up to 10 LTE sub-frames; otherwise, it keeps monitoring the channel
until it becomes idle. We consider an exponential backoff scheme for WiFi while the SBSs adjust
their CW size (and thus the channel access probability) on each of the selected channels in a
way that would guarantee a long-term equal weighted fairness with WLAN and other SBSs. In
fact, small CW sizes lead to an increase in the collision probability while large CW sizes result
in too much time spent waiting in idle slots. Therefore, an efficient access method should adapt
the value of the CW to the current traffic conditions.

To derive the throughput achieved by an LTE-U user equipment (UE) and a WAP, we first
define the stationary probability of each WAP w and each SBS j, 7, and 7; ., respectively. The
stationary probability is the probability with which a given base station attempts to transmit in
a randomly chosen slot. Considering an exponential backoff scheme for WiFi, the stationary

probability with which WAPs transmit a packet, 7,,, will be given by [14]:
2(1 — 2qy)
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where ¢, is the collision probability of a WAP, m is the maximum backoff stage where CW ., =

ey

Tw =

2" CW in. CWyin and CW ., are the minimum and maximum contention window size, respec-
tively. For LTE-U, m=0 since no exponential backoff is considered, and, thus, the stationary prob-
ability of an SBS on a given unlicensed channel ¢ during time epoch ¢ will be 7;.; = ﬁ
where CW; ., is the contention window size of SBS j on channel c¢ during time epoch ¢.
Therefore, we do not consider a contention stage for LTE-U. Instead, the SBSs adjust their CW

size adaptively to control their channel access probability over the unlicensed band. The collision

probability of a WAP is defined as ¢, = 1 — [[” (1 = 7) [T, (1 = 7jcs), where c is the

v=1,v#w j=1
channel used by WAP w. The throughput R,, of a WAP w will be:
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where E[D,,] is the expected payload size for WAP w, P, suecc = Tuw HZ‘;LU 7éw(l — Ty) H}]:1(1 -
T; ) 18 the probability of a successful transmission, Py, jqe = H‘jjzl(l —Tjet) H¥:1<1 —Tw) is the
probability of an idle slot, and P,, pusy = 1 — H;.Izl(l —Tjet) HwW:1(1 —T,) is the probability of a
busy slot, regardless of whether it corresponds to a collision or a successful transmission. § and
T, are, respectively, the average durations of an idle and a busy slot and, thus, the denominator
in (2) corresponds to the mean duration of a WiFi medium access control (MAC) slot.

The achievable airtime fraction for an LTE-U SBS j on channel ¢ at time ? is:

J w
Vet = Tjex || (1= 7ien) [ (1 = 7)- 3)
i=1,i%] w—1

The airtime fraction represents the time allocated for an SBS on channel ¢ during time t.

Thus, the total throughput of all K;; UEs that are served by SBS j during time epoch ¢ is:

C
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c=1
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Here, Ijco = Yoy Pucihuwiet + 3i1is; Prcthines is the interference level on SBS j when
operating on channel ¢ during time ¢ and B, is the bandwidth of channel c. P; ., is the transmit
power of SBS j on channel ¢ during time ¢. .+ is the channel gain between SBS j and UE
k on channel ¢ during time t. N is the power spectral density of additive white Gaussian noise.
Since SBSs and WAPs both adopt LBT, then one cell may occupy the entire channel at a given
time thus transmitting exclusively on a given channel c. However, hidden and exposed terminals
could be present on a given channel which can result in interference and thus a degradation in
the throughput.

Given this system model, next, we develop an effective spectrum allocation scheme that
can allocate the appropriate unlicensed channels along with the corresponding channel access

probabilities to each SBS simultaneously over 7', at ¢t = 0.

III. PROACTIVE RESOURCE ALLOCATION SCHEME FOR UNLICENSED LTE
A. Proactive Resource Allocation Game

We formulate the resource allocation problem as a noncooperative game G=(7, .A;, u;) with

the SBSs in J being the players, each of which must choose a channel selection and channel



access pair a; .y =(T; ) € Aj att = 0 for each ¢ of the next time window T'. The objective
of each SBS j is to maximize its total throughput over the selected channels:

U a]7 Z Zajctr],c ts (6)

t=1 c=1
where a; = [(aj11, - ,a;17), . (ajc1, - ,a;cr) and a_; correspond, respectively to the

action vector of SBS j and all other SBSs, over all the channels C during 7'. Note that the utility
function (6) of SBS j depends on its actions as well as those of other SBSs which makes the
formulation of a game model suitable for this problem. This is mainly due to the interference
from other SBSs transmitting on the same channel as SBS j as it was shown previously in the

definition of the rate expression in (5). The goal of each SBS j is to maximize its own utility:

m%i(u](aj,a_]) VyeJ, (7
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Oy et + aj,c,t + Z et S tmax VC, t, (11)
i=1,i#j
Tjet € {07 1}7 Qjet € [Oa 1] Ve, t, (12)

where M., is the total number of unlicensed channels which an SBS can aggregate. (8) allows
the allocation of a channel access proportion for SBS j on channel ¢ during ¢ only if SBS j
transmits on channel ¢ at time ¢. (9) guarantees that each SBS can aggregate a maximum of M,
channels at a given time ¢. (10) limits the amount of allocated bandwidth to the required demand
where f(L,;) captures the relationship between bandwidth requirement and oftered load. (11)
captures coupling constraints which limit the proportion of time used by SBSs and WLAN on
a given unlicensed band to the maximum fraction of time an unlicensed channel can be used,
tmax . (12) represents the feasibility constraints.

