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Abstract

Networked systems display complex patterns of interactions between components. In phys-
ical networks, these interactions often occur along structural connections that link components in
a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such
as synchronization. While descriptions of these behaviors are important, they are only a first step
towards understanding and harnessing the relationship between network topology and system
behavior. Here, we use linear network control theory to derive accurate closed-form expressions
that relate the connectivity of a subset of structural connections (those linking driver nodes to
non-driver nodes) to the minimum energy required to control networked systems. To illustrate
the utility of the mathematics, we apply this approach to high-resolution connectomes recently
reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an
advantage of the human brain in supporting diverse network dynamics with small energetic costs
while remaining robust to perturbations, and to perform clinically accessible targeted manipulation
of the brain’s control performance by removing single edges in the network. Generally, our results
ground the expectation of a control system’s behavior in its network architecture, and directly

inspire new directions in network analysis and design via distributed control.



Network systems are composed of interconnected units that interact with each other on
diverse temporal and spatial scales [I]. The exact patterns of interconnections between these
units can take on many different forms that dictate how the system functions [2]. Indeed,
specific features of network topology — such as small-worldness [3] and modularity [4] — can
improve efficiency and robustness. Yet, exact mechanisms driving the relationship between
structure and function remain elusive, hampering the analysis, modification, and control
of interconnected complex systems. The relationship between interconnection architecture
and dynamics is particularly important in biological systems such as the brain [5], where
it is thought to support optimal information processing at cellular [6] and regional [7], [§]
levels. Understanding structure-function relationships in this system could inform personal-
ized therapeutics [9] including more targeted treatments for drug-resistant epilepsy to make
the epileptic state energetically unfavorable to maintain [10, 1], especially due to the de-
velopment of multi-site stimulation tools [12, 3] that allow for exponentially increasing

stimulation configurations.

Existing paradigms seeking to explain how a complex network topology drives observable
dynamics have advantages and disadvantages. Efforts in nonlinear dynamics define basins
of attraction and perturbations driving a system between basins [14] [15]. Efforts in network
science define graph metrics and report statistical correlations with observed functions such
as attention [16] and learning [I7) [I8]. Neither approach offers comprehensive analytical
solutions explaining mechanisms of control. A promising paradigm that meets these chal-
lenges is linear network control theory [19], 20], which assumes that the state of a system
at a given time is a function of the previous state, the structural network linking system
units, and injected control energy. From this paradigm, one can identify (i) driver nodes
[21], 22] capable of influencing the system along diverse trajectories, and (ii) optimal inputs
that move the system from one state to another with minimal cost. This latter formulation
has proven useful in understanding the human brain where control points enable diverse
cognitive strategies [23, 24], facilitate efficient intrinsic activation [25], and inform optimal

targets for brain stimulation [26].

While practical tools exist, basic intuitions about the network properties that enhance
control have remained elusive. Here, we address this challenge by formulating a linear
control problem on the bipartite subgraph linking driver nodes to non-driver nodes, which

provides excellent estimates of the control of the full network. Our results include analytical



derivations of expressions relating a network’s minimum control energy to its connectivity,
an intuitive geometric representation to visualize this relationship, and rules for modifying
edges to alter control energy in a predictable manner. While our mathematical contributions
are applicable to any complex network system whose dynamics can be approximated by a
linear model, we illustrate their utility in the context of networks estimated from the mouse
127, 28], Drosophila [29], and human brain (Fig. [Id-f). Our results offer fundamental insights
into the patterns of connections between brain regions that directly impact their minimum
control energy, providing a link between the structure and function of neural systems and
informing potential clinical interventions. An extension of this framework to non-bipartite

graphs with corresponding results can be found in the supplementary methods and results.

I. NETWORK TOPOLOGY AND CONTROLLABILITY

We consider a network represented by the directed graph G = (V,E&), where V =
{1,...,n} and &€ C V x V are the sets of network vertices and edges, respectively. Let
a;; € R be the weight associated with the edge (i,7) € £, and let A = [a;;] be the weighted
adjacency matrix of G. We associate a real value (state) with each node, collect the nodes’
states into a vector (network state), and define the map  : Ryy — R” to describe the
evolution (dynamics) of the network state over time (Fig. [[h—c). We assume that a subset
of N nodes, called drivers, is independently manipulated by external controls and, without
loss of generality, we reorder the network nodes such that the N drivers come first. Thus,
the network dynamics read as

Zq A A | x4 Iy

| = + u, (1)
Ty Ag Ao [Tna 0

where x4 and x,q are the state vectors of the driver and non-driver nodes, A;; € RV*V,

M =n—N, Ay, € RVM Ay € RMXN Ay, € RMXM [ is the N-dimensional identity
matrix, and u : Rsq — R¥ is the control input.

