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INTRODUCTION

The semiconductor industry is progressing to finer 
lithography nodes, approximately doubling the number 
of components per chip each year in accordance with 
Moore’s Law (Mack, 2011) to meet the demand for higher 
performance. However, as the chip capacity in flash memory 
increased by 100-fold from 2005 to 2013 the number 
of reliable state changes decreased at each step to a finer 
lithography so the reliable capacity “has actually stagnated” 
(Chien & Karamcheti, 2013). Others emphasize the need for 
higher resolution in lithography at the finer nodes (Rathod et 
al., 2014) but we address the additional requirement for finer 
resolution in metrology to better characterize these devices. 
Semiconductor metrology requires both dopant profiling 
and carrier profiling to determine the number of dopant 
atoms and carriers per unit volume. These two procedures 
are generally used together because dopant profiling verifies 

that the design was followed and carrier profiling validates the 
dopant profile and verifies the activation of the dopant atoms. 
Atom probe tomography provides sub-nm resolution in 

dopant profiling (Kelly & Miller, 2007) and we consider new 
technology to complement this with finer resolution in carrier 
profiling (Hagmann et al., 2015). The present method of 
scanning spreading resistance microscopy (SSRM) as well as 
our new technology of scanning frequency comb microscopy 
(SFCM) are defined in the following two paragraphs.
SSRM is now the preferred method for carrier profiling at and 
below the 20-nm lithography node. In SSRM an accurately-
controlled pressure, typically 15 GPa, is required to insert a 
probe of doped conductive diamond into a semiconductor to 
measure the spreading resistance at this contact (Hantschel et 
al., 2015). Comparison with previous measurements, made 
using this probe with the same applied direct current (DC) 
bias with standards having known concentrations of the same 
dopant, are interpolated to evaluate the local carrier density in 
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the sample. Fragile three-dimensional (3D) structures such as 
Fin-FETs which are used at the finer lithography nodes must 
be disassembled, polished, and sectioned before SSRM studies 
(Vandervorst et al., 2014) because they would be destroyed 
by the high applied pressure. The diamond-probes must be 
normal to the sample surface to prevent sliding during their 
high-pressure insertion into a semiconductor which also 
complicates the testing of intact 3D structures. 
In SFCM the semiconductor is the sample electrode in a 
scanning tunneling microscope (STM) (Hagmann et al., 
2017). A mode-locked laser is focused on the STM tunneling 
junction to generate microwave harmonics at integer 
multiples of the laser pulse repetition rate (Hagmann et al., 
2012) and the attenuation of each harmonic is measured 
as it propagates from the tunneling junction through the 
spreading resistance. Comparison of this attenuation with 
previous measurements made with standards is used to 
evaluate the local carrier density in the semiconductor. Fig. 1 
is a block diagram of the apparatus for SFCM. The power in 
the microwave frequency comb is measured by two spectrum 
analyzers, one in the STM tip circuit and the other at a 
surface probe near the tunneling junction, to determine the 
attenuation that is caused by the spreading resistance. 
Three recent publications claim “nanometer” or “sub-
nanometer” resolution in carrier profiling with SSRM 
(Hantschel et al., 2009, 2015, 2016). Scanning electron 
microscope (SEM) images show that the initial apex radius of 
the diamond probes may be as small as 10~15 nm (Hantschel 
et al., 2016) or 50 nm (Hantschel et al., 2015) before scanning. 
However, an SEM image taken “after a few hours” of scanning 
shows that by then the apex has a radius of 300 nm and silicon 
debris “shaved-off” from the semiconductor is attached to the 
probe as far as 300 nm from the apex (Hantschel et al., 2015). 
Thus, SSRM effectively averages the spreading resistance over 
a contact that has a radius between 0 nm and 50 nm initially 
and approximately 300 nm later in the measurements. 