Given the fact that different operators and technologies have equal priorities on the unlicensed
spectrum, we incorporate the Homo Egualis (HE) anthropological model, an inequity-averse

based fairness model, into the strategy design of the agents [15].

Yt max depends on the channel access method in the unlicensed band and should be strictly less than 1 in the case of LBT,

otherwise, the channel will always be sensed busy and devices would not be able to access it.



Definition 1. Inequity aversion is the preference for fairness and resistance to incidental inequal-
ities. In other words, it refers to the willingness of giving up some material payoff in order to

move in the direction of more equitable outcomes.

In an HE society, agents focus not only on maximizing their own payoffs, but also become
aware of how their payoffs are compared to other agents’ payoffs [15], [16]. Therefore, their
utility function is influenced not only by their own reward, but also by envy and altruism. An
agent is altruistic to others if its payoff is above an equitable benchmark and is envious of the
others if its payoff exceeds that benchmark and therefore, an unfair distribution of resources
among agents results in disutility for inequity-averse agents. The HE concept comes from the
anthropological literature in which Homo sapiens evolved in small hunter-gatherer groups without
a centralized governance [15].

In fact, we incorporate the notion of airtime fairness in the modeling of our HE agents. The
average airtime per radio system is considered as one of the most important fairness metrics in
the unlicensed band and is the focus of this work [17]. Our motivation for considering a time-fair
channel allocation scheme is to overcome the rate anomaly problem that arises when different
nodes use distinct data rates, which leads to the slowest link limiting the system performance [4],
[17], and [18]. Therefore, to model our players as HE agents, we consider the following two

coupling constraints for the allocated airtime fraction on each channel ¢ for each SBS j:
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where (?] is the subset of channels used by SBS j during 7. S, is the subset of SBSs that are

Ve e C;, (14)

transmitting over channel ¢, ¢ € 5 ;, during time ¢ and gSA'jC is the subset of other neighboring

, Z f(ajc’t)

corresponds to the remaining traffic that needs to be served by SBSs j with L;, being the total

SBSs, i # 7, that are using the same channel ¢ € C as SBS j during T. L;; = L,

aggregate traffic demand of SBS j on channel ¢ during time epoch t. f(.) corresponds to the
served traffic load as a function of the airtime allocation. ¢’ represents all the set of channels
except channel c¢. oy cr = Min(f(Luw,et)s tmax — Qe — D e Sy @ t) is the airtime allocated for
WLAN transmissions over channel ¢ during time ¢. Py;r; and Pprg correspond to the priority
metric defined for each technology when operating on the unlicensed band. These parameters

allow adaptation of the level of fairness between LTE-U and WLAN.



Constraint (13) represents inter-operator fairness which guarantees an equal weighted airtime
allocation among SBSs belonging to different operators on a given channel c. The adopted
notion of fairness is based on a long-term weighted equality over ', as opposed to instantaneous
weighted equality. w; . = Zthl Zjc+ 18 the weight of SBS j on channel ¢ during 7" and thus
different SBSs are assigned different weights on each channel ¢ based on the number of time
epochs ¢ a given SBS j uses that particular channel. (14) defines an inter-technology fairness
metric to guarantee a long-term equal weighted airtime allocation over 7' for both LTE-U and
WiFi. Therefore, (13) and (14) reflect the inequity aversion property of the SBSs.

In fact, the optimal value of 7', which corresponds to the time window size that allows the
maximum achievable throughput for LTE-U as compared to the reactive approach, is dataset

dependent. Next, we characterize the optimal value of 7" under a uniform traffic distribution.
Proposition 1. For a uniform traffic distribution, the optimal value of 7" is equal to 1.

Proof. Under a uniform demand model, the traffic load for each of SBS j and WAP w is an
independent and identically distributed (i.i.d.) sequence of random variables which implies that
all requests of the same user are statistically indistinguishable over time. In our model, WAPs are
passive in that their channel selection action is fixed and, thus, the activity on a given channel
is characterized by the level of activity of WAPs operating on that channel. In that case, the
WLAN traffic load on each channel also follows a uniform distribution. At the convergence
point, (8)-(14) are satisfied and, hence, the average airtime allocated to the LTE-U network on

channel ¢ over the time window T will be:
T T
1 Pire 2 Z L1
0D g = e S § e Ve EC, (15)
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However, for the case of uniform traffic demand, the channel selection vector over 1’ is the

same for each SBS because the network state is the same for every ¢ in 7. Moreover, if an

SBS aggregates multiple channels, then its load on each channel is the same for each ¢ in 7.
23:1 Z]‘escﬁt Z’j,i . Z‘jESC7t Ejﬂf

This implies that L;, for each SBS j is uniform over 7" and thus ST Loy = Lo
t=1 Hw,c, w,c,

Consequently, (15) can be written as:
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When 7" = 1, the airtime allocated to the LTE-U network on channel ¢ will be:
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Over a fixed time window T, the average airtime allocated to the LTE-U network on channel

¢ can be written as:

T T 7
1 1 Pure 2jes.. Li
T Z Z Ajet = 7 Z ( ’ aw,c,t) (18)
T t=1 jE€Sey T i—1 PWiFi Lw,c,t
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(19) is equivalent to (16) and, hence, our proposed framework does not offer any gain for the
LTE-U network when considering a time window 7" larger than 1 in the case of a uniform traffic

pattern. This completes the proof. [

From Proposition 1, we conclude that the gain of our proposed long-term fairness notion is
evident in the case of traffic fluctuations. Under a uniform traffic distribution, the SBSs cannot
make use of future off-peak times to shift part of their traffic forward in time and, hence, the gain
is limited to predicting the network state for the next time epoch only. It is also worth noting
that the gain of the proactive scheduling approach decreases in the case of a highly congested
WLAN network. This is mainly due to the fact that the system becomes more congested with
incoming requests, thereby restricting the opportunities of shifting part of the LTE-U load in the

future.

