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Coverage Analysis of a Vehicular Network Modeled
as Cox Process Driven by Poisson Line Process
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Abstract—In this paper, we consider a vehicular network in
which the wireless nodes are located on a system of roads.
We model the roadways, which are predominantly straight and
randomly oriented, by a Poisson line process (PLP) and the
locations of nodes on each road as a homogeneous 1D Poisson
point process (PPP). Assuming that each node transmits indepen-
dently, the locations of transmitting and receiving nodes are given
by two Cox processes driven by the same PLP. For this setup,
we derive the coverage probability of a typical receiver, which
is an arbitrarily chosen receiving node, assuming independent
Nakagami-m fading over all wireless channels. Assuming that the
typical receiver connects to its closest transmitting node in the
network, we first derive the distribution of the distance between
the typical receiver and the serving node to characterize the
desired signal power. We then characterize coverage probability
for this setup, which involves two key technical challenges. First,
we need to handle several cases as the serving node can possibly
be located on any line in the network and the corresponding
interference experienced at the typical receiver is different in
each case. Second, conditioning on the serving node imposes
constraints on the spatial configuration of lines, which requires
careful analysis of the conditional distribution of the lines. We
address these challenges in order to characterize the interference
experienced at the typical receiver. We then derive an exact
expression for coverage probability in terms of the derivative of
Laplace transform of interference power distribution. We analyze
the trends in coverage probability as a function of the network
parameters: line density and node density. We also provide some
theoretical insights by studying the asymptotic characteristics of
coverage probability.

Index Terms—Stochastic geometry, Cox process, Poisson line
process, coverage probability, vehicular network, road systems,
Nakagami-m fading.

I. INTRODUCTION

Vehicular communication, which collectively refers to
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication, has enabled the vehicular nodes to share infor-
mation with each other and also with roadside units (RSUs) to
improve the road safety and transport efficiency [2]–[4]. With
autonomous vehicles becoming a reality in the near future, the
data traffic originating from vehicular networks is expected
to increase many folds while also putting more stringent
latency and connectivity constraints compared to the networks
of today. In order to meet these stringent requirements, it is
critical to understand the system-level performance of these
networks under different operational scenarios. In the recent
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years, stochastic geometry has emerged as a powerful tool for
modeling and system-level analysis of wireless networks. The
most popular approach is to model the locations of wireless
nodes by a homogeneous 2D Poisson point process (PPP) [5]–
[8] and focus on the performance analysis of a randomly
chosen receiver in the network. Despite its simplicity and
analytical tractability, PPP may not always be a suitable model
for all spatial configurations of nodes. In the context of this
paper, the locations of vehicular nodes and RSUs in vehicular
networks are restricted to roadways, which are predominantly
linear and randomly oriented. The 2D PPP model, in which the
location of nodes are modeled by randomly distributed points
in the 2D plane, does not capture the coupling between the
nodes and the underlying infrastructure (roads) in vehicular
networks. While modeling the locations of vehicular nodes,
one has to consider two fundamental sources of randomness:
(i) the locations of nodes on each road are often irregular and
can hence be treated as a realization of a point process, and
(ii) the layout of the roads is also often irregular, which makes
it possible to model the road system as a realization of a line
process [9]–[13]. In short, it is necessary to consider doubly
stochastic spatial models for vehicular nodes that account
for the randomness associated with the roads as well as the
locations of nodes on these roads. A well-known canonical
model in the literature that readily meets this requirement is a
Cox process or doubly stochastic Poisson point process [14],
[15], where the roads in a network are modeled by a Poisson
line process (PLP) and the location of nodes on the roads are
modeled by a 1D PPP. Despite the relevance of this canonical
model in understanding the system-level performance of ve-
hicular networks, its coverage analysis is still an open problem,
which is the main focus of this paper. In particular, we develop
tools to characterize serving distance as well as conditional
interference power distributions, which collectively provide
exact characterization of coverage probability and can also
be readily applied to study many other aspects of vehicular
networks.

A. Related Work

While there is a significant volume of literature pertaining to
the analysis of vehicular networks using tools from stochastic
geometry, the spatial models considered in these works are
usually limited to a single road or an intersection of two
roads [16]–[21]. Although such models are usually accurate for
vehicular networks formed on a sparse layout of roads, such
as freeways, they may not always be accurate in capturing the
performance of vehicular networks in dense urban scenarios
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with a dense distribution of roads. For instance, a signal-to-
interference plus noise ratio (SINR) based analysis to compute
the optimum transmission probability for vehicles on a single
road, has been proposed in [16]. The trade-offs between
the aggregate packet progress and spatial frequency reuse
for multi-hop transmission between vehicles in a multi-lane
highway setup were studied in [18]. In [20], [21], the authors
have analyzed the packet reception probability of a link at
the intersection of two perpendicular roads where the location
of nodes are modeled as 1D PPP on each road. Since these
models do not accurately capture the irregular layout of roads
and their effect on the performance, they do not always offer
reliable system-level insights that aid in the design.

Although relatively sparse, there are also a few works in
the literature where more sophisticated models that include the
randomness associated with the road systems were studied [9]–
[13], [22], [23]. In [9], the authors have modeled the streets
in an urban setting by a Manhattan Poisson line process
(MPLP) and the base stations on each road by a 1D PPP and
characterized the downlink coverage performance of mmWave
microcells by adopting a Manhattan distance based path-
loss model. While this is a reasonable model for mmWave
communication in an urban setting, it may not be applicable
to all scenarios due to the irregular structure of roads. A more
refined model for vehicular networks is presented in [11], [12],
where the streets are modeled by the edges of either a Poisson-
Line tessellation (PLT), Poisson-Voronoi tessellation (PVT),
or a Poisson-Delaunay tessellation (PDT) and the nodes on
each line are modeled by a homogeneous 1D PPP. Owing
to its analytical tractability, PLT often gains preference over
PVT and PDT in modeling road systems (it has also been
used in other related applications, such as in modeling the
effect of blockages in localization networks [24]). In [11], the
authors have considered a hierarchical two-tier network whose
components are modeled as a Cox process on a PLT and have
characterized the mean shortest path on the streets connecting
these components. Using the same spatial model, a formula
for probability density function of inter-node distances was
presented in [12]. In [13], the author has derived the uplink
coverage probability for a setup where the typical receiver is
randomly chosen from a PPP and the locations of transmitter
nodes are modeled as a Cox process driven by a PLP. However,
to the best of our knowledge, this paper is the first to derive
the coverage probability for a setup where both the receiver
and transmitter nodes are modeled by Cox processes driven by
the same PLP. In other words, this paper is the first to derive
the coverage probability of a vehicular node located on a PLP
when it connects to another vehicular node on the same PLP.
The technical challenges in this analysis originate from the
spatial coupling between the vehicular nodes induced by the
underlying PLP. More detailed account of our contributions is
provided below.

B. Contributions

In this paper, we present an analytical procedure for
performing the canonical coverage analysis of a vehicular
network. We consider a doubly-stochastic spatial model for

wireless nodes, which captures the irregularity in the spatial
layout of roads by modeling them as a PLP and the spatial
irregularity in the locations of wireless nodes by modeling
them as a 1D PPP on each road. In order to mimic various
fading scenarios, we choose Nakagami-m fading channel that
allows us to control the severity of fading. For this setup,
we derive the signal-to-interference ratio (SIR) based coverage
probability of a typical receiver, which is an arbitrarily chosen
receiving node in the network, assuming that it connects to its
closest transmitting node in the network. We then study the
trends in the coverage performance which offers some design
insights. More technical details about the coverage probability
and system-level insights are provided next.

Coverage probability. We derive an exact expression for
coverage probability by characterizing the interference expe-
rienced at the typical receiver. We first derive several funda-
mental distance distributions that are necessary to characterize
the desired signal power at the typical receiver. Since the
distribution of nodes is coupled with the distribution of lines in
the network, it poses two key challenges to the exact coverage
analysis. First, the serving node, which is the closest transmit-
ting node to the typical receiver, can possibly be located on
any of the lines in the network. Consequently, the interference
measured at the typical receiver in each of these cases is
different and we have to handle each case separately. In
order to address this issue, we derive a generalized expression
for coverage probability for all these cases. Second, when
a transmitting node on a particular line is chosen to be the
serving node, it implies that there can not be any line with
a node whose distance to the typical receiver is smaller than
the distance between the typical receiver and the serving node.
This additional constraint imposed by the distribution of nodes
impacts the conditional distribution of lines as observed at
the typical receiver. We determine the conditional distribution
of the lines in order to compute the interference at the
typical receiver. We then determine the coverage probability
in terms of derivative of Laplace transform of the distribution
of the interference power. We also provide some theoretical
insights by studying the asymptotic characteristics of coverage
probability.

