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Member, IEEE, Raymond A. DeCarlo, Fellow, IEEE

Abstract—For a system matrix M , this paper explores the
smallest (Frobenius) norm additive structured perturbation δM
for which a system property P (e.g. controllability, observability,
stability, etc.) fails to hold, i.e., δM is the structured perturbation
with smallest Frobenius norm such that there exists a property
matrix R ∈ P for which M − δM − R drops rank. The
Frobenius norm is used because of its direct dependence on the
magnitude of each entry in the perturbation matrix. Necessary
conditions on a locally minimum norm structured rank-reducing
perturbation δM and associated property matrix R are set forth
and proven. An iterative algorithm is also set forth that computes
a locally minimum norm structured perturbation and associated
property matrix satisfying the necessary conditions. Algorithm
convergence is proven using a discrete Lyapunov function.

Index Terms—Matrix perturbation theory, structured pertur-
bation, robust control, linear systems, computational methods.

I. INTRODUCTION

System properties, such as controllability and observability,
are often characterized by binary labels, e.g., controllable or
uncontrollable and stable or unstable. These binary labels fail
to capture the robustness of these properties. For example,
consider the LTI system

ẋ(t) = Ax(t) +Bu(t), (1)

where A ∈ Rn×n and B ∈ Rn×m. The pair (A,B) is
controllable if and only if for each λ ∈ C

rank
[
A− λIn B

]
= n, (2)

where In denotes the n × n identity matrix [1]. The set of
uncontrollable pairs (A,B) ∈ Rn×(n+m), i.e., pairs failing
to satisfy (2), is an algebraic variety of lower dimension and
hence has measure zero in Rn×(n+m). Since LTI models are
only approximations of physical systems, it is also necessary
to characterize the robustness of the controllability property,

Manuscript received July 12, 2016; revised July 18, 2016, March 23, 2017,
and September 11, 2017; accepted November 15, 2017. Recommended by
Associate Editor W. Michiels. (Corresponding author: Miloš Žefran). The
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e.g., by determining the distance to the nearest uncontrollable
system [2], [3]

µR(A,B) = inf
(δA,δB)∈C

∥[δA, δB]∥F , (3)

where C = {(δA, δB) : ∃λ ∈ C, rank[A−δA−λIn, B−δB] <
n}. Similar metrics can be constructed for system properties
including, but not limited to reachability, stabilizability, ob-
servability, and detectability.

Computing metrics such as µR(A,B) and the associated
minimizing perturbations has been an active area of research
over the past 40 years [2]–[16]. The norm used to measure
robustness separates the robust system property literature. The
Frobenius norm metric in (3) is based on the work of [2] and is
used in [3]–[9]. The primary alternative to the Frobenius norm
metric is the spectral norm, i.e., the largest singular value of
the matrix [δA, δB]. The spectral norm metric, usually referred
to by the names controllability radius or observability radius,
is explored in several works including [11]–[16]. This paper
utilizes a Frobenius norm metric because a perturbation on
each entry of a system matrix affects the Frobenius norm in
a strong and direct way.

The primary challenge to either robustness metric is de-
veloping an algorithm to compute the minimum distance and
associated perturbation matrices. In [3], the algorithm for
computing (3) for real but otherwise unstructured perturbations
is based on computing a coordinate transformation into a
“nearly” Kalman uncontrollable form. Another approach for
computing (3) is considered in [8] wherein one constructs
a large n(n + 1) × n(n + m) matrix Xn−1 consisting of a
structured arrangement of blocks of matrices[

A B
I 0

]
.

The “Structured Total Least Norm” algorithm then computes
a low rank approximation to Xn−1 where only the A and B
matrices are potentially perturbed. The low rank approxima-
tion also provides the smallest perturbations δA ∈ Rn×n and
δB ∈ Rn×m causing uncontrollability.

Reference [11] develops an algorithm for computing the
controllability radius for real but otherwise unstructured per-
turbations utilizing a constrained optimization problem; the
perturbations causing uncontrollability are constructed from
singular vectors. In [13], a fast algorithm for computing the
controllability radius is developed for unstructured complex
perturbations. Extensions to higher-order LTI systems with
affine perturbations are considered in [14]. Additional exten-
sions including descriptor and time-delay LTI systems are
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considered in [16]. Finally, [15] develops an upper bound on
the spectral distance to uncontrollability of a switched LTI
system.

In [17], [18], a class of low rank approximation problems is
studied. As a special case, distance to an uncontrollable space
is treated in the context of input-output descriptions which are
invariant with regard to a particular realization. While there is
similarity with the work described here, our problem setup
explicitly includes structure on the perturbation and structure
on the property and is thus inherently different. On the other
hand, [17] deals with problems of arbitrary rank while we only
consider rank deficiency of 1.

In the context of distance to uncontrollability, [7] extends
the formulas of [2] to account for structured real perturbations
having a particular product structure (see Equation (2) in [7]).
Alternatively, reference [19] and the work herein, recasts this
problem and generalizes it to determine when a system subject
to a structured perturbation looses a system property such
as controllability, stability, gain margin, rise time levels, etc.
Specifically, [19] formulates the problem of structured rank
reducing perturbations, belonging to a subspace S ⊂ Cn×m,
on a rectangular matrix M ∈ Cn×m which cause the failure of
a system property, P . This general P–robustness framework
encompasses many of the robustness problems previously
addressed in the literature. No prior work has extended the
P–robustness framework, proven the necessary conditions for
P–robustness, or completed and proven convergence of the
algorithm suggested in [19]; this list constitutes the main
contributions of our work.

Section II introduces the P–robustness framework. Sec-
tion III establishes necessary conditions for solving the P–
robustness problem (Theorem 1). They motivate the solution
algorithm in Section IV (Algorithm 1). Section V shows that
the algorithm converges to a point satisfying the necessary
conditions (Theorem 2). Numerical examples follow in Sec-
tion VI.

In this paper, the following notation will be used:

dim(S) Dimension of a linear space S.
||M ||F Frobenius norm of a matrix M .
||ν||2 Euclidean norm of a vector ν.
M⊤, MH Transpose and conj. transpose of M .
σn(M) nth singular value of matrix M .
Im m×m identity matrix.
diag(ν) Diag. matrix with diag. entries given by ν.
vec(M) Vectorizes M by stacking the columns.
M ⊗N The kronecker product of M and N .
M† The Moore-Penrose pseudoinverse.
col-sp(M) Column space of M .
Im(M) Imaginary component of M .
Re(M) Real component of M .
σi(M) ith largest singular value of M .
cl(U) The closure of the set U .
⟨A1, A2⟩ Inner product of A1, A2 ∈ Cn×m defined as

⟨A1, A2⟩ = Re(vec(A1))
⊤ Re(vec(A2)) +

Im(vec(A1))
⊤ Im(vec(A2))

II. P–ROBUSTNESS PROBLEM

Observe that in the problem of controllability (and by
duality observability) described above, there is a matrix M =
[A,B], a perturbation matrix δM = [δA, δB] with a particular
structure described by some basis in a space of possible
perturbations S, and a property matrix P = [λI, 0], a complex
matrix living in a property space P also with an underlying
basis. So the problem illustrated above is to find the smallest
normed perturbation for which [A − δA,B − δB] does not
have the controllability property, i.e.,

rank([A− δA,B − δB]− [λI, 0]) < n

over the space of purturbations S and the space of property
matrices P . In several other problems, a distance to a region
D can be reduced to a distance to its boundary, ∂D. Problems
of this sort include:

• Asymptotic Stability: Find the smallest structured pertur-
bation δA such that rank([A−δA]− [jωI]) < n for some
ω ∈ R.

• Damping Ratio greater than ζ: Find the smallest struc-
tured perturbation δA such that rank([A−δA]− [ω(−ζ+
j
√
1− ζ2)I]) < n for some ω ∈ R.

• Prescribed Pole Locations: Given a polygonal region of
the complex plane, D, the system has all poles in the
interior of D if and only if rank[A − λI] = n for all
λ ∈ C but not in the interior of D.

In each of the above problems, there is a matrix M , a
perturbation matrix δM in a linear space S having a basis,
and a property matrix P also in a linear space P with an
underlying basis, for which one seeks the smallest norm matrix
δM such that M − δM does not have the pertinent property.
This leads to the following definition:

Definition 1. [19] Let M ∈ Cn×m with n ≤ m (without
loss of generality), and P ⊂ Cn×m and S ⊂ Cn×m be
linear spaces over R. The P–robustness of M with respect
to parameter variations in S is defined as

r(M ;S,P) = inf
δM∈T

∥δM∥F (4)

where

T = {δM ∈ S : ∃R ∈ P, rank[M − δM −R] < n}. (5)

As mentioned, the Frobenius norm metric directly measures
the magnitude of the parameter variations and thus appears
to more accurately represent the robustness of the system
property. This is in contrast to the controllability (and ob-
servability) radius which measures the largest singular value
of the perturbation causing uncontrollability (unobservability),
a metric that may not reflect some parameter variations: for
a fixed largest singular value, changes in the smaller singular
values due to parameter variations go unnoticed.

It is useful to consider bases for S and P (which are
linear subspaces over the field R). Let {S1, S2, · · · , Sk} be
an orthonormal basis for S and {P1, P2, · · · , Pr} be an
orthonormal basis for P , where by orthonormal we mean that
⟨Si, Sj⟩ is 0 if i ̸= j and 1 if i = j. Each perturbation
δM ∈ S can be represented by an associated vector ζ ∈ Rk in
this basis {S1, S2, · · · , Sk}, i.e., δM =

∑k
i=1 ζiSi. Similarly,
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each R ∈ P is represented by a vector ρ ∈ Rr. Using the fixed
bases for S and P , we can reformulate the P–robustness of
M with respect to perturbations in S.

Definition 2. Let M ∈ Cn×m; let P ⊂ Cn×m and
S ⊂ Cn×m be linear spaces over R with orthonormal bases
{S1, S2, · · · , Sk} and {P1, P2, · · · , Pr}, respectively. Given
ζ ∈ Rk and ρ ∈ Rr, let

M(ζ, ρ) =M −
k∑

i=1

ζiSi −
r∑

i=1

ρiPi. (6)

The P–robustness of M with respect to parameter variations
in S is

r(M ;S,P) = inf
ζ∈Rk, ρ∈Rr

∥ζ∥2 (7)

subject to:

0 = σn (M(ζ, ρ)) ≜ H(ζ, ρ). (8)

Note, Definition 2 is equivalent to Definition 1. Also, the
P–robustness of M with respect to parameter variations in S
is independent of the choice of orthonormal basis, although of
course, the minimizing pair (ζ∗, ρ∗) depends on the choice.

For use later in the paper, we define

f(ζ, ρ) = 0.5∥ζ∥22. (9)

If ∥ζ∥2 is replaced by f(ζ, ρ) in (7), the minimizer (when
it exists) does not change. The function f(ζ, ρ) is preferable
because it simplifies proofs later in the paper.

Example 1. Applying the P–robustness formulation to con-
trollability of an LTI state model (A,B,C), we set M =
[A,B], R = [λI, 0], and δM = [δA, δB], where δM has
a specific perturbation structure defined by a basis for S.

The original motivation for this work stems from the need
for specific structured real perturbations for the state and mode
sequence (SMS) observability problem of switched LTI (SLTI)
systems with safety applications described in [9], [20].

