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Abstract. While the Internet of things (IoT) promises to improve areas
such as energy efficiency, health care, and transportation, it is highly
vulnerable to cyberattacks. In particular, distributed denial-of-service
(DDoS) attacks overload the bandwidth of a server. But many IoT
devices form part of cyber-physical systems (CPS). Therefore, they can
be used to launch “physical” denial-of-service attacks (PDoS) in which
IoT devices overflow the “physical bandwidth” of a CPS. In this paper,
we quantify the population-based risk to a group of IoT devices tar-
geted by malware for a PDoS attack. In order to model the recruitment
of bots, we develop a “Poisson signaling game,” a signaling game with
an unknown number of receivers, which have varying abilities to detect
deception. Then we use a version of this game to analyze two mech-
anisms (legal and economic) to deter botnet recruitment. Equilibrium
results indicate that (1) defenders can bound botnet activity, and (2)
legislating a minimum level of security has only a limited effect, while
incentivizing active defense can decrease botnet activity arbitrarily. This
work provides a quantitative foundation for proactive PDoS defense.

1 Introduction to the IoT and PDoS Attacks

The Internet of things (IoT) is a “dynamic global network infrastructure with
self-configuring capabilities based on standard and interoperable communication
protocols where physical and virtual ‘things’ have identities, physical attributes,
and virtual personalities” [2]. The IoT is (1) decentralized, (2) heterogeneous,
and (3) connected to the physical world. It is decentralized because nodes have
“self-configuring capabilities,” some amount of local intelligence, and incentives
which are not aligned with the other nodes. The IoT is heterogeneous because
diverse “things” constantly enter and leave the IoT, facilitated by “standard
and interoperable communication protocols.” Finally, IoT devices are connected
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Fig. 1. Conceptual diagram of a PDoS attack. (1) Attack sponsor hires botnet herder.
(2) Botnet herder uses server to manage recruitment. (3) Malware scans for vulnerable
IoT devices and begins cascading infection. (4) Botnet herder uses devices (e.g., HVAC
controllers) to deplete bandwidth of a cyber-physical service (e.g., electrical power).

to the physical world, i.e., they are part of cyber-physical systems (CPS). For
instance, they may influence behavior, control the flow of traffic, and optimize
home lighting.

1.1 Difficulties in Securing the Internet of Things

While the IoT promises gains in efficiency, customization, and communication
ability, it also raises new challenges. One of these challenges is security. The
social aspect of IoT devices makes them vulnerable to attack through social
engineering. Moreover, the dynamic and heterogeneous attributes of the IoT
create a large attack surface. Once compromised, these “things” serve as vectors
for attack. The most notable example has been the Mirai botnet attack on Dyn
in 2016. Approximately 100,000 bots—largely belonging to the (IoT)—attacked
the domain name server (DNS) for Twitter, Reddit, Github, and the New York
Times [15]. A massive flow of traffic overwhelmed the bandwidth of the DNS.

1.2 Denial of Cyber-Physical Service Attacks

Since IoT devices are part of CPS, they also require physical “bandwidth.” As
an example, consider the navigation app Waze [1]. Waze uses real-time traffic
information to find optimal navigation routes. Due to its large number of users,
the app also influences traffic. If too many users are directed to one road, they can
consume the physical bandwidth of that road and cause unexpected congestion.
An attacker with insider access to Waze could use this mechanism to manipulate
transportation networks.

Another example can be found in healthcare. Smart lighting systems (which
deploy, e.g., time-of-flight sensors) detect falls of room occupants [22]. These sys-
tems alert emergency responders about a medical situation in an assisted living
center or the home of someone who is aging. But an attacker could potentially
trigger many of these alerts at the same time, depleting the response bandwidth
of emergency personnel.
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Such a threat could be called a denial of cyber-physical service attack. To
distinguish it from a cyber-layer DDoS, we also use the acronym PDoS (Physical
Denial of Service). Figure 1 gives a conceptual diagram of a PDoS attack. In
the rest of the paper, we will consider one specific instance of a PDoS attack,
although our analysis is not limited to this example. We consider the infection
and manipulation of a population of IoT-based heating, ventilation, and air
conditioning (HVAC) controllers in order to cause a sudden load shock to the
power grid. Attackers either disable demand response switches used for reducing
peak load [6], or they unexpectedly activate inactive loads. This imposes risks
ranging from frequency droop to load shedding and cascading failures.

