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Abstract

Networked systems display complex patterns of interactions between components. In phys-

ical networks, these interactions often occur along structural connections that link components in

a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such

as synchronization. While descriptions of these behaviors are important, they are only a first step

towards understanding and harnessing the relationship between network topology and system

behavior. Here, we use linear network control theory to derive accurate closed-form expressions

that relate the connectivity of a subset of structural connections (those linking driver nodes to

non-driver nodes) to the minimum energy required to control networked systems. To illustrate

the utility of the mathematics, we apply this approach to high-resolution connectomes recently

reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an

advantage of the human brain in supporting diverse network dynamics with small energetic costs

while remaining robust to perturbations, and to perform clinically accessible targeted manipulation

of the brain’s control performance by removing single edges in the network. Generally, our results

ground the expectation of a control system’s behavior in its network architecture, and directly

inspire new directions in network analysis and design via distributed control.
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Network systems are composed of interconnected units that interact with each other on

diverse temporal and spatial scales [1]. The exact patterns of interconnections between these

units can take on many different forms that dictate how the system functions [2]. Indeed,

specific features of network topology – such as small-worldness [3] and modularity [4] – can

improve efficiency and robustness. Yet, exact mechanisms driving the relationship between

structure and function remain elusive, hampering the analysis, modification, and control

of interconnected complex systems. The relationship between interconnection architecture

and dynamics is particularly important in biological systems such as the brain [5], where

it is thought to support optimal information processing at cellular [6] and regional [7, 8]

levels. Understanding structure-function relationships in this system could inform personal-

ized therapeutics [9] including more targeted treatments for drug-resistant epilepsy to make

the epileptic state energetically unfavorable to maintain [10, 11], especially due to the de-

velopment of multi-site stimulation tools [12, 13] that allow for exponentially increasing

stimulation configurations.

Existing paradigms seeking to explain how a complex network topology drives observable

dynamics have advantages and disadvantages. Efforts in nonlinear dynamics define basins

of attraction and perturbations driving a system between basins [14, 15]. Efforts in network

science define graph metrics and report statistical correlations with observed functions such

as attention [16] and learning [17, 18]. Neither approach offers comprehensive analytical

solutions explaining mechanisms of control. A promising paradigm that meets these chal-

lenges is linear network control theory [19, 20], which assumes that the state of a system

at a given time is a function of the previous state, the structural network linking system

units, and injected control energy. From this paradigm, one can identify (i) driver nodes

[21, 22] capable of influencing the system along diverse trajectories, and (ii) optimal inputs

that move the system from one state to another with minimal cost. This latter formulation

has proven useful in understanding the human brain where control points enable diverse

cognitive strategies [23, 24], facilitate efficient intrinsic activation [25], and inform optimal

targets for brain stimulation [26].

While practical tools exist, basic intuitions about the network properties that enhance

control have remained elusive. Here, we address this challenge by formulating a linear

control problem on the bipartite subgraph linking driver nodes to non-driver nodes, which

provides excellent estimates of the control of the full network. Our results include analytical
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derivations of expressions relating a network’s minimum control energy to its connectivity,

an intuitive geometric representation to visualize this relationship, and rules for modifying

edges to alter control energy in a predictable manner. While our mathematical contributions

are applicable to any complex network system whose dynamics can be approximated by a

linear model, we illustrate their utility in the context of networks estimated from the mouse

[27, 28], Drosophila [29], and human brain (Fig. 1d–f). Our results offer fundamental insights

into the patterns of connections between brain regions that directly impact their minimum

control energy, providing a link between the structure and function of neural systems and

informing potential clinical interventions. An extension of this framework to non-bipartite

graphs with corresponding results can be found in the supplementary methods and results.