System-level insights. Using our analytical results, we study
the effect of two key network parameters, namely, node density
and line density, on the coverage probability of the typical
receiver. We observe that the coverage probability increases as
the density of nodes on lines increases. However, the coverage
probability degrades as the density of the lines in the network
increases. The contrasting effect of node and line densities on
the coverage probability offers some insights in the design and
deployment of RSUs in the network. We also study the impact
of line and node densities on area spectral efficiency (ASE) of
the network. We show that the areas with sparse distribution
of roads require a denser deployment of RSUs as compared
to the areas with dense roads to achieve the same ASE.

II. MATHEMATICAL PRELIMINARY: POISSON LINE
PROCESS

Since the PLP will be the main component of our model
described in Section III, a basic knowledge of its construction
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Fig. 1. Illustration of Poisson line process in two-dimensional plane R2.

and properties will be useful in understanding the proposed
model. While we provide only a brief introduction to PLP
and its properties in this section, a detailed account of the un-
derlying theory can be found in [14], [25]. Line process. A line
process is simply a random collection of lines in a 2D plane.
Any undirected line L in R2 can be uniquely characterized by
its perpendicular distance ρ from the origin o ≡ (0, 0) and the
angle θ subtended by the perpendicular dropped onto the line
from the origin with respect to the positive x-axis in counter
clockwise direction, as shown in Fig. 1. The pair of parameters
ρ and θ can be represented as the coordinates of a point on the
cylindrical surface C ≡ [0, 2π)×[0,∞), which is termed as the
representation space, as illustrated in Fig. 2. Clearly, there is a
one-to-one correspondence between the lines in R2 and points
on the cylindrical surface C. Thus, a random collection of lines
can be constructed from a set of points on C. Such a set of lines
generated by a Poisson point process on C is called a Poisson
line process. In our system model, we also assume the PLP
to be motion-invariant for analytical simplicity. So, we will
discuss the concept of motion-invariance for line processes
and some well-established results of PLP next.

Stationarity and Motion-Invariance. The definition of sta-
tionarity for line processes is similar to that of point processes.
A line process Φl = {L1, L2, . . . } is said to be stationary if
the translated line process TΦl = {T (L1), T (L2), . . . } has
the same distribution of lines as that of Φl for any translation
T in the plane. Upon translating the origin in the plane R2

by a distance t in a direction that makes an angle β with
respect to the positive x-axis, the equivalent representation of
a line L in C changes from (ρ, θ) to

(
ρ − t cos(θ − β), θ

)
.

Therefore, for a stationary line process Φl, the point process{(
ρL1
−t cos(θL1

−β), θL1

)
,
(
ρL2
−t cos(θL2

−β), θL2

)
, . . .

}
in the representation space C has the same distribution as that
of the point process

{(
ρL1 , θL1

)
,
(
ρL2 , θL2

)
, . . .

}
. Similarly,

rotation of the axes about the origin by an angle γ in R2

changes the representation of the line in C from (ρ, θ) to
(ρ, θ−γ), where the operation θ−γ is modulo 2π. In addition
to translation-invariance, if a line process is also invariant to
the rotation of the axes about the origin, then it is said to be
motion-invariant.

Line density. Line density µ of a line process Φl is defined
as the mean line length per unit area. If Φl is a motion-
invariant line process, then the density of the corresponding

r tNà

é .5

.6

.8

.7

Fig. 2. Illustration of a point process on representation space C ≡ [0, 2π)×
[0,∞).

point process λ in the representation space C is given by
λ = µ

π .
Number of lines intersecting a disc. If Φl is a motion-

invariant Poisson line process with line density µ, then the
number of lines that intersect a convex region K ⊆ R2 follows
a Poisson distribution with mean

τK =
µν(K)

π
= λν(K), (1)

where ν(K) is the perimeter of the convex region K. There-
fore, the number of lines intersecting a disc of radius d is
Poisson distributed with mean 2πλd.

III. SYSTEM MODEL

A. Spatial Modeling of Wireless Nodes

We first model the spatial distribution of road systems by
a motion-invariant PLP Φl with line density µl. We denote
the density of equivalent PPP on the representation space
C by λl. We then model the locations of wireless nodes,
which include vehicular nodes and RSUs, on each line (road)
by a homogeneous 1D PPP with density λn. We assume a
slotted ALOHA channel access scheme. It should be noted
that this scheme is also a reasonable approximation for carrier-
sense multiple access (CSMA) scheme for vehicular networks
in the regimes of high and low node densities [26], [27].
Assuming that each node transmits with a probability p, the
location of transmitting nodes on each line is then given
by a thinned PPP with density λv = pλn. We denote the
set of locations of the transmitting nodes on a line L by
{wL} ≡ ΨL. Similarly, the distribution of receiving nodes on
each line is also a thinned PPP with density λr = (1− p)λn.
Thus, the locations of transmitting and receiving nodes are
modeled by Cox processes Φt and Φr, which are driven by the
same PLP Φl. Our goal is to derive the SIR based coverage
probability of a typical receiver from the point process Φr.
For analytical simplicity, we translate the origin o ≡ (0, 0)
to the location of the typical receiver. The translated point
process Φr0 can be treated as the superposition of the point
process Φr, an independent 1D PPP with density λr on a
line passing through the origin, and an atom at the origin o
[13]. This can be understood by applying Slivnyak’s theorem
[14], [15] in two steps: first, we add a point at the origin
to the PPP in the representation space C, thereby obtaining
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Fig. 3. Illustration of the system model.

a PLP Φl0 = Φl ∪ {L0} with a line L0 passing through the
origin, and second, we add a point at the origin to the 1D-
PPP on the line L0 passing through the origin in R2. The line
L0 passing through the origin will henceforth be referred to
as the typical line. Since both Φr and Φt are driven by the
same line process, the translated point process Φt0 is also the
superposition of Φt and an independent PPP with density λv
on L0, as shown in Fig. 3. Since the other receiver nodes in
the network do not have any impact on the SIR measured at
the typical receiver in this setup, we will focus only on the
distribution of transmitter nodes in the network. For brevity,
the transmitter nodes will henceforth be referred to as only
nodes. We denote the ith (i = 1, 2, . . . ) closest line to the
origin o (excluding the typical line) by Li and its perpendicular
distance to the origin by Yi. The distance of the closest node on
a line Li from the projection of the origin onto Li is denoted
by Xi, as illustrated in Fig. 3. Thus, the distance to the closest
node on Li from the origin is Si =

√
Y 2
i +X2

i . For notational
consistency, we denote the distance of the typical line from
the origin by Y0 ≡ 0 and the distance to the closest node
on L0 by S0. We denote the number of lines that intersect a
region A ⊂ R2 by Nl(A) and the number of nodes in A by
Nv(A). Throughout this paper, we denote the random variables
by upper case letters and their corresponding realizations by
lower case letters. For instance, Yn denotes a random variable,
whereas yn denotes its realization.

B. Transmitter Association Scheme and Propagation Model

We assume that the transmit power is the same for all the
nodes and the antennas are isotropic. We further assume that
the typical receiver connects to its closest transmitting node in
the network. Note that the closest node does not necessarily
have to be on the same line as that of the typical receiver and
can possibly be located on any of the other lines. We denote
such an event in which the serving node is located on the
ith closest line (excluding the typical line) to the origin by
Ei (i = 1, 2, . . . ). We denote the event in which the serving
node is located on the typical line by E0.

In wireless communication networks, the severity of fading
between the transmitter and the receiver depends on environ-
mental factors and hence, the effect of fading can vary signif-
icantly from an urban scenario consisting of several buildings

to rural areas and highways which are almost devoid of any
tall structures. Therefore, in order to mimic a wide range of
fading environments, we choose Nakagami-m fading. Also,
the severity of fading of the communication links between
the typical receiver and the nodes located on the typical line
differs from that of the links between the typical receiver
and the nodes located on other lines. So, we denote the
fading parameters for these two types of links by m0 and
m, respectively. In the interest of analytical tractability, we
restrict the values of m0 and m to integers. For simplicity of
exposition, we assume that the system is interference limited
and hence, the thermal noise is neglected. Thus, the signal-to-
interference ratio (SIR) at the typical receiver is

SIR =
G0R

−α∑
Lj∈Φl0

∑
wLj∈ΨLj \b(o,R)GwLj

‖wLj‖−α
, (2)

where α > 2 is the path-loss exponent, G0 is the channel
fading gain between the typical receiver and the serving node,
GwLj

is the channel fading gain between the typical receiver
and the interfering node at the location wLj , R is the Euclidean
distance to the serving node from the typical receiver, and
‖wLj‖ is the Euclidean distance of the interfering node from
the typical receiver. The notation followed in this paper is
summarized in Table I.

