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Success Probability and Area Spectral Efficiency of
a VANET Modeled as a Cox Process

Vishnu Vardhan Chetlur and Harpreet S. Dhillon

Abstract—This paper analyzes the performance of a vehicular
ad hoc network (VANET) modeled as a Cox process, where the
spatial layout of the roads is modeled by a Poisson line process
(PLP) and the locations of nodes on each line are modeled as a
1D Poisson point process (PPP). For this setup, we characterize
the success probability of a typical link and the area spectral
efficiency (ASE) of the network assuming slotted ALOHA as the
channel access scheme. We then concretely establish that the
success probability of a typical link in a VANET modeled using
a Cox process converges to that of a 1D and 2D PPP for some
extreme values of the line and node densities. We also study
the trends in success probability as a function of the system
parameters and show that the optimum transmission probability
that maximizes the ASE for this Cox process model differs
significantly from those of the relatively-simpler 1D and 2D
PPP models used commonly in the literature to model vehicular
networks.

Index Terms—Stochastic geometry, Cox process, Poisson line
process, Area spectral efficiency, Transmission probability.

I. INTRODUCTION

VANETs are one of the key building blocks of intelligent
transportation systems. VANETs enable the vehicles and the
road side units (RSUs) to share important local information
such as the status of traffic, conditions of the roads and occur-
rence of accidents to apprise the drivers of potential hazards
in advance [1]. Since this information is time-sensitive, it
imposes stringent connectivity and latency requirements on the
network. Therefore, it is critical to understand the performance
of VANETs to meet these design constraints. Unlike other
popular wireless networks, VANETs have a peculiar spatial
geometry as the locations of nodes are restricted to roadways.
It is important to model this coupling between the location
of nodes and the underlying road layout for an accurate
assessment of the network performance. Given the irregularity
in the node locations as well as the road layouts, one can
treat this network as a stochastic network and use tools from
stochastic geometry for the tractable performance analysis.
Relevant prior art in this area is discussed next.

Prior Art. Most works in the literature have adopted simpler
spatial models such as 1D or 2D PPPs to model the locations
of vehicular nodes and RSUs [2], [3]. In vehicular networks,
the locations of nodes are restricted to roadways and hence,
these models do not capture the strong coupling between the
locations of nodes and the layout of roads. While there have
been a few works in which this coupling was considered, the

The authors are with Wireless@VT, Department of ECE, Virginia Tech,
Blacksburg, VA (email: {vishnucr, hdhillon}@vt.edu). The support of the US
NSF (Grant IIS-1633363) is gratefully acknowledged. Manuscript last
updated: April 29, 2018.

analysis was usually limited to a single road or a set of roads
modeled by a deterministic set of lines [4], [5]. Although these
works offer useful preliminary insights into the behavior of
the network, they do not account for the irregularity in the
spatial layout of roads. However, a few works have considered
more sophisticated models such as a Cox process, where the
road systems are modeled by a PLP [6], [7] and further, the
location of nodes are modeled by a 1D PPP [8]–[10]. In [8],
the authors have studied the routing performance of a VANET
for a linear multi-hop relay. In [9], [10], the authors have
presented the canonical coverage analysis for nearest neighbor
connectivity in this model. The main objective of this letter
is to characterize the success probability of a typical link and
spectral efficiency of a VANET modeled as a Cox process.
More details of our contribution are provided next.

Contributions. In this letter, we model the locations of
nodes of a VANET by a Cox process where the road layout
is modeled as a PLP and the locations of vehicular nodes
and RSUs on each line (road) are modeled as independent
homogeneous 1D PPPs. Assuming slotted ALOHA as the
channel access scheme with a certain transmission probability
for all the nodes in the network, we compute the success
probability of a typical link and also the area spectral efficiency
of the network. We then mathematically show that the success
probability converges to that of 1D and 2D PPP models under
specific (and practically relevant) asymptotic conditions. We
also analyze the trends in success probability as a function of
line and node densities and compare the optimum transmission
probability that maximizes the ASE for a Cox process with
those of well-investigated 1D and 2D PPPs.