B. Equilibrium Analysis

Our game G belongs to the family of generalized Nash equilibrium problems (GNEPs) in
which both the objective functions and the action spaces are coupled. To solve the GNEP,
we incorporate the Lagrangian penalty method into the utility functions thus reducing it to a
simpler Nash equilibrium problem (NEP). The resulting penalized utility function will be given

by, V(j € J): ;

T C 2
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where p1 ;, p2; and ps ; are positive penalty coefficients corresponding to constraints (11), (13),
and (14), respectively. For our reformulation, we consider equal penalty coefficients for all players
for each coupled constraint, p; ; = p1, p2; = p2 and ps; = ps. This allows all SBSs to have
equal incentives to give up some payoff in order to satisfy the coupled constraints. To determine
the values of p;, po and p3, we adopt the incremental penalty algorithm in [19] where it has
been shown that there exists some penalty parameters p; = [p}, p5, p5| at which the coupled
constraints can be satisfied.

In our game G, «;.; is a continuous variable bounded between O and 1, however, for a
particular network state, we are interested only in a certain region of the continuous space
where the optimal actions are expected to be. Therefore, we will propose a sampling-based
approach to discretize o, in Section IV. Under such a discretization of the action space, we
turn our attention to mixed strategies in which players choose their strategies probabilistically.
Such a mixed-strategy approach enables us to analyze the frequency with which players choose
different channels and channel access combinations. In fact, the optimal policy is often stochastic
and therefore requires the selection of different actions with specific probabilities [20]. This, in
turn, validates our choice of adopting a mixed strategy approach as opposed to a pure strategy
one that is oriented towards finding deterministic policies. A player can possibly choose different
possible actions with different probabilities which enables it to play a combination of strategies
over time. Moreover, unlike pure strategies that might not exist for a particular game, there
always exists at least one equilibrium in mixed strategies [21].

Let A(A) be the set of all probability distributions over the action space A and p; =
[Djas - s Diay Ajl} be a probability distribution with which SBS j selects a particular action

from A;. Therefore, our objective is to maximize the expected value of the utility function,

_ ~ ~ J
uj(pj,p_;) = Ep [uj(aj,a—;)] = > qcatj(aj,a;) 152 ;-

* ;) constitutes a mixed-strategy Nash

Definition 2. A mixed strategy p*=(pji,--- ,p})=(p},p
equilibrium if, Vj € J and Vp; € A(A;), u;(p},p*;) > u;(p;, p* ;).

Here, we note that any finite noncooperative game will admit at least one mixed-strategy
Nash equilibrium [21]. To solve for the mixed-strategy NE of our game G, we first consider the
simpler scenario in which the number of SBSs is less than the number of unlicensed channels.
Then, we develop a learning algorithm to handle the more realistic scenario in which the number

of SBSs is much larger than the number of unlicensed channels.



Remark 1. If the number of SBSs is less than the number of available unlicensed channels
(i.e., J < (O), then the mixed-strategy NE solution will simply reduce to a pure strategy that is

reached when all SBSs occupy disjoint channels during each time epoch of the time window 7.

To show this, we consider two cases depending on whether or not carrier aggregation is
enabled. Let M. = 1. Consider the state in which each SBS is operating on a different unlicensed
channel. If SBS j changes its channel from ¢ to ¢ on which SBS 7 is transmitting, then it would
have to share channel ¢ with SBS 7 in an equal weighted manner (based on the inter-operator
fairness constraint). This leads to a decrease in the reward function of SBS 7 on channel ¢ (and
potentially for SBS 7), which makes SBS i deviate to another channel that is less occupied (e.g.,
c). Therefore, a given strategy cannot be a best response (BR) strategy for SBS ¢ in case it results
in its transmission on the same channel as SBS j. Therefore, all strategies that result in more
than one SBS occupying the same channel are dominated by the alternative where different SBSs
transmit on disjoint channels and hence cannot correspond to BR strategies. Consequently, at the
NE point, all SBSs play their BR strategies that would result in each SBS occupying a disjoint
channel. Similarly for M. > 1. If SBS j transmits on multiple channels, then aggregating a
channel that is already occupied by SBS 7 would make SBS 7 change its operating channel to
a less congested one. This implies that an SBS would not aggregate more channels unless they
are not occupied by other SBSs.

Therefore, we can conclude that our proposed scheme results in having less number of SBSs
on each of the unlicensed bands. This leads to a lower collision probability on each channel and
a better coexistence with WLAN. Moreover, enabling carrier aggregation does not necessarily
allow LTE to offload more traffic to the unlicensed band. On the other hand, our proposed
scheme can avoid causing performance degradation to WLAN in case a large number of LTE
operators deploy LTE-U in the unlicensed bands.