We will use the word controllable to refer to networks that are point-to-point controllable
at time 1" € Ry if, for any pair of states x} and x},, there exists a control input u for the
dynamics Eq. such that xq4(7) = ) and xn(T) = x},. For a detailed discussion and

rigorous conditions for the controllability of a system with linear dynamics, see [30]. We
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Network Control of the Mouse Brain
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FIG. 1. Network Control of the Drosophila, Mouse, and Human Connectomes. (a) A
representation of the mouse brain via the Allen Mouse Brain Atlas, with a superimposed simplified
network. Each brain region is represented as a vertex, and the connections between regions are
represented as directed edges. (b) Example trajectories of state over time for three brain regions,
where the state represents the level of activity in each region. (c) A state-space representation
of activity on the mouse connectome over time, where each point on the black line represents the
brain state at a point in time. (d) Connectomes represented as n x n adjacency matrices where
each ¢, jth element of the adjacency matrix represents the strength of the connection from node
j to node i for Drosophila, (e) mouse, and (f) human. (g) The mouse connectome represented
as a graph with vertices as brain regions, and edges colored by their weight, or the magnitude
of the relevant element of the adjacency matrix. (h) Simplified graph representation: a bipartite

subgraph containing edges linking driver vertices (red) to non-driver vertices (blue).



define the energy of u as

where u; is the i-th component of w. The energy of u; can be thought of as a quadratic cost
that penalizes large control inputs.

In the context of the brain, we approximate the interactions between brain regions as
linear, time invariant dynamics, where a stronger structural connection between two regions
represents a stronger dynamic interaction (for empirical motivation, see [23, 31l 32]). We
specifically study the empirical inter-areal meso-scale connectomes of the mouse (112 brain
regions, example schematic in Fig. ,h) from the Allen Brain Institute, the Drosophila (49
brain regions) [29], and a set of human connectomes (116 brain regions) interconnected by
white matter tracts (for empirical details regarding connectivity estimates, see supplemen-

tary results XA).

II. PREDICTING CONTROL ENERGY

We seek an accurate, tractable relationship between the energy required to drive a net-
work to a specific state and its connectivity. We begin with the original, non-simplified
network (Fig. ) involving edges between all nodes, and consider dynamics along the sim-
plified network (Fig. ) involving only edges from the driver to the non-driver nodes (for
a conceptual schematic of the full and simplified Drosophila connectome, see Fig. —d).
We then derive an approximation of the minimum control energy (Lemma X.2 - X.4) by
assuming that x4(0) = 0, £,q(0) = 0 (Assumption 1), and A;; = 0, Ajp = 0, and Ay =0
(Assumption 2) in Eq. (], which reads as

1 1
E(u) = 12(z;4 — §A21m§)T(A21A§1)_1(93;d - 51421373) +xi ). (2)

We make Assumption 1 because we are interested in the change in brain state through
control, and consider initial conditions x4(0) = 0, x,q(0) = 0 to be a neutral baseline.
Because Eq. only involves edges from driver to non-driver nodes, we call Eq. a first-
order approximation to the minimum control energy of the non-simplified network Eq. .

Importantly, this approximation requires at least as many driver nodes as non-driver nodes



for Ay ALl to be invertible (i.e. N > M). To assess the accuracy of our expression, we look
to classic results in the mathematical theory of systems and control [30], where the spectral
properties of the reachability Gramian Wr(0,T) = fOT e BBT A"t dt quantify the minimum

amount of energy (Section XI A 2) to control the non-simplified network Eq. (T]).
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FIG. 2. The Simplified Network Representation Offers a Reasonable Prediction for the
Full Network’s Control Energy. (a) Graphical representation of a non-simplified network of N
drivers (red) and M non-drivers (blue), with directed connections between all nodes present. (b)
Graphical representation of a simplified first-order network only containing first-order connections
from drivers — non-drivers. (c) As an example, we show the adjacency matrix for the Drosophila
connectome segmented into driver — driver Ajq, driver — non-driver Asy, non-driver — driver
Ao, and non-driver — non-driver Ass sections for a non-simplified network as per Eq. , with
randomly designated driver and non-driver nodes, and (d) the corresponding simplified network
as per Eq. . (e) Percent error contour plots of the total control energy for simplified versus
non-simplified networks as a function of the fraction of non-driver nodes and matrix scale given by
¢ = |[Amax||- For each combination of parameters, the median error magnitude to drive the networks
from initial states 4 = 0, &pnq = 0 to 1000 random final states z’; € (—1,1)M z} € (—1,1)V
along 1000 corresponding random selections of non-drivers is shown. Each contour represents a 5%

interval for the (e) Drosophila, (f) mouse, and (g) human connectome.