Example 2. For the problem of computing the distance to
the nearest SMS unobservable SLTI system (which can model
transitions from safe to unsafe operation), the P–robustness
framework can be applied to each pair of modes i (safe) and
j (unsafe) by defining

Mij =

[
A⊤

i 0 C⊤
i

0 A⊤
j C⊤

j

]
∈ R2n×(2n+p)

δMij =

[
δA⊤

i 0 δC⊤
i

0 δA⊤
j δC⊤

j

]
∈ R2n×(2n+p)

R =

[
λI 0 0
0 λI 0

]
∈ C2n×(2n+p).

Clearly, the perturbation δMij has a specialized structure that
is problematic for most existing approaches. The P–robustness
of Mij with respect to parameter variations δMij ∈ S
provides rij ≜ r(Mij ;S,P), see (4). Then mini,j{rij} is
exactly the distance to the nearest SMS unobservable SLTI
system.

The rank reduction in the P–robustness problem is charac-
terized by the nth singular value of M − δM −R becoming

zero. We observe that the set of perturbation and property
matrices δM and R for which M − δM − R has the two
smallest singular values equal to zero is an algebraic variety
of lower dimension in S × P . In other words, generically,
when the nth singular value of M − δM − R is zero, the
(n−1)th is different from zero. In this paper we thus focus on
this most common problem structure. Also, see the discussion
after Assumption 3 in Section V.

To analyze the nth singular value, we define the following
linear operator:

Definition 3. Each pair u ∈ Cn and V ∈ Cm×(m−n+1)

induces a linear operator LuV : Cn×m → C1×(m−n+1) given
by

LuV (N) = uHNV. (10)

Proposition 1. Let N = Û Σ̂V̂ H be a singular value decom-
position (SVD) of N . Define u to be the last column of Û and
V to be the last m− n+ 1 columns of V̂ . Then

LuV (N) =
[
σn(N) 0 · · · 0

]
.

Consequently, ∥LuV (N)∥F = σn(N).

The linear operator LuV is defined for any u and V ,
independent of the argument. For example, u and V can be
related to the SVD of a matrix M − δM −R and operate on
any matrix N ∈ Cn×m. Since the perturbations and property
matrices belong to lower dimensional subspaces S and P , we
define additional linear operators that have domains restricted
to these subspaces.

Definition 4. For u ∈ Cn and V ∈ Cm×(m−n+1), the linear
operators LuV S : S → C1×(m−n+1) and LuV P : P →
C1×(m−n+1) are defined as

LuV S(δM) ≜ LuV |S(δM) = uHδMV (11)

LuV P(R) ≜ LuV |P(R) = uHRV. (12)

On occasion, we will replace V with a vector v ∈
col-sp(V ) ⊂ Cm. Specifically, we define LuvS : S → C and
LuvP : P → C as LuvS(δM) = uHδMv and LuvP(R) =
uHRv.

The distinctions of the operator domains are pertinent when
considering the pseudoinverses L†

uV S : C1×(m−n+1) → S and
L†
uV P : C1×(m−n+1) → P . The map LuV S is surjective if

for each y ∈ C1×(m−n+1) there exists δM ∈ S such that
LuV S(δM) = y. When LuV S is surjective, the pseudoinverse
L†
uV S(y) = δM is the matrix δM ∈ S with the smallest

Frobenius norm solving the equation LuV (δM) = y.
Fundamental to the solution of the P–robustness problem is

the surjectivity of maps LuV S as per the following assumption:

Assumption 1. Let δM ∈ S and R ∈ P . Let M − δM − R
have a SVD Û Σ̂V̂ H . Define u to be the nth column of Û and
V to be the last m−n+1 columns of V̂ and let LuV S be as
given in Definition 4. While the SVD Û Σ̂V̂ H , and therefore the
operator LuV S , may not be unique, we assume that for each
choice of δM ∈ S and R ∈ P , there exists an appropriate
SVD Û Σ̂V̂ H for which LuV S is surjective on S.

Observe that we just use one column of Û , even when the
associated singular value is repeated. In any case, surjectivity



4

of LuV S ensures an improvement direction can be found for
the P–robustness problem when not at the minimum. Repeated
singular values normally correspond to a point where the sin-
gular values cross. If the smallest singular values are repeated
at one iteration of our proposed algorithm, in the subsequent
iteration the minimum singular value will typically be simple
(not repeated) unless the problem structure constrains the two
minimum singular values to be equal throughout P and S.
When the minimum singular value is repeated, the additional
freedom in choosing u and V provides more options for
finding a pair that achieves surjectivity (see Example 4 in
Appendix C).

The following proposition provides further insight into
surjectivity of LuV S

1.

Proposition 2. Let u ∈ Cn, and V ∈ Cm×(m−n+1). Let S
have basis {S1, S2, . . . , Sk}. LuV S is surjective if and only if

rank
([

Re[(V ⊤ ⊗ uH)BS ]
Im[(V ⊤ ⊗ uH)BS ]

])
= 2(m− n+ 1) (13)

where BS = [vec(S1), vec(S2), . . . , vec(Sk)].

Proof. See Appendix A.

Clearly, BS must have at least 2(m−n+1) columns for (13)
to be satisfied, i.e., S as a vector space over R must have
dimension no less than 2(m − n + 1). Consequently, for the
problem to be solvable, we require that the perturbation space
S be sufficiently rich.

As described in [19], the surjectivity of LuV S ensures
a certain regularity condition on a rank reducing perturba-
tion/property matrix pair (δM,R) ∈ S × P . This regular-
ity condition guarantees that there are neighboring perturba-
tion/property matrix pairs (δM ′, R′) which are also rank re-
ducing, i.e., δM is not an isolated rank reducing perturbation.
It is worth pointing out that isolated rank reducing perturba-
tions can be computed algebraically. Finally, we exclude P–
robustness problems where rank(M−R) < n for some R ∈ P
(i.e., M does not have property P) since r(M ;S,P) = 0 in
this case.

III. NECESSARY CONDITIONS

This section states and proves the necessary conditions on
a minimum norm rank-reducing perturbation δM∗ ∈ S and
the associated property matrix R∗ ∈ P (when they exist), i.e.,
∥δM∗∥F = r(M ;S,P) and rank(M − δM∗ − R∗) < n. We
next provide intuitive development of the necessary conditions.
Suppose that at the solution, rank(M − δM∗ −R∗) = n− 1.
See Example 4 and the discussion following Assumption 3 for
the case when rank(M − δM∗ −R∗) < n− 1.

Let us first assume that the property matrix R∗ is fixed. For
δM∗ to be the minimum norm rank-reducing perturbation for
M −R∗, the tangent plane to the hypersurface Υ1 = {δM ∈
S : σn(M−R∗−δM) = 0} must be perpendicular to the line
connecting M−R∗ and M−R∗−δM∗ (see Figure 1). For u∗
the nth left singular vector (lsv) and V∗ having columns equal
to the nth through mth right singular vectors (rsv) of M−R∗−

1More extensive investigation of surjectivity and additional results can be
found in [21].

δM∗, ∥Lu∗V∗(M−R∗−δM∗)∥F = σn(M−R∗−δM∗) = 0.
As will be seen in the proof of Theorem 1, the hyperplane
Υ2 = {δM ∈ S : Lu∗V∗(M − R∗ − δM) = 0} is related
to the tangent plane to Υ1 at δM∗. Note, elements of Υ2 are
precisely the minima of ∥Lu∗V∗S(δM)− Lu∗V∗(M −R∗)∥F
over δM ∈ S. The minimum Frobenius norm rank reducing
perturbation on M − R∗ is therefore the element of Υ2 that
has the least Frobenious norm. Since Lu∗V∗S is surjective by
Assumption 1, this minimum is given by

δM∗ = (L†
u∗V∗S ◦ Lu∗V∗)(M −R∗), (14)

the first necessary condition in Theorem 1.
The second necessary condition addresses the locally op-

timal property matrix R∗. As per the discussion above, the
optimal rank reducing perturbation satisfies (14). Let ∆R ∈ P
be an alteration to R∗. Given any δM0, let u0 be the nth

lsv and V0 have columns equal to the nth through mth rsv
of M −R∗ −∆R − δM0. According to (14), given property
matrix R∗+∆R, the corresponding minimum Frobenius norm
perturbation satisfies

δM0 = (L†
u0V0S ◦ Lu0V0

)(M −R∗ −∆R). (15)

It is difficult to directly minimize the norm of (15) with respect
to ∆R because the matrices u0 and V0 change with ∆R.
However, for sufficiently small ∆R, we can approximate δM0

with

δM0 ≈ (L†
u∗V∗S ◦ Lu∗V∗)(M −R∗ −∆R), (16)

where u∗ and V∗ are associated with M −R∗− δM∗. Thus in
a sufficiently small neighborhood of R∗, minimizing the norm
of (15) with respect to ∆R is equivalent to minimizing

∥(L†
u∗V∗S◦Lu∗V∗P)∆R−(L†

u∗V∗S◦Lu∗V∗)(M−R∗)∥F . (17)

The minimizer of (17) is given by

∆R = (L†
u∗V∗S ◦Lu∗V∗P)

†(L†
u∗V∗S ◦Lu∗V∗)(M−R∗). (18)

If R∗ is the optimal property matrix, then (17) is minimized
at ∆R = 0. Hence, the right-hand side of (18) equals zero,
the second necessary condition.

Theorem 1. Suppose there exists δM∗ ∈ S that is a local
minimum norm element of the set T = {δM ∈ S : ∃R ∈
P, rank[M−δM−R] < n}; choose R∗ ∈ {R ∈ P : rank[M−
δM∗−R] < n} and let u be a non-trivial element of ker[(M−
δM∗ − R∗)

H ] and let V be a matrix whose columns span
ker[M − δM∗−R∗]. If LuV S is surjective, then the following
two necessary conditions both hold:

1a) δM∗ ∈ S is a minimum norm matrix minimizing

∥LuV S(δM∗)− LuV (M −R∗)∥F . (19)

2a) 0 = ∆R∗, where ∆R∗ ∈ P is the matrix minimizing

∥(L†
uV S ◦ LuV P)(∆R)− (L†

uV S ◦ LuV )(M −R∗)∥F .
(20)

Equivalently,
1b) δM∗ = (L†

uV S ◦ LuV )(M −R∗) and
2b) 0 = ∆R∗ = (L†

uV S ◦ LuV P)
†(L†

uV S ◦ LuV )(M −R∗).
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Fig. 1. This figure illustrates the first necessary condition. Given appropriate
assumptions, the surface Lu∗V∗ (·) = 0 is tangent to the curve σn(M −
R∗ − δM) = 0 for δM ∈ S at M − R∗ − δM∗, where u∗ is the nth lsv
and V∗ is the nth through mth rsv of M − R∗ − δM∗. For δM∗ to be
a local minimum rank reducing perturbation for the property matrix R∗ the
line connecting M − R∗ to M − R∗ − δM∗ must be perpendicular to the
tangent surface Lu∗V∗ (·) = 0.

Remark 1. Conditions 1b2 and 2b are Frobenius-norm spe-
cific. However, we conjecture that conditions 1a and 2a can
be generalized to other norms, such as the spectral norm,
as follows: in 1a, it should read “... minimum spectral norm
minimizing”, and in 2a, since ∆R∗ = 0, the statement remains
the same while in (20) the operator LuV S needs to be modified
to LûV̂ S so that L†

ûV̂ S
provides the minimum spectral norm

matrix. How these modifications might impact the proof of
Theorem 1 is beyond the scope of this work.