Now, when J > C, multiple SBSs will then potentially have to share the same channel. In
this case, the mixed-strategy NE is challenging to characterize, and therefore, next, we propose
a learning-based approach for solving our game G. Given the fact that each SBS needs to learn
a sequence of actions over the time window 7" at ¢ = (0 based on a sequence of previous network
states, the proposed learning algorithm must be capable of generating data that is sequential
in nature. This necessitates the knowledge of historical traffic values as well as future network

states for all the time epochs of the following time window 7'. Moreover, in order to satisfy the



long-term fairness constraints (13) and (14), future actions cannot be assumed to be independent
due to the long-term temporal dependence among these actions. Conventional reinforcement
learning algorithms such as Q-learning and multi-armed bandit take as an input the current state
of the network and enable the prediction of the next state only and therefore do not account
for the interdependence of future actions [22]. To learn several steps ahead in time, recursive
learning can be adopted. However, such an approach uses values already predicted, instead
of measured past values which produces an accumulation of errors that may grow very fast.
In contrast, deep learning techniques, such as time series prediction algorithms, are capable of
learning long-term temporal dependence sequences based on input sequences [23]. This is viable
due to their adaptive memory that allows them to store necessary previous state information to
predict future events. Therefore, next, we develop a novel time series prediction algorithm based

on deep learning techniques for solving the mixed-strategy NE of our game.

IV. RL-LSTM FOR SELF-ORGANIZING RESOURCE ALLOCATION

The proposed game requires each SBS to learn a sequence of actions over the prediction
time window 7T, at ¢t = 0, without any knowledge of future network states. This necessitates a
learning approach with memory for storing previous states whenever needed while being able to
learn a sequence of future network states. Employing LSTMs is therefore an obvious choice for
learning as they are capable of generating data that is sequential in nature [23]. Consequently,
we propose a novel sequence level training algorithm based on RL-LSTM that allows SBSs to
learn a sequence of future actions at operation time based on a sequence of historic traffic load
thus maximizing the sum of their future rewards.

LSTMs are a special kind of “deep” recurrent neural networks (RNNs) that are capable of
storing information for long periods of time and hence learning the long-term dependency within
a given sequence [24]. In essence, LSTMs process a variable-length sequence y = (y1, ¥2, .-, Ym)
by incrementally adding new content into a single memory slot, with gates controlling the extent
to which new content should be memorized, old content should be erased, and current content
should be exposed. Unlike conventional RL techniques (e.g., Q-learning) that can learn the
action for the next state only, LSTM networks are capable of predicting a sequence of future
actions [23]. Predictions at a given time step are influenced by the network activations at previous

time steps thus making LSTMs suitable for our application in which an action at time ¢ depends



on all previous and future actions within the current window 7'. The total number of parameters

W in a standard LSTM network with one cell in each memory block is given by:

W=neXxn.x44+n; Xnex4+n.xXn,+n.,x3 21D

where 7, is the number of memory cells, n; is the number of input units, and n, is the number of
output units. The computational complexity of learning LSTM models per weight and time step
is linear i.e., O(1). Therefore, the learning computational complexity per time step is O(W) [25].

Consequently, we consider an end-to-end RL-LSTM based approach to train the network to
find a mixed-strategy NE of the game G. LSTMs have three types of layers, one input and one
output layer as well as a varying number of hidden layers depending on the dataset under study.
For our dataset, adding more hidden layers does not improve performance and thus one layer is
sufficient. Moreover, in order to allow a sequence to sequence mapping, we consider an encoder-
decoder model. The encoder network takes the input sequence and maps it to a vector of a fixed
dimensionality. The encoded representation is then used by the decoder network to decode the
target sequence from the vector. Fig. 3 summarizes the proposed approach. The traffic encoder
takes as an input the historical traffic loads and learns a vector representation of the input time-
series. The multi-layer perceptron (MLP) summarizes the input vectors into one vector. In our
scheme, an MLP is required to encode all the vectors together since a particular action at time
t depends on the values of all other input vectors (i.e., traffic values of all SBSs and WLAN
on all the unlicensed channels). The action decoder takes as an input the summarized vector to
reconstruct the predicted action sequence. All SBSs have the same input vector for the traffic
encoders and thus they share the same traffic encoders. On the other hand, SBSs learn different
action sequences and thus different SBSs use different action decoders.

In the first step, we need to train the neural networks in order to learn the parameters of the
algorithm that would maximize the proposed utility function. Therefore, the proposed algorithm
is divided into two phases, the training phase followed by the testing phase. In the former, SBSs
are trained offline before they become active in the network using the architecture given in
Fig. 3. The input dataset represents the WiFi traffic load distribution on the unlicensed channels
as well as the SBSs traffic load collected over several days. On the other hand, the testing
phase corresponds to the actual execution of the algorithm after which the parameters have been

optimized and is implemented on each SBS for execution during run time.
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Fig. 3: Proposed framework.

For the training phase, we train the weights of our neural network using a policy gradient
approach that aims at maximizing the expected return of a policy. This is achieved by representing
the policy by its own function approximator and updating it according to the gradient of the
expected reward with respect to the policy parameters [20]. Consider the set M of M history
traffic sequences corresponding to either an SBS or WiFi on each unlicensed channel, where
M = J+C. Let h,,; € R" and h;, € R" be, respectively, the hidden vectors of the traffic

encoder m and action decoder of SBS j at time ¢. h,,; and h;, are then computed by:
hm,t=¢ (’Um,t, hm,t—l) ) hj,t=§l5 (vj,ta hj,t—l) ) (22)

where ¢ refers to the LSTM cell function [24] being used, and v, is the input vector. For the
encoder, v,,; = [th] is the history traffic value. For the decoder, v;; = [W e(x;—1)||ajct—1]
is the vector of the previous predicted action where e() maps discrete value to a one-hot vector,
W, € RN is a matrix that is used to transform the discrete actions of each of the unlicensed
channels into a vector, and NV, is the number of discrete actions. In our approach, we learn the
channel selection vector for all the channels simultaneously and thus x;; = [zj14, -, Tjc4)-
To learn the mixed strategy of our proposed game, we need to initialize the action space
with a subset of the continuous action space of «;.;. A naive approach for working with
continuous action spaces is to discretize the action space; however, this approach would lead to
combinatorial explosion and thus the well known problem of “curse of dimensionality” when
highly discretizing our space and a loss in the accuracy of the predicted action when considering
less discretized values. Therefore, we consider a sampling-based approach where we first define
a probability distribution for the continuous variable «; ., and for the discrete variable z;.; in

