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Abstract
Large-scale damage to the power infrastructure from hurricanes and high-wind events can

have devastating ripple effects on infrastructure, the broader economy, households, com-

munities, and regions. Using Hurricane Irma’s impact on Florida as a case study, we

examined: (1) differences in electric power outages and restoration rates between urban

and rural counties; (2) the duration of electric power outages in counties exposed to

tropical storm force winds versus hurricane Category 1 force winds; and (3) the rela-

tionship between the duration of power outage and socioeconomic vulnerability. We used

power outage data for the period September 9, 2017–September 29, 2017. At the peak of

the power outages following Hurricane Irma, over 36% of all accounts in Florida were

without electricity. We found that the rural counties, predominantly served by rural electric

cooperatives and municipally owned utilities, experienced longer power outages and much

slower and uneven restoration times. Results of three spatial lag models show that large

percentages of customers served by rural electric cooperatives and municipally owned

utilities were a strong predictor of the duration of extended power outages. There was also

a strong positive association across all three models between power outage duration and

urban/rural county designation. Finally, there is positive spatial dependence between power

outages and several social vulnerability indicators. Three socioeconomic variables found to

be statistically significant highlight three different aspects of vulnerability to power

outages: minority groups, population with sensory, physical and mental disability, and

economic vulnerability expressed as unemployment rate. The findings from our study have

broader planning and policy relevance beyond our case study area, and highlight the need

for additional research to deepen our understanding of how power restoration after hur-

ricanes contributes to and is impacted by the socioeconomic vulnerabilities of

communities.
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1 Introduction

One of the most disruptive effects of hurricanes occurs in the form of blackouts and

electrical power outages. In 2017, Hurricane Maria devastated the US territory of Puerto

Rico, causing the largest power outage in US history (Miller et al. 2018). Power outages

have well-known economic impacts on the operation of flood control pumps and structures,

wastewater treatment and distribution systems and pumping stations; lead to the degra-

dation of communication capabilities; can shut down of oil and natural gas production and

transportation; and, can lead to the shutdown of airports and ports with debilitating impacts

on the provision of emergency supplies and humanitarian aid (Han et al. 2009; Hasan and

Foliente 2015; FEMA 2017; Zimmerman et al. 2017; Miller et al. 2018; Mitsova et al.

2018). All of these events may lead to secondary impacts on schools, government insti-

tutions, medical facilities, and life-support health equipment.

To date, scholarship on hurricanes and power outages has focused on the pre-posi-

tioning of resources by utility companies prior to a disaster, as well as optimization of the

restoration process. For example, several scholars have developed approaches to predict

and forecast duration of power outages in the event of a hurricane, and to assess spatial

patterns and characteristics of power outage risk (Han et al. 2009; Guikema et al. 2010;

Nateghi et al. 2011; McRoberts et al. 2016; Tonn et al. 2016).

While extant scholarship on power outages has contributed greatly to understandings of

power outage risk and measurement, this paper fills a crucial gap in our understanding the

relationship between the duration of power outage and socioeconomic vulnerability. Using

Hurricane Irma’s impact on Florida as a case study, we examined: (1) differences in

electric power outages and restoration rates between urban and rural counties; (2) the

duration of electric power outages in counties exposed to tropical storm force winds versus

hurricane Category 1 force winds; and (3) the relationship between the duration of power

outage and socioeconomic vulnerability as a means to assessing gaps in service.

The paper begins with a brief overview of scholarship and research on methods used to

predict temporal and spatial components of electric power outage from hurricanes and the

impacts on vulnerable segments of the population, including medically fragile persons.

This is followed by a study area section which includes information on Hurricane Irma in

the state of Florida, as well as power outage and restoration rates by utility service provider

type. The next two sections present the data, methods, and models in our analysis of power

outage duration and restoration in our study area. The concluding section presents a

summary of insights and findings, potential practical and policy implications, and research

limitations.

2 Prediction and forecasting and applicability for utility companies

Zimmerman (2016) studied sixteen storms—eight during the period 1965–2003 and eight

during the period 2003–2013—and found that power outage duration ranged from 1 h to

14 days, and 2 h to 27 days, respectively. Despite the high variability in the duration of

electric power outages, a clustering in the range of a few hours to 3 days has been reported

by Zimmerman et al. (2017). What is clear from these studies is the importance of fore-

casting such duration periods for pre- and post-disaster planning purposes.