II. SYSTEM MODEL

We model the road systems which provide the physical sup-
port for the locations of vehicular nodes and RSUs by a PLP
Φl with line density µl. The density of the equivalent point
process of Φl in the representation space C ≡ R+ × [0, 2π)
is denoted by λl ≡ µl/π. We then model the location of
vehicular nodes and RSUs on each line by homogeneous
1D PPPs with densities λn and λr, respectively. Thus, the
locations of the nodes on each line form a 1D PPP with
density λv = λn + λr. We assume a slotted ALOHA channel
access scheme where each node transmits independently of the
other nodes in the network with a probability p. Therefore,
the locations of transmitting nodes on each line L, denoted
by ΨL ≡ {wL}, at any instant form a thinned PPP with
homogeneous density pλv . We further assume that the receiver
nodes are located at a distance d from their respective trans-
mitting nodes on the same line. So, this forms a Cox bipolar
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Typical link

Fig. 1. An illustration of PLP (left) and a Cox process driven by the PLP
(right). The filled and hollow circles represent active and inactive transmitters
in the network, respectively.

network, where the locations of the transmitting nodes form
a Cox process Φt ≡ {ΨLj}Lj∈Φl driven by the PLP Φl as
illustrated in Fig. 1. It should be noted that Poisson bipolar
networks (where transmitting nodes form a PPP) have been
extensively used for the analysis of ad hoc networks in the
past [11]. Our goal is to characterize the signal-to-interference
plus noise ratio (SINR) based success probability for a typical
link of this Cox bipolar network. Without loss of generality,
we assume that the receiver node of the typical link is located
at the origin o ≡ (0, 0). By applying Slivnyak’s theorem [11],
the translation of the origin can be interpreted as addition of
a point at the origin to the PPP in the representation space
C, thereby obtaining a PLP Φl0 ≡ Φl ∪ {L0}, where L0

denotes the line containing the typical receiver located at the
origin. Therefore, under Palm distribution, the resulting point
process driven by the PLP Φl0 is the superposition of the Cox
process Φt and a 1D PPP on the line L0 [12]. The line L0

will henceforth be referred to as the typical line.
We assume that all the nodes transmit at the same power

Pt. We further assume that all the communication links suffer
from Rayleigh fading and the fading gains are exponentially
distributed with mean 1. We consider a single-slope path-loss
model with path-loss exponent α > 2. Thus, the SINR at the
receiver node of the typical link is given by

SINR =
Pth0d

−α∑
Lj∈Φl0

∑
wLj∈ΨLj

PthwLj
‖wLj‖−α + σ2

, (1)

where h0 is the channel fading gain of the typical link, hwLj
is the channel fading gain between the receiver node of the
typical link and the interfering node at the location wLj , and
σ2 is the noise power.

III. SUCCESS PROBABILITY

This is the main technical section of the paper where we
compute the SINR based success probability of the typical
link. We will then analyze the asymptotic characteristics of
the success probability for extreme values of line and node
densities. We will also compute the ASE to characterize the
overall performance of the network.

A. Laplace Transform of Interference Distribution

In this subsection, we derive the Laplace transform of the
distribution of aggregate interference power at the receiver

node of the typical link. We first categorize the sources of
interference into two independent sets: (i) the set of nodes
located on the typical line, and (ii) the set of nodes that are
located on the lines other than the typical line. We denote
the interference from these two components by I0 and I1,
respectively. We will now characterize the interference from
each of these components.

Lemma 1. The Laplace transform of the distribution of
interference power from the nodes located on the typical line
is

LI0(s) = exp

[
− 2pλv

∫ ∞
0

1

1 + (sPt)−1xα
dx

]
. (2)

Proof: The proof directly follows from the PGFL of 1D
PPP and is hence skipped.

Lemma 2. The Laplace transform of the distribution of
interference power from all the nodes located on the lines
other than the typical line is

LI1(s) = exp

[
− 2πλl

∫ ∞
0

1− exp
(
− 2pλv

×
∫ ∞

0

1

1 + s−1P−1
t (y2 + x2)α/2

dx
)

dy

]
. (3)

Proof: The Laplace transform of interference distribution
can be computed as

LI1(s) = E
[
e
−s

∑
Lj∈Φl

∑
wLj

∈ΨLj
PthwLj

‖wLj ‖
−α
]

(a)
= E

[ ∏
Lj∈Φl

∏
wLj∈ΨLj

exp
(
− sPthwLj

(y2
j + x2

i )
−α/2)]

(b)
= EΦl

[ ∏
Lj∈Φl

exp
(
− 2pλv

∫ ∞
0

Pts

Pts+ (y2
j + x2)α/2

dx
)]

(c)
= exp

[
-2πλl

∞∫
0

1- exp

[
-

∞∫
0

2pλvPts

Pts+ (y2 + x2)α/2
dx

]
dy

]
,

where yj in (a) denotes the perpendicular distance of the line
Lj from the origin, xi is the Euclidean distance of a node on
the line Lj from the projection of the origin onto the line Lj ,
(b) follows from the PGFL of 1D PPP on each line Lj , and (c)
follows from the PGFL formula for the 2D PPP representing
the line process Φl in the representation space C [6], [9].