I. NETWORK TOPOLOGY AND CONTROLLABILITY

We consider a network represented by the directed graph G = (V , E), where V =

{1, . . . , n} and E ⊆ V × V are the sets of network vertices and edges, respectively. Let

aij ∈ R be the weight associated with the edge (i, j) ∈ E , and let A = [aij] be the weighted

adjacency matrix of G. We associate a real value (state) with each node, collect the nodes’

states into a vector (network state), and define the map x : R≥0 → Rn to describe the

evolution (dynamics) of the network state over time (Fig. 1a–c). We assume that a subset

of N nodes, called drivers, is independently manipulated by external controls and, without

loss of generality, we reorder the network nodes such that the N drivers come first. Thus,

the network dynamics read as ẋd

ẋnd

 =

A11 A12

A21 A22

xd

xnd

+

IN
0

u, (1)

where xd and xnd are the state vectors of the driver and non-driver nodes, A11 ∈ RN×N ,

M = n − N , A12 ∈ RN×M , A21 ∈ RM×N , A22 ∈ RM×M , IN is the N -dimensional identity

matrix, and u : R≥0 → RN is the control input.

We will use the word controllable to refer to networks that are point-to-point controllable

at time T ∈ R≥0 if, for any pair of states x∗d and x∗nd, there exists a control input u for the

dynamics Eq. (1) such that xd(T ) = x∗d and xnd(T ) = x∗nd. For a detailed discussion and

rigorous conditions for the controllability of a system with linear dynamics, see [30]. We
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FIG. 1. Network Control of the Drosophila, Mouse, and Human Connectomes. (a) A

representation of the mouse brain via the Allen Mouse Brain Atlas, with a superimposed simplified

network. Each brain region is represented as a vertex, and the connections between regions are

represented as directed edges. (b) Example trajectories of state over time for three brain regions,

where the state represents the level of activity in each region. (c) A state-space representation

of activity on the mouse connectome over time, where each point on the black line represents the

brain state at a point in time. (d) Connectomes represented as n × n adjacency matrices where

each i, jth element of the adjacency matrix represents the strength of the connection from node

j to node i for Drosophila, (e) mouse, and (f) human. (g) The mouse connectome represented

as a graph with vertices as brain regions, and edges colored by their weight, or the magnitude

of the relevant element of the adjacency matrix. (h) Simplified graph representation: a bipartite

subgraph containing edges linking driver vertices (red) to non-driver vertices (blue).
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define the energy of u as

E(u) =
N∑
i=1

∫ T

0

ui(t)
2dt︸ ︷︷ ︸

Ei

,

where ui is the i-th component of u. The energy of ui can be thought of as a quadratic cost

that penalizes large control inputs.

In the context of the brain, we approximate the interactions between brain regions as

linear, time invariant dynamics, where a stronger structural connection between two regions

represents a stronger dynamic interaction (for empirical motivation, see [23, 31, 32]). We

specifically study the empirical inter-areal meso-scale connectomes of the mouse (112 brain

regions, example schematic in Fig. 1g,h) from the Allen Brain Institute, the Drosophila (49

brain regions) [29], and a set of human connectomes (116 brain regions) interconnected by

white matter tracts (for empirical details regarding connectivity estimates, see supplemen-

tary results XA).

II. PREDICTING CONTROL ENERGY

We seek an accurate, tractable relationship between the energy required to drive a net-

work to a specific state and its connectivity. We begin with the original, non-simplified

network (Fig. 2a) involving edges between all nodes, and consider dynamics along the sim-

plified network (Fig. 2b) involving only edges from the driver to the non-driver nodes (for

a conceptual schematic of the full and simplified Drosophila connectome, see Fig. 2c–d).

We then derive an approximation of the minimum control energy (Lemma X.2 - X.4) by

assuming that xd(0) = 0, xnd(0) = 0 (Assumption 1), and A11 = 0, A12 = 0, and A22 = 0

(Assumption 2) in Eq. (1), which reads as

E(u) = 12(x∗nd −
1

2
A21x

∗
d)T (A21A

T
21)
−1(x∗nd −

1

2
A21x

∗
d) + x∗Td x∗d. (2)

We make Assumption 1 because we are interested in the change in brain state through

control, and consider initial conditions xd(0) = 0, xnd(0) = 0 to be a neutral baseline.

Because Eq. (2) only involves edges from driver to non-driver nodes, we call Eq. (2) a first-

order approximation to the minimum control energy of the non-simplified network Eq. (1).