The implications for pre-hurricane planning have also been noted by several scholars

who have advanced approaches to predicting and forecasting duration of power outages

and spatial patterns and characteristics of power outage risk (Han et al. 2009; Guikema
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et al. 2010; Nateghi et al. 2011; McRoberts et al. 2016; Tonn et al. 2016). For example,

Nateghi et al. (2011) compared statistical methods for modeling power outage durations

during hurricanes and examined the predictive accuracy of these methods. Wind speed is a

common and important input variable in these models. McRoberts et al. (2016) updated a

previously developed spatially generalized hurricane outage prediction model (SGHOPM)

using a more comprehensive set of variables (including population, wind gust, wind

duration, precipitation, soil moisture, tree characteristics, elevation, land cover, root zone

depth) to predict the occurrence and number of outages for hurricanes and other high-wind

events for census tracts in the southeastern USA. Tonn et al. (2016) used data on wind,

rainfall and storm surge to assess which factors contribute to the risk of power outages in

hurricanes. They found that storm surge did not emerge as an important predictor of power

outage during hurricane Isaac.

Han et al. (2009) highlighted the importance of the findings for large investor-owned

utility companies. Their models were developed using power outage data for nine hurri-

canes in three states served by a large, investor-owned utility company in the Gulf Coast

region. The scholars also noted that the models can be used to examine a number of

potentially ‘‘worst-case’’ scenarios (i.e., past or hypothetical strong hurricanes) and an

assumed track (Han et al. 2009, p. 209).

3 Socioeconomic vulnerabilities

In addition to understanding the effects of physical characteristics and vulnerabilities that

have been analyzed in past studies (Han et al. 2009; Guikema et al. 2010; Nateghi et al.

2011; McRoberts et al. 2016; Tonn et al. 2016), it is important to examine if and how

socioeconomic vulnerabilities are affected by power outages and restoration.

Disaster vulnerability and resilience research has largely focused on urbanized areas

given the potential for large-scale damage to complex interdependent infrastructure and

impacts to diverse populations and various economic sectors. Understanding the fabric of

rural places is important in terms of capabilities and resource for pre- and post-disaster

planning (Cutter et al. 2016, p. 1250), including recovery of critical infrastructure systems.

Low-income communities may be particularly vulnerable in power outage situations

after disasters. The authors focused on Hispanic/Latinos, the fastest growing population

group in New Jersey, and highlighted the vulnerability of low-income, minority-dominated

communities to prolonged loss of electricity from hurricane Sandy (Burger et al. 2017,

p. 323). The potential for cascading impacts of power outages on emergency medical

services has also been documented by other scholars (Beatty et al. 2006; Huang et al. 2014;

Klinger et al. 2014; Kraushar and Rosenberg 2015; Burger et al. 2017; FEMA 2017;

Mitsova et al. 2018). Home-bound medically fragile and chronically ill high-risk indi-

viduals are unable to self-relocate during a mass power outage because of their reliance on

power-dependent durable medical equipment (FEMA 2017).

Further work is needed focusing on the relationship between potentially vulnerable

communities (e.g., population on public assistance; population with sensory, physical and

mental disability) and power outages, in order to provide insights into resource provision

and allocation of critical emergency services in time of disaster, and for crafting appro-

priate preventative and mitigation strategies. Other traditional socioeconomic and demo-

graphic vulnerability and risk factors post-disaster include poverty, age (i.e., children,

elderly), female gender, housing tenancy, minority racial status, and educational attainment
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(Cutter et al. 2003; Laska and Morrow 2006; Cutter et al. 2010; Peacock and Girard 1997;

Esnard et al. 2011; Peacock et al. 2012; Lai et al. 2017).

According to Burger et al. (2017, p. 316), minority, low-income, and older individuals

are more vulnerable to serious health impacts compared to others. In a study of Red Hook

in Brooklyn after hurricane Sandy in 2012, Kraushar and Rosenberg (2015) reported that

local ambulatory medical services including clinics, pharmacies, home health agencies,

and other resources were severely damaged. They also highlight significant gaps in miti-

gation and response systems to address medical needs in low-income urban communities

during a crisis (Kraushar and Rosenberg 2015).

4 Case study: Hurricane Irma and state of Florida

The state of Florida has seen its fair share of hurricanes and their devastating impacts. In

1992, Hurricane Andrew caused 44% (1.4 million) of Florida Power and Light Company’s

customers to lose power (Larsen et al. 1996). More than 6 million Floridians lost power

due to Hurricane Wilma in 2005 and some were left without power for days. The cascading

impacts of power outages also affected the availability of other supplies and long lines

formed at gas stations and grocery stores for fuel and water (Miller 2016).