order to deal with the large discrete action space as 7' increases. We use a softmax classifier to

predict the distribution for the discrete variable x;, and a Gaussian policy for the distribution of



the continuous variable «; .. For the Gaussian policy, the probability of an action is proportional
to a Gaussian distribution with a parameterized mean and a fixed value for the variance in our
implementation. The variance of the Gaussian distribution defines the area around the mean from
which we explore the action space. For our implementation, the initial value of the variance is set
to 0.06 in order to increase exploration and then is decreased linearly towards 0.02. Therefore,
defining probability distributions for our variables allows the initialization of the action space
A; by sampling Z actions from the proposed distributions. This enables the SBSs to learn more
accurate transmission probabilities for .., as opposed to fixed discretization, thus satisfying
the fairness constraints. The hidden vector h;; in the decoder is used to predict the ¢-th output

actions x;; and «; .. The probability vector over =, and «;.; can be defined, respectively, as:

L@, oty Ly ~ 0 (W k), (23)
Hject = S (W,uhjﬂf)’ Qjet ™~ N(“J}c,ta var(a/j,c,t))a (24)

where fi;., and Var(a;..) correspond to the mean value and variance of the Gaussian policy

respectively, W, € RIVa" W, € R" are parameters, o(.) is the softmax function o(b), =

oebqebo for g = 1,---,0, and S(.) is the sigmoid function where S(b) = ——; and is used

Zo:l 14+e—b
to normalize the value to (0,1). ., is computed only when z,., = 1. The probability of the

whole action sequence for SBS j, given a historic traffic sequence L, Pja,|L is given by:

T
Piayi =117 ((mjm Qo) [T <t Qe <t Lt>, (25)
t=1
Where Lt:(Ll’t7 e 7LM7t>’ w]7<t:|:w.]717 T 7w.j7t71j|’ and /'Lj,C,<t:|:/’l/j,C,17 T 7/’[/j,C,t71j|'

Our goal is to maximize the exact expectation of the reward u;(a;, a_;) over the action space

for the training dataset. Therefore, the objective function can be defined as:

max Z w;(p;j,p_;), (26)
D

4jCA

where D is the training dataset. For this objective function, the REINFORCE algorithm [26] can
be used to compute the gradient of the expected reward with respect to the policy parameters,
and then standard gradient descent optimization algorithms [20] can be adopted to allow the
model to generate optimal action sequences for input history traffic values. Specifically, Monte
Carlo sampling is adopted to compute the expectation.

In particular, we adopt the RMSprop gradient descent optimization algorithm for the update
rule [27]. The learning rate of a particular weight is divided by a running average of the

magnitudes of recent gradients for that weight. The RMSprop update rule is given by:



Algorithm 1 Training phase of the proposed approach.

Input: J; W;C; Lj4Vj € T, t; Lu,ciVe € C Lt
Initialization: The weights of all LSTMs are initialized following a uniform distribution with arbitrarily small values.
Training: Each SBS j is modeled as an LSTM network.
while Any of the coupled constraints is not satisfied do
for Number of training epochs do
for Size of the training dataset do
Step 1. Run Algorithm 2 to compute the best actions for all SBSs.
for j=1:J do
Step 2. Sample actions for SBS j based on the best expected actions of other SBSs.
Step 3. Use REINFORCE [26] to update rule and compute the gradient of the expected value of the reward function.
Step 4. Update model parameters with back-propagation algorithm [28].
end for
end for
end for
Step 5. Using the incremental penalty algorithm, check the feasibility of the coupled constraints and update the values of p; accordingly.

end while

Algorithm 2 Testing phase of the proposed approach.

Input: J;W;C;Ej’ﬁj eJ,t; Zw,c,th eC,t.
for For each SBS j do
Step 1. Traffic history encoding: The history traffic of each SBS and WLAN activity on each channel is fed into each of the M LSTM
traffic encoders.
Step 2. Vector summarization: The encoded vectors are transformed to initialize action decoders.
Step 3. Action decoding: Action sequence is decoded for each SBS j.

end for

El¢’]; = vElg*li-1 + (1 — )97, (27)
A

b1 =0, — —— g, 28

t+1 t ]E[gQ]t n Egt (28)

where 6, corresponds to the model parameters at time #, g, is the gradient of the objective function
with respect to the parameter 6 at time step ¢, E[g?]; is the expected value of the magnitudes of
recent gradients, +y is the discount factor, A is the learning rate and € is a smoothing parameter.

On the other hand, the testing phase corresponds to the actual execution of the algorithm on
each SBS. Based on historical traffic values, each SBS learns the future sequence of actions
based on the learned parameters from the training phase. For practicality, we assume knowledge

of historical measurements of the WiFi activity on each of the unlicensed channels through long-



term channel sensing? [5] and of other SBSs by exchanging past traffic information via the X2
interface. Consequently, the proposed algorithm offers a practical solution that is amenable to
implementation. The training and the testing phases are given in Algorithms 1 and 2 respectively.