Note, condition 1a essentially requires δM∗ to be the
smallest matrix minimizing σn(M−R∗−δM) for δM ∈ S. So
even when no rank reducing perturbation exists, condition 1a
provides the “best” solution.

The proof of Theorem 1 requires some machinery and
four technical lemmas. As will be seen, proving the nec-
essary conditions in Theorem 1 requires the application of
the inverse function theorem3 which in turn requires Fréchet
differentiability of the equality constraint H(ζ, ρ) = 0 in (8).
Unfortunately, there are points at which H is only direc-
tionally differentiable. These non-Fréchet differentiable points
are caused by two structural components of the SVD: i) the
ordering of the singular values and ii) the requirement that
the singular values be positive. We observe that, in general,
perturbation and property matrices δM and R for which
M − δM − R has a repeated smallest singular value or a
zero smallest singular value is an algebraic variety of lower
dimension in S × P . Consequently, the function H(ζ, ρ) is
Fréchet differentiable almost everywhere. Since we are con-
cerned with rank reducing perturbations, we need to resolve
the non-Fréchet differentiability when H(ζ, ρ) = 0.

De Moor and Boyd in [22] suggest an alternative SVD
that relaxes the reordering of the singular values/vectors and
positivity of the singular values. The focus of [22] is comput-
ing analytic unsigned and unordered SVDs along an analytic

2Note the similarity of 1b with (5) in [7].
3A simpler proof is outlined in [19], but it requires conditions stronger than

surjectivity.

Fig. 2. This figure illustrates the simply-connected neighborhood W of
(ζ0, ρ0) partitioned three simply connected regions: W1 and W2 disjoint
open sets with W ⊂ cl(W1 ∪W2) and the surface W ∩ {σn(·) = 0}.

path. These results on analytic paths are extended herein to an
open set in Rk ×Rr; in this way, we can construct a Fréchet
differentiable function H

∼
(ζ, ρ) which is zero exactly when

H(ζ, ρ) = 0.
Let (δM0, R0) ∈ S ×P be a pair of matrices which satisfy

rank(M − δM0 −R0) = n− 1.

Let (ζ0, ρ0) ∈ Rk × Rr represent (δM0, R0) in the bases
{S1, · · · , Sk} and {P1, · · · , Pr}, respectively. To simplify the
notation, define the map σn : Rk×Rr×Cn×m → R given by

σn(ζ, ρ;M) ≜ σn (M(ζ, ρ)) , (21)

where M(ζ, ρ) has been defined in (6). Since σn(M −δM0−
R0) is simple and σn(·) is continuous everywhere, there exists
a simply-connected and open neighborhood W ⊂ Rk ×Rr of
(ζ0, ρ0) sufficiently small such that

1) for each (ζ, ρ) ∈W , σn(ζ, ρ;M) (the smallest singular
value) is simple,

2) there exists simply-connected and open subsets
W1,W2 ⊂W such that

a) W ⊂ cl(W1 ∪W2),
b) W1 and W2 are disjoint, and
c) for each (ζ, ρ) ∈W1 ∪W2, σn(ζ, ρ;M) > 0.

The simply-connected and open subsets W , W1, and W2 are
illustrated in Figure 2. Note that the open set W includes the
common boundary of the open sets W1 and W2.

Let g : [0, 1] →W be an analytic function with g(s) ∈W1

for s < 0.5 and g(s) ∈ W2 for s > 0.5. According to [22,
Theorem 1], there exists an analytic function fg : [0, 1] → R,
called the unsigned nth singular value function, such that

|fg(s)| = σn(g(s);M), s ∈ [0, 1].

The function fg can only change sign as it transitions through
the common boundary of W1 and W2, i.e., at s = 0.5. By [22,
Theorem 3], there exists analytic singular vector functions ug :
[0, 1] → Cn and vg : [0, 1] → Cm such that for each s ∈ [0, 1],
ug(s) and vg(s) are the unsigned nth lsv and rsv associated
with fg(s), i.e., ug(s) and vg(s) are unit vectors satisfying

uHg (s)

⎛⎝M −
k∑

i=1

ζgi(s)Si −
r∑

j=1

ρgj(s)Pj

⎞⎠ = fg(s)v
H
g (s),
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for each s ∈ [0, 1], where ζg : [0, 1] → Rk and ρg(s) → Rr

are defined by the relation g ≜ (ζg, ρg).
Let H

∼
: W → R be the extension of the unsigned singular

value function fg to the set W , i.e.,

H
∼
(ζ, ρ) =

{
sign(fg(0))σn(ζ, ρ;M) (ζ, ρ) ∈W1,

sign(fg(1))σn(ζ, ρ;M) otherwise.
(22)

Note that, H
∼
(g(s)) = fg(s) for each s ∈ [0, 1] since by

construction of g(s), fg can change sign only at s = 0.5.
In addition, the form of H

∼
implies that for each (ζ, ρ) ∈ W ,

|H∼(ζ, ρ)| = σn(ζ, ρ;M). We will show that H
∼

is Fréchet
differentiable on W , as per the following lemma.

Lemma 1. Let (ζ0, ρ0) ∈ Rk × Rr satisfy rank[M(ζ0, ρ0)] =

n−1. Let W ⊂ Rk×Rr be as defined above. Let H
∼

:W → R
be as in (22). Then H

∼
is Fréchet differentiable on W with

partial derivatives given by

∂H
∼
(ζ, ρ)

∂ζi
= −Re(uHSiv) = −Re(LuvS(Si))

∂H
∼
(ζ, ρ)

∂ρi
= −Re(uHPiv) = −Re(LuvP(Pi))

(23)

where u and v are unsigned nth lsv and rsv of
M(ζ0, ρ0), respectively, i.e., uHM(ζ0, ρ0) = H

∼
(ζ0, ρ0)v

H

and M(ζ0, ρ0)v = H
∼
(ζ0, ρ0)u. Equivalently, (23) has the

matrix form:

H
∼′

(ζ0, ρ0) =
[
∂H
∼
(ζ,ρ0)
∂ζ

⏐⏐
ζ=ζ0

⏐⏐ ∂H
∼
(ζ0,ρ)
∂ρ

⏐⏐
ρ=ρ0

]
=

− Re
[
uHS1v, · · · , uHSkv | uHP1v, · · · , uHPrv

]
= −Re[LuvS(S1), · · · | LuvP(P1), · · · ],

(24)

Proof. See Appendix A.

Thus Lemma 1 allows the replacement of the constraint
H(ζ, ρ) = 0 in (8) by the Fréchet differentiable constraint
H
∼
(ζ, ρ) = 0 when restricted to the set W .
The next lemma proves that if the claimed necessary condi-

tion 1a (or equivalently 1b) of Theorem 1 is not satisfied, then
there exists a direction ∆M ∈ S to change the perturbation
δM∗ on the tangent plane LuV (·) = 0 (see Figure 1). This new
perturbation δM∗ +∆M

∼
may not be rank reducing, but will

allow us to prove the existence of rank reducing perturbations
with norms smaller than ∥δM∗∥F .

Lemma 2. Let M ∈ Cn×m, δM0 ∈ S , R0 ∈ P satisfy
rank[M − δM0 − R0] < n. Let u be the nth lsv and V have
columns equal to the nth through mth rsv of M − δM0−R0.
Suppose LuV S surjective and δM0 ̸= (L†

uV S ◦LuV )(M−R0).
Then there exists a matrix ∆M ∈ S such that

LuV S(∆M) = 0 (25)

and
⟨δM0,∆M⟩ < 0. (26)

Proof. See Appendix A.

Remark 2. The condition in (26) is used to construct ζ∆ sat-
isfying the condition in (32) of Lemma 4. A similar condition
in (29) is also needed for a similar reason. These conditions

are necessary to set up the hypotheses of the inverse function
theorem used in the proof of Theorem 1.

Similar to Lemma 2, Lemma 3 proves that if the second
necessary condition (2a or 2b) of Theorem 1 is not satisfied,
then there exist directions ∆M and ∆R for changing the
perturbation δM∗ and the property matrix R∗, respectively,
that reduce the norm of the perturbation on the tangent surface
LuV (·) = 0. Again, the resulting perturbed matrices may not
be rank reducing, but will allow us to prove the existence of a
rank reducing perturbation with smaller norm and associated
property matrix.

Lemma 3. Let M ∈ Cn×m, δM0 ∈ S , R0 ∈ P satisfy
rank[M − δM0 − R0] < n. Let u be the nth lsv and V have
columns equal to the nth through mth rsv of M − δM0−R0.
Suppose LuV S is surjective, δM0 = (L†

uV S ◦LuV )(M −R0),
and

0 ̸= ∆R ≜ (L†
uV S ◦ LuV P)

†(L†
uV S ◦ LuV )(M −R0). (27)

Then there exist ∆M ∈ S such that

LuV (∆M +∆R) = 0 (28)

and
⟨δM0,∆M⟩ < 0. (29)

Proof. See Appendix A.

As a preliminary to the statement of Lemma 4, let (ζ0, ρ0) ∈
Rk × Rr be a pair satisfying rank(M(ζ0, ρ0)) = n − 1. Let
W ⊂ Rk × Rr be a simply-connected and open neighbor-
hood of (ζ0, ρ0) where the nth singular value is simple, as
constructed in Lemma 1. If (ζ0, ρ0) does not satisfy both
condition 1a and 2a (or equivalently 1b and 2b), Lemmas 2
and 3 can be used to prove the existence of smaller normed
rank reducing perturbations. To this end, we combine the
function f(ζ, ρ) = 0.5∥ζ∥2F in (9) with the equality constraint
H
∼
(ζ, ρ) = 0 to form a new function T :W → R2 given by

T (ζ, ρ) =

[
f(ζ, ρ)− f(ζ0, ρ0)

H
∼
(ζ, ρ)

]
. (30)

The verification of the necessary conditions of Theorem 1
follows by applying the inverse function theorem to the
map T . The underlying hypotheses of the inverse function
theorem require proving that T is Fréchet differentiable and
that T ′(ζ0, ρ0) is surjective, under appropriate conditions.

Lemma 4. Let (ζ0, ρ0) ∈ Rk ×Rr satisfy rank(M(ζ0, ρ0)) =
n− 1 and W ⊂ Rk ×Rr be a neighborhood of (ζ0, ρ0) as in
Lemma 1 where the nth singular value is simple. If

∂

∂ζ
H
∼
(ζ, ρ0)|ζ=ζ0 (31)

is surjective and there exists ρ∆ ∈ Rr and ζ∆ ∈ Rk such that

ζ⊤0 ζ∆ < 0 (32)

and
H
∼′(ζ0, ρ0)

[
ζ∆
ρ∆

]
= 0, (33)

then T defined in (30) is Fréchet differentiable and T ′(ζ0, ρ0)
is surjective.
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Proof. See Appendix A.

We can now prove necessary conditions of Theorem 1.