In these brain networks, we observe that the first-order energy approximation is accurate
across a range of parameters, which are the magnitude of the adjacency matrix (given by the
magnitude of the largest eigenvalue, ¢ = || Anax|| after multiplying A by a constant scalar),
and the fraction d of nodes selected as non-driver nodes (Fig. 2k-g). The error remains
below approximately 5% for scaling ¢ < 1.5 and non-driver fraction d < 0.4 (Fig. —g). In
this paper, we will use these connectomes scaled such that ¢ = ||[Ayax|| = 1, and non-driver
fraction d < 0.4, to ensure generalizability of our findings to the non-simplified versions of

these same networks.

III. DETERMINANT OF THE DRIVER-TO-NON-DRIVER NETWORK

After deriving a closed-form approximation for the minimal energy to control a network,

we seek a physical interpretation of the mathematical features that predict the control energy.

We let Q = Ay AL, and write Eq. () as

vi adj(Q)v

E(u) = 12 NIG) "+ vl (3)

where v; = @}y — $As @) and v, = x, and adj(Q) is the adjugate matrix of Q. We
notice that the determinant of () acts as a scaling factor for the total energy. This insight is
useful because of the geometric interpretation of a Gram matrix determinant. Specifically,
let a; € R™YN be the i-th row of Ay (which we will call the weight vector), representing
weights from all N drivers to the i-th non-driver node (Fig. |3a). Then, the determinant of
the Gram matrix @) is equal to the squared volume of the parallelotope formed by all a;.
To gain an intuition for these results, we show a simple system with 3 drivers and 2 non-
drivers with varying network topologies in Fig. Bb—d, and their corresponding geometric
parallelotopes in Fig. [Bp-g with weight-vector a; in gray and as in tan. We also compute
the distribution of control energy required to drive each network from initial states x4 = 0,
Tnq = 0 to 10,000 random final states z}y € (—1, 1), 23 € (—1,1)" in Fig. 3h. As the non-
drivers 2,41, Tnq2 become more similarly connected, the total area of the parallelotope (and
corresponding Gram determinant) decreases (Fig. fg), and the control energy increases
(Fig. ) We note that this determinant relationship persists for any number of nodes
where N > M. We conclude that the similarity between weight-vectors generally scales

the control energy through det(Q), allowing us to analyze and modify the connectivity of a
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FIG. 3. Geometric Interpretation of Simplified, First-Order Networks with Corre-
sponding Control Energies and Trajectories. (a) Graph representation of a simplified first-
order network containing connections from N driver nodes in red to M non-driver nodes in blue.
The edges connecting all driver nodes to the i-th non-driver corresponding to the i-th row of Aoy
are shown in different colors. (b) Graph representation of a network with driver nodes in red,
non-driver nodes in blue, weight distribution into non-driver 1 in gray, and weight distribution
into non-driver 2 in tan, for dissimilarly distributed weights, (c) for somewhat similarly distributed
weights, and (d) for very similarly distributed weights. (e) Geometric representation of the paral-
lelotope formed by the 2 vectors of weight distributions into non-drivers 1 and 2, with the volume
shaded in beige for dissimilarly distributed weights, (f) for somewhat similarly distributed weights,
and (g) for very similarly distributed weights. (h) Base-10 log distribution of control energy re-

quired to bring each graph to 10,000 random final states x?, € (-1, l)M, xh € (-1, 1)N.

network with respect to its control energy.

IV. IDENTIFYING ENERGETICALLY FAVORABLE CONTROL NODES

Here, we further explore the idea of “similarity” between connections a;, to quantify the

impact of each individual non-driver on the control energy.



A. Topological contributors to control energy.

Our analysis is rooted in the intuition that the edge weights a; that maximize the paral-
lelotope volume, thereby facilitating network control, are large in magnitude and orthogonal
to each other. Let \; and e; be the eigenvalues and eigenvectors of the matrix () in Eq. .