It is important to note that guaranteeing the convergence of the proposed deep learning
algorithm is challenging as it is highly dependent on the hyperparameters used during the training
phase. It has been shown in [30] that the learning rate and the hidden layer size are the two most
important hyperparameters for the convergence of LSTMs. For instance, using too few neurons in
the hidden layers results in underfitting which could make it hard for the neural network to detect
the signals in a complicated data set. On the other hand, using too many neurons in the hidden
layers can either result in overfitting [31] or an increase in the training time that could prevent
the training of the neural network. Overfitting corresponds to the case when the model learns
the random fluctuations and noise in the training data set to the extent that it negatively impacts
the model’s ability to generalize when fed with new data. Therefore, in this work, we limit our
contribution to providing simulation results (see Section V) to show that, under a reasonable
choice of the hyperparameters, convergence is observed for our proposed game. In such cases,
it is important to characterize the convergence point of our proposed algorithm, which is given

as follows.

Theorem 1. If Algorithm 1 converges, then the convergence strategy profile corresponds to a

mixed-strategy NE of game G.

Proof. In order to prove this theorem, we first need to show that the solution of the adopted multi-
agent learning algorithm converges to an equilibrium point. In fact, every strict Nash equilibrium
is a local optimum for a gradient descent learning approach but the reverse is not always true
(Theorems 2 and 3 in [32]). Therefore, to show that a gradient-based learning method guarantees

convergence of our proposed game to an equilibrium point, we define the following lemma.

Lemma 1. The square of a linear function is convex. It follows that the payoff function of player

J defined in (20) is an affine combination of convex functions, and hence is convex. Therefore,

*We assume knowledge of WLAN historical traffic via long-term channel sensing for each of the C' unlicensed channels using
Simple Network Management Protocol (SNMP) statistics [29]. To realize this, an SNMP agent with multiple interfaces can run
on each SBS to monitor the traffic values (i.e., byte counts) for periods of five minutes. This traffic is the total amount of bytes

received and sent from all clients associated with each WAP during a particular time interval.
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a gradient-based learning algorithm for our game G allows the convergence to an equilibrium

point of that game.

Lemma 1 is the consequence of the convexity of the players’ payoffs where it has been
shown in [33] that under certain convexity assumptions about the shape of payoff functions,
the gradient-descent process converges to an equilibrium point. However, convergence is only
guaranteed under a decreasing step-size sequence [34]. Therefore, given the fact that we employ
an adaptive learning rate method satisfying the Robbins-Monro conditions (A > 0, 2  A(t) =
+00, >0y A%(t) < +00), one can guarantee that under suitable initial conditions, our proposed
algorithm converges to an equilibrium point.

Moreover, following the penalized reformulation of our game ¢, one can easily show that
a strategy that violates the coupled constraints cannot be a best response strategy. From [19],
there exists p; such that the incremental penalty algorithm terminates. Therefore, there exists
a mixed strategy for which the coupled constraints are satisfied at p;. In that case, there is no
incentive for an SBS to violate any of the coupled constraints, otherwise, its reward function
would be penalized by the corresponding penalty function. Hence, all strategies that violate the
coupled constraints are dominated by the alternative of complying with these constraints. Since
in the proposed algorithm, the optimal strategy profile results in maximizing I, [u; (a;, a-;)],
we can conclude that the converged mixed-strategy NE is guaranteed not to violate the coupled
constraints and hence it corresponds to a mixed-strategy NE for the game G. Therefore, our
proposed learning algorithm learns a mixed strategy of the game G, by using a deep neural
network function approximator to represent strategies, and by averaging those strategies via

gradient descent machine learning techniques.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, we consider a 300 m x 300 m square area in which we randomly deploy
a number of SBSs and WAPs that share 7 unlicensed channels. We use real data for traffic loads
from the dataset provided in [35] and divide it as 80% for training and 20% for testing. During
the training phase, we randomly shuffle examples in the training dataset in order to prevent cycles
when approximating the reward function. Table I summarizes the main simulation parameters.

All statistical results are averaged over a large number of independent runs.
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Table I:
SYSTEM PARAMETERS

Parameters Values Parameters Values
Transmit power (F;) 20 dBm BW (channel) 20 MHz
CCA threshold -80 dBm Noise variance | 92 dBm/Hz
Path loss 15.3 4+ 501log; 4 (m) SIFS 16 ps
Hidden size (encoder) 70 DIFS 34 us
Hidden size (decoder) 70 CWin 15 slots
time epoch (t) 5 min CWax 1023 slots
Action sampling (Z2) 100 samples ACK 256 bits
History traffic size 7 time epochs Prre, Pwiri 1, 1
Learning rate (\) 0.01 LSTM layers 1
Learning rate decay (v) 0.95 tmax 0.9
0.7

-8 Proposed scheme - 2 SBSs, 2 channels
-~ Proposed scheme - 4 SBSs, 4 channels
r|-e-Proposed scheme - 7 SBSs, 7 channels
-B-Reactive approach - 2 SBSs, 2 channelg

-x-Reactive approach - 4 SBSs, 4 channels
| |-@-Reactive approach - 7 SBSs, 7 channels|

o
o
)

g
2}

0.55¢

0.45¢

Average airtime allocation for LTE-U
o
()]

2 4 _6 8 _ 10 12
Time window T

Fig. 4: The average throughput gain for LTE-U upon applying a proactive approach (with varying 7T') as compared

to a reactive approach.