Proof of Theorem 1.
Condition 1: For contradiction, assume that δM0 is a

minimum norm element in T (defined in (5)) with associated
property matrix R0, but condition 1b is not satisfied, i.e.,

δM0 ̸= (L†
uV S ◦ LuV )(M −R0) (34)

where u ∈ Cn and V ∈ Cm×(m−n+1) are the nth lsv and
nth through mth rsv of M − δM0 − R0, respectively. By
Lemma 2, there exists ∆M ∈ S such that LuV S(∆M) = 0
and ⟨δM0,∆M0⟩ < 0. Let ζ0 and ζ∆ in Rk represent δM0

and ∆M in the orthonormal basis {S1, · · · , Sk}, respec-
tively. Let ρ0 ∈ Rr represent R0 in the orthonormal basis
{P1, · · · , Pr}. Since the basis {S1, · · · , Sk} is orthonormal,
ζ⊤0 ζ∆ = ⟨δM0,∆M⟩ < 0. By the form of H

∼′(ζ0, ρ0) in
Lemma 1,

H
∼′(ζ0, ρ0)

[
ζ∆
0

]
= −Re(LuvS(∆M)), (35)

where v is the nth unsigned rsv of M − δM0 − R0. But
v ∈ col-sp(V ) so there exists a unique w ∈ Cm−n+1 such that
v = V w. Since LuV S(∆M) = 0, LuvS(∆M) = 0. Thus (35)
is zero.

Consider the function ∂
∂ζH

∼
(ζ, ρ0)|ζ=ζ0 : Rk → R. To show

surjectivity of ∂
∂ζH

∼
(ζ, ρ0)|ζ=ζ0 , for each α ∈ R we need to

show there exists ζα ∈ Rk such that ∂
∂ζH

∼
(ζ, ρ0)|ζ=ζ0ζα = α.

Let w = [w1, w2, · · · , wm−n+1]
⊤ ∈ Cm−n+1 satisfy v = V w.

Without loss of generality, suppose wi ̸= 0 for some i.
Similar to (35), for each ζ ∈ Rk define δMζ ≜

∑k
i ζiSi.

From (24) and the definition of w,

∂

∂ζ
H
∼
(ζ, ρ0)|ζ=ζ0ζ = −Re(uHδMζv)

= −Re(LuV S(δMζ)w). (36)

To demonstrate surjectivity, suppose α ∈ R is an arbi-
trary scalar. Since LuV S is surjective, there exists δMα =∑k

i ζαiSi ∈ S for ζα ∈ Rk such that

LuV S(δMα) = [· · · , 0,−α/wi, 0, · · · ] , (37)

where only the ith entry is nonzero. Then from (36)
and (37), ∂

∂ζH
∼
(ζ, ρ0)|ζ=ζ0ζα = α. Since α was arbitrary,

∂
∂ζH

∼
(ζ, ρ0)|ζ=ζ0 is surjective.

Hence by Lemma 4, T (ζ, ρ) given in (30) is Fréchet
differentiable and T ′(ζ0, ρ0) is surjective. Thus by the inverse
function theorem [23], there exists an open set W0 ⊂ R2

containing zero such that for all y ∈W0, there exists ζy ∈ Rk

and ρy ∈ Rr such that T (ζy, ρy) = y. Hence for all sufficiently
small neighborhoods of 0 in R2, there exists δ > 0, ζ∗ ∈ Rk,
and ρ∗ ∈ Rr such that T (ζ∗, ρ∗) = [−δ, 0]⊤. This implies
that δM∗ =

∑k
i=1 ζ∗iSi ∈ T , i.e., it is a rank reducing per-

turbation, with associated property matrix R∗ =
∑r

j=1 ρ∗jRj .
Since f(ζ∗, ρ∗) − f(ζ0, ρ0) = −δ < 0, ∥δM∗∥F < ∥δM0∥F
contradicting that δM0 is a local minimum norm element in
T .

Condition 2: For contradiction, assume that δM0 is a
minimum norm element in T with associated property matrix
R0 and condition 1b is satisfied, but condition 2b is not, i.e.,

δM0 = (L†
uV S ◦ LuV )(M −R0), and (38)

0 ̸= (L†
uV S ◦ LuV P)

†(L†
uV S ◦ LuV )(M −R0) (39)

where u ∈ Cn and V ∈ Cm×(m−n+1) are the nth lsv and
nth through mth rsv of M − δM0 − R0, respectively. By
Lemma 3, there exists ∆M ∈ S and ∆R ∈ P such that
LuV (∆M + ∆R) = 0 and ⟨δM0,∆M⟩ < 0. Let ζ0 and
ζ∆ in Rk specify δM0 and ∆M in the orthonormal basis
{S1, · · · , Sk}, respectively. Let ρ0 and ρ∆ specify R0 and ∆R
in the orthonormal basis {P1, · · · , Pr}, respectively. Since the
basis {S1, · · · , Sk} is orthonormal, ζ⊤0 ζ∆ = ⟨δM0,∆M⟩ < 0.
By the form of H

∼′(ζ0, ρ0) in Lemma 1,

H
∼′

(ζ0, ρ0)

[
ζ∆
ρ∆

]
= −Re(LuvS(∆M)).

Since LuV (∆M +∆R) = 0, Luv(∆M +∆R) = 0. This im-
plies H

∼′(ζ0, ρ0)[ζ
⊤
∆ , ρ

⊤
∆]

⊤ = 0. Since LuV S is surjective, us-
ing arguments from the proof of Condition 1, ∂

∂ζH
∼
(ζ, ρ0)|ζ=ζ0

is surjective onto R. Hence by Lemma 4, T (ζ, ρ) given in (30)
is Fréchet differentiable and T ′(ζ0, ρ0) is surjective. Using the
same arguments as while proving condition 1, this implies that
there exists δM∗ ∈ T smaller than δM0, contradicting that
δM0 is a local minimum element.

The next section sets forth an algorithm which is proven to
converge to a perturbation and property matrix pair (δM∗, R∗)
satisfying the necessary conditions of Theorem 1.

IV. P–ROBUSTNESS ALGORITHM

This section introduces the steps in the P–Robustness
Algorithm. The bold statements in Algorithm 1 below provide
a high-level description of individual steps. The algorithm
computes norm reducing and rank reducing directions of
search in each iteration. It then proceeds along the direction of
their vector sum with a step size αk chosen to reduce a discrete
step-dependent Lyapunov function. Each step of the algorithm,
as well as the implementation, are discussed in detail after the
algorithm is stated.

Algorithm 1. P–Robustness.

1) k = 0
2) Initialize δM0 ∈ S and R0 ∈ P . Set g0 = 1.
3) REPEAT
4) Let u and V be the nth lsv and nth through mth rsv

of M − δMk −Rk, respectively4, such that the operator
LuV S is surjective. Define [σn]k ≜ σn(M−δMk−Rk).

5) Norm reducing direction (δM
∼

k,∆R
∼

k):

Set ϕ
∼
k = minδM∈S,∆R∈P ∥LuV (δM + ∆R) −

LuV S(δMk)∥F and let

Z
∼
= {(δM,∆R) :

∥LuV (δM +∆R− δMk)∥F = ϕ
∼
k}

(40)

4We suppress the k-dependence of u and V to prevent overburdening the
notation, i.e., the singular vectors change in each iteration.
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Then,

δM
∼

k = argmin
δM

′ ∈ {δM ∈ S : ∃∆R ∈ P
s.t. (δM,∆R) ∈ Z

∼}

∥δM ′∥F

and

∆R
∼

k = argmin
∆R′∈{∆R∈P:(δM

∼
k,∆R)∈Z

∼}
∥∆R′∥F .

Equivalently, since LuV S is surjective, the actual com-
putations are

∆R
∼

k = (L†
uV S ◦ LuV P)

†(L†
uV S ◦ LuV S)(δMk) (41)

δM
∼

k = (L†
uV S ◦ LuV )(δMk −∆R

∼
k). (42)

6) Rank reducing direction (δMk,∆Rk):

Set ϕk = minδM∈S,∆R∈P ∥LuV (δM+∆R)−LuV (M−
Rk − δMk)∥F and

Z = {(δM,∆R) : (43)

∥LuV (δM +∆R− (M −Rk − δMk))∥F = ϕk}

Then,

δMk = argmin
δM

′ ∈ {δM ∈ S : ∃∆R ∈ P
s.t. (δM,∆R) ∈ Z}

∥δM ′∥F

and

∆Rk = argmin
∆R′∈{∆R∈P:(δMk,∆R)∈Z}

∥∆R′∥F .

Equivalently, since LuV S is surjective, the actual com-
putations are

∆Rk = (L†
uV S ◦ LuV P)

† (44)

(L†
uV S ◦ LuV )(M −Rk − δMk)

δMk = (L†
uV S ◦ LuV )(M −Rk −∆Rk − δMk) (45)

7) Lyapunov function reducing direction:

∆Rk = ∆R
∼

k +∆Rk and δM̂k = δM
∼

k + δMk

8) Normalizing weights:

gk = min
(
gk−1, [σn]k/(2∥δMk∥F )

)
,

bk = 0 if δMk = 0, otherwise bk =
1

2
∥δMk∥−1

F

9) Choosing a step size: Define

f
(k)
ub (α) =

−[σn]k
2

α+ akα
2 − gkbk∥δMk∥2F

+ gkbk∥(1− α)δMk + αδM
∼

k∥2F (46)

where

ak = ∥[un]Hk (δM̂k − δMk −∆Rk)(I − VkV
H
k ) (47)

∗ (M − δMk −Rk)
†(δM̂k − δMk +∆Rk)∥2.

Compute
αk = argmin

α∈[0,1]

f
(k)
ub (α) (48)

10) Update estimates: Rk+1 = Rk+αk∆Rk and δMk+1 =
(1− αk)δMk + αkδM̂k.

11) k → k + 1
12) UNTIL ∥∆Rk∥F < ϵ, ∥δMk − δM

∼
k∥F < ϵ, [σn]k < ϵ

Different choices of the initial guess for δM0 and R0 may
lead to different local minima. In our work we have used
random perturbations near zero. Alternatively, one can use
perturbations that give upper or lower bounds, computed using
e.g. [3], [9].

Algorithm 1 is designed to reduce a Lyapunov energy
function of the form

Ek = [σn]k + gk∥δMk∥F , (49)

where [σn]k = σn(M − Rk − δMk) and gk is a nonzero
adaptive weight computed in step 8. A direction for reducing
Ek+1 is found by moving along the vector sum of the
directions (δM

∼
k,∆R

∼
k) (step 5) and (δMk,∆Rk) (step 6),

which reduce ∥δMk+1∥F and [σn]k+1, respectively.
To illustrate how these directions affect (49), consider

step 5. To find (δM
∼

k,∆R
∼

k) reducing ∥δMk+1∥F , we search
for the minimum norm pair that does not change σn by
approximating the function σn(·) with LuV . Specifically,
(δM
∼

k,∆R
∼

k) satisfies

LuV (M −Rk −∆R
∼

k − δM
∼

k) =

= LuV (M −Rk − δMk) =
[
[σn]k 0 · · · 0

]
. (50)

Hence the pairs (δM
∼

k,∆R
∼

k) satisfying (50) constitute the set
Z
∼

in (40), i.e., if LuV S is surjective then ϕ
∼
k = 0, because for

any ∆R ∈ P setting

δM = (L†
uV S ◦ LuV )(δMk −∆R) (51)

results in

0 = ∥LuV S(δM)− LuV (δMk −∆R)∥F ≥ ϕ
∼
k ≥ 0. (52)

Moreover, δM defined by (51) is the matrix with the small-
est Frobenius norm in S such that (52) is zero. Any pair
(δM,∆R) ∈ Z

∼
for which ∥δM∥F is minimized, satisfies (51),

i.e., for a yet unspecified ∆R
∼

k,

δM
∼

k = (L†
uV S ◦ LuV )(δMk −∆R

∼
k). (53)

Choosing ∆R
∼

k to minimize ∥δM∼k∥F (for pairs in Z
∼

) is then
equivalent to minimizing the norm of the right hand side
of (53), i.e.,

∆R
∼

k = argmin
∆R∈P

∥ψ
∼
(∆R)∥F , (54)

where

ψ
∼
(∆R) ≜ (L†

uV S ◦ LuV P)(∆R)− (L†
uV S ◦ LuV S)(δMk).