Malware Detec on

Ac ve Defense

Resilient Grid

Secure
IoT Design

Strategic 
Trust 

Management

Physically-Aware 
Security

Fig. 2. PDoS defense can be designed at multiple layers. Malware detection and active
defense can combat initial infection, secure IoT design and strategic trust can reduce
the spread of the malware, and CPS can be resilient and physically-aware. We focus
on detection and active defense.

1.3 Modeling the PDoS Recruitment Stage

Defenses against PDoS can be designed at multiple layers (Fig. 2). The scope of
this paper is limited to defense at the stage of botnet recruitment, in which the
attacker scans a wide range of IP addresses, searching for devices with weak secu-
rity settings. Mirai, for example, does this by attempting logins with a dictionary
of factory-default usernames and passwords (e.g. root/admin, admin/admin,
root/123456) [12]. Devices in our mechanism identify these suspicious login
attempts and use active defense to learn about the attacker or report his activity.

In order to quantify the risk of malware infection, we combine two game-
theoretic models known as signaling games [7,14] and Poisson games [18]. Sig-
naling games model interactions between two parties, one of which possesses
information unknown to the other party. While signaling games consider only
two players, we extend this model by allowing the number of target IoT devices
to be a random variable (r.v.) that follows a Poisson distribution. This captures
the fact that the malware scans a large number of targets. Moreover, we allow
the targets to have heterogeneous abilities to detect malicious login attempts.
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1.4 Contributions and Related Work

We make the following principle contributions:

1. We describe an IoT attack called a denial of cyber-physical service (PDoS ).
2. We develop a general model called Poisson signaling games (PSG) which

quantifies one-to-many signaling interactions.
3. We find the pure strategy equilibria of a version of the PSG model for PDoS.
4. We analyze legal and economic mechanisms to deter botnet recruitment, and

find that (1) defenders can bound botnet activity, and (2) legislating a min-
imum level of security has only a limited effect, while incentivizing active
defense, in principle, can decrease botnet activity arbitrarily.

Signaling games are often used to model deception and trust in cybersecurity
[16,19,21]. Poisson games have also been used to model malware epidemics in
large populations [11]. Wu et al. use game theory to design defense mechanisms
against DDoS attacks [24]. But the defense mechanisms mitigate the actual the
flood of traffic against a target system, while we focus on botnet recruitment.
Bensoussan et al. use a susceptible-infected-susceptible (SIS) model to study the
growth of a botnet [5]. But IoT devices in our model maintain beliefs about the
reliability of incoming messages. In this way, our paper considers the need to
trust legitimate messages. Finally, load altering attacks [4,17] to the power grid
are an example of PDoS attacks. But PDoS attacks can also deal with other
resources.

In Sect. 2, we review signaling games and Poisson games. In Sect. 3, we com-
bine them to create Poisson signaling games (PSG). In Sect. 4, we apply PSG to
quantify the population risk due to PDoS attacks. Section 5 obtains the perfect
Bayesian Nash equilibria of the model. Some of these equilibria are harmful for
power companies and IoT users. Therefore, we design proactive mechanisms to
improve the equilibria in Sect. 6. We underline the key contributions in Sect. 7.

2 Signaling Games and Poisson Games

This section reviews two game-theoretic models: signaling games and Poisson
games. In Sect. 3, we combine them to create PSG. PSG can be used to model
many one-to-many signaling interactions in addition to PDoS.

2.1 Signaling Games with Evidence

Signaling games are a class of dynamic, two-player, information-asymmetric
games between a sender S and a receiver R (c.f. [7,14]). Signaling games with
evidence extend the typical definition by giving receivers some exogenous ability
to detect deception1 [20]. They are characterized by the tuple

ΦSG =
(
X,M,E,A, qS , δ, uS , uR

)
.