Deconvolution is not used to correct for the effects of this 
averaging, but rather the resolution is generally defined as the 
minimum lateral displacement of the probe that is required 
to cause a significant change in the measured resistance. 
Others have studied the effect of piecewise-homogeneous 
layered semiconductor samples on SSRM (Dunham et 
al., 1994) but we see no treatment of the effects of general 
inhomogeneities or of the possibility of mesoscopic effects in 
these measurements. 

MATERIALS AND METHODS

It is useful to define the effective radius or “spot-size” as 
the radius of the contact of the diamond probe with the 
semiconductor in SSRM, and the radius of a circle subtending 
one-half of the total tunneling current in SFCM. In SSRM the 
effective radius is typically from 10 to 300 nm as noted in the 
previous paragraph. However, In SFCM the effective radius 

is typically less than 1 nm depending on the shape and size of 
the tip electrode and its distance from the sample (Hagmann 
& Henage, 2016). Now we consider several models to 
address how spot-size and mesoscopic effects determine the 
sensitivity of SFCM and SSRM to the local inhomogeneities 
in a semiconductor. 

First Model: Hemispherical Metallic Protrusion into the 

Surface of the Semiconductor
If a metal sphere with radius a is at the center of a metallic 
shell having radius R, and the medium between them has 
constant resistivity ρ, the resistance between these two metal 
surfaces is given by 
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Thus, in SSRM if we approximate the contact between the 
inserted probe and the semiconductor as a hemisphere the 
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Fig. 1. Block diagram of apparatus for 
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measured resistance is given by the following expression: 
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In the limit as R becomes large RHS approaches ρ/2πa. Since 
the surfaces of constant potential are spheres it may be shown 
that 1/2 of this total resistance is over the radial distance 
from a to 2a, 1/6 is from 2a to 3a, 1/12 is from 3a to 4a, and 
1/20 is from 4a to 5a as shown in Fig. 2. Thus, 80% of the 
total resistance is contained within a distance of 4a from the 
surface of the central sphere, and 90% within a distance of 9a 
from this surface.
Next we will examine the sensitivity of a resistance measure-
ment to the distance R' from the origin which is at the center 
of the metal sphere. Consider a sphere with radius R’ in 
spherical polar coordinates r, θ, and φ, so that the volume of 
the sector bounded by the cone θ=θ0 is given by 
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Thus, the volume of a short segment of the sector that is 
bounded by R’ and R’+ΔR is given by 
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The area subtended by this segment is A=πR'2θ0
2 for θ0<< 

1. Removing the sector from the shell having R'<r<R'+Δr 
increases the resistance of that shell, and thus the total 
resistance, by ρθ0

2Δr/16πR'4. But the volume of the segment 
that was removed, ΔV=πθ0

2Δr/16πR'4. Thus, the ratio of the 
incremental increase in resistance to the incremental volume 
of the material which was removed is given by 
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That is, the sensitivity of the measured resistance to a change 
in the resistivity in an infinitesimal region varies inversely 
with the 4th power of the distance from the center of the 
metal sphere. For example, these measurements are 16 times 
more sensitive to local inhomogeneities in the resistivity at the 
surface of the metal sphere than to such changes at a radial 
distance which is equal to two times the radius of the central 
metal sphere. 

Second Model: Circular Electrode at the Surface of the 

Semiconductor
It is surprising that this model is used with SSRM (Dickens, 
1967) because our first model allows for the actual insertion 
of the probe and has a much simpler solution. However, 
the second model may be more suitable for SFCM because 
it is consistent with a current density that is normally 
incident at the surface of the sample. This model requires 
the approximation that, at the sample surface, the current is 
constant over a circular region with radius a and zero outside 
of this region. The surfaces of constant potential, which were 
spheres in the first model, are now oblate spheroids which are 
bisected by the surface of the semiconductor as shown in Fig. 3.
On the z-axis (η=1) the potential and the electric field are 
given by Eqs. (6) and (7) where V0 is the potential of the 
contact relative to zero at infinite ξ (Dickens, 1967). 
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For large values of ξ in three-dimensions the surfaces of 
constant potential approach the concentric spheres as seen 
in the first model, and on the z-axis for |z|>>a, Eq. (7) 
shows that Ez approaches –2V0a/πz2 which is consistent with 
Er=2V0a/πr2 in the first model. 
The total spreading resistance in this model is given by Eq. (8) 
(Dickens, 1967).
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Thus, the total current is given by I0=4aV0/ρ. 
We consider this model as a series circuit of incremental 
resistors, each being an oblate spheroidal shell with thickness 