Importantly, this approximation requires at least as many driver nodes as non-driver nodes
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for A21A
T
21 to be invertible (i.e. N ≥M). To assess the accuracy of our expression, we look

to classic results in the mathematical theory of systems and control [30], where the spectral

properties of the reachability Gramian WR(0, T ) =
∫ T
0
eAtBBT eA

T tdt quantify the minimum

amount of energy (Section XI A 2) to control the non-simplified network Eq. (1).
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FIG. 2. The Simplified Network Representation Offers a Reasonable Prediction for the

Full Network’s Control Energy. (a) Graphical representation of a non-simplified network of N

drivers (red) and M non-drivers (blue), with directed connections between all nodes present. (b)

Graphical representation of a simplified first-order network only containing first-order connections

from drivers → non-drivers. (c) As an example, we show the adjacency matrix for the Drosophila

connectome segmented into driver → driver A11, driver → non-driver A21, non-driver → driver

A12, and non-driver → non-driver A22 sections for a non-simplified network as per Eq. (1), with

randomly designated driver and non-driver nodes, and (d) the corresponding simplified network

as per Eq. (2). (e) Percent error contour plots of the total control energy for simplified versus

non-simplified networks as a function of the fraction of non-driver nodes and matrix scale given by

c = ‖λmax‖. For each combination of parameters, the median error magnitude to drive the networks

from initial states xd = 0, xnd = 0 to 1000 random final states x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N

along 1000 corresponding random selections of non-drivers is shown. Each contour represents a 5%

interval for the (e) Drosophila, (f) mouse, and (g) human connectome.
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In these brain networks, we observe that the first-order energy approximation is accurate

across a range of parameters, which are the magnitude of the adjacency matrix (given by the

magnitude of the largest eigenvalue, c = ‖λmax‖ after multiplying A by a constant scalar),

and the fraction d of nodes selected as non-driver nodes (Fig. 2e–g). The error remains

below approximately 5% for scaling c < 1.5 and non-driver fraction d < 0.4 (Fig. 2e–g). In

this paper, we will use these connectomes scaled such that c = ‖λmax‖ = 1, and non-driver

fraction d ≤ 0.4, to ensure generalizability of our findings to the non-simplified versions of

these same networks.

III. DETERMINANT OF THE DRIVER-TO-NON-DRIVER NETWORK

After deriving a closed-form approximation for the minimal energy to control a network,

we seek a physical interpretation of the mathematical features that predict the control energy.

We let Q = A21A
T
21, and write Eq. (2) as

E(u) = 12
vT1 adj(Q)v1

det(Q)
+ vT2 v2, (3)

where v1 = x∗nd − 1
2
A21x

∗
d and v2 = x∗d, and adj(Q) is the adjugate matrix of Q. We

notice that the determinant of Q acts as a scaling factor for the total energy. This insight is

useful because of the geometric interpretation of a Gram matrix determinant. Specifically,

let ai ∈ R1×N be the i-th row of A21 (which we will call the weight vector), representing

weights from all N drivers to the i-th non-driver node (Fig. 3a). Then, the determinant of

the Gram matrix Q is equal to the squared volume of the parallelotope formed by all ai.

To gain an intuition for these results, we show a simple system with 3 drivers and 2 non-

drivers with varying network topologies in Fig. 3b–d, and their corresponding geometric

parallelotopes in Fig. 3e–g with weight-vector a1 in gray and a2 in tan. We also compute

the distribution of control energy required to drive each network from initial states xd = 0,

xnd = 0 to 10,000 random final states x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N in Fig. 3h. As the non-

drivers xnd1, xnd2 become more similarly connected, the total area of the parallelotope (and

corresponding Gram determinant) decreases (Fig. 3e–g), and the control energy increases

(Fig. 3h). We note that this determinant relationship persists for any number of nodes

where N > M . We conclude that the similarity between weight-vectors generally scales

the control energy through det(Q), allowing us to analyze and modify the connectivity of a