We derive in Lemma X.6 the equivalent, alternative control energy expression

_ Zz 1 Wi ol
B(u) = 12( S > (Z IIakH2sm O ) + v vy, (4)

where w; = Hj\;[éz Aj, ¢ = eiT'vl, and 0y is the angle formed between a, and the parallelotope
formed by a;.;,. We also derive in Lemma X.7 the average control energy to reach all random

final states drawn uniformly from -1 to 1, z’y € (=1, )M x5 € (=1,1)V

1 M 1
E[E(u)] = ;N + M +4 (; W) (5)

For N drivers and M non-drivers, we can visualize the M weight vectors a; as forming a
parallelotope in an N-dimensional space. The variable 6, then represents the angle formed
between a;, and the paralellotope formed by the remaining M — 1 vectors a;x;. An example

with N = 3, M = 2 is shown in Fig. [Bp-g, where 0; = 6, is the angle between the tan and

gray vectors.

ZMl wicf
Ziul wi

based (Z 1 m) term (Eq. , where the average minimum control energy depends

Here, we have segregated the control energy into a task-based ( ) and topology-
linearly on the topology-based term (Eq. [5)). This segregation allows us to analyze the
topology separate from the specific control task, and shows that each non-driver additively

contributes to the total control energy minimally when | a;|| and sin(6;) are large.

B. Energetically favorable driver-nondriver sets.

To support this discussion, we used expression Eq. to find the selections of M non-
drivers that minimized and maximized this topology term (see supplementary results X
B), which we define as the energetically most favorable and energetically least favorable
selections, respectively. We show example distributions of each weight-vector’s magnitude

|ay|| times angle sin(fy) (Fig. [fh—c) between these selections in Drosophila, mouse, and
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FIG. 4. Topological Characteristics and Energetic Performance of Networks with En-
ergetically Favorable and Unfavorable Topologies. (a) Boxplot of each non-driver weight-
vector’s magnitude and angle product (||ag||sin(f;)) between the energetically most and least
favorable networks in the Drosophila, (b) mouse, and (¢) human connectomes, for a non-driver
fraction of 0.2 and p-values from a 2-sample ¢-test. (d) Mean and standard deviations of the base-
10 log of the minimum control energies required to bring the system to 2000 random final states
xr € (-1, 1)M z* € (—1,1) for each of a range of non-driver fractions for the energetically most

favorable, least favorable, and random networks for the Drosophila, (e) mouse, and (f) human.

human for non-driver fraction 0.2. We observe that the energetically least favorable selections

have significantly weaker magnitudes and angles than the most favorable selections.

Next, we demonstrate the utility and robustness of these topological features for control
by computing the minimum control energy along the non-simplified networks using the driver
and non-driver designations from the simplified networks in Eq. for a range of non-driver
fractions. For each non-driver fraction and species, we computed the control energy to bring
the energetically most and least favorable non-driver selections, and 2000 random non-driver
selections to a corresponding set of 2000 random final states =¥, € (=1, )M x5 € (—1,1)V
(Fig. [4j-1). Across all three species, the most favorable selections require around 0.5-1 order
of magnitude less control energy than the random selections, and 2.5-4 orders of magnitude
less control energy than the least favorable selections. This difference indicates an energetic

advantage for some configurations of drivers and non-drivers over others.
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V. COMPLEX BRAIN NETWORKS ARE ENERGETICALLY FAVORABLE

Given the relationship between a network’s connectivity and minimum control energy
in Eq. , we seek to understand if brain networks are organized along energetically fa-
vorable principles. Fundamentally, we ask how well a network’s specific set of connectiv-
ity features |lax|| and sin(f;) combine to minimize the topology-dependent energy term
224:1 m In networks that are not designed along these energetic principles, we ex-
pect to see no particular relationship between |a|| and sin(fy). In networks that minimize
the topology dependent energy term, we expect a compensatory effect, where non-drivers
with small angles have large magnitudes, and vice versa.

To explore the relationship between ||ay|| and sin(fx) in brain networks, we selected
10,000 random permutations of non-drivers in each of the Drosophila, mouse, and 10 human
connectomes, at non-driver fraction d. For each permutation, we calculated ||ay|| and sin(6y)
for every non-driver. Then, we averaged ||ax| and sin(f) for each non-driver across all
permutations, giving us an averaged magnitude ||ay|| and sin(fy) for each brain region in
each network. Finally, we plotted the averaged sin(fy) versus ||ag| for all brain regions
in each network for d = 0.2 (Fig. ph—c). We find little relationship between the averaged
|ak|| and sin(fy) in the Drosophila (Spearman p = —0.25, p = 0.0748), a moderate negative
relationship in the mouse (p = —0.36, p = 0.000125), and a strong negative relationship in
the human (p = —0.73, p &~ 0). This ordering holds for a wide range of non-driver fractions
(Fig. [5d). We graphically demonstrate how this negative sin(6y,) versus ||ay|| relation might
arise in networks, using a simple 5-node network with two communities of 3 and 2 strongly

interconnected sets of nodes (Fig. —f), which has a strong negative relationship (Fig. )