IV. COVERAGE PROBABILITY

This is the main technical section of the paper, where
we derive the coverage probability for the setup described
in the previous section. Recall that the serving node which
is the closest node to the typical receiver can possibly be
located on any line Lk (k = 0, 1, . . . ). As a result, the
interference at the typical receiver will be different in each
of these cases and hence, they need to be handled separately.
However, we can derive a generalized expression for the
cases in which the serving node does not lie on the typical
line (E1, E2, . . . ). Therefore, in our analysis, we will derive
the coverage probability conditioned on the events E0 and
En (n = 1, 2, . . . ) separately and obtain the final result using
law of total probability. A key difference between the events
E0 and En is that the distance of the line on which the serving
node is located is always zero in case of E0, whereas the
distance of the line containing the serving node Yn in case
of En is a random variable. Therefore, in the computation of
coverage probability conditioned on En, we will derive the
intermediate results by additionally conditioning on Yn. In the
final step, we obtain the overall coverage probability by taking
expectation over Yn. While we can obtain some of the results
for the case E0 from the intermediate results pertaining to En
by simply substituting Y0 = 0 in place of Yn, we will provide
detailed proofs for those results where this approach is not
applicable.

A. Preliminary Results

We begin our analysis with the derivation of some fun-
damental distance distributions which will be used later in
the computation of coverage probability. While it may be
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TABLE I
SUMMARY OF NOTATION

Notation Description
Φl; Φl0 Poisson line process; The line process Φl plus a line passing through the origin o ≡ (0, 0)
µl; λl Line density of the PLP Φl; The density of equivalent PPP of Φl in the representation space C
λv ; λr Density of transmitting nodes on each line; Density of receiving nodes on each line

{wL} ≡ ΨL Set of locations of transmitting nodes on a line L
L0; Ln Line passing through the origin o (Typical line); The nth closest line to the origin
Yi; Xi Distance of the ith close line from o; Distance of the closest node on Li from the projection of the origin onto Li

Si Distance of the closest node on Li from the typical receiver at the origin
R Distance between the typical receiver and the serving node

G0; Gi Channel fading gain of the serving link; Channel fading gain of ith interfering link
E0; Ei Event that the serving node is located on the typical line L0; Event that the serving node is located on Li

β; Pc; ASE SIR threshold; Coverage probability; Area spectral efficiency

relatively straightforward to derive some of these results, they
are presented here for completeness.

Lemma 1. The cumulative distribution function (CDF) and
probability density function (PDF) of the distance of the nth

closest line from the origin Yn are

CDF: FYn(yn) = 1− e−2πλlyn

n−1∑
k=0

(2πλlyn)k

k!
,

PDF: fYn(yn) =
e−2πλlyn(2πλlyn)n

yn(n− 1)!
. (3)

Proof: From the definition of a PLP, recall that there is a
one-to-one correspondence between lines in R2 and points on
C ≡ [0 2π) × [0 ∞). The abscissa and the ordinate of these
points represent the orientation of the line and the distance
of the line from the origin, respectively. We now consider
the projections of these points onto the vertical axis of the
cylindrical surface, which represents the distance of the lines
from the origin. Note that the number of projections of points
in a segment of length t on the vertical axis of C is the same as
the number of points in the area [0, 2π)× [0, t), which follows
a Poisson distribution with mean 2πλlt. This means that the
projections of points onto the vertical axis of C forms a 1D
PPP Ψl0 with density 2πλl. Therefore, the distance of the
nth closest line from the origin follows the same distribution
as that of the distance of nth closest point in a 1D PPP
with density 2πλl, which is a well-known result in stochastic
geometry [15].

Lemma 2. Conditioned on the distance of the nth closest
line to the origin Yn, the CDF of the distance Xn between
the projection of origin onto the line Ln and its closest node
on Ln is

FXn(xn|yn) = 1− exp(−2λvxn). (4)

Proof: The proof follows from the void probability of a
1D PPP with density λv .

Lemma 3. Conditioned on the distance of the nth closest
line to the origin Yn, the CDF and PDF of the distance to the
closest node on the line Ln from the typical receiver Sn are

CDF: FSn(sn|yn) = 1− e−2λv
√
s2n−y2n ,

PDF: fSn(sn|yn) =
2λvsn√
s2
n − y2

n

e−2λv
√
s2n−y2n . (5)

Proof: The conditional CDF of Sn is given by

FSn(sn|yn) = P(Sn < sn|Yn) = P(
√
X2
n + y2

n < sn|Yn)

= P(Xn <
√
s2
n − y2

n|Yn) = FXn(
√
s2
n − y2

n|yn)

= 1− exp(−2λv
√
s2
n − y2

n).

The PDF fSn(sn|yn) can be obtained by taking the derivative
of FSn(sn|yn) w.r.t. sn.

Corollary 1. The CDF and the PDF of the distance between
the typical receiver at the origin and its closest node on the
typical line S0 are

CDF: FS0
(s0) = 1− exp(−2λvs0),

PDF: fS0
(s0) = 2λv exp(−2λvs0). (6)

Proof: The proof follows from replacing Sn and Yn with
S0 and Y0 = 0 in Lemma 3.

Conditioned on the distance Yn, we will now derive the
distribution of the distance of the closest node to the typical
receiver among the nodes that are located on the lines that are
closer and farther than the line of interest Ln in the following
Lemmas. These results will be used in the next subsection in
the computation of the probability of occurrence of events E0
and En.

Lemma 4. Conditioned on the distance of the nth closest
line to the origin Yn, the CDF and PDF of the distance Un
between the typical receiver and its closest node among the
n−1 lines {L1, L2, . . . Ln−1} (excluding the typical line) that
are closer than Yn are

CDF: FUn(un|yn) =
1−

(
1− un

yn
+

1

yn

∫ un

0

g(un, z)dz

)n−1

, 0 ≤ un < yn,

1−
(∫ yn

0

g(un, z)
dz

yn

)n−1

, yn ≤ un <∞,

PDF: fUn(un|yn) =
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

(n− 1)

(
1-
un
yn

+

un∫
0

g(un, z)
dz

yn

)n−2

×
(∫ un

0

2λvung(un, z)

yn
√
u2
n − z2

dz

)
, 0 ≤ un < yn,

(n− 1)

(∫ yn

0

2λvung(un, z)

yn
√
u2
n − z2

dz

)
×
(∫ yn

0

g(un, z)
dz

yn

)n−2

, yn ≤ un <∞,

(7)

where g(un, z) = exp(−2λv
√
u2
n − z2).

Proof: See Appendix A.

Lemma 5. Conditioned on the distance of the nth closest
line to the origin Yn, the CDF and PDF of the distance Vn
between the typical receiver and its closest node among the
lines {Ln+1, Ln+2, . . . } that are farther than Yn are

CDF: FVn(vn|yn) = 1- exp

[
-2πλl

∫ vn

yn

1-e−2λv
√
v2n−z2dz

]
,

yn ≤ vn <∞, (8)

PDF: fVn(vn|yn) = 2πλl

∫ vn

yn

e−2λv
√
v2n−z2 2λvvn√

v2
n − z2

dz

× exp

[
− 2πλl

∫ vn

yn

1− e−2λv
√
v2n−z2dz

]
,

yn ≤ vn <∞. (9)

Proof: See Appendix B.
We can easily specialize the results of Lemma 5 to obtain

the CDF and PDF of the distance between the typical receiver
and its closest node among the lines that are farther than the
typical line as given in the following Corollary.

Corollary 2. The CDF and PDF of the distance V0 between
the typical receiver and its closest node among the lines that
are farther than the typical line are

CDF: FV0
(v0) = 1- exp

[
-2πλl

∫ v0

0

1-e−2λv
√
v20−z2dz

]
,

(10)

PDF: fV0(v0) = 2πλl

∫ v0

0

e−2λv
√
v20−z2

2λvv0√
v2

0 − z2
dz

× exp

[
− 2πλl

∫ v0

0

1− e−2λv
√
v20−z2dz

]
. (11)

Proof: The proof follows from replacing Vn and Yn with
V0 and Y0 = 0 in Lemma 5.

B. Probabilities of Events En and E0
In this subsection, we will derive the probability with which

the typical receiver connects to a node on the nth closest line
to the origin conditioned on the distance of the line from the
origin Yn and the probability with which the typical receiver
connects to a node on the typical line. These intermediate
results hold the key to the derivation of conditional serving
distance distribution in the next subsection.