8



a1 = {a11, a12, ..., a1N}

a11
a12

a1N

aMN

aM2

a21a22

aM1

a2N

a2 = {a21, a22, ..., a2N}
aM = {aM1, aM2, ..., aMN}

xd1

xd2

xdN

⋮

xnd1

⋮

xnd2

xndM

a

Driver NodeNon-Driver Node

h

-0.5 0 0.5 1 1.5 2 2.5 3
log10 Control Energy

0

0.02

0.04

0.06

0.08

0.1

0.12

Fr
eq

ue
nc

y

Graph 1
Graph 2
Graph 3

Graph 1
xd1
xd2
xd3

xnd1

xnd2

b

Graph 2
xd1
xd2
xd3

xnd1

xnd2

c

Graph 3
xd1
xd2
xd3

xnd1

xnd2

d

Det: 1.000

wd2
0

0.5w
d3

1
e

wd1

Det: 0.300

wd2
0

0.5w
d3

1
f

wd1

Det: 0.067

wd2
0

0.5w
d3

1
g

wd1

FIG. 3. Geometric Interpretation of Simplified, First-Order Networks with Corre-

sponding Control Energies and Trajectories. (a) Graph representation of a simplified first-

order network containing connections from N driver nodes in red to M non-driver nodes in blue.

The edges connecting all driver nodes to the i-th non-driver corresponding to the i-th row of A21

are shown in different colors. (b) Graph representation of a network with driver nodes in red,

non-driver nodes in blue, weight distribution into non-driver 1 in gray, and weight distribution

into non-driver 2 in tan, for dissimilarly distributed weights, (c) for somewhat similarly distributed

weights, and (d) for very similarly distributed weights. (e) Geometric representation of the paral-

lelotope formed by the 2 vectors of weight distributions into non-drivers 1 and 2, with the volume

shaded in beige for dissimilarly distributed weights, (f) for somewhat similarly distributed weights,

and (g) for very similarly distributed weights. (h) Base-10 log distribution of control energy re-

quired to bring each graph to 10,000 random final states x∗
nd ∈ (−1, 1)M ,x∗

d ∈ (−1, 1)N .

network with respect to its control energy.

IV. IDENTIFYING ENERGETICALLY FAVORABLE CONTROL NODES

Here, we further explore the idea of “similarity” between connections ai, to quantify the

impact of each individual non-driver on the control energy.
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A. Topological contributors to control energy.

Our analysis is rooted in the intuition that the edge weights ai that maximize the paral-

lelotope volume, thereby facilitating network control, are large in magnitude and orthogonal

to each other. Let λi and ei be the eigenvalues and eigenvectors of the matrix Q in Eq. (3).

We derive in Lemma X.6 the equivalent, alternative control energy expression

E(u) = 12

(∑M
i=1wic

2
i∑M

i=1wi

)(
M∑
k=1

1

‖ak‖2 sin(θk)2

)
+ vT2 v2, (4)

where wi =
∏M

j 6=i λj, ci = eTi v1, and θk is the angle formed between ak and the parallelotope

formed by aj 6=k. We also derive in Lemma X.7 the average control energy to reach all random

final states drawn uniformly from -1 to 1, x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N , as

E[E(u)] =
1

3
N +M + 4

(
M∑
k=1

1

‖ak‖2 sin(θk)2

)
. (5)

For N drivers and M non-drivers, we can visualize the M weight vectors ak as forming a

parallelotope in an N -dimensional space. The variable θk then represents the angle formed

between ak and the paralellotope formed by the remaining M −1 vectors aj 6=k. An example

with N = 3,M = 2 is shown in Fig. 3e–g, where θ1 = θ2 is the angle between the tan and

gray vectors.

Here, we have segregated the control energy into a task-based
(∑M

i=1 wic
2
i∑M

i=1 wi

)
and topology-

based
(∑M

k=1
1

‖ak‖2 sin(θk)2

)
term (Eq. 4), where the average minimum control energy depends

linearly on the topology-based term (Eq. 5). This segregation allows us to analyze the

topology separate from the specific control task, and shows that each non-driver additively

contributes to the total control energy minimally when ‖ai‖ and sin(θi) are large.