1 This is based on the idea that deceptive senders have a harder time communicating
some messages than truthful senders. In interpersonal deception, for instance, lying
requires high cognitive load, which may manifest itself in external gestures [23].
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First, S posses some private information unknown to R. This private informa-
tion is called a type. The type could represent, e.g., a preference, a technological
capability, or a malicious intent. Let the finite set X denote the set of possi-
ble types, and let x ∈ X denote one particular type. Each type occurs with a
probability qS(x), where qS : X → [0, 1] such that (s.t.)

∑

x∈X

qS (x) = 1 and

∀x ∈ X, qS(x) ≥ 0.
Based on his private information, S communicates a message to the receiver.

The message could be, e.g., a pull request, the presentation of a certificate, or
the execution of an action which partly reveals the type. Let the finite set M
denote the set of possible messages, and let m ∈ M denote one particular type.
In general, S can use a strategy in which he chooses various m with different
probabilities. We will introduce notation for these mixed strategies later.

In typical signaling games (e.g. Lewis signaling games [7,14] and signaling
games discussed by Crawford and Sobel [7]), R only knows about x through m.
But this suggests that deception is undetectable. Instead, signaling games with
evidence include a detector2 which emits evidence e ∈ E about the sender’s type
[20]. Let δ : E → [0, 1] s.t. for all x ∈ X and m ∈ M, we have

∑

e∈E

δ(e |x,m) = 1

and δ(e |x,m) ≥ 0. Then δ(e |x,m) gives the probability with which the detector
emits evidence e given type x and message m. This probability is fixed, not a
decision variable. Finally A be a finite set of actions. Based on m and e, R
chooses some a ∈ A. For instance, R may choose to accept or reject a request
represented by the message. These can also be chosen using a mixed-strategy.

In general, x, m, and a can impact the utility of S and R. Therefore, let uS :
M×A → R

|X| be a vector-valued function such that uS (m,a) =
[
uS

x (m,a)
]
x∈X

.

This is a column vector with entries uS
x (m,a). These entries give the utility that S

of each receiver of type x ∈ X obtains for sending a message m when the receiver
plays action a. Next, define the utility function for R by uR : X × M × A → R,
such that uR(x,m, a) gives the utility that R receives when a sender of type x
transmits message m and R plays action a.

2.2 Poisson Games

Poisson games were introduced by Roger Myerson in 1998 [18]. This class of
games models interactions between an unknown number of players, each of which
belongs to one type in a finite set of types. Modeling the population uncertainty
using a Poisson r.v. is convenient because merging or splitting Poisson r.v. results
in r.v. which also follow Poisson distributions.

Section 3 will combine signaling games with Poisson games by considering a
sender which issues a command to a pool of an unknown number of receivers,
which all respond at once. Therefore, let us call the players of the Poisson game

2 This could literally be a hardware or software detector, such as email filters which
attempt to tag phishing emails. But it could also be an abstract notion meant to
signify the innate ability of a person to recognize deception.
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“receivers,” although this is not the nomenclature used in the original game.
Poisson games are characterized by the tuple

ΦPG =
(
λ, Y, qR, A, ũR

)
.

First, the population parameter λ > 0 gives the mean and variance of the
Poisson distribution. For example, λ may represent the expected number of
mobile phone users within range of a base station. Let the finite set Y denote
the possible types of each receiver, and let y ∈ Y denote one of these types.
Each receiver has type y with probability qR(y), where

∑

y∈Y

qR(y) = 1 and ∀y ∈
Y, qR(y) > 0.

Because of the decomposition property of the Poisson r.v., the number of
receivers of each type y ∈ Y also follows a Poisson distribution. Based on her
type, each receiver chooses an action a in the finite set A. We have deliberately
used the same notation as the action for the signaling game, because these two
actions will coincide in the combined model.

Utility functions in Poisson games are defined as follows. For a ∈ A, let
ca ∈ Z+ (the set of non-negative integers) denote the count of receivers which
play action a. Then let c be a column vector which contains entries ca for each
a ∈ A. Then c falls within the set Z(A), the set of all possible integer counts of
the number of players which take each action.