After battering the northern Caribbean islands, Hurricane Irma made landfall on

September 10, 2017, in the Florida Keys as a Category 4 hurricane and then struck

southwestern Florida at Category 3 intensity. It was one of the strongest and costliest

hurricanes on record in the Atlantic basin and caused widespread devastation in Florida.

Along with high winds, Irma produced heavy rain across much of the state of Florida.

While the maximum rainfall was reported in Ft. Pierce, Florida, in St. Lucie County, where

21.66 inches of rain was measured between 9 and 12 September, heavy rainfall caused

flooding of streets and low-lying areas across much of the Florida peninsula. There was

major flooding along the St. John’s River at many locations including the Jacksonville

metropolitan area, where hundreds of people were rescued. Power outages were the most

widespread and severe in the Keys, where most homes were badly damaged or destroyed,

and there was extensive tree damage throughout the island chain. About 6 million residents

in Florida were evacuated from coastal areas (Cangialosi et al. 2018, p. 13).

4.1 Counties of interest

Hurricane Irma’s tropical storm force wind swath (34 knots; 39–73 mph) covered the

entire state of Florida and provides a good approximation of the region impacted by the

hurricane and our choice of study area. There are 67 counties in the State of Florida.

During Irma, there was a subset of 20 counties impacted by Category 1 hurricane-force

winds (64 knots; 74–95 mph), as shown in Fig. 1.

4.2 Urban and rural county classification

There are several approaches for designating urban and rural counties. Florida statute

381.0406 related to rural health networks define rural areas as places with population

density of 100 persons or less per square mile. Cutter et al. (2016) used the USDA rural–

urban continuum codes to differentiate rural and urban places; those continuum codes

place counties in nine categories based on population size. We use the 2013 NCHS a six-
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level urban–rural classification scheme1 for US counties and county-equivalent entities,

which is based on the Office of Management and Budget’s (OMB) February 2013 delin-

eation of metropolitan statistical areas (MSA) and micropolitan statistical areas (https://

www.cdc.gov/nchs/data_access/urban_rural.htm). For purposes of our analysis, we

grouped classifications 1–4 as urban, and classifications 5–6 as rural. See Fig. 2 for a

spatial depiction of Florida’s urban–rural landscape.

Fig. 1 Counties in Hurricane Irma’s path and 64 knot wind swath

1 The six-level urban–rural classification scheme:

1. Large central metro counties in MSA of 1 million population that: (1) contain the entire population of
the largest principal city of the MSA, or (2) are completely contained within the largest principal city of
the MSA, or (3) contain at least 250,000 residents of any principal city in the MSA.

2. Large fringe metro counties in MSA of 1 million or more population that do not qualify as large central.
3. Medium metro counties in MSA of 250,000–999,999 population.
4. Small metro counties are counties in MSAs of less than 250,000 population.
5. Nonmetropolitan counties: Micropolitan counties in micropolitan statistical area.
6. Noncore counties not in micropolitan statistical areas.
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4.3 Types of utility companies: electric power service provision

Electrical power provision and post-disaster stabilization, restoration, and reestablishment

of facility operations remain within the purview of the utility companies (FEMA 2017).

According to the Florida Public Service Commission (2017), three types of utility service

providers (defined below) serve residential, commercial, and industrial sectors in our study

area:

• Investor-owned electric utilities—Florida Power and Light, Tampa Electric, Gulf

Power, Florida Public Utility Cooperation, Duke Energy). According to FEMA (2017,

pp. 4–5), investor-owned utilities are operated as private, taxpaying businesses whose

management is not associated with any government agency (FEMA 2017).

• Municipal Electric Utilities, also known as public power utilities are not-for-profit

utilities owned and operated by state or local governments or by agencies, authorities,

or instrumentalities of such governments (FEMA 2017, pp. 4–5).

• Rural Electric Cooperatives are private, independent, not-for-profit electric utilities

owned by the customers they serve, and tend to provide service in rural areas that are

not served by other utilities (FEMA 2017, pp. 4–5).

Fig. 2 Urban–rural classification of Florida counties
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5 Data and methods

We used two main datasets to generate electric power restoration curves and for statistical

modeling. Spatial analysis and mapping were facilitated using ArcGIS version 10.5. Hurricane

Irma track and wind swath data layers downloaded from the National Hurricane Center GIS

Archive2 are reprojected to Albers Conical Equal Area to match that of the county boundaries and

hospitals datasets downloaded from the Florida Geographic Data Library (FGDL).

5.1 Power outage data

The power outage data are available for period September 9, 2017–September 29, 2017,

and organized by short-time intervals and by utility service provider. We used the 6 a.m.

snapshot data across the 21-day period of study. This 6 a.m. morning time was chosen as a

good indicator of whether a household would be able to start their day with power in the

house. The data obtained from the Florida Division of Emergency Management3 allow us

to capture the following variables at the state and county levels:

• Statewide:

• Percentage of accounts without power (see Fig. 3).