The matrix ∆R
∼

k with smallest Frobenius norm minimiz-
ing (54) is

∆R
∼

k = (L†
uV S ◦ LuV P)

†(L†
uV S ◦ LuV S)(δMk). (55)

Since δMk is known from the previous step, when LuV S is
surjective, ∆R

∼
k can be computed first using (55) – which is
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identical to (41), prior to computing δM
∼

k using (53) – which
is identical to (42). This justifies the statements of step 5.

Step 6 computes a direction (δMk,∆Rk) for reducing
[σn]k+1, i.e., it finds (δMk,∆Rk) minimizing ∥δMk∥F sub-
ject to

LuV (δMk +∆Rk) = LuV (M −Rk − δMk). (56)

As in step 5, the linear operator LuV approximates the smallest
singular value function σn(·). Hence (56) is an approximation
of the constraint σn(M − Rk − ∆Rk − δMk − δMk) = 0.
Using analogous arguments as for step 5, pairs (δMk,∆Rk)
satisfying (56) are in Z if LuV S is surjective, i.e., ϕk = 0 and
the pair (δMk,∆Rk) ∈ Z minimizing ∥δMk∥F satisfies

δMk = (L†
uV S ◦ LuV )(M −Rk −∆Rk − δMk). (57)

Here ∆Rk is chosen to be the smallest norm matrix in P
minimizing the norm of the right side of (57), i.e.,

∆Rk = argmin
∆R∈P

∥ψ(∆R)∥F , (58)

where

ψ(∆R) = (L†
uV S ◦ LuV P)(∆R)

− (L†
uV S ◦ LuV )(M −Rk − δMk).

(59)

The matrix ∆Rk with smallest Frobenius norm minimiz-
ing (58) is given by

∆Rk = (L†
uV S◦LuV P)

†(L†
uV S◦LuV )(M−Rk−δMk), (60)

completing the justification of step 6.
What remains is to specify the step size αk. It is chosen

to decrease Ek+1 (see (49)) in the direction of ∆Rk and
δM̂k in step 7. Since the singular value function σn(·) is not
differentiable at 0, we instead minimize a surrogate quadratic
function f

(k)
ub (α) in (46) that upper bounds (see proof of

Theorem 2) the decrease Ek+1(α)−Ek ≤ f
(k)
ub (α). Choosing

αk to minimize f (k)ub will cause the sequence {Ek} to converge
to a positive constant d = g∗∥δM∗∥F . This suffices to
guarantee the necessary conditions are met at the terminating
values δM∗ and R∗.

A. Algorithm 1 Implementation

To implement steps 5 and 6 in Algorithm 1, the pseudoin-
verse LuV S is computed via Kronecker products and the vec
operator [24], [25]:

vec(LuV S(δM)) = (V ⊤ ⊗ uH) vec(δM)

= (V ⊤ ⊗ uH)BSζ,

where ζ respresents δM in the orthonormal basis
{S1, · · · , Sk} and BS ≜ [vec(S1), · · · , vec(Sk)]. Taking
the real and imaginary components we obtain[

(Re[LuV S(δM)])
⊤

(Im[LuV S(δM)])
⊤

]
=

[
Re[(V ⊤ ⊗ uH)BS ]
Im[(V ⊤ ⊗ uH)BS ]

]
ζ.

Let NS ∈ C2(m−n+1)×k and NP ∈ C2(m−n+1)×r be

NS =

[
Re[(V ⊤

k ⊗ [un]
H
k )BS ]

Im[(V ⊤
k ⊗ [un]

H
k )BS ]

]
,

NP =

[
Re[(V ⊤

k ⊗ [un]
H
k )BP ]

Im[(V ⊤
k ⊗ [un]

H
k )BP ]

]
,

where BP ≜ [vec(P1), · · · , vec(Pr)]. With this notation, ∆R
∼

k

of (41) and δM
∼

k of (42) satisfy

vec(∆R
∼

k) = BP(N
†
SNP)

†N†
SNSζk

vec(δM
∼

k) = BSN
†
S

[
Re[(V ⊤

k ⊗ [un]
H
k ) vec(δMk −∆R

∼
k)]

Im[(V ⊤
k ⊗ [un]

H
k ) vec(δMk −∆R

∼
k)]

]
,

where ζk represents δMk in {S1, · · · , Sk}. Similarly, ∆Rk

in (44) and δMk in (45) satisfy

vec(∆Rk) = BP(N
†
SNP)

†N†
S∗[

Re[(V ⊤
k ⊗ [un]

H
k ) vec(M −Rk − δMk)]

Im[(V ⊤
k ⊗ [un]

H
k ) vec(M −Rk − δMk)]

]
vec(δM

∼
k) = BSN

†
S∗[

Re[(V ⊤
k ⊗ [un]

H
k ) vec(M −Rk −∆Rk − δMk)]

Im[(V ⊤
k ⊗ [un]

H
k ) vec(M −Rk −∆Rk − δMk)]

]
Now we consider step 9 that requires the minimization of
the function f

(k)
ub in (46) with respect to the step size αk.

One possibility is a one-dimensional constrained line search
for αk ∈ [0, 1]. Since a decrease in Ek+1 is guaranteed for
α sufficiently small, an appropriate initial guess for αk is 0.
Alternatively, since f (k)ub (α) = α(c

(k)
1 + c

(k)
2 α) where

c
(k)
1 = −

(
[σn]k
2

+ 2Re[⟨δMk, δM
∼

k − δMk⟩]
)

c
(k)
2 = ak + ∥δM∼k − δMk∥2F ,

is a quadratic function of α, one can compute the minimizer in
the interval [0, 1] analytically: αk = min

{
fracc

(k)
1 2c

(k)
2 , 1

}
if c(k)2 ̸= 0, and 0 otherwise.

B. Algorithm 1 Complexity

The computational complexity of Algorithm 1 depends
on four parameters which can vary independently: n, m,
dim(S), and dim(P). The relationship of these parameters
to the computational complexity is complex. However, we
can derive an expression for a conservative upper bound.
Let r = m − n + 1. If we assume that dim(S) < m · n
(conservative for a structured problem), that r < n, and that
dim(P) is a small constant (2 in the case of controllability),
then a conservative upper bound for the cost per iteration is
O(r ·n4) (corresponding to the computation of (L†

uV S ◦LuV S)
in (41)). A tight lower bound is O(n3) (corresponding to an
SVD of a n×m matrix where m < 2n). The more structure
imposed, the smaller dim(S). The smaller dim(S), the closer
the complexity will be to the lower bound. The number of
iterations required depends on the parameters of the problem:
M , R, and S.



10

V. CONVERGENCE OF ALGORITHM 1

The well-posedness of the P–robustness problem and the
convergence of Algorithm 1 to a finite property matrix R∗
requires a structural assumption on the matrices of the property
space P . The problem is that if there exist a non-zero R ∈ P
for which rank(R) < n, then σn(M−δM−ηR) may be finite
(and possibly optimal) as η → ∞.

Assumption 2. Each nonzero property matrix R ∈ P is full
rank, i.e., rankR = n.

In consequence, “inf” in (4) and (7) can be replaced with
“min”.

To simplify the convergence analysis we will make two
additional assumptions. A convergent algorithm could be
constructed without them, but in this way the discussion is
much clearer.

Assumption 3. The sequence {[σn−1]k} computed in step 4
is bounded away from zero.

Assumption 3 requires that the (n − 1)th singular value,
[σn−1]k, be nonzero. It is possible that the solution satisfies
rank(M − δM∗ − R∗) < n − 1. However, arbitrarily close
to every M for which rank(M − δM∗ − R∗) < n − 1 is
a perturbed M for which the solution occurs at σn−1 = ϵ
(see Example 4 in Appendix C). In the presence of roundoff,
such a perturbation occurs implicitly. Nonetheless, to ensure
Assumption 3 an explicit perturbation can be added to M
when [σn−1]k falls below some pre-determined threshold, and
the algorithm will converge to a (local) solution to a nearby
problem. The perturbation need not respect the structure of S.

Assumption 4. The sequence {gk} computed in step 8 is
bounded away from zero.

The reasoning for this assumption is motivated by Lemma 8
in Appendix B where it is shown that close to the solution, gk
is bounded away from 0 and that the lower bound essentially
measures the surjectivity of LuV S .

The proof of convergence utilizes the three lemmas below.
Observe that by Assumption 1, u and V as required in step 4
can always be found and satisfy uHu = u†u = 1 and V HV =
V †V = I .

Lemma 5. Let u and V be as in step 4, [σn]k ≜ σn(M −
δMk − Rk) and ak be as defined in (47). Then, since LuV S
is surjective, for all α ∈ (0, 1),

σn

(
M − δMk −Rk − α(δM̂k − δMk +∆Rk)

)
≤

(1− α)[σn]k + α2ak.

Proof. See Appendix A.

The next lemma constructs an upper bound on the norm
∥δMk+1∥F as a function of α. We will require the following
linear orthogonal projection operators from the proofs of
Lemmas 2 and 3:

Q1 ≜ (L†
uV S ◦ LuV S) (61)

Q2 ≜ I − (L†
uV S ◦ LuV P)(L

†
uV S ◦ LuV P)

†. (62)

Lemma 6. Let u and V be as in step 4. Since LuV S is
surjective, for all α ∈ [0, 1]

∥(1− α)δMk + αδM̂k∥F ≤ ∥δMk∥F + α∥δMk∥F (63)

+ bk
(
∥(1− α)δMk + α(Q2 ◦Q1)(δMk)∥2F − ∥δMk∥2F

)
,

where δMk and bk are given in steps 6 and 8, respectively.

Proof. See Appendix A.

Convergence will be shown by using the Lyapunov function
Ek = [σn]k + gk∥δMk∥F . Given Assumptions 2 and 4, we
will show that if the necessary conditions of Theorem 1 are not
satisfied then i) Ek+1−Ek ≤ f

(k)
ub (αk) ≤ 0 and ii) f (k)ub (αk) <

0 . Since Ek is nonnegative for each k, proving that {Ek} is
nonincreasing implies it is a bounded monotone function so the
sequence converges, i.e., Ek+1−Ek → 0. This guarantees that
f
(k)
ub (αk) → 0. The next lemma shows why this in turn implies

convergence to a pair δM∗ and R∗ satisfying the necessary
conditions in Theorem 1.

Lemma 7. Let R ∈ P and δM ∈ S satisfy rank[M − R −
δM ] < n, i.e., they are a candidate solution. R and δM satisfy
the necessary conditions in Theorem 1 if and only if

(Q2 ◦Q1)(δM) = δM,

where Q1 and Q2 are given in (61) and (62), respectively.

Proof. See Appendix A.

The next Theorem proves that if Algorithm 1 is carried
out to infinite precision, then the algorithm converges to a
necessary condition for an optimal solution R∗ and δM∗.
The stopping conditions in Algorithm 1 guarantee that the
algorithm terminates. The parameter ϵ determines how far the
terminal points δMk and Rk are from satisfying the necessary
conditions.

Theorem 2. If Assumptions 2-3 hold, then the sequence {Ek}
computed by Algorithm 1 converges, where

Ek ≜ [σn]k + gk∥δMk∥F . (64)

Further, the sequences {δMk} and {Rk} have limit points
δM∗ and R∗ satisfying the necessary conditions of Theorem 1.