VI. NETWORK MANIPULATION TO FACILITATE CONTROL

Here, we consider network modifications that lead to lower control energies. We focus on
the effects of edge deletion since it is often useful in the study of biological systems such as
brain [33], metabolic [34], and gene regulatory [35] networks. Specifically, we quantify the

effect of modifying each edge weight on the determinant in Lemma X.5 as

0
0Ax

det(Q) = 2det(Q)(Q " Ax), (6)
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FIG. 5. Energetically Favorable Organization of Topological Features in Networks. (a)
Average sin(fy) versus normalized ||ay|| for each brain region across 10,000 random non-driver se-
lections for a non-driver fraction of 0.2, along with best fit line (red) and corresponding Spearman
correlation coefficient in the Drosophila, (b) mouse, and (¢) human. (d) Spearman correlation
coefficients in the Drosophila, mouse, and human over 2,000 random non-driver selections for each
of a range of non-driver fractions. (e) Example toy network of 5 nodes with three strongly intercon-
nected nodes at the top, and two strongly interconnected nodes at the bottom. (f) Representation
of similarity in driver — non-driver connections between Non-Driver 1 (light blue, member of three
strongly connected nodes) and all possible selections of Non-Driver 2 (blue). Across all 4 configu-
rations, Non-Driver 1 has an average of 1.5 strong connections, and 2/4 similarly connected (small
angle) configurations. (g) Similarity in driver — non-driver connections between Non-Driver 1
(light blue, member of two strongly connected nodes) and all selections of Non-Driver 2 (blue).
Across all 4 configurations, Non-Driver 1 has an average of 0.75 strong connections, and 1/4 sim-
ilarly connected configurations. (h) Plot of average magnitude versus sin(f) for the toy network,

with Spearman rank correlation coefficient.

and compute the decrease in control energy as a result of deleting edges that maximally

increase the determinant.
First, for each species and each of a range of non-driver fractions, we randomly selected

2,000 permutations of non-drivers. For each permutation, we extracted the block matrix Aoy,
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calculated 2 det(Q)(Q ') As1, and found the element a;; # 0 yielding the largest increase in
det(Q) based on Eq. (). We then simulated an edge deletion by setting a;; = 0, and repeated
the process to obtain networks of 1, 2, 3, and 4 deleted edges. Finally, we computed the
percent change in control energy required to bring the non-simplified network from initial
states @,q(0) = 0, 24(0) = 0, to final states 3, € (—1,1)M x4 € (—1,1)" before and after
edge deletion (Fig. [oh—d).

a 0 Energy Percent Change, 1 Removed b 0 Energy Percent Change, 2 Removed € 0 Energy Percent Change, 3 Removed d 0 Energy Percent Change, 4 Removed
& [} 2) ()
210 2-10 \ g-10 2-10
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FIG. 6. Modifying the Drosophila, Mouse, and Human Connectomes to Decrease the
Minimum Energy Required for Control. (a) Means and standard errors of percent change
in control energy before and after deleting edges that maximally increase the determinant based
on Eq. @ over 2,000 control tasks, with initial states x,q(0) = 0, 4(0) = 0, and random final
states z* 4 € (—1,1)M & € (—1,1)". Non-drivers were randomly selected for a range of non-driver
fractions in the Drosophila, mouse, and human connectomes for 1 deletion, (b) 2 deletions, (c) 3
deletions, and (d) 4 deletions. Standard errors were computed as SE = ﬁ, where s is the sample

standard deviation over the 2,000 tasks, and n = 2, 000.

As can be seen in Fig. [6h, the removal of one edge can sometimes lead to more than a
10% average reduction in control energy, while the removal of four edges (Fig. |§|d) can some-
times lead to more than a 30% reduction. Across most non-driver fractions, the Drosophila
experienced greater energy reduction than the mouse, which also experienced greater energy
reduction than the human. This corresponds to the previous finding where, because brain
networks of these increasingly complex species are already energetically favorably wired,

they may not experience as much improvement after modification.