• Countywide:

• County name;

• Urban/rural classification;

• Total number of accounts;

• Percent accounts Investor-Owned Electric Utilities;

• Percent accounts Rural Electric Cooperatives;

• Percent accounts Municipal Electric Utilities;

• Percent total customers without power;

• Percent Investor-Owned Utilities without power;

• Percent Rural Electric Cooperatives without power;

• Percent Municipal Electric Utilities without power.

5.2 Socioeconomic variables

Given that Hurricane Irma made landfall in 2017, we used the 2016 5-year American

Community Survey (ACS)4 data to compile the following six broad categories of demo-

graphic and socioeconomic variables:

• Race/Ethnicity (% population White; % population Latino; % population African

American; % population Asian; % population American Indian; % population other);

• General population profile: total population, population density;

2 https://www.nhc.noaa.gov/gis/archive_besttrack_results.php?id=al11&year=2017&name=Hurricane%
20IRMA.
3 http://archive.floridadisaster.org/info/outage_reports/irma/.
4 The 2012-2016 ACS 5-year estimates are based on data collected from January 1, 2012 to December 31,
2016, released by the US Census Bureau on December 7, 2017 (https://www.census.gov/programs-surveys/
acs/news/data-releases/2016/release.html).
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• Dependence: % population less than 5 years; % population older than 65 years; %

population without a vehicle; % population on public assistance; % limited English

speaking households; % population with sensory, physical and mental disability; %

population without health insurance;

• Housing and households: % renter occupied housing; % HHs using over 30% of

income for housing; % single person HHs over age 65;

• Educational attainment: % population with less than a high school education;

• Income and poverty: unemployment rate; % living below the poverty level; % HHs

using over 30% of income for housing.

5.3 Restoration curves

Loss of service and the timelines of restoration/repair/replacement after a disaster can be

represented as a function of time (Dong et al. 2004, p. 11). A restoration curve typically

represents the level of the power system performance within a specific period of time

(usually in days) from the point of maximum loss in functionality to the point of regaining

full performance and pre-disaster level of service (Dong et al. 2004).

Using power outage data for the State of Florida at a county level, we derive and

compare restoration curves for (a) urban and rural counties within the hurricane-force wind

swath and (b) urban and rural counties within the tropical cyclone wind swath. The

integration of restoration curves with additional data enables evaluation of the performance

of power systems and the consequences of system interruptions caused by hurricanes for

various types of providers from large utility networks to rural electric cooperatives and

municipally owned utility companies. The analysis provides critical information on the

speed of restoration taking into account the structural and social dimensions of the com-

munity recovery process.
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Fig. 3 Percent accounts without power for Florida (9/9–9/29). Source: Hurricane Irma power outage data,
Florida Division of Emergency Management
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5.4 Statistical modeling

In specifying the statistical modeling approach, several methodological issues emerged per-

taining to the identification of potential predictor variables that suggested the possibility of

local disruptions being spatially correlated with understudied local characteristics beyond

physical damage to substations and the power distribution network. To address these

methodological issues, we focused on spatial autoregressive models to study regional effects

and spatial interdependence of observed power outages, considering the importance of spatial

dependence in the dependent variable and error term (also known as spatial autocorrelation)

(Anselin 1988). Spatial dependence occurs when values observed at different locations are

autocorrelated, that is, values observed in one location influence the values observed in

neighboring locations (Peeters and Chasco 2006). Non-spatial regression models that do not

account for spatial autocorrelation typically violate two critical assumptions of the regression

modeling technique, notably, independence of the residuals and homoscedasticity.

5.4.1 Data and variables

Using the power outage duration as the dependent variable, we seek to assess the effects of

hurricane-force wind, outage characteristics, provider characteristics, urban/rural dichot-

omy, and socioeconomic factors. Duration of the power outage expressed as the average

number of days without electricity at a county level has been selected as the dependent

variable. The independent variables used in the models’ specification are grouped into the

following five categories (see Table 1 for descriptive statistics).

1. Wind swath

• A dichotomous variable indicating the counties having their centroid within the

hurricane-force wind swath and counties within the tropical storm wind swath

(variable wind swath).

2. Outage and restoration characteristics

• Severity expressed as the percent customers without electricity at a county level

during the first 48 h immediately after landfall (9/11/17 and 9/12/17). See Fig. 4a,

b for the spatial pattern of power outages.