Fig. 4 shows the average throughput gain, compared to a reactive approach, achieved by the
proposed approach for different values of 7" under three different network scenarios. Intuitively,
a larger 7' provides the framework additional opportunities to benefit over the reactive approach,
which does not account for future traffic loads. First, evidently, for very small time windows, the
proactive approach does not yield any significant gains. However, as 7" increases, LTE-U network
utilizes statistical predictions for allocating resources and thus the gains start to become more
pronounced. For example, from Fig. 4, we can see that, for the case of 4 SBSs and 4 channels,
the gain increases from 2% to 20% as 1" increases from 2 to 5, respectively. Eventually, as T'

grows, the gain of our proposed framework remains almost constant at the maximum achievable
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Fig. 5: The proportion of load served over LTE-U as a function of 7T'.

value. This corresponds to the minimum value of 7" required to allow the LTE-U network smooth
out its load over time and thus achieve maximum gain while guaranteeing fairness to WLAN.

In Fig. 5, we evaluate the proportion of LTE-U served load for different values of 7. Fig. 5
shows that, as 7" increases, the proportion of LTE-U served traffic increases. For example, the
proportion of served load increases from 82% to 97% for the case of 4 SBSs and 4 channels.
Clearly, the gain of the LTE-U network stems from the flexibility of choosing actions over a
large time horizon 7'. Unlike a reactive approach that allocates resources at time ¢ based on the
current network state only, our proposed proactive scheme takes into account future predictions
of the network state along with the current state. Therefore, the optimal policy will balance the
instantaneous reward and the available information for future use and thus maximizing the total
load served over time. Based on the results given in Fig. 4 and Fig. 5, we can see that 7' = 8
is a suitable value of 7" for the studied dataset.

Fig. 6 shows the average airtime allocated for the LTE-U network as a function of 7" for
our proposed scheme as well as the centralized solution considering a proportional fairness (PF)
utility function subject to constraints (8)-(12) with 7" = 1. The centralized solution is obtained
using the branch-and-bound algorithm in [36]. From Fig. 6, we can see that for small values of
T, the PF allocation offers higher airtime allocation for the LTE-U network. For example, for
the scenario of 4 SBSs and 4 channels, PF offers airtime gains of 7% and 5% as compared to
our proposed approach for 7' = 1 and 2 respectively. However, as 7" increases, our proposed

scheme achieves more transmission opportunities for the LTE-U network as compared to the
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0.7

-8 Proposed scheme - 2 SBSs, 2 channels
—Proposed scheme - 4 SBSs, 4 channels
-6-Proposed scheme - 7 SBSs, 7 channels
-8-TNT - 2 SBSs, 2 channels
-x-TNT - 4 SBSs, 4 channels
-©-TNT - 7 SBSs, 7 channels

o
fe)

o
&)

“6-0--0--6--0--0--0--0--6--0--¢

°
B o

R e bt SEE SR SR SR T SR

o
LW

i--H--&-G--8--8-0G--8--0--0--0--8--4

Average airtime allocation for LTE-U

o
[N

2 4 6 8 10 12
Time window T

Fig. 7: The average airtime allocated for LTE-U (with varying T') for our proposed scheme as well as that of the

centralized total network throughput utility maximization.

PF solution. For instance, for the scenario of 2 SBSs and 2 channels, our proposed scheme
achieves an increase of 11% in the transmission opportunities for 7" > 8. This gain stems from
the proactive resource allocation approach that allows more flexibility in spectrum allocation as
T increases. Note that the resulting problem for the PF solution is a mixed integer nonlinear
optimization problem (MINLP) and therefore, finding its solution becomes challenging for larger
network scenarios due to the polynomial computational complexity.

Fig. 7 shows the average airtime allocated for the LTE-U network as a function of 7' for

our proposed scheme as well as the centralized solution considering a total network throughput
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2 and 3). The number of unlicensed channels is fixed to 7 and the number of SBSs is equal to 2 and 7 in (a) and

(b) respectively.

(TNT) utility function subject to constraints (8)-(12) with 7' = 1. From Fig. 7, we can see that
our proposed resource allocation scheme offers higher transmission opportunities for LTE-U for
all values of 7" as compared to the centralized solution considering a TNT utility function. For
example, for the case of 4 SBSs and 4 channels, the gain for our proposed approach can reach
up to 52% for T' > 8. This is due to the fact that the TNT utility function does not take fairness
into account thus leading to a decrease in the LTE-U performance in the case of high WiFi
offered load.

Fig. 8 shows the value of the LTE/WLAN airtime ratio under varying LTE/WLAN traffic ratio
and for different values of M,.. We consider two different scenarios with varying number of SBSs
(2 and 7 SBSs for scenarios (a) and (b) respectively), while the number of unlicensed channels
is fixed to 7. Fig. 8 shows that inter-technology fairness is satisfied. This can be clearly seen in
scenario (b) for the case of M. = 1. For instance, when the traffic ratio is 1, LTE/WLAN airtime
ratio is 1 and thus equal weighted airtime is allocated for each technology (given that Prrg =1
and Py = 1). From Fig. 8, we can also see that enabling carrier aggregation impacts the
resource allocation outcome. In fact, we can see that a considerable gain in terms of spectrum
access time can be achieved with carrier aggregation. For instance, in the case of 2 SBSs and
2 channels, the LTE/WLAN airtime ratio increases from 0.84 for M, = 1 to 1.7 and 2.4 for
M. = 2 and 3 respectively for the value of 0.6 for LTE/WLAN traffic ratio. On the other hand,

this gain decreases as more SBSs are deployed and for a densely deployed LTE-U network, there
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is no need to aggregate more channels. This can be seen from (b) where the LTE-U network
gets the same airtime share for M. = 1, 2 and 3 (as also shown in Remark 1).