Δξ so the separation is tapered with a maximum spacing of 

Δz=aΔξ at the z-axis where η=1 and z=z0. Thus, from Eq. 
(7), the potential across each shell is given by Eq. (9) and the 
resistance for each shell is given by Eq. (10). 
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Consider a tubular surface within the semiconductor having 

η=1–δ where the constant δ is much less than 1. This tube 
is normal to the surfaces for constant potential, which have 
specific values of ξ, so a fixed current ΔI flows through the 
full length of this tube. Consider the intersection of this tube 
with the oblate spheroid with the surface ξ=ξ0 which is at a 
constant potential. Eq. (11) uses the scale factors to determine 
an increment in the area of this intersection: 
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Integrating over ϕ from 0 to 2π, and over η from A to B gives 
the following expression for the area over this intersection:
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Thus, integrating over η from –1 to +1 gives the following 
expression for the full area of the surface of the oblate 
spheroid: 
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Integrating over the intersection, with η from –1 to –1+δ, 
gives the following expression for the area of the intersection 
of the tube with the oblate spheroid: 
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Thus, the fraction of the area of the surface of the oblate 
spheroid that is covered by this intersection is given by the 
following expression: 
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Following an approach similar to that which was used with 
the first model, we note that removing a segment of the 
semiconductor that is located on the z-axis from a shell 
having a constant thickness of aΔξ will increase the resistance 
of that shell. Note that Δz is approximately aΔξ at the location 
of this segment near to the z-axis. Thus, the volume of this 
segment is given by the following expression:
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Removing the segment of the semiconductor would increase 
the resistance of the shell by a factor of SAB/(SAB-ΔS). Thus, the 
total resistance will be increased by 
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For example, on the z-axis, the ratio of the incremental 
increase in resistance to the incremental volume of material 
that was removed is given by

 
 

 
3

2 2 2 2
0

Change in resistance 1
Volume removed 1 2 1 4 21 ln

2 2 2 1
a a z





     

   

 
.   (19)

Eq. (19) shows that, on the z-axis, the sensitivity of the 
measured resistance to a change in the resistivity in an 
infinitesimal region of the semiconductor varies inversely 
with the 3rd power of the distance from the circular electrode 
when this distance is much greater than the radius of the 
circular contact at the surface.
We have not considered high-frequency effects in this analysis 
so the dimensions must be much smaller than the wavelength 
in applications to SFCM. A first approximation for an 
extension to higher frequencies was described by Dickens 
(1967).
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Mesoscopic Effects on the Electrical Spreading 

Resistance
Macroscopically, an electric field Ez causes a current density Jz 
which is equal to σEz in a medium with uniform conductivity 