B. Energetically favorable driver-nondriver sets.

To support this discussion, we used expression Eq. (4) to find the selections of M non-

drivers that minimized and maximized this topology term (see supplementary results X

B), which we define as the energetically most favorable and energetically least favorable

selections, respectively. We show example distributions of each weight-vector’s magnitude

‖ak‖ times angle sin(θk) (Fig. 4a–c) between these selections in Drosophila, mouse, and
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FIG. 4. Topological Characteristics and Energetic Performance of Networks with En-

ergetically Favorable and Unfavorable Topologies. (a) Boxplot of each non-driver weight-

vector’s magnitude and angle product (‖ak‖ sin(θk)) between the energetically most and least

favorable networks in the Drosophila, (b) mouse, and (c) human connectomes, for a non-driver

fraction of 0.2 and p-values from a 2-sample t-test. (d) Mean and standard deviations of the base-

10 log of the minimum control energies required to bring the system to 2000 random final states

x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N for each of a range of non-driver fractions for the energetically most

favorable, least favorable, and random networks for the Drosophila, (e) mouse, and (f) human.

human for non-driver fraction 0.2. We observe that the energetically least favorable selections

have significantly weaker magnitudes and angles than the most favorable selections.

Next, we demonstrate the utility and robustness of these topological features for control

by computing the minimum control energy along the non-simplified networks using the driver

and non-driver designations from the simplified networks in Eq. (4) for a range of non-driver

fractions. For each non-driver fraction and species, we computed the control energy to bring

the energetically most and least favorable non-driver selections, and 2000 random non-driver

selections to a corresponding set of 2000 random final states x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N

(Fig. 4j–l). Across all three species, the most favorable selections require around 0.5–1 order

of magnitude less control energy than the random selections, and 2.5–4 orders of magnitude

less control energy than the least favorable selections. This difference indicates an energetic

advantage for some configurations of drivers and non-drivers over others.
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V. COMPLEX BRAIN NETWORKS ARE ENERGETICALLY FAVORABLE

Given the relationship between a network’s connectivity and minimum control energy

in Eq. (4), we seek to understand if brain networks are organized along energetically fa-

vorable principles. Fundamentally, we ask how well a network’s specific set of connectiv-

ity features ‖ak‖ and sin(θk) combine to minimize the topology-dependent energy term∑M
k=1

1
‖ak‖2 sin(θk)2

. In networks that are not designed along these energetic principles, we ex-

pect to see no particular relationship between ‖ak‖ and sin(θk). In networks that minimize

the topology dependent energy term, we expect a compensatory effect, where non-drivers

with small angles have large magnitudes, and vice versa.

To explore the relationship between ‖ak‖ and sin(θk) in brain networks, we selected

10,000 random permutations of non-drivers in each of the Drosophila, mouse, and 10 human

connectomes, at non-driver fraction d. For each permutation, we calculated ‖ak‖ and sin(θk)

for every non-driver. Then, we averaged ‖ak‖ and sin(θk) for each non-driver across all

permutations, giving us an averaged magnitude ‖ak‖ and sin(θk) for each brain region in

each network. Finally, we plotted the averaged sin(θk) versus ‖ak‖ for all brain regions

in each network for d = 0.2 (Fig. 5a–c). We find little relationship between the averaged

‖ak‖ and sin(θk) in the Drosophila (Spearman ρ = −0.25, p = 0.0748), a moderate negative

relationship in the mouse (ρ = −0.36, p = 0.000125), and a strong negative relationship in

the human (ρ = −0.73, p ≈ 0). This ordering holds for a wide range of non-driver fractions

(Fig. 5d). We graphically demonstrate how this negative sin(θk) versus ‖ak‖ relation might

arise in networks, using a simple 5-node network with two communities of 3 and 2 strongly

interconnected sets of nodes (Fig. 5d-f), which has a strong negative relationship (Fig. 5h).