Lemma 6. Conditioned on Yn, the probability of occurrence
of the event En is

P(En|Yn) =

∫ ∞
0

(
1− FS0(sn)

)(
1− FUn(sn|yn)

)
×
(

1− FVn(sn|yn)
)
fSn(sn|yn)dsn, (12)

where FS0
(·), FUn(· |yn), FVn(·|yn), and fSn(sn|yn) are

given by Corollary 1, Lemmas 4, 5, and 3, respectively.

Proof: The typical receiver connects to a node on the nth

closest line if the distance to the closest node on the line Ln
is smaller than the distance to the closest node on any other
line. In this case, we will group all the lines excluding the line
of interest Ln into 3 sets: (i) the typical line L0, (ii) the lines
that are closer than the line Ln (L1, L2, . . . , Ln−1), and (iii)
the lines that are farther than the line Ln (Ln+1, Ln+2, . . . ).
The distance to the closest node on Ln must be smaller than
the distance to the closest node in each of these three sets,
i.e., Sn must be smaller than the minimum of S0, Un, and Vn.
Thus, the conditional probability of occurrence of the event
En is computed as

P(En|Yn) = P(Sn < min{S0, Un, Vn}|Yn)

= P(Sn < S0, Sn < Un, Sn < Vn|Yn)

(a)
=

∫ ∞
0

P(S0 > sn|Sn, Yn)P(Un > sn|Sn, Yn)

× P(Vn > sn|Sn, Yn)fSn(sn|yn)dsn

(b)
=

∫ ∞
0

(
1− FS0

(sn)
)(

1− FUn(sn|yn)
)

×
(

1− FVn(sn|yn)
)
fSn(sn|yn)dsn,

where (a) follows from the conditional independence of the
variables S0, Un, and Vn, and (b) follows from the indepen-
dence of the random variable S0.

Corollary 3. The probability of occurrence of the event E0 is

P(E0) =

∫ ∞
0

(1− FV0
(s0))fS0

(s0)ds0, (13)

where FV0
(·) and fs0(·) are given by Corollaries 1 and 2,

respectively.

Proof: The typical receiver at the origin connects to a
node on the typical line when the distance to the closest node
on the typical line is smaller than the distance to the closest
node on any other line. Thus, the probability of occurrence of
E0 is given by

P(E0) = P(S0 < min{S1, S2, . . .}) = P(S0 < V0)

=

∫ ∞
0

P(V0 > s0|S0)fS0
(s0)ds0 =

∫ ∞
0

(1-FV0
(s0))fS0

(s0)ds0,

which completes the proof.

C. Serving Distance Distribution

In this subsection, we will derive the distribution of distance
between the typical receiver and the serving node conditioned
on the events En and E0. As stated in the previous subsection,
in case of En, the distance to the closest node on the nth
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closest line Sn must be smaller than the minimum of S0, Un,
and Vn. Therefore, we first determine the distribution of Wn =
min{S0, Un, Vn} in the following Lemma.

Lemma 7. Conditioned on the distance of the nth closest line
to the origin Yn, the CDF and PDF of Wn = min{S0, Un, Vn}
are

CDF: FWn(wn|yn) =

1-
(
1-FS0

(wn)
)(

1-FUn(wn|yn)
)(

1-FVn(wn|yn)
)
, (14)

PDF: fWn
(wn|yn) =

fS0
(wn)

(
1− FUn(wn|yn)

)(
1− FVn(wn|yn)

)
+
(
1− FS0(wn)

)
fUn(wn|yn)

(
1− FVn(wn|yn)

)
+
(
1− FS0

(wn)
)(

1− FUn(wn|yn)
)
fVn(wn|yn), (15)

where FS0
(·), fS0

(·) are given by Corollary 1, FUn(· |yn),
fUn(· |yn) are given by Lemma 4, and FVn(·|yn), fVn(·|yn)
are given by Lemma 5.

Proof: The proof simply follows from the distribution of
minimum of three independent random variables [28].

Using the intermediate results derived thus far, we will now
derive the conditional distribution of the serving distance R
in the following Lemma.

Lemma 8. Conditioned on the event En and the distance of
the nth closest line Yn, the CDF and PDF of the serving
distance R are

CDF: FR(r|En, Yn) = 1− 1

P(En|Yn)

×
∫ ∞
r

(
FSn(wn|yn)− FSn(r|yn)

)
fWn

(wn|yn)dwn, (16)

PDF: fR(r|En, yn) =

∫ ∞
r

fSn(r|yn)fWn
(wn|yn)

P(En|Yn)
dwn, (17)

where FSn(·|yn), fSn(·|yn) are given by Lemma 3, P(En|Yn)
and fWn

(·|yn) are given by Lemmas 6 and 7, respectively.

Proof: The conditional CDF of the serving distance R is
computed as

FR(r|En, Yn) = 1-P(R > r|En, Yn) = 1-
P(R > r, En|Yn)

P(En|Yn)

(a)
= 1− P(Sn > r, Sn < min{S0, Un, Vn}|Yn)

P(En|Yn)

= 1− P(r < Sn < Wn|Yn)

P(En|Yn)

= 1−
∫ ∞
r

P(r < Sn < wn|Wn, Yn)

P(En|Yn)
fWn

(wn|yn)dwn

= 1−
∫ ∞
r

(
FSn(wn|yn)− FSn(r|yn)

)
P(En|Yn)

fWn
(wn|yn)dwn,

where (a) follows from the condition for the occurrence of the
event En. The conditional PDF fR(r|En, yn) can be computed
by taking the derivative of FR(r|En, yn) w.r.t. r.

Lemma 9. Conditioned on the event E0, the CDF and PDF
of the serving distance R are given by

CDF: FR(r|E0) = 1−
∫ ∞
r

(
FS0

(v0)− FS0
(r)
)

P(E0)
fV0(v0)dv0,

(18)

PDF: fR(r|E0) =
1

P(E0)

∫ ∞
r

fS0
(r)fV0

(v0)dv0, (19)

where FS0(·), fS0(·) are given by Corollary 1, fV0(v0) and
P(E0) are given by Corollaries 2 and 3, respectively.

Proof: The proof follows along the same lines as that of
Lemma 8.

D. Conditional Probability Mass Function of Number of Lines

Now that we have derived the distribution of the serving dis-
tance R, the next main step is to characterize the interference
experienced at the typical receiver conditioned on R for the
events En and E0. The sources of interference are all the nodes
that are located at a distance farther than R from the origin,
i.e., the nodes that lie outside the disc b(o,R) centered at the
origin o with radius R. Please note that such nodes could also
lie on lines which are located closer than R. Please see Fig.
4 for an illustration. Therefore, in order to characterize the
interference, we will have to first determine the distribution of
lines. In order to explain this concretely, let us consider the
case of En, where the serving node is located at a distance R
on the nth closest line from the origin. From the properties
of PLP, we know that the number of lines intersecting a
disc of fixed radius follows a Poisson distribution with mean
equal to the line density scaled by the perimeter of the disc.
However, this does not hold for the conditional distribution
of the number of lines that intersect the disc b(o,R). This
is because the lines that intersect the disc b(o,R) must not
contain any nodes in the chord segment inside the disc (since
we have already conditioned on the event that the serving node
is located on Ln at a distance R from the typical receiver).
This additional constraint imposed by the distribution of nodes
on the lines impacts the conditional distribution of number of
lines intersecting the disc b(o,R). Note that the typical line is
not included in the count of number of lines intersecting the
disc b(o,R). Now, conditioned on the event En, we know that
there are at least n lines that intersect the disc b(o,R) which
include the n− 1 lines that are closer than the line of interest
Ln and the line Ln itself which is at a distance Yn ≤ R.
In addition to these n lines, there are also a random number
of lines that are farther than Yn but closer than the serving
distance R, as illustrated in Fig. 4. Therefore, our immediate
goal is to determine the conditional distribution of this random
number of lines that intersect the disc b(o,R) but do not
intersect the disc b(o, Yn), denoted by Nl

(
b(o,R) \ b(o, Yn)

)
.

Lemma 10. Conditioned on the event En, the distance of the
nth closest line Yn, and the serving distance R, the probability
mass function (PMF) of number of lines that are farther than
Yn and closer than R is

P
(
Nl
(
b(o, r) \ b(o, yn)

)
= k|En, Yn, R

)
=

exp

[
-2πλl

∫ r

yn

e−2λv
√
r2−y2dy

][2πλl r∫
yn

e−2λv
√
r2−y2dy

]k
k!