Poisson games assume that all receivers of the same type receive the same
utility. Therefore, let ũR : A×Z(C) → R

|Y | be a vector-valued function such that
ũR (a, c) =

[
ũR

y (a, c)
]
y∈Y

. The entries ũR
y (a, c) give the utility that receivers of

each type y ∈ Y obtain for playing an action a while the vector of the total
count of receivers that play each action is given by c. Note that this is different
from the utility function of receivers in the signaling game. Given the strategies
of the receivers, c is also distributed according to a Poisson r.v.

3 Poisson Signaling Games

Figure 3 depicts Poisson signaling games (PSG). PSG are characterized by com-
bining ΦSG and ΦPG to obtain the tuple

ΦPG
SG =

(
X,Y,M,E,A, λ, q, δ, US , UR

)
.

3.1 Types, Actions, and Evidence, and Utility

As with signaling games and Poisson games, X denotes the set of types of S,
and Y denotes the set of types of R. M, E, and A denote the set of messages,
evidence, and actions, respectively. The Poisson parameter is λ.

The remaining elements of ΦPG
SG are slightly modified from the signaling game

or Poisson game. First, q : X ×Y → [0, 1]2 is a vector-valued function such that
q (x, y) gives the probabilities qS(x), x ∈ X, and qR(y), y ∈ Y, of each type of
sender and receiver, respectively.
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As in the signaling game, δ characterizes the quality of the deception detector.
But receivers differ in their ability to detect deception. Various email clients, for
example, may have different abilities to identify phishing attempts. Therefore,
in PSG, we define the mapping by δ : E → [0, 1]|Y |, s.t. the vector δ (e |x,m) =
[δy (e |x,m)]y∈Y gives the probabilities δy(e |x,m) with which each receiver type
y observes evidence e given sender type x and message m. This allows each
receiver type to observe evidence with different likelihoods3.

Action ∈
Ac

on
: 

∈ Action ∈

Action ∈

Action ∈

Type ∈
Type ∈ Type ∈

Type ∈

Type ∈

Evidence ∈
∈
∈

∈

Fig. 3. PSG model the third stage of a PDoS attack. A sender of type x chooses an
action m which is observed by an unknown number of receivers. The receivers have
multiple types y ∈ Y. Each type may observe different evidence e ∈ E. Based on m
and e, each type of receiver chooses an action a.

The utility functions US and UR are also adjusted for PSG. Let US :
M × Z(A) → R

|X| be a vector-valued function s.t. the vector US (m, c) =[
US

x (m, c)
]
x∈X

gives the utility of senders of each type x for sending mes-
sage m if the count of receivers which choose each action is given by c. Sim-
ilarly, let UR : X × M × A × Z(A) → R

|Y | be a vector-valued function s.t.
UR (x,m, a, c) =

[
UR

y (x,m, a, c)
]
y∈Y

gives the utility of receivers of each type
y ∈ Y. As earlier, x is the type of the sender, and m is the message. But note
that a denotes the action of this particular receiver, while c denotes the count of
overall receivers which choose each action.

3.2 Mixed-Strategies and Expected Utility

Next, we define the nomenclature for mixed-strategies and expected utility func-
tions. For senders of each type x ∈ X, let σS

x : M → [0, 1] be a mixed strategy
3 In fact, although all receivers with the same type y have the same likelihood

δy(e | x, m) of observing evidence e given sender type x and message m, our formu-
lation allows the receivers to observe different actual realizations e of the evidence.
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such that σS
x (m) gives the probability with which he plays each message m ∈ M.

For each x ∈ X, let ΣS
x denote the set of possible σS

x . We have

ΣR
x =

{

σ̄ |
∑

m∈M

σ̄ (m) = 1 and ∀m ∈ M, σ̄ (m) ≥ 0

}

.

For receivers of each type y ∈ Y, let σR
y : A → [0, 1] denote a mixed strategy

such that σR
y (a |m, e) gives the probability with which she plays action a after

observing message m and action e. For each y ∈ Y, the function σR
y belongs to

the set

ΣR
y =

{

σ̄ |
∑

a∈A

σ̄ (a) = 1 and ∀a ∈ A, σ̄ (a) ≥ 0

}

.

In order to choose her actions, R forms a belief about the sender type x. Let
μR

y (x |m, e) denote the likelihood with which each R of type y who observes
message m and evidence e believes that S has type x. In equilibrium, we will
require this belief to be consistent with the strategy of S.