Moreover, Fig. 8 shows that deploying more SBSs does not necessarily allow more airtime
for the LTE-U network. For example, LTE/WLAN airtime ratio of scenarios (a) and (b) cor-
responding to 0.6 LTE/WLAN traffic ratio is equal to 0.84 and 0.6 respectively for M, = 1.
Consequently, the proposed scheme can avoid causing performance degradation to WLAN in
the case LTE operators selfishly deploy a high number of SBSs.

Fig. 9 investigates the proportion of served LTE-U traffic for different network parameters.
From Fig. 9, we can see that, as the number of SBSs increases, the proportion of LTE-U served
traffic, relative to its corresponding offered load decreases thus avoiding degradation in the
WLAN performance in the case of a densely deployed LTE-U network. Moreover, reducing the
number of unlicensed channels leads to a decrease in the proportion of LTE-U served traffic.
Although the number of available unlicensed channels are not players in the game, they affect
spectrum allocation action selection for each SBS. As the number of channels increases, the
action space for the channel selection vector increases, thus giving more opportunities for an
SBS to serve more of its offered load.

Fig. 10 shows the total network served traffic load as well as that of LTE-U and WiFi as a
function of the priority fairness ratio on the unlicensed band (P rr/Pwir;) for three different
network scenarios considering 7' = 6. From Figs. 10 (b) and (c), we can see that more LTE-

U and less WiFi traffic load is served as Pprg/Pwir; increases and thus the priority fairness



26

< (a) (b) (c)

80'6 ) ! BRPTOISCSTSOOTTT o 1 -82 SBSs, 2 channels

o 2 g -4 SBSs, 4 channels

) 3038 -2 SBSs, 2 channels|| & 0.8 -6-7 SBSs, 7 channels

s ) -4 SBSs, 4 channels|| 2

; “}:_u 0.6 -©-7 SBSs, 7 channels % 0.6

C;’ 0.3 82 SBSs, 2 channels D =

© -4 SBSs, 4 channels| |}, 0.4 L 04

(_fs 0.2 -7 SBSs, 7 channels| F S

© ]

R B 0 L

3 0 1 2 3 0 1 2 3 0 1 2 3
Priority ratio (PLTI:JPWiFi) Priority ratio (PLTE/PWiFi) Priority ratio (PLTE/PWiFi)
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served traffic load as a function of the priority fairness ratio on the unlicensed band, (Pr,re/Pwiri).

parameters P g and Pyir; can be regarded as network design parameters that can be adjusted
in a way that would avoid LTE-U from aggressively offloading traffic to the unlicensed bands
in the case of high LTE-U traffic load. Moreover, from Fig. 10 (a), we can see that the optimal
value of the priority fairness ratio Py rg/Pwir; 1s 1. At Prre/Pwir; = 1, the total network served
traffic load is maximized while guaranteeing equal weighted airtime use of the unlicensed band
for both technologies thus allowing an efficient utilization of the unlicensed spectrum. Therefore,
our proposed spectrum sharing scheme achieves both efficiency and fairness.

Fig. 11 shows the average value of airtime allocated to the LTE-U network as a function of
the number of epochs required for the network to converge while considering different values
for the learning rate. The learning rate determines the step size the algorithm takes to reach the
minimizer and thus has an impact on the convergence rate of our proposed framework. Moreover,
an epoch, which consists of multiple iterations, is a single pass through the entire training set,
followed by testing of the verification set. From Fig. 11, we can see that for A = 0.1, our
proposed algorithm requires more than 50 epochs to approximate the reward function, while, for
A = 0.01, it only needs 20 epochs. In fact, for A = 0.1, we can see that our proposed algorithm
fluctuates around a different region of the optimization space. Clearly, a learning rate that is too
large can cause the algorithm to diverge from the optimal solution. This is because too large
initial learning rates will decay the loss function faster and thus make the model get stuck at a
particular region of the optimization space instead of better exploring it. On the other hand, a
learning rate that is too small results in a low speed of convergence. For instance, for A = 0.0001

and A = 0.00005, our proposed algorithm requires ~ 40 epochs to converge. Therefore, although
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Fig. 11: The average airtime allocated for LTE-U as a function of the number of epochs for different values of the

learning rate.

we use an adaptive learning rate approach, the optimization algorithm relies heavily on a good
choice of an initial learning rate [37]. In other words, the initial value of the learning rate should
be within a particular range in order to have good performance. Choosing a proper learning
rate is an important key aspect that has an impact on the solution as well as the convergence
speed. The optimal value of the initial learning rate is dependent on the dataset under study,
where for each dataset, there exists an interval of good learning rates at which the performance
does not vary much [30]. A typical range of the learning rate for the dataset under study falls

approximately between 0.0005 and 0.01, requiring ~ 20 epochs.

VI. CONCLUSION

In this paper, we have proposed a novel resource allocation framework for the coexistence of
LTE-U and WiFi in the unlicensed band. We have formulated a game model where each SBS
seeks to maximize its rate over a given time horizon while achieving long-term equal weighted
fairness with WLAN and other LTE-U operators transmitting on the same channel. To solve this
problem, we have developed a novel deep learning algorithm based on LSTMs. The proposed
algorithm enables each SBS to decide on its spectrum allocation scheme autonomously with lim-
ited information on the network state. Simulation results have shown that the proposed approach
yields significant performance gains in terms of rate compared to conventional approaches that
considers only instantaneous network parameters such as instantaneous equal weighted fairness,

proportional fairness and total network throughput maximization. Results have also shown that
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our proposed scheme prevents disruption to WLAN operation in the case large number of LTE

operators selfishly deploy LTE-U in the unlicensed spectrum.
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