.

(20)
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Fig. 4. Illustration of different sets of lines.

Proof: See Appendix C.

Remark 1. Conditioned on the event En, serving distance R,
and the distance of the nth closest line to the origin Yn, we
have derived the PMF of number of lines that are farther
than Yn and closer than R. However, it can be observed
that the conditional distribution remains Poisson but with
a mean of 2πλl

∫ r
yn

exp(−2λv
√
r2 − y2)dy. Therefore, the

conditional distribution of lines can be interpreted as a thinned
Poisson line process with line density µl

2π(r−yn)

∫ r
yn

exp
(
−

2λv
√
r2 − y2

)
dy.

Corollary 4. Conditioned on the event E0 and the serving
distance R, the PMF of number of lines (excluding the typical
line) that are closer than R is P(Nl

(
b(o,R)

)
= k|R, E0) =

exp

[
-2πλl

∫ r

0

e-2λv
√
r2−y2dy

][2πλl ∫ r0 e−2λv
√
r2−y2dy

]k
k!

.

(21)

Proof: The proof follows from substituting E0 and Y0 = 0
for En and Yn in Lemma 10.

E. Laplace Transform of Interference Distribution

In this subsection, we will determine the Laplace transform
of the distribution of the interference power conditioned on the
serving distance R. We will first consider the case where the
typical receiver connects to the nth closest line to the origin.
In this case, we group the sources of interference into the
following five sets: (i) the set of nodes present on the typical
line, (ii) the set of nodes present on the line that contains the
serving node which is at a distance Yn, (iii) the set of nodes
present on the lines that are closer than Yn (excluding the
typical line), (iv) the set of nodes present on the lines that
are farther than Yn but closer than the serving distance R (an
annular region), and (v) the set of nodes present on the lines
whose distance from the origin exceeds the serving distance
R. We denote the interference from these five sets of nodes by
I0, In, Iin, Iann, and Iout, respectively. We will now derive
the Laplace transform of distribution of interference from each
of these components.

The interference measured at the typical receiver from
the nodes on the typical line is given by I0 =∑

wL0
∈ΨL0

\b(o,R)GwL0
‖wL0

‖−α, where ΨL0
is the 1-D PPP

on the typical line, GwL0
are the channel gains between the

typical receiver and the interfering nodes at wL0 . While the
Laplace transform of distribution of interference from nodes
of a 1D PPP is very well-known, we still present the result in
the following Lemma for completeness.

Lemma 11. Conditioned on the event En, serving distance R,
and the distance of the nth closest line Yn, the Laplace trans-
form of distribution of interference from the nodes situated on
the typical line L0 is

LI0(s|r, yn, En)

= exp

[
-2λv

∫ ∞
r

1-
(

1 +
sx−α

m0

)−m0

dx

]
. (22)

Proof: The distribution of nodes on the typical line is
independent of the distance of the nth closest line Yn. Thus,
the Laplace transform of distribution of interference from
nodes on the typical line can be computed as

LI0(s|r, yn, En) = E[e−sI0 ]

= E EG

[ ∏
wL0
∈ΨL0

\b(o,R)

exp
(
− sGxL0

‖wL0
‖−α

)]

(a)
= E

[ ∏
wL0
∈ΨL0

\b(o,R)

(
1 +

s‖wL0‖−α

m0

)−m0

]

(b)
= exp

[
− 2λv

∫ ∞
r

(
1−

(
1 +

sx−α

m0

)−m0
)

dx

]
,

where (a) follows from the Gamma distribution of channel
fading gains, and (b) follows from the PGFL of PPP and
substituting x = ‖wL0

‖.

Lemma 12. Conditioned on the event En, the serving distance
R, and the distance of the nth closest line form the origin Yn,
the Laplace transform of distribution of interference from the
nodes on the line Ln is

LIn(s|r, yn, En)

= exp

[
-2λv

∞∫
√
r2−y2n

1−
(

1 +
s(x2 + y2

n)−α/2

m

)−m
dx

]
. (23)

Proof: The proof follows along the same lines as that of
Lemma 11.

Lemma 13. Conditioned on the event En, serving distance
R, and the distance of the nth closest line Yn, the Laplace
transform of distribution of interference from the nodes located
on the lines that are closer than Yn is

LIin(s|r, yn, En) =[∫ yn

0

exp

[
-2λv

∞∫
√
r2−y2

1-
(

1 +
s(x2 + y2)−

α
2

m

)−m
dx

]
dy

yn

]n−1

.

(24)

Proof: See Appendix D.
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Lemma 14. Conditioned on the event En, serving distance R,
and the distance of the nth closest line from the origin Yn,
the Laplace transform of distribution of interference from the
nodes located on the lines that are farther than Yn and closer
than R is

LIann(s|r, yn, En) =

exp

[(
-2πλl

∫ r

yn

e−2λv
√
r2−z2dz

)(
1−

∫ r

yn

exp

[
-2λv

×
∞∫

√
r2−y2

1-
(

1 +
s(x2 + y2)−α/2

m

)−m
dx

]
dy

(r − yn)

)]
. (25)

Proof: See Appendix E.

Lemma 15. Conditioned on the event En, serving distance R,
and the distance of the nth closest line from the origin Yn,
the Laplace transform of the distribution of the interference
from the nodes located on the lines that are farther than the
serving distance R is

LIout(s|r, yn, En) = exp

[
-2πλl

∫ ∞
r

1- exp

[
-2λv

×
∫ ∞

0

1-
(

1 +
s(x2 + y2)−α/2

m

)−m
dx

]
dy

]
. (26)

Proof: See Appendix F.
The aggregate interference at the typical receiver is given

by I = I0 + Iin + In + Iann + Iout. Conditioned on En,
R, and Yn, the five components of interference are mutually
independent and hence, the conditional Laplace transform of
the distribution of total interference power is

LI(s|r, yn, En) = LI0(s|r, yn, En)LIin(s|r, yn, En)

× LIn(s|r, yn, En)LIann(s|r, yn, En)LIout(s|r, yn, En). (27)

In case of event E0, the five different sources of interference
mentioned earlier is reduced to three since the typical line
and the line containing the serving node are the same and
there are no lines closer than the typical line. Therefore, the
sources of interference in this case are: (i) the set of nodes
on the typical line, (ii) the set of nodes on the lines that are
closer than the serving distance R, and (iii) the set of nodes
on the lines that are farther than the serving distance R. We
denote the interference from the three sets of nodes by I0, Iin,
and Iout, respectively. The conditional Laplace transform of
distribution of the interference from these three sources can
be directly obtained from the results in Lemmas 11, 14, and
15 by substituting E0 and Y0 = 0 in place of En and Yn, as
given in the following Corollary.

Corollary 5. Conditioned on the event E0 and the serving
distance R, the Laplace transform of interference power
distribution is

LI(s|r, E0) = LI0(s|r, E0)LIin(s|r, E0)LIout(s|r, E0), (28)

where

LI0(s|r, E0) = exp

[
-2λv

∫ ∞
r

1-
(

1 +
sx−α

m0

)−m0

dx

]
, (29)

LIin(s|r, E0)

= exp

[(
-2πλl

∫ r

0

e−2λv
√
r2−z2dz

)(
1-
∫ r

0

exp

[
-2λv

×
∞∫

√
r2−y2

1−
(

1 +
s(x2 + y2)−α/2

m

)−m
dx

]
dy

r

)]
, (30)

and

LIout(s|r, E0) = exp

[
-2πλl

∞∫
r

1- exp

[
− 2λv

×
∞∫

0

1-
(

1 +
s(x2 + y2)−α/2

m

)−m
dx

]
dy

]
. (31)

Now that we have determined the Laplace transform of
distribution of interference power from all the components
for both the cases En and E0, we will derive the coverage
probability next.

F. Coverage Probability

The coverage probability is formally defined as the proba-
bility with which the SIR measured at the receiver exceeds a
predetermined threshold β required for a successful commu-
nication. Using the results derived thus far, the total coverage
probability at the typical receiver can be obtained in terms of
the conditional Laplace transform of the distribution of the
interference power as given in the following theorem.

Theorem 1. The coverage probability of the typical receiver
Pc is

Pc = P(E0)

m0−1∑
k=0

∞∫
0

(-m0β)k

r−kαk!

[
∂k

∂sk
LI(s|r, E0)

]
s=m0βrα
fR(r|E0)dr

+
∞∑
n=1

m−1∑
k=0

∫ ∞
0

∫ ∞
yn

(-mβ)k

r−kαk!