VI. NETWORK MANIPULATION TO FACILITATE CONTROL

Here, we consider network modifications that lead to lower control energies. We focus on

the effects of edge deletion since it is often useful in the study of biological systems such as

brain [33], metabolic [34], and gene regulatory [35] networks. Specifically, we quantify the

effect of modifying each edge weight on the determinant in Lemma X.5 as

∂

∂A21

det(Q) = 2 det(Q)(Q−1A21), (6)
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FIG. 5. Energetically Favorable Organization of Topological Features in Networks. (a)

Average sin(θk) versus normalized ‖ak‖ for each brain region across 10,000 random non-driver se-

lections for a non-driver fraction of 0.2, along with best fit line (red) and corresponding Spearman

correlation coefficient in the Drosophila, (b) mouse, and (c) human. (d) Spearman correlation

coefficients in the Drosophila, mouse, and human over 2,000 random non-driver selections for each

of a range of non-driver fractions. (e) Example toy network of 5 nodes with three strongly intercon-

nected nodes at the top, and two strongly interconnected nodes at the bottom. (f) Representation

of similarity in driver → non-driver connections between Non-Driver 1 (light blue, member of three

strongly connected nodes) and all possible selections of Non-Driver 2 (blue). Across all 4 configu-

rations, Non-Driver 1 has an average of 1.5 strong connections, and 2/4 similarly connected (small

angle) configurations. (g) Similarity in driver → non-driver connections between Non-Driver 1

(light blue, member of two strongly connected nodes) and all selections of Non-Driver 2 (blue).

Across all 4 configurations, Non-Driver 1 has an average of 0.75 strong connections, and 1/4 sim-

ilarly connected configurations. (h) Plot of average magnitude versus sin(θ) for the toy network,

with Spearman rank correlation coefficient.

and compute the decrease in control energy as a result of deleting edges that maximally

increase the determinant.

First, for each species and each of a range of non-driver fractions, we randomly selected

2,000 permutations of non-drivers. For each permutation, we extracted the block matrix A21,
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calculated 2 det(Q)(Q−1)A21, and found the element aij 6= 0 yielding the largest increase in

det(Q) based on Eq. (6). We then simulated an edge deletion by setting aij = 0, and repeated

the process to obtain networks of 1, 2, 3, and 4 deleted edges. Finally, we computed the

percent change in control energy required to bring the non-simplified network from initial

states xnd(0) = 0, xd(0) = 0, to final states x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N before and after

edge deletion (Fig. 6a–d).
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FIG. 6. Modifying the Drosophila, Mouse, and Human Connectomes to Decrease the

Minimum Energy Required for Control. (a) Means and standard errors of percent change

in control energy before and after deleting edges that maximally increase the determinant based

on Eq. (6) over 2,000 control tasks, with initial states xnd(0) = 0, xd(0) = 0, and random final

states x∗nd ∈ (−1, 1)M ,x∗d ∈ (−1, 1)N . Non-drivers were randomly selected for a range of non-driver

fractions in the Drosophila, mouse, and human connectomes for 1 deletion, (b) 2 deletions, (c) 3

deletions, and (d) 4 deletions. Standard errors were computed as SE = s√
n

, where s is the sample

standard deviation over the 2,000 tasks, and n = 2, 000.

As can be seen in Fig. 6a, the removal of one edge can sometimes lead to more than a

10% average reduction in control energy, while the removal of four edges (Fig. 6d) can some-

times lead to more than a 30% reduction. Across most non-driver fractions, the Drosophila

experienced greater energy reduction than the mouse, which also experienced greater energy

reduction than the human. This corresponds to the previous finding where, because brain

networks of these increasingly complex species are already energetically favorably wired,

they may not experience as much improvement after modification.

VII. CONTRIBUTION AND FUTURE DIRECTIONS

The control of networked systems is a critical frontier in science, mathematics, and engi-

neering, as it requires a fundamental understanding of the mechanisms that drive network
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dynamics and subsequently offers the knowledge necessary to intervene in real-world systems

to better their outcomes [36]. While some theoretical predictions exist in nonlinear network

systems [15], the majority of recent advances have been made in the context of linear control

[21, 22]. Nevertheless, basic intuitions regarding how edge weights impact control have re-

mained elusive. Although spectral analysis of a network’s controllability Gramian [30] yields

theoretically useful information about the overall behavior of the network under control [37],

it is not obvious how specific patterns of connectivity or selections of driver and non-driver

nodes contribute to this behavior. Understanding this relationship is crucial when analyzing

empirical biological networks such as the brain, where nodes and edges often have known

functions [38] that may modulate or influence one other.