• Speed of restoration (% customers without electricity) one week after landfall (9/

17/17). The cutoff date was selected based on the average duration of the power

outages for Florida (7.2 days) in the aftermath of Hurricane Irma.

3. Provider characteristics

• Percent customers served by rural and municipally owned utility cooperatives.

4. Urban/rural dichotomy

• A dichotomous variable controlling for the effect of the urban/rural classification.

5. Social aspects of vulnerability to power outages; the choice of these variables is

discussed in a later section.

• Percent population Hispanic or Latino.

• Unemployment rate.

• Percent of population with sensory, physical and mental disability.
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5.4.2 Model specification

Three spatial lag models were estimated using the average duration of the power outages

by county as the dependent variable. Each model was intended to: (1) assess the effect of

the type of power provider and hurricane wind on the duration of power outages; and (2)

understand the relationship between socioeconomic vulnerability and the duration of power

outages.

For each model, ordinary least squares (OLS) estimates are first obtained and the

presence of spatial autocorrelation is assessed by obtaining the Lagrange multiplier (LM)

and the robust Lagrange multiplier (RLM) test statistics for error and lag dependence

(Anselin 1988; Anselin et al. 1996). A linear model with autoregressive errors includes a

spatial autoregressive coefficient q (rho), and spatially lagged dependent variable. Spatial

weighting matrices are estimated to derive spatial lags and autoregressive terms. Spatial

weights can be distance based (e.g., inverse distance weighting) or estimated from kernel

functions (Anselin 2002; Peeters and Chasco 2006; Anselin and Lozano-Garcia 2008; He

and Lin 2015). Adaptive kernels have adjustable bandwidths with narrow bands in areas

with higher density of data points and wider bands in areas with low density of data points

(Peeters and Chasco 2006). In this study, we employ the heteroscedastic and autocorre-

lation robust (HAC) algorithm (Kelejian and Prucha 2007) using an adaptive bandwidth

kernel parameter with a Gaussian distribution.

6 Findings

The spatial extent and duration of the power outages in Florida following Hurricane Irma

provide the basis for understanding the restoration time of large utility networks and local

providers. The spatial autoregressive models allow us to examine the disruptions of the

power supply provided by rural electric cooperatives and municipally owned utilities in

terms of duration and exposure to hurricane-force winds, and to better understand if

extended power outages disproportionately affect vulnerable populations following a

hurricane landfall.

Table 1 Descriptive statistics of variables used in models

Variable Min Max Mean SD

% Served by rural and municipal cooperatives 0 100 44.24 33.22

% Outages on September 11, 2017 0 86 46.27 30.4

% Outages on September 12, 2017 0 99 52.06 27.41

% Outages on September 17, 2017 0 65 6.66 10.91

% Hispanic/Latino 71.1 66.67 13 12.96

% Disability 10.3 25 16.65 3.8

Unemployment rate 4.8 13.6 8.64 1.85

Urban/rural classification 0 1 N/A N/A

Wind swath 34 knots 64 knots N/A N/A

Percentages are listed as percent by county
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Fig. 4 Percent customers without power on a September 11, 2017, in Florida counties. b September 12,
2017, in Florida counties
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6.1 Restoration curves

At the peak of the power blackout following Hurricane Irma, over 36% of all accounts in

Florida were without electricity. The descriptive statistics indicate that the average number

of days without electricity in the State of Florida following Hurricane Irma was 7.2 days.

Monroe County had the longest reported duration of power outages of 20 days (Fig. 5a).

Figure 5a–c displays the restoration curves for 13 counties in South Florida that were in the

direct path of Irma as the hurricane first made a landfall in Cudjoe Key in Monroe County,

and a second landfall near Marco Island in Collier County, where sustained winds reached

over 100 mph (160 km/h). In Monroe County, where 99% of the electric power is provided

by rural electric cooperatives and municipally owned utility companies, nearly 85% of

customers lost power and the restoration process did not begin until the search and rescue

missions were completed and the main roads were cleared of debris. Within 10 days after

the landfall, the power was restored to over 90% of the customers despite fluctuations

during September 15–16 and September 19–20 time periods.

To understand the various factors that contribute to differences in power outage duration

at a county level, we first compare the restoration curves for urban and rural counties

within the hurricane-force wind swath (64 knots). Figure 5b displays the cumulative

restoration curves between the urban counties (i.e., Miami-Dade, Collier, Lee, Charlotte,

Sarasota, and Manatee) and rural counties (i.e., DeSoto, Glades, Hardee, Hendry, Okee-

chobee, and Highlands) in South Florida. The results clearly indicate a considerably longer

power outage duration and a slower restoration process in the rural counties. To further

understand if there are systematic differences in the power restoration process, we compare

the cumulative power restoration curves for the urban counties in South Florida and the

Tampa Bay region. As Fig. 5c indicates, the power restoration process in both regions

follows an almost identical trajectory.