Proof. First we show that Ek+1 − Ek ≤ f
(k)
ub (αk). Because

gk is nonincreasing, Lemma 5 and 6 imply that

Ek+1 − Ek

= [σn]k+1 + gk+1∥δMk+1∥F − ([σn]k + gk∥δMk∥F )
≤ −αk[σn]k + akα

2
k + αkgk∥δMk∥F − gkbk∥δMk∥2F

+ gkbk∥(1− αk)δMk + αk(Q2 ◦Q1)(δMk)∥2F

Since gk ≤ [σn]k/(2∥δMk∥F ),

Ek+1 − Ek

≤ −[σn]k
2

αk + akα
2
k − gkbk∥δMk∥2F

+ gkbk∥(1− αk)δMk + αk(Q2 ◦Q1)(δMk)∥2F
≜ f

(k)
ub (αk).
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Note that f (k)ub (α) is a quadratic function of α and f (k)ub (0) =

0. Therefore, there exist constants c(k)1 and c(k)2 such that

f
(k)
ub (α) = c

(k)
1 α+ c

(k)
2 α2.

Careful inspection of f (k)ub (α) shows that c(k)2 ≥ 0, i.e., f (k)ub (α)
admits a global minimum. Since gk, bk, and [σn]k are all
nonnegative, c(k)1 ≤ 0 if the coefficient of the linear term in
the quadratic

∥(1− αk)δMk + αk(Q2 ◦Q1)(δMk)∥2F − ∥δMk∥2F
is nonpositive. This is clearly the case since ∥(Q2 ◦
Q1)(δMk)∥F ≤ ∥δMk∥F . Further, c(k)1 = 0 if and only if
[σn]k = 0 and (Q2 ◦ Q1)(δMk) = δMk since gk > 0 by
Assumption 4. Equivalently, Lemma 7 implies that c(k)1 = 0 if
and only if the necessary conditions are satisfied. Since αk is
chosen to minimize f (k)ub over the interval [0, 1], f (k)ub (αk) < 0
so long as the necessary conditions are not satisfied.

Thus {Ek} is nonnegative and decreasing since Ek+1 −
Ek ≤ f

(k)
ub (αk) ≤ 0. By the monotone convergence theorem,

{Ek} converges, i.e., Ek+1 − Ek → 0. To prove that we
converge to a necessary condition, we will prove that the
sequence {c(k)1 } converges to zero. Based on Lemma 7, this
implies that a necessary condition is satisfied.

Since Ek+1 − Ek ≤ f
(k)
ub (αk) ≤ 0 and Ek+1 − Ek → 0,

the sequence {f (k)ub (αk)} → 0. As long as {c(k)2 } is bounded,
this implies that {c(k)1 } → 0 as desired. The sequence {c(k)2 }
is unbounded only if the quadratic coefficient of the function

akα
2
k − gkbk∥δMk∥2F
+ gkbk∥(1− αk)δMk + αk(Q2 ◦Q1)(δMk)∥2F

(65)

goes unbounded. The quadratic term coefficient in (65) is
given by ak + gkbk∥(I−Q2 ◦Q1)δMk∥2 and by construction
bk∥(I − Q2 ◦ Q1)δMk∥2F ≤ bk∥δMk∥2F ≤ ∥δMk∥F . Since
{Ek} converges and {gk} > 0, ∥δMk∥F is bounded. By (47),
ak ≤ ∥δM̂k−δMk−∆Rk∥2F /[σn−1]k, which by Assumption 3
is bounded if ∆Rk is bounded, or equivalently if Rk is
bounded.

Assume for contradiction that {Rk} is unbounded. Since
{Ek} converges, [σn]k is bounded. Since {gk} > 0, {δMk} is
bounded as well. Let Rmin be the norm one property matrix
minimizing σn, i.e., Rmin = argminR∈P,∥R∥F=1 σn(R). By
Assumption 2, σn(Rmin) > 0 and for any R ∈ P , σn(R) ≥
∥R∥Fσn(Rmin). Hence, letting uk be the nth lsv of M −
Rk − δMk, for sufficiently large k

[σn]k = ∥uHk (M −Rk − δMk)∥2
≥ ∥uHk Rk∥2 − ∥uHk (M − δMk)∥2
≥ σn(Rk)− ∥uHk (M − δMk)∥2
≥ ∥Rk∥Fσn(Rmin)− ∥uHk (M − δMk)∥2.

Hence, if ∥Rk∥F → ∞, then [σn]k → ∞ contradicting
that {Ek} converges. Hence {∆Rk} is bounded and thus
{ak} and {c(k)2 } are bounded. This implies that as k → ∞,
(Q2 ◦ Q1)(δMk) → δMk, i.e., the two necessary conditions
in Theorem 1, become satisfied. Finally, since {gk} > 0
and {Ek} converges, the sequence of perturbations {δMk}
has a bounded accumulation point δM∗. Since δM∗ satisfies

the two necessary conditions, the sequence {∆Rk} has an
accumulation point ∆R∗ = 0, i.e., Rk → R∗, completing the
proof.

VI. NUMERICAL EXAMPLES

A. Example 1 (continued)
Consider the third example in [3] (also appears in [11]

and [8]), which in the P–robustness framework has system
matrix M , structured perturbations δM , and property matrices
R given by

M =
[
A B

]
δM =

[
δA δB

]
∈ R3×4

R = λ
[
I 0

]
∈ C3×4,

where

A =

⎡⎣ 1 1 1
0.1 3 5
0 −1 −1

⎤⎦ , B =

⎡⎣ 1
0.1
0

⎤⎦ .
With initial guesses δM0 = 0 and R0 = [jI, 0], and
ϵ = 10−10, Algorithm 1 terminates in 9 iterations. The P–
robustness of M with respect to parameter variations in S
is computed to be r(M ;S,P) = 0.057737. The minimizing
property and perturbation matrices are R∗ = (0.9824 +
0.9731j)[I, 0] and δM∗ = [δA∗, δB∗], respectively, where

δA∗ = 10−4

⎡⎣−5.8878 −0.49659 0.29287
168.48 14.210 −8.3803
167.31 14.111 −8.3221

⎤⎦
δB⊤

∗ = 10−3
[
1.1427 15.754 49.685

]
.

Upon termination, σn(M−δM∗−R∗) = 2.8944×10−16 ≈ 0.
These results are consistent with [3] and [8]. As noted in [8],
we cannot compare the results of this example to [11] due to
the different norm used therein (largest singular value of δM
versus the Frobenius norm).

B. Example 2 (continued)
Consider the example in [9], which in the P–robustness

framework has system matrix M , structured perturbations δM ,
and property matrices R given by

M =

[
A⊤

0 0 C⊤
0

0 A⊤
1 C⊤

1

]
δM =

[
δA⊤

0 0 δC⊤
0

0 δA⊤
1 δC⊤

1

]
∈ R4×5

R = λ
[
I 0

]
∈ C4×5,

where

A0 =

[
−1 2
0 −2

]
, C0 =

[
1 0

]
,

A1 =

[
−3 0.1
5 −1

]
, C1 =

[
1 1

]
.

The perturbation space S is real and does not allow perturba-
tions of the off-diagonal entries of M . In [9], the distance to
the nearest SMS SLTI system is computed to satisfy

0.0506 ≤ r(M ;S,P) ≤ 0.4570.
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Setting the terminating condition ϵ = 10−15 and initial guesses
δM0 = 0 and R0 = 0, the Algorithm 1 terminated in 13
iterations. For reference, this algorithm took 135 ms using
an Intel Core i5-2410M processor. The computed distance is
r(M ;S,P) = 0.071821 where R∗ = −0.9065

[
I 0

]
,

δM∗ = 10−3

⎡⎢⎢⎣
−21.5 −39.3 0 0 0
−0.8 −1.4 0 0 0
0 0 1.2 0.5 0
0 0 51.8 21.7 0

⎤⎥⎥⎦ ,
and σn(M − δM∗ − R∗) = 5.256 × 10−16 ≈ 0. Note that
r(M ;S,P) = 0.071821 is between 0.0506 and 0.4570.

C. Example 3

Consider the P–robustness problem given by

M =

⎡⎢⎢⎣
1 0 −1 0 0
0 −1 0 1 0
0 1 0 −1 0
1 −1 1 0 1

⎤⎥⎥⎦

δM =

⎡⎢⎢⎣
δm11 0 0 0 0
δm21 0 0 0 0
δm31 0 0 δm34 0
δm41 δm42 δm43 δm44 δm45

⎤⎥⎥⎦ ∈ R4×5

R = λ
[
0 I

]
∈ C4×5,

Setting the terminating condition ϵ = 10−15 and initial guesses

δM0 =

⎡⎢⎢⎣
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

⎤⎥⎥⎦
and R0 = 2j[0, I], the Algorithm 1 terminated in 93 iterations.
For reference, this algorithm took 1.36 s using an Intel Core
i5-2410M processor. The distance r(M ;S,P) is computed to
be r(M ;S,P) = 0.66548 where R∗ = 0.6988

[
0 I

]
,

δM∗ =

⎡⎢⎢⎣
−0.3245 0 0 0 0
0.4644 0 0 0 0
0.2376 0 0 0.2558 0

0 0 0 0 0

⎤⎥⎥⎦ ,
and σn(M − δM∗ −R∗) = 1.1186× 10−16 ≈ 0.

VII. CONCLUSION

In this work, the P–robustness framework developed in [19]
is used to solve a family of robustness problems. Specifi-
cally, the Frobenius norm metric is used to measure the P–
robustness of M with respect to perturbations in S. Necessary
conditions for a minimal rank reducing perturbation are proven
in Theorem 1. The necessary conditions motivate Algorithm 1
for computing the metric r(M ;S,P) as well as the mini-
mizing property matrix R∗ and perturbation matrix δM∗. For
M ∈ Cn×m, the computational complexity of each iteration
of the algorithm is at most O((m− n+ 1) · n4).

In future work, we will modify Algorithm 1 to solve
P–robustness problems with singular property matrices, i.e.,
rank(R) < n. This modification will address the case where
the norm of the optimal property matrix R∗ is unbounded.

In addition, we expect that Algorithm 1 can be modified to
compute the P–robustness of M using the spectral norm met-
ric, i.e., minimizing σ1(δM∗). Although the Frobenius norm
may be a more accurate measure of robustness, extending the
work to the spectral norm metric would unify the robustness
property literature.

APPENDIX

A. Additional Proofs

Proof of Proposition 2. Let ζ0 ∈ Rk satisfy vec(δM) =
BSζ0. Then,

vec(LuV S(δM)) = (V ⊤ ⊗ uH) vec(δM)

= (V ⊤ ⊗ uH)BSζ0. (66)

Let y ∈ Cm−n+1 be an arbitrary vector. Using (66),
LuV S(δM) = y⊤ if and only if[

Re(y)
Im(y)

]
=

[
Re((V ⊤ ⊗ uH)BS)
Im((V ⊤ ⊗ uH)BS)

]
ζ0. (67)

LuV S is surjective if and only if for each y ∈ Cm−n+1, there
exists ζ0 ∈ Rk such that (67) holds. Hence, LuV S is surjective
if and only if [

Re((V ⊤ ⊗ uH)BS)
Im((V ⊤ ⊗ uH)BS)

]
is full row rank, i.e., (13) is satisfied.