[
∂k

∂sk
LI(s|r, En, yn)

]
s=mβrα

× P(En|Yn)fR(r|En, yn)fYn(yn)drdyn. (32)

Proof: The coverage probability can be computed as

Pc = P(SIR > β) =
∞∑
i=0

P(Ei)P(SIR > β|Ei)

= P(E0)P(SIR > β|E0)

+
∞∑
n=1

EYn
[
P(En|Yn)P(SIR > β|En, Yn)

]
= P(E0)ER

[
P(SIR > β|E0, R)

]
+

∞∑
n=1

EYn
[
P(En|Yn)ER

[
P(SIR > β|En, R, Yn)

]]
= P(E0)

∫ ∞
0

P(SIR > β|E0, R)fR(r|E0)dr

+
∞∑
n=1

∫ ∞
0

∫ ∞
yn

P(SIR > β|En, R, Yn)P(En|Yn)

× fR(r|En, yn)fYn(yn)drdyn. (33)
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Following the same approach presented in [29]–[31], we
can obtain the final expression by rewriting the conditional
coverage probability in (33) in terms of derivative of Laplace
transform of the distribution of the interference power. This
completes the proof.

G. Asymptotic Characteristics of Coverage Probability

In this subsection, we compute the coverage probability
for extremely low values of line density. As expected, the
coverage probability of the typical receiver asymptotically
converges to that of a 1D PPP with node density λv . We
show this mathematically by applying the limit λl → 0 on the
expressions for association probability P(E0) and the coverage
probability Pc in the following Lemmas.

Lemma 16. As the density of lines tends to zero (λl → 0),
the typical receiver connects to its nearest node on the typical
line with a probability 1.

Proof: By applying the limit λl → 0 on P(E0), we get

lim
λl→0

P(E0)

= lim
λl→0

∫ ∞
0

exp

[
-2πλl

∫ s0

0

1-e−2λv
√
s20−z2dz

]
2λve

−2λvs0ds0

(a)
=

∞∫
0

lim
λl→0

exp

[
-2πλl

∫ s0

0

1-e−2λv
√
s20−z2dz

]
2λve

−2λvs0ds0

(b)
=

∫ ∞
0

2λv exp(−2λvs0)ds0 = 1,

where (a) follows from the application of Dominated Conver-
gence theorem (DCT) and (b) follows from the limit of the
first term in the integrand which evaluates to 1.

Lemma 17. As the line density approaches zero (λl → 0), the
coverage probability of the typical receiver converges to that
of a 1D PPP with node density λv and is given by

Pc
(1) =

m0−1∑
k=0

∫ ∞
0

(−m0β)k

r−kαk!

[
∂k

∂sk
LI(s|r)

]
s=m0βrα

2λve
−2λvrdr,

(34)

where

LI(s|r) = exp

[
− 2λv

∫ ∞
r

1−
(

1 +
sx−α

m0

)−m0

dx

]
. (35)

Proof: We have already shown in Lemma 16 that the
typical receiver connects to its closest node on the same line
with a probability 1. Therefore, the serving distance under the
asymptotic condition λl → 0 follows the same distribution as
that of S0 given in Corollary 1. Therefore, the asymptotic PDF
of the serving distance is given by fR(r) = 2λv exp(−2λvr).
The next step is to characterize the interference experienced at
the typical receiver in this case. This can simply be calculated
by applying the limit λl → 0 on the Laplace transform of the
interference power distribution given in Corollary 5 as follows:

LI(s|r) =
(

lim
λl→0

LI0(s|r, E0)
)(

lim
λl→0

LIin(s|r, E0)
)

×
(

lim
λl→0

LIout(s|r, E0)
)

= exp

[
− 2λv

∫ ∞
r

1−
(

1 +
sx−α

m0

)−m0

dx

]
.

Using the asymptotic serving distance distribution and Laplace
transform of interference power distribution, the coverage
probability can be computed by following the same approach
presented in Theorem 1.

As the density of lines approaches infinity (λl → ∞) and
the density of nodes tends to zero (λv → 0) while the overall
density of nodes remains the same (µlλv = λa), the coverage
probability of the typical receiver converges to that of a 2D
PPP with density λa. While this can be proven mathematically,
we skip the proof due to space limitations. A detailed account
of this result will be presented in our follow-up work.

H. Area Spectral Efficiency

Area spectral efficiency is defined as the average number
of bits transmitted per unit time per unit bandwidth per unit
area. For the setup presented in Section III, assuming that each
receiver node connects to its closest transmitting node, the
number of concurrently active links in a given area is limited
by the number of active transmitters in the region. Thus, the
ASE can be computed as

ASE = λa log2(1 + β)Pc bits/s/Hz/km2, (36)

where λa is the density of active transmitting nodes given by
λa = µlλv and the coverage probability Pc is given by (32)
in Theorem 1. The impact of the line and node densities on
the ASE is discussed in the next section.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we verify the accuracy of our analytical
results by comparing the coverage probabilities evaluated
using the theoretical expressions with the results obtained from
the Monte-Carlo simulations. We also analyze the trends in
coverage probability as a function of network parameters. We
then demonstrate that the coverage probability for the setup
asymptotically converges to that of 1D and 2D PPPs for ex-
treme values of line and node densities. We also provide some
design insights into the deployment of RSUs by analyzing the
trends in ASE.

A. Coverage Probability

We simulate the Cox process model described in Section III
in MATLAB with line density µl = 35 km/km2, node density
λv = 35 nodes/km, and path-loss exponent α = 4. We observe
that our analytical results match exactly with the empirical
coverage probability evaluated using Monte-Carlo simulations
as depicted in Fig. 5. The key network parameters that have
an impact on the coverage probability are line density, node
density, severity of fading and path-loss exponent. We will
next study the impact of each of these parameters separately
on the coverage probability.

Impact of line density. We compute the coverage probability
of the typical receiver for node density of λv = 35 nodes/km
and different line densities of µl = 15, 25, 35, and 45 km/km2.
It can be observed from Fig. 6 that the coverage probability
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Fig. 5. Coverage probability of the typical receiver as a function of SIR
threshold (µl = 35 km/km2, λv = 35 nodes/km, m0 = m = 1, and
α = 4).
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Fig. 6. Coverage probability of the typical receiver as a function of SIR
threshold (λv = 35 nodes/km, m0 = m = 1, and α = 4).

decreases as the line density increases. This trend in the
coverage probability can be easily understood by examining
the case where the receiver connects to a node on the typical
line. In this case, an increase in the line density does not have
any effect on the serving distance, however, it increases the
interference power due to the reduced distance between the
typical receiver and interfering nodes on other lines.

Impact of node density. We compare the coverage probabil-
ity of the typical receiver for node densities of λv = 20, 30, 40,
and 50 nodes/km as a function of SIR threshold β. It can be
observed from Fig. 7 that the coverage probability increases
as the density of nodes on the lines increases. Recall that the
distance from the typical receiver at the origin to any node on
a line involves two components: (i) perpendicular distance of
the line from the origin, and (ii) the distance of the node (along
the line) from the projection of the origin onto the line. When
the density of nodes increases, the nodes come closer along the
direction of the line, which decreases the second component
of distance described above. Consequently, the decrement in
the distance from the typical receiver to the nodes located on
the lines that are closer to the origin is relatively more than
the decrement in the distance to the nodes located on the lines
that are farther away from the origin. This increases the desired
signal power at a faster rate than the interference power, thus
improving the SIR and hence the coverage probability at the
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Fig. 7. Coverage probability of the typical receiver as a function of SIR
threshold (µl = 35 km/km2, m0 = m = 1, and α = 4).
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Fig. 8. Coverage probability of the typical receiver as a function of SIR
threshold (µl = 35 km/km2, λv = 35 nodes/km, and α = 4).

typical receiver.
Impact of fading. We study the impact of fading on coverage

in Fig. 8, where the coverage probability of the typical receiver
is computed for fading parameters m0 = m = 1, 2, 4, and
∞. From Fig. 8, it can be observed that the variance of SIR
decreases in the operational regime of interest as m0 and m
increase and this trend in coverage probability is consistent
with those of well-investigated 1D and 2D PPPs.

Impact of path-loss exponent. We plot the coverage prob-
ability of the typical receiver as a function of SIR threshold
β for path-loss exponent values of α = 2.5, 3, 3.5, and 4
as shown in Fig. 9. While decreasing the value of path-loss
exponent increases the desired signal power, it also increases
the interference power at the typical receiver at a faster rate,
thereby decreasing the overall SIR and hence the coverage
probability.