Figure 6a displays the restoration curves for six urban counties in South Florida on the

path of Irma. The restoration curves for Miami-Dade, Charlotte, Sarasota, and Manatee

counties show a faster process of power restoration compared to Collier and Lee counties.

However, the six rural counties in South Florida experienced longer power outages and, as

Fig. 6b indicates, much slower and uneven restoration. The rural counties have much

higher proportion of their electricity delivered by rural electric cooperatives and munici-

pally owned utilities (as high as 77% in Hardee County and nearly 50% in Glades and

Hendry). Figure 6c shows the restoration curves for Indian River, St. Lucie, Martin, Palm

Beach, and Broward counties which remained in the tropical storm wind swath. The curves

indicate a considerable loss of power in all five counties with the higher number of reported

outages in Martin County. The restoration curves in these five counties are similar and

indicate much faster restoration compared to the adjacent rural counties.

More than 20 counties within the tropical storm wind swath also experienced extended

power outages. The outages were particularly severe in several rural counties in the

northern central part of Florida. Ten rural counties in this area experienced a power outage

of 7–8 days. On average, 65.5% of the electricity in these areas is provided by cooperatives

b Fig. 5 a Restoration of power supply as a function of time for Monroe County (the Florida Keys) within the

Category 1 hurricane wind swath (74–95 mph or 120–153 km/h wind speed). b Restoration of power supply
as a function of time for urban and rural counties in South Florida within the Category 1 hurricane wind
swath (74–95 mph or 120–153 km/h wind speed). c Restoration of power supply as a function of time for
urban counties in South Florida and the Tampa Bay regions within the Category 1 hurricane wind swath
(74–95 mph or 120–153 km/h wind speed)
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and municipally owned utility companies. The four urban counties in the region exhibited

similar patterns of outage duration and speed of restoration. Nearly 64% of the customers

in these four counties are served by local electricity providers.

6.2 Statistical analysis

Ordinary least squares estimates were first obtained with model diagnostics for spatial

dependence. The F-statistics of 49.84 (p value\ 0.0001) indicate a good model fit with an

R2 of 0.8034. The regression coefficients of the percent customers served by rural and

municipally owned cooperatives, urban/rural classification, as well as percent power

outages within 48 h and a week from Irma’s landfall are found to be statistically significant

and of the expected sign. The multicollinearity condition number of 8.876 is below 30

which indicates that collinearity is not an issue with this model. The Lagrange multiplier

(LM) and robust Lagrange multiplier (RLM) test statistics indicate positive residual spatial

autocorrelation providing evidence that a spatial lag model is appropriate for the data. We

estimated three spatial lag models to deepen our understanding of: (1) the differences in

electric power outages and restoration rates between urban and rural counties; (2) the

duration of electric power outages in counties exposed to tropical storm force winds versus

hurricane Category 1 force winds; and (3) the relationship between the duration of power

outage and socioeconomic vulnerability as a means to assessing gaps in service. Table 2

provides a summary of the three models.

In Model 1, the coefficients for all explanatory variables are statistically significant at

a = 0.05 with the exception of the autoregressive coefficient rho which is significant at

a = 0.10. The spatial pseudo R2 for this model is 0.821. In Model 2, the imapct of wind

force on power outage duration (i.e., wind swath) was also included as a covariate. The

results indicate that wind swath has a positive effect on the duration of the power outages,

but this relationship is weaker compared to the effect of the percent customers served by

rural and municipally owned cooperatives. The spatial pseudo R2 for this model is 0.7730.

In Model 3, the final selection of the covariates included in the model was preceded by

an evaluation of several socioeconomic variables including percent African Americans;

percent of the population without a vehicle; percent of the population on public assistance;

percent households speaking limited English; percent living below the poverty level; and

percent of the households using over 30% of their income for housing, unemployment rate,

and percent of the population with a disability status. In order to select the appropriate

predictor variables, we conducted correlation and principal component analysis (PCI). The

PCI analysis yielded two well-defined components. The first component included housing

and income characteristics, while the second encompassed poverty, disability, and public

assistance recipients. Based on these results, we constructed two indicators for inclusion in

the statistical models. The indicators, which explained 60.8% of the variance in the PCI

analysis, were not found to be significant. Percent living below the poverty level, %

population African American; % population without a vehicle; % population on public

assistance; % limited English speaking households; and the percent of households using

b Fig. 6 a Restoration of power supply as a function of time for Miami-Dade, Collier, Lee, Charlotte,