Proof of Lemma 1.
Step 1: First we show that every analytic path ga : [0, 1] →

W satisfying ga(s) ∈ W1 for s < 0.5 and ga(s) ∈ W2 for
s > 0.5 has an analytic unsigned nth singular value function
fa : [0, 1] → R such that fa(s) = H

∼
(ga(s)), i.e., H

∼
is

an unsigned nth singular value function for all such paths.
Without loss of generality assume fa(0) = H

∼
(ga(0)). Recall

H
∼

was constructed to be consistent with fg , the unsigned nth

singular value function associated with the curve g. Construct
a continuous closed path Γ by connecting ga(0) with g(0) in
W1 and ga(1) with g(1) in W2. Since (i) σn is continuous
and (ii) σn is nonzero on W1 ∪W2, then σn is continuous on
Γ and thus sign(fa(1)) = sign(fg(1)), i.e., fa(s) = H

∼
(ga(s))

for all s ∈ [0, 1] as desired. Consequently, H
∼

can be used for
an unsigned nth singular value for any analytic curve in W .

Step 2: Next we prove that H
∼

is Fréchet differentiable on
W1 ∪W2 with partial derivatives given in (23). Let (ζ

∼
, ρ∼) ∈

W1∪W2. Then the nth singular value of M(ζ
∼
, ρ∼) is simple and

the nth lsv and rsv are unique up to multiplication by unitary
scalars. By [22, Theorem 3], there exists a simply connected
neighborhood W0 ⊂W1∪W2 of (ζ

∼
, ρ∼) and analytic (unsigned)

singular vector functions u∼ : W0 → Cn and v∼ : W0 → Cm

such that for all (ζ, ρ) ∈W0,

u∼H(ζ, ρ)M(ζ, ρ)v∼(ζ, ρ) = H
∼
(ζ, ρ).

Since u∼, v∼, and M(ζ, ρ) are analytic, so is H
∼

.
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To take the derivative ∂H
∼
(ζ
∼
,ρ∼)

∂ζi
, we consider replacing ζ with

a complex argument z.5 The complex partial derivative with
respect to zi at z = ζ

∼
is

∂H
∼
(z, ρ∼)

∂zi

⏐⏐⏐⏐
z=ζ

∼
=
∂u∼H

∂zi
M(ζ

∼
, ρ∼)v∼ + u∼H ∂M(z, ρ∼)

∂zi
v∼

+ u∼HM(ζ
∼
, ρ∼)

∂v∼

∂zi

= H
∼
(ζ
∼
, ρ∼)

(
∂u∼H

∂zi
u∼ + v∼H

∂v∼

∂zi

)
− u∼HSiv

∼,

since u∼ and v∼ are singular vector functions, i.e.,

M(ζ
∼
, ρ∼)v∼(ζ

∼
, ρ∼) = H

∼
(ζ
∼
, ρ∼)u∼(ζ

∼
, ρ∼)

and
u∼H(ζ

∼
, ρ∼)M(ζ

∼
, ρ∼) = H

∼
(ζ
∼
, ρ∼)v∼H(ζ

∼
, ρ∼).

However, since 1 = u∼Hu∼, we obtain 0 = ∂u∼H

∂zi
u∼ +

(
∂u∼H

∂zi
u∼
)H

.

Hence Re
(

∂u∼H

∂zi
u∼
)
= 0. Similarly, Re

(
v∼H ∂v∼

∂zi

)
= 0. The real

derivative of H
∼

with respect to ζi is given by

∂H
∼
(ζ
∼
, ρ∼)

∂ζi
= Re

[
∂H
∼
(z, ρ∼)

∂zi

]
= −Re(u∼H(ζ

∼
, ρ∼)Siv

∼(ζ
∼
, ρ∼)).

The same argument holds for computing ∂H
∼
(ζ
∼
,ρ∼)

∂ρi
=

−Re(u∼H(ζ
∼
, ρ∼)Piv

∼(ζ
∼
, ρ∼)).

Step 3: What remains is to show that H
∼

is Fréchet dif-
ferentiable for (ζ0, ρ0) ∈ W \ W1 ∪ W2, i.e., points where
M(ζ0, ρ0) drops rank. Although σn(M(ζ0, ρ0)) = 0, the nth

lsv is unique (up to unitary scalar multiplication) since the last
singular value is simple and M(ζ0, ρ0) has fewer rows than
columns. However, the nth (unsigned) rsv is not unique since
M(ζ0, ρ0) has a right null space of dimension m − n + 1.
However, not all nth (unsigned) rsv can be a continuation
of an analytic nth rsv function for analytic paths passing
through (ζ0, ρ0). Let gb : [0, 1] → W be an analytic curve
from W1 to W2 with gb(0.5) = (ζ0, ρ0). By [22, Theorem 3],
there exists analytic nth (unsigned) lsv and rsv functions
ub : [0, 1] → Cn and vb : [0, 1] → Cm, respectively, associated
with the unsigned nth singular value function H

∼
(gb(·)). Since

for each s ̸= 0.5, M(gb(s)) is a fixed matrix with a nonzero
nth singular value, the product ub(s)vHb (s) is unique for all
s ∈ [0, 1] (even though ub(s) and vb(s) are not unique).
The same uniqueness result holds for analytic curves from
W2 to W1 passing through (ζ0, ρ0). For analytic paths in
W \W1 ∪W2 passing through (ζ0, ρ0), the right null space
of M(ζ, ρ) changes analytically and hence one can choose
ub(0.5) and vb(0.5) as the nth unsigned lsv and rsv along these
paths as well. Because W , W1, and W2 are simply connected,
there exists a neighborhood W0 ⊂W of (ζ0, ρ0) and analytic
singular vector functions u0 : W0 → Cn and v0 : W0 → Cm

such that

uH0 (ζ, ρ)M(ζ, ρ)v0(ζ, ρ) = H
∼
(ζ, ρ)

5 Rigorously, we should define a new function with a complex domain, but
we have chosen to keep the presentation more direct.

for all (ζ, ρ) ∈ W0. Using the same arguments in step 2, it
follows that H

∼
is Fréchet differentiable in W , specifically at

points (ζ0, ρ0) ∈W \W1 ∪W2. Finally, the associated partial
derivatives are given in (23).

Proof of Lemma 2.
Let δM

∼
≜ (L†

uV S ◦ LuV )(M − R0). Since LuV S is
surjective, LuV S(δM

∼
) = LuV (M−R0). Since σn(M−δM0−

R0) = 0, LuV S(δM0) = LuV (M − R0). Hence, defining
∆M ≜ δM

∼ − δM0, we obtain

LuV S(∆M) = LuV S(δM
∼
)− LuV S(δM0) = 0.

Observe that by definition ∆M = −(I − L†
uV S ◦

LuV S)(δM0) = −(I − Q1)(δM0), where the linear operator
Q1 is

Q1 ≜ (L†
uV S ◦ LuV S). (68)

By the properties of the Moore-Penrose pseudoinverse, Q1 is
an orthogonal projection on S with respect to the inner product
⟨·, ·⟩, i.e., Q1 is a self-adjoint linear operator and Q2

1 = Q1. In
addition, I−Q1 is also an orthogonal projection on S. Hence,

⟨δM0,∆M⟩ = −⟨δM0, (I −Q1)(δM0)⟩
= −⟨(I −Q1)(δM0), (I −Q1)(δM0)⟩
= −∥(I −Q1)(δM0)∥2F
= −∥∆M∥2F

Since ∆M ̸= 0 by the assumption that δM0 ̸= δM
∼

,
⟨δM0,∆M⟩ = −∥∆M∥2F < 0.

Proof of Lemma 3.
Equation (27) states that ∆R is the matrix in P minimizing

∥(L†
uV S ◦ LuV P)R− δM0∥F (69)

for all R ∈ P . Hence, if (L†
uV S ◦ LuV P)(∆R) = 0 then

∆R′ = 0 also minimizes (69), contradicting (27). Conse-
quently, (L†

uV S ◦ LuV P)(∆R) ̸= 0 by the properties of the
Moore-Penrose pseudoinverse. Let ∆M ∈ S be defined as
∆M ≜ −(L†

uV S ◦LuV P )(∆R) ̸= 0. Since LuV S is surjective,
LuV S(∆M) = −LuV P(∆R). Hence, by linearity

LuV (∆M +∆R) = LuV S(∆M) + LuV P(∆R) = 0.

Since δM0 = (L†
uV S ◦ LuV )(M −R0),

∆M = −(L†
uV S ◦ LuV P)(∆R)

= −(L†
uV S ◦ LuV P)(L

†
uV S ◦ LuV P)

†δM0

≜ −(I −Q2)(δM0),

where the linear operator Q2 is

Q2 ≜ I − (L†
uV S ◦ LuV P)(L

†
uV S ◦ LuV P)

†. (70)

By the properties of the Moore-Penrose pseudoinverse, Q2 is
an orthogonal projection on S with respect to the inner product
⟨·, ·⟩, i.e., Q2 is a self-adjoint linear operator and Q2

2 = Q2. In
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addition, I − Q2 is also an orthogonal projection on S. This
implies

⟨δM0,∆M⟩ = −⟨δM0, (I −Q2)(M0)⟩
= −⟨(I −Q2)(δM0), (I −Q2)(M0)⟩
= −∥(I −Q2)(δM0)∥2F
= −∥∆M∥2F < 0

as was to be shown.

Proof of Lemma 4.
By definition, f is differentiable with derivative f ′(ζ0, ρ0) =

[ζ⊤0 , 0]. Since the Fréchet differential H
∼′(ζ0, ρ0) exists by

Lemma 1, T is Fréchet differentiable.
It remains to show that T ′(ζ0, ρ0) is surjective. Let

y = [y1, y2]
⊤ ∈ R2 be an arbitrary vector. Since

∂
∂ζH

∼
(ζ, ρ0)|ζ=ζ0 is surjective, there exists ζ1 ∈ Rk such that

∂
∂ζH

∼
(ζ, ρ0)|ζ=ζ0ζ1 = y2. Thus since f ′(ζ0, ρ0) = [ζ⊤0 , 0],

T ′(ζ0, ρ0)

[
ζ1
0

]
=

[
ζ⊤0 ζ1
y2

]
.

By assumption, there exists ζ∆ and ρ∆ such that ζ⊤0 ζ∆ < 0

and H
∼′(ζ0, ρ0)[ζ

⊤
∆ , ρ

⊤
∆]

⊤ = 0. Define ζ2 ∈ Rk and ρ2 ∈ Rr

by

ζ2 =

(
y1 − ζ⊤0 ζ1
ζ⊤0 ζ∆

)
ζ∆

ρ2 =

(
y1 − ζ⊤0 ζ1
ζ⊤0 ζ∆

)
ρ∆

Then by linearity,

T ′(ζ0, ρ0)

[
ζ1 + ζ2
ρ2

]
=

[
ζ⊤0 ζ1
y2

]
+

[
y1 − ζ⊤0 ζ1

0

]
= y.

Since y was arbitrary, T ′(ζ0, ρ0) is surjective.

Proof of Lemma 5.
Let v̂Hk = [un]

H
k (δM̂k − δMk +∆Rk)(I − VkV

H
k ) and let

ûk satisfy ûHk (M − δMk −Rk) = v̂Hk ; such a ûk exists since
v̂k is in the row space of M−δMk−Rk. Consider the product

([un]k+αûk)
H(M − δMk −Rk − α(δM̂k − δMk +∆Rk))

= [un]
H
k (M − δMk −Rk)

− α
(
v̂Hk − [un]

H
k (δM̂k − δMk +∆Rk)

)
− α2ûHk (δM̂k − δMk +∆Rk)

= (1− α)LuV (M − δMk −Rk)V
H
k

+ αLuV (M − δM̂k −Rk −∆Rk)V
H
k (71)

− α2ûHk (δM̂k − δMk +∆Rk).