σ. However, the apparent regularity of this current is the result 
of many random collisions of the carriers at a much finer level. 
The mean-free path λ is defined as the mean distance traveled 
by a carrier between consecutive collisions (Sondheimer, 
1952). Mesoscopic effects occur at a length scale which is 
between that for bulk matter and the sizes of individual atoms 
or molecules. The measured electrical resistance deviates 
from the classical value when the dimensions are comparable 
with the mean-free path for the carriers, and is quantized at 
much smaller dimensions comparable to atoms or molecules 
(Durkan, 2014). 
In 1959, Little (1959) derived an expression for the phonon 
resistance in the Knudsen limit of heat transfer where the 
radius of the orifice is much smaller than the mean-free path 
for phonons. Wexler (1966) showed that Little’s expression for 
the phonon resistance requires the following expression for 
the electrical spreading resistance:
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Independently, six years after Little, Sharvin (1965) derived 
an expression equivalent to Eq. (20) and now this quantity is 
generally referred to as the “Sharvin resistance”. 
The simple addition of the Sharvin resistance to the Drude 
resistance, as shown in Eq. (21) differs by less than 2.5% 
from the exact calculation, from the Drude limit through the 
Sharvin limit (de Jong, 1994). 
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The mesoscopic increase in the resistance of the aperture, 
which is associated with ballistic transfer, may be understood 
from classical considerations. This effect occurs because, 
in ballistic transfer the transmission is proportional to the 
cosine of the angle of incidence because of the reduction 
in the intercepted area of the aperture. A tunneling 
junction is one type of a nanoscale aperture and this type 
of angular dependence is seen in plots of the modulus of 
the wavefunction for a tunneling junction (e.g., Fig. 2 of 
Avotina et al., 2005). This result suggests that the mesoscopic 
effects for small apertures would cause a greater fraction of 
the current to be present on the axis than we have shown in 
Model 1 and Model 2 where diffusive transport is assumed. 
This effect would increase the sensitivity to inhomogeneities 
in the carrier concentration of a semiconductor at greater 
distances from the surface. 

RESULTS

Model 1 requires spherical symmetry, and in the limit as the 
aperture radius approaches zero, or equivalently at points 
within the semiconductor that are close to the aperture, the 
solution for Model 2 has a current density that is also radially 
symmetric within the semiconductor. However, mesoscopic 
effects would increase the sensitivity of the measurements to 
inhomogeneities at greater distances from the surface in both 
models. This enhancement would be more pronounced with 
SFCM because of the much smaller spot-size. 
Eq. (5) shows that for Model 1 the sensitivity of the resistance 
measurement to a change in the resistivity in an infinitesimal 
region varies inversely with the distance 4th power of the 
distance from the center of the metal sphere. However, Eq. (19) 
shows that for Model 2 this sensitivity varies inversely as the 
4th power of the radius of the circular contact at points close 
to the surface, and inversely as the 3rd power of the distance 
from the surface when that distance is much greater than the 
radius of the circular contact. 

DISCUSSION AND CONCLUSIONS

In SSRM the resolution for carrier profiling is defined as the 
smallest lateral displacement for the probe that will provide 
a significant change in the measured resistance. Thus, SSRM 
can detect carrier depletion at dislocations in the lattice of a 
semiconductor (Yokoyama et al., 2009) or other variations 
occurring over distances that are much greater than the 
size of the probe. However, now we address the sensitivity 
of SSRM and SFCM measurements to heterogeneities at 
specific distances and directions relative to the point where 
the measurements are made. This is a first step toward a 
technique for determining the carrier profile with much 
greater resolution by combining the measurements made at 
multiple locations. We anticipate that such a technique may be 
more successful with SFCM because of the much finer “spot-
size” and the nondestructive nature of the measurement. 
It appears that Model 1 would be more appropriate with 
SSRM when the probe penetrates the sample whereas Model 
2 would be more appropriate with SFCM when a normal 
current is incident on the surface of the semiconductor. 
When considering mesoscopic effects, it is necessary for the 
carriers to have a path length several times greater than their 
mean-free path in order to have sufficient scattering to reach 
equilibrium with the local properties of a semiconductor. 
Several recent papers have described SSRM measurements 
with silicon samples having dopant concentrations for 
which the mean-free path of the carriers is from 2.3 to 15 
nm (Hantschel et al., 2009, 2015, 2016). Thus, it appears 
that nanometer or sub-nanometer resolution would not be 
possible with these samples. 
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