Sarasota, and Manatee counties in South Florida within the Category 1 hurricane wind swath (74–95 mph or
120–153 km/h wind speed). b Restoration of power supply as a function of time for DeSoto, Glades, Hardee,
Hendry, Okeechobee and Highlands counties in South Florida within the Category 1 hurricane wind swath
(74–95 mph or 120–153 km/h wind speed). c Restoration of power supply as a function of time for Indian
River, Martin, Palm Beach, St. Lucie and Broward counties in southeast Florida within the tropical storm
wind swath (39–73 mph or 63–119 km/h wind speed)
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over 30% of their income for housing, when considered as separate predictor variables,

were also found to be nonsignificant. These variables were not given further consideration

in specifying the final models.

Model 3 examines the combined effects of both physical exposure (wind swath), type of

electricity provider (% rural and municipal cooperatives), severity of the impact expressed

as the percentage of people without power immediately after landfall, the speed of

restoration expressed as the percentage of people without power a week after landfall, and

socioeconomic vulnerability. The diagnostic tests for spatial dependence indicate that a

spatial lag model with a spatially lagged dependent variable and a spatial autoregressive

coefficient provides a good fit to the data. In Model 3, the regression coefficients for the

percent served by rural and municipal cooperatives, percent outages on September 11,

2017, percent outages on September 17, 2017, and the effect of the urban/rural classifi-

cation are statistically significant at a = 0.05. The coefficient for the percent Hispanic or

Latino populations was found to be highly significant (p value = 0.005). We also found

that the coefficient for the percent of the population with sensory, physical and mental

disability was also significant at a = 0.05. The spatial autoregressive coefficient and

unemployment rate were found to be significant at a = 0.10. One unexpected result was the

negative sign of the coefficient for the employment rate. One possible explanation is the

relatively weak inverse correlation between unemployment rate and urban/rural classifi-

cation (- 0.5, p value\ 0.001). The Pearson correlation of 0.4 between unemployment

rate and disability shows weak positive correlation. The correlation coefficient for percent

Hispanic and Latino populations and unemployment rate equals 0.02 (i.e., virtually no

correlation). Similarly, the correlation coefficient between percent Hispanic and Latino

population and percent of the population with a disability status was not significant

(r = 0.04, p value = 0.67). In comparison with Model 2, there was a slight improvement in

the spatial pseudo R2 in Model 3.

7 Discussion and conclusion

Electric power outages impact most sectors of society and cause disruptions to other

infrastructure systems, households, the economy, school, emergency services, and critical

services (such as hospitals) that depend on electricity. This is due to the critical interde-

pendencies that exist between power, transportation, communication, water, and

wastewater.

Overall, the results from all three statistical models indicate that the duration of power

outages during Hurricane Irma can be explained by multiple factors. Importantly, the

presence of a strong hurricane wind field is only one of these factors. The results con-

sistently indicate a strong relationship between the duration of the power outages and the

type of electricity provider. The results show that the percentage of customers served by

cooperatives and municipally owned utilities is a strong predictor of the duration of

extended power outages. This finding also indicates that cooperatives and municipally

owned utilities may not have the economies of scale that investor-owned utilities have that

allow the latter to pre-position staff and crew workers from other states to work on

restoration after the event. Larger utilities also may have more resources that they can

deploy to harden and fortify grid infrastructure. For instance, after hurricane Wilma in

2005, providers such as Florida Power and Light (FPL) and Duke Energy spent around

$2.4 billion to $4 billion to fortify their grids and took various steps such as installing flood

monitors in substations, smart meters, and intelligent devices, and investing in ‘‘self-

123

Natural Hazards



healing’’ systems that can detect, isolate, and reroute power when a problem occurs (Klas

2017). There is a strong positive association across all three models between duration and

whether the disruptions occur in urban or rural areas, also corroborated by the restoration

curves.

Finally, there is positive spatial dependence between power outages and several social

vulnerability indicators. It is noteworthy that the three socioeconomic variables found to be

statistically significant highlight three different aspects of vulnerability to power outages.

The findings suggest that areas with higher percentages of Hispanic and Latino populations

have experienced longer power outages in the wake of Hurricane Irma. We also found that

longer duration of power outages was also positively associated with higher percentage of

individuals with sensory, physical and mental disability. This finding is alarming since

home-bound medically fragile and chronically ill often rely on power-dependent durable

medical equipment which, when rendered inoperable, puts them at higher risk of deteri-

oration of their medical condition (Burger et al. 2017; FEMA 2017).