Since the two components of interference I0 and I1 are
independent, the Laplace transform of the distribution of
aggregate interference power is simply given by

LI(s) = LI0(s)LI1(s). (4)

B. Success Probability

The success probability is formally defined as the probabil-
ity with which the SINR at the receiver node of the typical
link exceeds a predetermined threshold β. Using the Laplace
transform of the interference power distribution, the success
probability is computed in the following theorem.
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Theorem 1. The success probability of the typical link Pc is

Pc = exp

[
− βσ2dα

Pt
− 2pλv

∫ ∞
0

βdαx−α

1 + βdαx−α
dx− 2πλl

×
∞∫

0

1- exp

[
-2pλv

∞∫
0

βdα(y2 + x2)−α/2

1 + βdα(y2 + x2)−α/2
dx

]
dy

]
. (5)

Proof: The success probability can be computed as Pc =

P(SINR > β) = P
(Pth0d

−α

I + σ2
> β

)
= e−

βσ2dα

Pt LI
(
βdα

Pt

)
.

(6)

Upon substituting (2), (3), and (4) in the above equation, we
obtain the final expression for success probability.

C. Asymptotic Characteristics of Success Probability

In this subsection, we analyze the success probability for
some extreme values of the line and node densities. We show
that the success probability of the typical link for this setup
converges to that of 1D and 2D PPPs in the following Lemmas.

Lemma 3. As the density of lines in the network approaches
zero (λl → 0), the success probability of the typical link
converges to that of a 1D PPP and is given by

Pc
(1) = exp

[
-
βσ2dα

Pt
-2pλvβ

1/αd
π

α
csc
(π
α

)]
. (7)

Proof: Following the same approach used in Lemma 17
of [9], this result can be easily obtained by applying the limit
λl → 0 on the expression for Pc given in (5).

Lemma 4. As the line density approaches infinity (λl → ∞)
and node density tends to zero (λv → 0) while the overall
density of nodes remains unchanged, the success probability
of the typical link converges to that of a 2D PPP with the
same node density and is given by

Pc
(2) =exp

[
-
βσ2dα

Pt
-π2pλlλvβ

2/αd2 2π

α
csc
(2π

α

)]
. (8)

Proof: As the overall density of nodes in the network
λ = πpλlλv remains constant, the application of the two limits
λl → ∞ and λv → 0 can be simplified to a single limit by
substituting λv = λ/(πpλl) in the expression in (5). Therefore,
the success probability can now be computed as

Pc
(2) = lim

λl→∞
Pc

= lim
λl→∞

exp

[
-
βσ2dα

Pt
-

2λf

πλl
-2πλl

∫ ∞
0

1- exp
(−2λg

πλl

)
dy

]
,

where

f =

∞∫
0

βdαx−α

1 + βdαx−α
dx and g =

∞∫
0

βdα(y2 + x2)−α/2

1 + βdα(y2 + x2)−α/2
dx.

Applying the properties of limits, we get

Pc
(2) = e-

βσ2dα

Pt exp

[
lim
λl→∞

−2πλl

∫ ∞
0

1− exp
(−2λg

πλl

)
dy

]
(a)
= e-

βσ2dα

Pt exp

[
lim
λl→∞

∫ ∞
0

∞∑
k=1

2(−2λg)k

(πλl)k−1k!
dy

]

(b)
= e-

βσ2dα

Pt exp

[ ∞∑
k=1

∫ ∞
0

lim
λl→∞

2(−2λg)k

(πλl)k−1k!
dy

]
(c)
= exp

[
− βσ2dα

Pt
− 2π2pλlλv

∫ ∞
0

βdαr1−α

1 + βdαr−α
dr

]
,

where (a) follows from the Taylor series expansion of ex-
ponential function, (b) follows from switching the order of
integral and summation operations and applying Dominated
Convergence Theorem (DCT), and (c) follows from the limit
of the integrand which evaluates to 0 for all k > 1, and then
substituting x=r cos θ and y=r sin θ in the resulting integral.

The asymptotic results presented in Lemmas 3 and 4 cor-
respond to practical scenarios of sparse layout of roads and
sparse vehicular traffic in dense layout of roads, respectively.