A distinct advantage of our approach is the focus on a physically meaningful topological

understanding of the principles governing network control. We map control behavior to

network topology through a simplified network only involving connections from driver to non-

driver nodes. This simplification hard-codes the fact that energy can be transmitted directly

from drivers to non-drivers along walks of length unity, and is motivated by recent work

demonstrating that relatively sparse network representations of complex biological systems

[39, 40] can contain much of the information needed to understand the system’s structure and

dynamics [41, 42]. Our results inform our understanding of how much first-order connections

contribute to the overall dynamics of our network control systems. Moreover, they inform

the development of analytical constraints on the accessible state space of a networked system,

particularly informing the set of states within which one might seek to push the brain using

stimulation paradigms common in the treatment of neurological disorders and psychiatric

disease [43, 44]. While many initial studies have examined unconstrained state spaces [23,

25, 26], understanding viable states and state trajectories is critical for the translation of

these ideas into the clinic [45]. Further, by formally quantifying the contribution of the

network connectivity to the control energy, we lay the groundwork for the optimization

of stimulation sites in neural systems, a problem that has received very little theoretical

treatment, and is considered one of the current critical challenges in neuroengineering [46].

Finally, we make strategic, task-agnostic edge deletions that maximally increase the de-

terminant and observe that, even in an overdetermined, unsimplified system (N > M), a

single edge deletion could produce a profound improvement in the general controllability of

a network. This sensitivity suggests that dynamical networks such as the brain can produce

15



fairly drastic changes in dynamical behavior given minute changes in physiological topol-

ogy, consistent with observations of critical dynamics in human and animal neurophysiology

[47, 48]. Moreover, these results also suggest that minor, targeted structural changes through

concussive injury can lead to drastic changes in overall brain function [49, 50], via altering

the controllability landscape of the brain [24]. We further observed that these topological

modifications were task-agnostic edge deletions, signifying that even in a linear regime, the

presence of an unfavorable edge can have a profoundly negative impact on the controllability

of a network. We note that it is natural to perform a similar analysis that takes into account

the specific tasks v1,v2 by taking the derivative of the full energy term Etotal with respect

to A21, which would optimize the network topology for a specific task, as studied in more

detail in [25].

To achieve the most meaningful comparison between species, we only analyzed weighted

meso-scale whole brain networks. As such, we did not include binary neuronal connectomes

(e.g., C. elegans), and binary or partial connectomes (e.g., macaque). As more connectomes

become available, we hope to further explore the role of species complexity on network con-

trollability. Until then, we consider the comparison of energetically favorable connectivity

between species to be a preliminary excursion into a nuanced evolutionary phenomena. As

demonstrated in the significant percent change in energy after edge deletion, we empha-

size that uncertainty in network connectivity has the potential to yield substantial changes

in average control energy. Finally, we note that while methodological limitations prevent

us from resolving excitatory versus inhibitory connectivity, all results are directly appli-

cable to networks with signed elements. Further important theoretical considerations and

methodological limitations pertinent to our approach, linear model of dynamics, optimality

of control trajectories, and empirical data sets are discussed in the SI.

In closing, we note that the natural direction in which to take this work will be to use

higher-order approximations of this framework found in the supplement to gain intuition

for the role of complex network topologies (e.g. self-loops, cycles) in controlling networks.

Moreover, it would be interesting to apply this reduced framework to random graphs and

other well-known benchmarks – both from a mathematical perspective [51] and also in the

context of neural systems [52, 53] – to better understand the phenotypes present in those

graph ensembles. Third and finally, informing the design of new networks with these tools

may be particularly useful in neuromorphic computing [54], material science [55], and other
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contexts where optimal control of physical systems is of paramount importance.
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