Several limitations should be considered in evaluating the findings. The use of counties

as the unit of analysis was driven by the available county-level power outage data. We

acknowledge that there is a wide inter- and intra-county variation in population, population

density, household composition, and urban/rural characteristics in the State of Florida.

Beyond wind swaths, the intensity and size of the wind fields produced by tropical

cyclones are known to trigger widespread power outages. As such, wind speed and other

meteorological and environmental data can be used to further deepen our understanding of

the factors that contribute to extended power outages (Guikema et al. 2010; Nateghi et al.

2011; Tonn et al. 2016). Additionally, although we focused on the tropical storm and

Category 1 hurricane wind swaths, we acknowledge that interpretation of restoration times

among counties in various parts of Florida should ideally consider that some counties

began repair work ahead of others.

At the global level, the list of socioeconomic indicators has grown to include displaced

populations, migrants, and returnees (IFRC 2016). Although beyond the scope of our

studies, vulnerability assessments, in hazard-prone states such as Florida that also serve as

a destination State for displaced persons, need to capture this vulnerable segment of the

population. A case in point is the most recent exodus of Puerto Ricans who have found

refuge in Florida after Hurricane Maria and whose vulnerabilities are compounded by

housing and job insecurities, and language barriers. Percent of Hispanic/Latino persons in

counties were significantly associated with average duration of power outages. Although a

more thorough examination of demographic profiles of these communities can shed more

light on this finding, this is useful information for utility companies, emergency managers,

and disaster planners. As noted by Liévanos and Horne (2017), utility companies typically

do not monitor or have knowledge about the link between outage duration and socioe-

conomic disadvantages. However, if utility providers can work with disaster planners and

emergency managers to understand the linkages between socioeconomic vulnerabilities

and power outages, they could take steps to implement programs that would account for

spatial inequities and improving service to vulnerable populations, particularly the medi-

cally vulnerable. Such efforts could ‘‘improve energy justice (and) electrical grid resilience

(Liévanos and Horne 2017, p. 209),’’ and lead to improved community recovery outcomes.

One main challenge in countries like the USA is that critical infrastructure (such as

electricity production facilities) is predominantly owned by the private sector and user

cooperatives (Zimmerman and Farris 2010; Auerswald et al. 2005; Austin et al. 2015). The

ownership of electrical power utilities by different stakeholders led Hasan and Foliente
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(2015, p. 2145) to recommend a stakeholder-oriented lens to understand the values and

limitations of methodologies used to assess the impact of extreme events on infrastructure.

Moving forward, pre-disaster preparation, post-disaster restoration, and disaster miti-

gation and adaptation strategies necessitate collaboration and partnerships within and

between public, private, and nonprofit sectors. Murià-Vila et al. (2018) emphasized the

need for collaboration between the Federal Electricity Commission (CFE) and other

entities to ensure rapid mobilization, rapid restoration and minimize future damage and

losses in their analysis of Hurricane Odile which left 95% of the inhabitants in Baja

California Sur in Mexico without electricity. Furthermore, an increased awareness of both

power grid vulnerability and socioeconomic vulnerabilities are required by utility provi-

ders, policy makers, politicians, emergency management professionals, energy experts and

residents—the typology of stakeholders discussed by Hasan and Foliente (2015). The

findings from our study have broader planning and policy relevance beyond our case study

area and highlights that the need for additional research to deepen our understanding of

how power restoration after hurricanes contributes to and is impacted by the socioeco-

nomic vulnerabilities of communities.
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Liévanos RS, Horne C (2017) Unequal resilience: the duration of electricity outages. Energy Policy
108:201–211

McRoberts DB, Quiring SM, Guikema SD (2016) Improving hurricane power outage prediction models
through the inclusion of local environmental factors. Risk Anal. https://doi.org/10.1111/risa.12728

Miller K (2016) Record-shattering Hurricane Wilma hit Florida 11 years ago today. Palm Beach Post. 24
October 2016. Retrieved March 2018 from http://weatherplus.blog.palmbeachpost.com/2016/10/23/
record-shattering-hurricane-wilma-hit-florida-11-years-ago-monday/

Miller TR, Chester M, Munoz-Erickson TA (2018) Rethinking infrastructure in an era of unprecedented
weather events. Issues Sci Technol Nat Acad Sci Eng Med Winter 2018:46–58

Mitsova D, Sapat A, Esnard A-M, Lamadrid A (2018) An exploratory framework to examine the interde-
pendent effects of critical infrastructure breakdowns on the emergency services sector (ESS) in
extreme events. Working paper, Florida Atlantic University
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