Now we define the expected utilities that S and each R receive for playing
mixed strategies. Denote the expected utility of a sender of type x ∈ X by
ŪS

x : ΣS
x × ΣR → R. Notice that all receiver strategies must be taken into

account. This expected utility is given by

ŪS
x (σS

x , σR) =
∑

m∈M

∑

c∈Z(A)

σS
x (m)P

{
c |σR, x,m

}
US

x (m, c).

Here, P{c |σR, x,m} is the probability with which the vector c gives the count of
receivers that play each action. Myerson shows that, due to the aggregation and
decomposition properties of the Poisson r.v., the entries of c are also Poisson r.v.
[18]. Therefore, P{c |σR, x,m} is given by

P
{
c |σR, x,m

}
=

∏

a∈A

eλa
λca

a

ca!
, λa = λ

∑

y∈Y

∑

e∈E

qR (y) δy (e |x,m) σR
y (a |m, e) .

(1)
Next, denote the expected utility of each receiver of type y ∈ Y by ŪR

y :
ΣR

y × ΣR → R. Here, ŪR
y (θ, σR |m, e, μR

y ) gives the expected utility when this
particular receiver plays mixed strategy θ ∈ ΣR

y and the population of all types
of receivers plays the mixed-strategy vector σR. The expected utility is given by

ŪR
y (θ, σ

R | m, e, μR
y ) =

∑

x∈X

∑

a∈A

∑

c∈Z(A)

μR
y (x | m, e) θ (a | m, e)P

{
c | σR, x, m

}
UR

y (x, m, a, c),

(2)

where again P{c |σR, x,m} is given by Eq. (1).
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3.3 Perfect Bayesian Nash Equilibrium

First, since PSG are dynamic, we use an equilibrium concept which involves
perfection. Strategies at each information set of the game must be optimal for
the remaining subgame [8]. Second, since PSG involve incomplete information,
we use a Bayesian concept. Third, since each receiver chooses her action without
knowing the actions of the other receivers, the Poisson stage of the game involves
a fixed point. All receivers choose strategies which best respond to the optimal
strategies of the other receivers. Perfect Bayesian Nash equilibrium (PBNE) is
the appropriate concept for games with these criteria [8].

Consider the two chronological stages of PSG. The second stage takes place
among the receivers. This stage is played with a given m, e, and μR determined
by the sender (and detector) in the first stage of the game. When m, e, and
μR are fixed, the interaction between all receivers becomes a standard Poisson
game. Define BRR

y : ΣR → P(ΣR
y ) (where P(S) denotes the power set of S) such

that the best response of a receiver of type y to a strategy profile σR of the other
receivers is given by the strategy or set of strategies

BRR
y

(
σR |m, e, μR

y

)
� arg max

θ∈ΣR
y

ŪR
y

(
θ, σR |m, e, μR

y

)
. (3)

The first stage takes place between the sender and the set of receivers. If we
fix the set of receiver strategies σR, then the problem of a sender of type x ∈ X is
to choose σS

x to maximize his expected utility given σR. The last criteria is that
the receiver beliefs μR must be consistent with the sender strategies according
to Bayes’ Law. Definition 1 applies PBNE to PSG.

Definition 1. (PBNE) Strategy and belief profile (σS∗, σR∗, μR) is a PBNE of
a PSG if all of the following hold [8]:

∀x ∈ X, σS∗
x ∈ arg max

σS
x ∈ΣS

x

ŪS
x (σS

x , σR∗), (4)

∀y ∈ Y, ∀m ∈ M, ∀e ∈ E, σR∗
y ∈ BRR

y

(
σR∗ |m, e, μR

y

)
, (5)

∀y ∈ Y, ∀m ∈ M, ∀e ∈ E, μR
y (d |m, e) ∈ δy (e | d,m) σS

d (m) qS (d)
∑

x̃∈X

δy (e | x̃,m) σS
x̃ (m) qS (x̃)

, (6)

if
∑

x̃∈X

δy (e | x̃,m) σS
x̃ (m) qS (x̃) > 0, and μR

y (d |m, e) ∈ [0, 1] , otherwise. We

also always have μR
y (l |m, e) = 1 − μR

y (d |m, e) .