D. Area Spectral Efficiency

The area spectral efficiency is defined as the average number
of bits successfully transmitted per unit time per unit band-
width per unit area in the network. Assuming that all the
transmitted symbols are from Gaussian codebooks, the ASE
can be computed using Shannon’s capacity formula as

ASE = λPc log2(1 + β) bits/s/Hz/km2, (9)

where λ is the average number of active transmitting nodes
per unit area given by λ = πλlpλv .

Recall that the transmission probability p essentially de-
termines the density of active nodes in the network. As the
density of active nodes increases, the interference experienced
at the receiver node of a typical link increases, thereby
degrading the success probability, which in turn worsens
the ASE. However, an increase in the node density linearly
scales the number of concurrently active links in the network,
thereby improving the ASE. Owing to this conflicting impact
of transmission probability on the overall spectral efficiency,
there exists an optimum value of transmission probability p∗

that maximizes the ASE of the network. Due to the complexity
of the final expression for the success probability, it is not
possible to obtain a closed-form expression for p∗ for the
Cox bipolar model. That said, since the success probability
asymptotically converges to that of 1D and 2D PPPs under
specific conditions as shown in Lemmas 3 and 4, respectively,
the optimum transmission probabilities in those cases can be
computed in closed form [11]. Their expressions are given
below:

1D PPP: p∗ =
α(2λvdβ

1/α)−1

π csc(π/α)
, λl → 0, (10)

2D PPP: p∗ =
α(π2λlλvd

2β2/α)−1

2π csc(2π/α)
, λl →∞, λv → 0.

(11)

IV. RESULTS AND DISCUSSION

In this section, we verify the accuracy of our analytical
results presented in the previous section by comparing them
with the results from Monte-Carlo simulations. We will also
analyze the impact of line and node densities on the success
probability and ASE.
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Fig. 2. Success probability of the typical link as a function of SINR threshold
(λv = 20 nodes/km, p = 1, d = 0.01 km, and α = 4).
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Fig. 3. Success probability of the typical link as a function of SINR threshold
for high line density (µl = 50 km−1, d = 0.01 km, p = 1, and α = 4).

A. Success Probability

Impact of line density. We plot the success probability of
the typical link as a function of SINR threshold for different
line densities as shown in Fig. 2. As the density of lines
in the network increases, it reduces the distance between
the receiver and the interfering nodes, thereby worsening the
success probability. It can also be observed that the success
probability corresponding to the Cox process aligns with that
of a 1D PPP for a very low line density.

Impact of node density. We compare the success probability
of the typical link for different values of node densities for a
relatively high line density (µl = 50 km−1) and fixed value of
transmission probability. As expected, the success probability
worsens as the density of nodes increases due to the reduced
distance between the receiver node and the interfering nodes,
as shown in Fig. 3. We also observe that the success probability
corresponding to the Cox process aligns with that of a 2D PPP
for low density of nodes on each line.

B. Optimum transmission probability to maximize ASE

We plot the ASE for the Cox bipolar model as a function
of the transmission probability and compare it with that of
canonical 1D and 2D PPP models as depicted in Fig. 4. While
the locations of nodes are uniformly distributed in R2 in a
PPP, they are confined to lie on the lines because of which
the resulting point process exhibits “clustering behavior”.
Consequently, as the node density increases, the interference
at the typical receiver increases at a faster rate in a Cox bipolar
model than that of the Poisson bipolar model. Therefore, the
optimum transmission probability that maximizes the ASE in
a Cox bipolar model is smaller than that of the 1D and 2D
PPP models with the same node density, as shown in Fig. 4.
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Fig. 4. ASE of the network as a function of transmission probability p (µl =
30 km−1, λv = 60 nodes/km, and α = 4).

V. CONCLUSION

In this letter, we have analyzed the quality of a typical
communication link in a VANET modeled as a Cox bipolar
network. We have derived the exact expression for the success
probability of the typical link assuming independent Rayleigh
fading for all the links and also computed the area spectral
efficiency of the network. We have mathematically shown that
the success probability of the typical link asymptotically con-
verges to that of 1D and 2D PPPs under certain conditions. Our
analytical results yield an optimum transmission probability
that maximizes the ASE of the network. These results could
offer some useful insights into the deployment of RSUs to
improve the performance of VANETs. A meaningful extension
of this work could be to analyze the effects of shadowing on
the performance of the network.
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