VII. CONTRIBUTION AND FUTURE DIRECTIONS

The control of networked systems is a critical frontier in science, mathematics, and engi-

neering, as it requires a fundamental understanding of the mechanisms that drive network
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dynamics and subsequently offers the knowledge necessary to intervene in real-world systems
to better their outcomes [36]. While some theoretical predictions exist in nonlinear network
systems [I5], the majority of recent advances have been made in the context of linear control
[21, 22]. Nevertheless, basic intuitions regarding how edge weights impact control have re-
mained elusive. Although spectral analysis of a network’s controllability Gramian [30] yields
theoretically useful information about the overall behavior of the network under control [37],
it is not obvious how specific patterns of connectivity or selections of driver and non-driver
nodes contribute to this behavior. Understanding this relationship is crucial when analyzing
empirical biological networks such as the brain, where nodes and edges often have known

functions [38] that may modulate or influence one other.

A distinct advantage of our approach is the focus on a physically meaningful topological
understanding of the principles governing network control. We map control behavior to
network topology through a simplified network only involving connections from driver to non-
driver nodes. This simplification hard-codes the fact that energy can be transmitted directly
from drivers to non-drivers along walks of length unity, and is motivated by recent work
demonstrating that relatively sparse network representations of complex biological systems
[39,/40] can contain much of the information needed to understand the system’s structure and
dynamics [41],42]. Our results inform our understanding of how much first-order connections
contribute to the overall dynamics of our network control systems. Moreover, they inform
the development of analytical constraints on the accessible state space of a networked system,
particularly informing the set of states within which one might seek to push the brain using
stimulation paradigms common in the treatment of neurological disorders and psychiatric
disease [43, [44]. While many initial studies have examined unconstrained state spaces [23]
25, 26], understanding viable states and state trajectories is critical for the translation of
these ideas into the clinic [45]. Further, by formally quantifying the contribution of the
network connectivity to the control energy, we lay the groundwork for the optimization
of stimulation sites in neural systems, a problem that has received very little theoretical
treatment, and is considered one of the current critical challenges in neuroengineering [46].

Finally, we make strategic, task-agnostic edge deletions that maximally increase the de-
terminant and observe that, even in an overdetermined, unsimplified system (N > M), a
single edge deletion could produce a profound improvement in the general controllability of

a network. This sensitivity suggests that dynamical networks such as the brain can produce
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fairly drastic changes in dynamical behavior given minute changes in physiological topol-
ogy, consistent with observations of critical dynamics in human and animal neurophysiology
[477,148]. Moreover, these results also suggest that minor, targeted structural changes through
concussive injury can lead to drastic changes in overall brain function [49, 50], via altering
the controllability landscape of the brain [24]. We further observed that these topological
modifications were task-agnostic edge deletions, signifying that even in a linear regime, the
presence of an unfavorable edge can have a profoundly negative impact on the controllability
of a network. We note that it is natural to perform a similar analysis that takes into account
the specific tasks v, vo by taking the derivative of the full energy term FE,,, with respect
to Asq, which would optimize the network topology for a specific task, as studied in more
detail in [25].

To achieve the most meaningful comparison between species, we only analyzed weighted
meso-scale whole brain networks. As such, we did not include binary neuronal connectomes
(e.g., C. elegans), and binary or partial connectomes (e.g., macaque). As more connectomes
become available, we hope to further explore the role of species complexity on network con-
trollability. Until then, we consider the comparison of energetically favorable connectivity
between species to be a preliminary excursion into a nuanced evolutionary phenomena. As
demonstrated in the significant percent change in energy after edge deletion, we empha-
size that uncertainty in network connectivity has the potential to yield substantial changes
in average control energy. Finally, we note that while methodological limitations prevent
us from resolving excitatory wversus inhibitory connectivity, all results are directly appli-
cable to networks with signed elements. Further important theoretical considerations and
methodological limitations pertinent to our approach, linear model of dynamics, optimality

of control trajectories, and empirical data sets are discussed in the SI.

In closing, we note that the natural direction in which to take this work will be to use
higher-order approximations of this framework found in the supplement to gain intuition
for the role of complex network topologies (e.g. self-loops, cycles) in controlling networks.
Moreover, it would be interesting to apply this reduced framework to random graphs and
other well-known benchmarks — both from a mathematical perspective [51] and also in the
context of neural systems [52, 53] — to better understand the phenotypes present in those
graph ensembles. Third and finally, informing the design of new networks with these tools

may be particularly useful in neuromorphic computing [54], material science [55], and other
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contexts where optimal control of physical systems is of paramount importance.
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