Asymptotic Characteristics of Coverage Probability. We
plot the coverage probability of the typical receiver for some
extreme values of line and node densities as shown in Fig. 10.
It can be observed that the coverage probability for moderate
values of line and node density (µl = 35 km/km2, λv = 35
nodes/km) differs significantly from that of 1D and 2D PPP
models which are often used to model vehicular networks.
However, for a relatively low line density (µl = 10 km/km2),
the coverage probability for this setup converges to that of
a 1D PPP, thereby verifying the asymptotic results derived
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Fig. 9. Coverage probability of the typical receiver as a function of SIR
threshold (µl = 35 km/km2, λv = 35 nodes/km, and m0 = m = 1).
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Fig. 10. Coverage probability of the typical receiver as a function of SIR
threshold (m0 = m = 1 and α = 4).

in Lemma 17. Similarly, for a high line density and low node
density (µl = 50 km/km2, λv = 10 nodes/km), we can observe
that the coverage probability for this setup converges to that
of a homogeneous 2D PPP with equivalent node density of
λa = µlλv = 500 nodes/km2 as stated in Section IV-G.

B. Area Spectral Efficiency

In this subsection, we analyze the impact of line and node
densities on the ASE of the network. As the node density
increases, both the coverage probability and the number of
concurrently active links in a given region increase, thereby
improving the ASE. On the other hand, with an increase in
line density, the coverage probability of the typical receiver
degrades while the number of active links in the network
increases. In order to understand the combined effect, we
compute the ASE of the network as a function of node density
for different values of line densities as shown in Fig. 11.
Since the nodes considered in our setup jointly represent the
vehicular nodes and RSUs, one can modify the density of
nodes in a given area by deploying the RSUs in the network.
From Fig. 11, it can be observed that the minimum density
of nodes required to achieve a certain ASE increases as the
density of lines decreases. Therefore, the areas with sparse
distribution of roads require a denser deployment of RSUs as
compared to the areas with dense roads in order to achieve
the same ASE.
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Fig. 11. ASE of the network as a function of node density λv (m0 = m = 1
and α = 4).

VI. CONCLUSION

In this paper, we have presented an analytical method for
the coverage analysis of a vehicular network in which the
locations of nodes are confined to road systems. We have
modeled the roads by a PLP and the nodes on each road by
a homogeneous 1D PPP. Assuming that the typical receiver
connects to its closest node in the network, we began our
analysis with the derivation of several distance distributions
which were necessary to determine the desired signal power
at the typical receiver. We then computed the conditional
distribution of lines in order to characterize the interference at
the typical receiver. We then derived an exact expression for
SIR-based coverage probability of the typical receiver in terms
of the derivative of Laplace transform of interference power
distribution. We also studied the asymptotic characteristics of
the coverage probability for our setup. We have verified the
accuracy of our analytical results numerically by comparing
them with the results obtained from Monte-Carlo simulations.
We also computed the ASE of the network as a function of
line and node densities and provided some insights into the
deployment of RSUs to achieve the desired performance.

This work has numerous extensions. First and foremost, the
proposed model as well as the canonical analysis presented
in this paper can be readily applied to study other metrics of
interest, such as information throughput and latency, which
were not directly analyzed in this paper. Another meaning-
ful extension of the current work could be to analyze the
performance of the network for an enhanced system model
which includes realistic blockage models and sophisticated
channel access schemes such as CSMA. The proposed ap-
proach can also be easily specialized to study the vehicular
network performance under specific system constraints, such
as those imposed by the mmWave frequencies, thus making the
analysis relevant to a particular technology such as 5G. From
stochastic geometry perspective, it will be useful to develop
appropriate generative models for the proposed setup that
simplify the analysis without compromising the accuracy of
the results. Finally, while the proposed model is a reasonable
canonical model for vehicular networks, there is always scope
for making such models more accurate (often at the cost of
reduced tractability) by obtaining network parameters from
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the actual data [32]. Therefore, another worthwhile extension
of this work is to take a data-driven approach to vehicular
network modeling, which will provide useful insights into the
parameter ranges that are of interest in different morphologies.

APPENDIX

A. Proof of Lemma 4

The CDF of Un conditioned on Yn is

FUn(un|yn) = 1− P(Un > un|Yn)

= 1− P
(
Nv
(
b(o, un)

)
= 0|Yn

)
,

where Nv(b(o, un)) denotes the number of nodes within the
disc of radius un centered at o. Therefore, we need to find
the probability that there are no nodes on any of the lines that
are closer than Yn that intersect the disc b(o, un). We know
that there are n − 1 lines whose distance from the origin is
uniformly distributed in the range (0, yn). Depending on the
range of un, there are two possible cases: (i) if un is smaller
than yn, then the number of lines intersecting the disc b(o, un)
follows a binomial distribution with parameters n−1 and un

yn
,

and (ii) if un exceeds yn, then all the n− 1 lines intersect the
disc b(o, un). Thus, we obtain a piece-wise conditional CDF
for Un as follows:

FUn(un|yn)

=



1-
n−1∑
j=0

P
(
Nv
(
b(o, un)

)
= 0|Nl

(
b(o, un)

)
= j, Yn

)
×P
(
Nl
(
b(o, un)

)
= j|Yn

)
, 0 ≤ un < yn,

1-
n−1∏
i=1

P
(
Nv
(
Li ∩ b(o, un)

)
= 0|Yn

)
, yn ≤ un <∞

(a)
=



1-
n−1∑
j=0

(
P
(
Nv
(
L ∩ b(o, un)

)
= 0|Yn

))j
×P
(
Nl
(
b(o, un)

)
= j|Yn

)
, 0 ≤ un < yn,

1-
[
P
(
Nv
(
L ∩ b(o, un)

)
= 0|Yn

)]n−1

yn ≤ un <∞,

(37)

where (a) follows from the independent and identically dis-
tributed (i.i.d.) locations of the nodes on the lines. In step
(a), L denotes an arbitrarily chosen line that intersects the
disc b(o, un). We will now derive the expression for each
term in (37). For the case 0 ≤ un < yn, we know that
the number of lines intersecting the disc b(o, un) follows a
binomial distribution. Therefore,

P
(
Nl
(
b(o, un)

)
= j|Yn

)
=

(
n-1

j

)(un
yn

)j(
1-
un
yn

)n−1−j
.

(38)

We will now evaluate the probability that there are no nodes
on the segment of an arbitrarily chosen line L that intersects
the disc b(o, un). We denote the perpendicular distance of the
line from the origin by Z which is uniformly distributed in
the range (0, un) for the first case. Conditioned on Z, the

probability that there are no nodes on the segment that inter-
sects b(o, un) is given by P

(
Nv
(
L ∩ b(o, un)

)
= 0|Z, Yn

)
=

exp
(
− λv2

√
u2
n − z2

)
. This result follows from the void

probability of 1D-PPP. By taking the expectation over Z, we
obtain the probability that there are no nodes on the segment
of a randomly chosen line that intersects the disc b(o, un) as

P
(
Nv
(
L ∩ b(o, un)

)
= 0|Yn

)
=

∫ un

0

e−2λv
√
u2
n−z2 dz

un
. (39)

Similarly, for the second case where yn ≤ un < ∞,
the distances of the lines that intersect the disc b(0, un)
are uniformly distributed in the range (0, yn). Therefore, the
desired probability in this case is given by

P
(
Nv
(
L ∩ b(o, un)

)
= 0|Yn

)
=

∫ yn

0

e−2λv
√
u2
n−z2 dz

yn
. (40)

Upon substituting (38), (39), and (40) in (37) and simpli-
fying the resulting expression, we obtain the final result. The
PDF of Un can then be computed by taking the derivative of
FUn(un|yn) with respect to un.

B. Proof of Lemma 5

The CDF of Vn conditioned on Yn is

FVn(vn|yn) = 1− P(Vn > vn|Yn)

= 1− P
(
Nv
(
b(o, vn) \ b(o, yn)

)
= 0|Yn

)
(a)
= 1−

∞∑
nl=0

P
(
Nl
(
b(o, vn) \ b(o, yn)

)
= nl|Yn

)
×
(
P
(
Nv
(
L ∩ {b(o, vn) \ b(o, yn)}

)
= 0|Yn

))nl
, (41)

where (a) follows from the i.i.d. locations of nodes on the
lines. Note that L denotes an arbitrarily chosen line whose
distance from the origin is greater than vn and smaller than
yn. From the definition of PLP, we know that the number of
lines whose distances from the origin are in the range (yn, vn)
follows a Poisson distribution with mean 2πλl(vn−yn). Thus,

P
(
Nl
(
b(o, vn) \ b(o, yn)

)
= nl|Yn

)
=

exp
(
− 2πλl(vn − yn)

)(
2πλl(vn − yn)

)nl
nl!