Since LuV S is surjective, step 6 of Algorithm 1 guarantees
LuV (M −δM̂k−Rk−∆Rk) = 0. Recall that for all u ∈ Cn,
M
∼ ∈ Cn×m, uHM

∼ ≥ σn(M
∼
)∥u∥ (See [25, Corollary 9.6.7]).

Combining this with the fact that [un]k and ûk are orthogonal,
implying ∥[un]k +αûk∥ ≥ ∥[un]k∥ = 1, the norm of the left-
hand side of (71) upper bounds σn(M−δMk−Rk−α(δM̂k−
δMk + ∆Rk)). Taking the norm of both sides of (71) and

applying the triangle inequality results in the statement of the
lemma.

Proof of Lemma 6.
By definition of δMk, δM̂k = (Q2 ◦ Q1)(δMk) + δMk.

If δMk = 0, (Q2 ◦ Q1)(δMk) = 0 = δMk and (63)
holds trivially. Assume δMk ̸= 0. Then since Q1 and Q2

are orthogonal projections ∥(Q2 ◦ Q1)(δMk)∥F ≤ ∥δMk∥F .
Hence,

∥(1− α)δMk + α(Q2 ◦Q1)(δMk)∥F − ∥δMk∥F

=
∥(1− α)δMk + α(Q2 ◦Q1)(δMk)∥2F − ∥δMk∥2F
∥(1− α)δMk + α(Q2 ◦Q1)(δMk)∥F + ∥δMk∥F

≤ ∥(1− α)δMk + α(Q2 ◦Q1)(δMk)∥2F − ∥δMk∥2F
2∥δMk∥F

. (72)

Since δM̂k = (Q2 ◦Q1)(δMk)+ δMk, the triangle inequality
implies that

∥(1− α)δMk + αδM̂k∥F
≤ ∥(1− α)δMk + α(Q2 ◦Q1)(δMk)∥F + α∥δMk∥F .

Applying (72) yields the desired result.

Proof of Lemma 7.
To prove necessity, assume R and δM satisfy necessary

conditions i) and ii) of Theorem 1. Then by i)

Q1(δM) = (L†
uV S ◦ LuV S)δM

= (L†
uV S ◦ LuV )(M −R)

= δM,

i.e., Q1(δM) = δM . By necessary condition ii),

0 = ∆R ≜ (L†
uV S ◦ LuV P)

†(L†
uV S ◦ LuV )(M −R).

Using the definitions of Q1 and Q2, we have

(Q2 ◦Q1)(δM) = Q1(δM) + (L†
uV S ◦ LuV P)∆R

= δM.

Thus (Q2 ◦Q1)(δM) = δM as desired.
Now for sufficiency, assume that (Q2 ◦ Q1)(δM) = δM .

Since Q1 and Q2 are orthogonal projections

∥δM∥F = ∥(Q2 ◦Q1)(δM)∥F ≤ ∥Q1(δM)∥F ≤ ∥δM∥F ,

implying that equality holds. Thus ∥δM∥F = ∥Q1(δM)∥F
and this implies that δM = Q1(δM) since Q1 is an orthogonal
projection. Similarly, we can show that δM = Q2(δM) since

∥δM∥F = ∥(Q2 ◦Q1)(δM)∥F = ∥Q2(δM)∥F ≤ ∥δM∥F .

Since Q1(δM) = δM , δM satisfies the first necessary con-
dition in Theorem 1. What remains is to show that ∆R = 0.
Since Q2(δM) = δM and LuV (M −R) = LuV SδM ,

∆R = (L†
uV S ◦ LuV P)

†δM

= (L†
uV S ◦ LuV P)

†Q2(δM).

Thus by definition of Q2, ∆R = T †δM − T †TT †δM = 0,
where T = L†

uV S ◦LuV P and T †TT † = T † follows from the
definition of the Moore Penrose pseudoinverse.
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B. Justification of Assumption 4

The following Lemma proves that given Assumption 1, if
rank[M−δM−R] = n−1 then there exists a neighborhood of
M−δM−R for which rank reducing perturbations exist with
a Frobenius norm bounded by the growth of the nth singular
value in this neighborhood, justifying Assumption 4. In fact,
[6] shows how the assumption can be removed.

Lemma 8. Let δM0 ∈ S and R0 ∈ P be such that M
∼

≜
M − δM0 − R0 ∈ Cn×m satisfies rank[M

∼
] = n − 1 and

let LuV be the operator associated with the SVD of M
∼

. If
LuV S is surjective then there exists constants c and K such
that for every N ∈ Cn×m with ∥N∥F < c there is a δM ∈
S satisfying ∥δM∥F ≤ Kσn(M

∼ − N) and L
u∼V
∼(M
∼ − N −

δM) = 0, where L
u∼V
∼ is the operator associated with the SVD

of M
∼ −N .

Proof. Let {S1, S2, . . . , Sk} be an orthonormal basis of S, let
BS = [vec(S1), vec(S2), . . . , vec(Sk)] and define

Z(u, V ) =

[
Re

[
(V ⊤ ⊗ uH)BS

]
Im

[
(V ⊤ ⊗ uH)BS

]]
Since LuV S is surjective,

rankZ(u, V ) = 2(m− n+ 1). (73)

Given a matrix M
∼−N , let u∼ be the nth lsv of M

∼−N and
V
∼ ∈ Cm×(m−n+1) have columns equal to the last m− n+ 1
rsv of M

∼ − N . Given that the last singular value of M
∼

is
simple, there exists a ball with a radius d around M

∼
wherein

all matrix valued functions N(α) which depend analytically
on the real scalar α and satisfy ∥N(·)∥F < d have u∼(α) and
V
∼
(α) which can be chosen to be analytic functions of α (see

[22], [26] for more details). As a result, there exists c > 0
small enough for which there exists ϵ = ϵ(c) > 0 such that
for each N with ∥N∥F < c, u∼ and V

∼
satisfy

σ2(m−n+1)(Z(u
∼, V

∼
)) ≥ ϵ > 0. (74)

Consider one specific N satisfying ∥N∥F < c and take the
corresponding u∼ and V

∼
for M

∼ −N . Set x0 ∈ Cm to be

xT0 = L
u∼V
∼(M
∼ −N).

We will now construct a perturbation δM ∈ S such that
L
u∼V
∼S(δM) = xT0 . Note that vec(δM) = BSζ0 for some

ζ0 ∈ Rk, so [
Re(L

u∼V
∼S(δM))T

Im(L
u∼V
∼S(δM))T

]
= Z(u∼, V

∼
)ζ0.

If x0 = 0, then δM = 0 satisfies the conditions of the
lemma. If x0 ̸= 0, then L

u∼V
∼S(δM) = xT0 if and only if[

Rex0
Imx0

]
= Z(u∼, V

∼
)ζ0. (75)

Since Z(u∼, V
∼
) has full row rank by (74), it has a right inverse

Z(u∼, V
∼
)†. Therefore, we can compute ζ0 from (75):

ζ0 = Z(u∼, V
∼
)†
[

Rex0
Imx0

]
.

Thus L
u∼V
∼(M
∼ −N − δM) = 0.

What remains is to find the bound on ∥δM∥F . Since BS
has orthonormal columns, ∥δM∥F = ∥ζ0∥2. Hence

∥δM∥F ≤ σ1(Z(u
∼, V

∼
)†)

[Rex0
Imx0

]
2

≤ 1

ϵ
∥L

u∼V
∼(M
∼ −N)∥2.

But according to Proposition 1, ∥L
u∼V
∼(M
∼−N)∥2 = σn(M

∼−
N). Letting K = 1/ϵ, we obtain the desired bound ∥δM∥ ≤
Kσn(M

∼ − N). Observe that the last inequality implies that
σn(M

∼−N)
2∥δM∥ ≥ ϵ

2 > 0. This is precisely the expression that
appears in gk as defined in step 8 of Algorithm 1.

C. Additional Example

The following example is a simple illustration of some of
the issues that occur when rank(M − δM∗ − R∗) < n − 1.
It also exhibits repeated singular values for all R ∈ P and
δM ∈ S:

Example 4. Consider the problem:

M =

[
1 + ϵ 1
−1 1

]
, R = {γI : γ ∈ R} ,

S =

{[
α β
−β α

]
: α, β ∈ R

}
,

where 0 ≤ ϵ≪ 1. We seek to minimize α2 + β2 subject to

det(M − δM −R) =

det

([
1 + ϵ− γ − α 1− β

−1 + β 1− γ − α

])
= 0.

The singular values of M−δM−R are repeated for all values
of α, β, and γ. The global minimum occurs at γ∗(ϵ) = 1+ϵ/2,
α∗ = 0, and β∗(ϵ) = 1− ϵ/2, for which

M − δM∗ −R∗ =

[
ϵ/2 ϵ/2
−ϵ/2 −ϵ/2

]
and the norm of the minimum δM∗(ϵ) is

√
2(1− ϵ/2).

Consider ϵ = 0, implying M − δM∗ − R∗ = 0 with the
dimension of the singular space equal to two. This example
shows that the necessary condition in Theorem 1 (condition
1a) is not satisfied for an arbitrary left/right singular vector
pair when LuV is not surjective. Since M − δM∗ − R∗ = 0,
any vector in R2 is both a right and a left singular vector, so
the choice of singular vectors is arbitrary at M − δM∗ −R∗.
However, the choice is not arbitrary in a neighborhood of M−
δM∗−R∗, even though the singular vectors are repeated. The
left and right singular vectors must be chosen as a pair from
one of many possible SVD factorizations of M−δM−R, i.e.,
not independently. Consider an arbitrary left singular vector
uT = [u1, u2] and a right singular vector vT = [v1, v2]. Then
Luv(M−R) = u2v1−u1v2 and Luv(δM) = β(u2v1−u1v2)
so Theorem 1 is satisifed except in the case that u = ±v, in
which case Luv is not surjective. Other choices exist without
this problem, even in this restrictive example where S has
dimension 1.
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Now consider the case where 0 < ϵ≪ 1, and examine what
happens to the singular vectors and the minimizing solution
as ϵ→ 0. The singular vectors at the solution M − δM∗−R∗
span a one-dimensional space (independent of ϵ) and cannot be
chosen arbitrarily. One choice is uT = [1, 1] and vT = [1,−1].
With these vectors, LuvP(∆R) = 0 for all ∆R ∈ P;
LuvS(M − R∗) = −2 + ϵ, and LuvS(δM) = −2β. The
minimizer β∗(ϵ) = 1− ϵ/2 satisfies the condition of Theorem
1 (1a), and ∆R = 0 is the minimum norm minimizer of
(2a) since LuvP(∆R) = 0. Note that β∗(ϵ) is continuous at
ϵ = 0 so a sequence of solutions parameterized by ϵk → 0
approaches the solution at ϵ = 0.

One point of this example is there always exists a problem
with a solution where rank(M−δM∗−R∗) = n−1 arbitrarily
close to every problem where the solution satisfies rank(M −
δM∗−R∗) = n− 2. Any problem can be explicitly perturbed
to one which satisfies Assumption 3. In the presence of finite
arithmetic, M will be implicitly perturbed from its original
value, and not in any particular direction.
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