. (42)

The evaluation of the second term in the equation (41) is
similar to that of (39) in the proof of Lemma 4. The only
change is that the distances of the lines in this case are
uniformly distributed in the range (yn, vn). Hence, the desired
probability is obtained as

P
(
Nv
(
L ∩ {b(o, vn) \ b(o, yn)}

)
= 0|Yn

)
=∫ vn

yn

exp
(
− 2λv

√
v2
n − z2

) 1

(vn − yn)
dz. (43)

Substituting (42) and (43) in (41), we obtain the final expres-
sion. The conditional PDF of Vn can then be obtained by
taking the derivative of FVn(vn|yn) w.r.t. vn.
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C. Proof of Lemma 10

The conditional PMF of number of lines can be computed
as

P
(
Nl
(
b(o, r) \ b(o, yn)

)
= k

∣∣En, Yn, R)
(a)
=

P
(
En
∣∣Nl(b(o, r) \ b(o, yn)

)
= k, Yn, R

)
P
(
En|Yn, R

)
× P

(
Nl
(
b(o, r) \ b(o, yn)

)
= k|Yn, R

)
, (44)

where (a) follows from the application of Bayes’ theorem.
We now need to determine each term in (44) to compute the
desired conditional PMF. The first term in the numerator is
nothing but the probability that there are no nodes inside a
disc of radius r centered at the origin, given that there are k
lines that are farther than yn and closer than r. In addition
to these k lines, there are n− 1 lines that are closer than yn,
one line at a distance of yn, and the typical line that intersect
the disc b(o, r). Therefore, the probability that there are no
nodes on any of these lines that intersect the disc b(o, r) can
be computed as follows:

P
(
En
∣∣Nl(b(o, r) \ b(o, yn)

)
= k, Yn, R

)
= P

(
Nv
(
b(o, r)

)
= 0
∣∣Nl(b(o, r) \ b(o, yn)

)
= k, Yn, R

)
= P

[
Nv
(
L0 ∩ b(o, r)

)
=0|Yn, R

]
×
[ n−1∏
i=1

P
(
Nv
(
Li ∩ b(o, r)

)
= 0|Yn, R

)]
× P

(
Nv
(
Ln ∩ b(o, r)

)
= 0|Yn, R

)
×
[ k∏
j=1

P
(
Nv
(
Ln+j ∩ b(o, r)

)
= 0|Yn, R

)]
(45)

= e−2λvr

[ ∫ yn

0

e−2λv
√
r2−y2 dy

yn

]n−1

e−2λv
√
r2−y2n

×
[ ∫ r

yn

e−2λv
√
r2−y2 dy

(r − yn)

]k
. (46)

The second term in the numerator in (44) is the probability
that there are k lines that are farther than yn and closer than
r. Since both r and yn are fixed, the number of lines that are
farther than yn and closer than r simply follows a Poisson
distribution with mean 2πλl(r − yn). Therefore, the second
term in the numerator is given by

P
(
Nl
(
b(o, r) \ b(o, yn)

)
= k|Yn, R

)
=

exp
(
− 2πλl(r − yn)

)(
2πλl(r − yn)

)k
k!

. (47)

The denominator in (44) is the probability of occurrence of
event En conditioned on both Yn and R. This is nothing but
the probability that there are no nodes inside the disc of radius
r. This can be easily computed using law of total probability
as follows:

P
(
En|Yn, R

)

=
∞∑
k=0

P
(
En
∣∣Nl(b(o, r) \ b(o, yn)

)
= k, Yn, R

)
× P

(
Nl
(
b(o, r) \ b(o, yn)

)
= k|Yn, R

)
(48)

(a)
= e−2λvr

[ yn∫
0

e−2λv
√
r2−y2 dy

yn

]n−1

e−2λv
√
r2−y2ne−2πλl(r−yn)

×
∞∑
k=0

(
2πλl(r − yn)

)k
k!

[ r∫
yn

e−2λv
√
r2−y2

(r − yn)
dy

]k
= exp

[
-2λvr-2λv

√
r2-y2

n-2πλl

∫ r

yn

1-e(−2λv
√
r2−y2)dy

]
×
[ ∫ yn

0

e(−2λv
√
r2−y2) dy

yn

]n−1

, (49)

where (a) follows from substituting (46) and (47) in (48).
Substituting (46), (47), and (49) in (44), we obtain the final

expression.

D. Proof of Lemma 13

We know that there are n − 1 lines (excluding the typical
line) closer than Yn whose distances from the origin are uni-
formly distributed in the range (0, yn). The Laplace transform
of distribution of interference from an arbitrarily chosen line
L, conditioned on its distance from the origin Y is given by

LIL(s|r, yn, En, y)

= exp

[
-2λv

∞∫
√
r2−y2

1-
(

1 +
s(x2 + y2)−α/2

m

)−m
dx

]
. (50)

This expression is similar to the result obtained in Lemma
12. The lower limit of the integral follows from the condition
that there must be no nodes closer than r. Now, taking the
expectation over Y which is uniformly distributed in the
range (0, yn), we obtain the conditional Laplace transform of
distribution of interference from a single line as

LIL(s|r, yn, En) =

∫ yn

0

LIL(s|r, yn, En, y)
dy

yn

=

yn∫
0

exp

[
− 2λv

∞∫
√
r2−y2

1−
(

1 +
s(x2 + y2)−α/2

m

)−m
dx

]
dy

yn
.

(51)

Owing to the i.i.d. locations of nodes on the lines, the
conditional Laplace transform of distribution of interference
from the nodes on all the n− 1 lines is given by

LIin(s|r, yn, En) =
(
LIL(s|r, yn, En)

)n−1
=

(∫ yn

0

exp

[
-2λv

×
∫ ∞
√
r2−y2

1-
(

1 +
s(x2 + y2)−α/2

m

)−m
dx

]
dy

yn

)n−1

.

(52)
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E. Proof of Lemma 14

We know that the distances of the random number of lines
that are farther than yn and closer than r are uniformly
distributed in the range (yn, r). As given in (50), the Laplace
transform of interference from an arbitrarily chosen line L
conditioned on the distance of the line from the origin Y is

LIL(s|r, yn, En, y)

= exp

[
− 2λv

∫ ∞
√
r2−y2

1−
(

1 +
s(x2 + y2)−α/2

m

)−m
dx

]
.

Thus, the conditional Laplace transform of distribution of
interference from a single line is

LIL(s|r, yn, En)

=

r∫
yn

exp

[
-2λv

∞∫
√
r2−y2

1-
(

1 +
s(x2 + y2)−α/2

m

)−m
dx

]
dy

(r-yn)
.

(53)

Owing to the i.i.d. locations of nodes on the lines, the
conditional Laplace transform of interference distribution from
all the lines that are farther than Yn and closer than R is

LIann(s|r, yn, En)

=
∞∑
i=0

P
(
Nl
(
b(o, r) \ b(o, yn)

)
= i
)(
LIL(s|r, yn, En)

)i
(54)

(a)
= exp

[(
-2πλl

∫ r

yn

e-2λv
√
r2−z2dz

)(
1-LIL(s|r, yn, En)

)]
,

(55)

where (a) follows from the substitution of the PMF given by
Lemma 10 in (54). Substituting (53) in (55), we obtain the
final expression.

F. Proof of Lemma 15

Following the same approach as in Lemma 14, we determine
the conditional Laplace transform of distribution of interfer-
ence from an arbitrary line L at a distance Y from the origin
as follows:

LIL(s|r, yn, En, y)

= exp

[
-2λv

∫ ∞
0

1-
(

1 +
s(x2 + y2)−α/2

m

)−m
dx

]
. (56)

Owing to the independent distribution of nodes on the lines, for
a given realization of the line process, the conditional Laplace
transform of interference distribution is simply the product of
the Laplace transform of distribution of interference from each
of these lines. Therefore, we can write the Laplace transform
of distribution of interference conditioned on the line process
Φl0 ≡ Φl ∪ L0 as

LIout(s|r, yn, En,Φl0) =
∏
y∈Ψl0

LIL(s|r, yn, En, y), (57)

where Ψl0 represents the set of distances of the lines from
the origin, which is a 1D PPP with density 2πλl as shown

in the proof of Lemma 1. By taking the expectation over Ψl0

and applying the PGFL of PPP, we obtain the desired result
as follows:

LIout(s|r, yn, En)

= exp

[
-2πλl

∫ ∞
r

1-LIL(s|r, yn, En, y)dy

]
. (58)

We obtain the final expression upon substituting (56) in (58).
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