Equation (4) requires the sender to choose an optimal strategy given the
strategies of the receivers. Based on the message and evidence that each receiver
observes, Eq. (5) requires each receiver to respond optimally to the profile of the
strategies of the other receivers. Equation (6) uses Bayes’ law (when possible)
to obtain the posterior beliefs μR using the prior probabilities qS , the sender
strategies σS , and the characteristics δy, y ∈ Y of the detectors [20].
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4 Application of PSG to PDoS

Section 3 defined PSG in general, without specifying the members of the type,
message, evidence, or action sets. In this section, we apply PSG to the recruit-
ment stage of PDoS attacks. Table 1 summarizes the nomenclature.

S refers to the agent which attempts a login attempt, while R refers to the
device. Let the set of sender types be given by X = {l, d}, where l represents
a legitimate login attempt, while d represents a malicious attempt. Malicious S
attempt to login to many devices through a wide IP scan. This number is drawn
from a Poisson r.v. with parameter λ. Legitimate S only attempt to login to
one device at a time. Let the receiver types be Y = {k, o, v}. Type k represents
weak receivers which have no ability to detect deception and do not use active
defense. Type o represents strong receivers which can detect deception, but do
not use active defense. Finally, type v represents active receivers which can both
detect deception and use active defense.

Table 1. Application of PSG to PDoS recruitment

Set Elements

Type x ∈ X of S l : legitimate, d : malicious

Type y ∈ Y of R k : no detection; o : detection; v : detection & active defense

Message m ∈ M of S m = {m1,m2, . . .}, a set of |m| password strings

Evidence e ∈ E b : suspicious, n : not suspicious

Action a ∈ A of R t : trust, g : lockout, f : active defense

4.1 Messages, Evidence Thresholds, and Actions

Messages consist of sets of consecutive unsuccessful login attempts. They are
denoted by m = {m1,m2, . . .}, where each m1,m2, . . . is a string entered as
an attempted password4. For instance, botnets similar to Mirai choose a list of
default passwords such as [12]

m = {admin, 888888, 123456, default, support} .

Of course, devices can lockout after a certain number of unsuccessful login
attempts. Microsoft Server 2012 recommends choosing a threshold at 5 to 9
[3]. Denote the lower end of this range by τL = 5. Let us allow all attempts with
|m| < τL. In other words, if a user successfully logs in before τL, then the PSG
does not take place. (See Fig. 5).

The PSG takes place for |m| ≥ τL. Let τH = 9 denote the upper end of the
Microsoft range. After τL, S may persist with up to τH login attempts, or he
may not persist. Let p denote persist, and w denote not persist. Our goal is to
force malicious S to play w with high probability.

4 A second string can also be considered for the username.
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For R of types o and v, if S persists and does not successfully log in with
|m| ≤ τH login attempts, then e = b. This signifies a suspicious login attempt. If
S persists and does successfully login with |m| ≤ τH attempts, then e = n, i.e.,
the attempt is not suspicious5.

If a user persists, then the device R must choose an action a. Let a = t denote
trusting the user, i.e., allowing login attempts to continue. Let a = g denote
locking the device to future login attempts. Finally, let a = f denote using
an active defense such as reporting the suspicious login attempt to an Internet
service provider (ISP), recording the attempts in order to gather information
about the possible attacker, or attempting to block the offending IP address.

4.2 Characteristics of PDoS Utility Functions

The nature of PDoS attacks implies several features of the utility functions US

and UR. These are listed in Table 2. Characteristic 1 (C1) states that if S does not
persist, both players receive zero utility. C2 says that R also receives zero utility
if S persists and R locks down future logins. Next, C3 states that receivers of all
types receive positive utility for trusting a benign login attempt, but negative
utility for trusting a malicious login attempt. We have assumed that only type v
receivers use active defense; this is captured by C4. Finally, C5 says that type v
receivers obtain positive utility for using active defense against a malicious login
attempt, but negative utility for using active defense against a legitimate login
attempt. Clearly, C1-C5 are all natural characteristics of PDoS recruitment.

Table 2. Characteristics of PDoS utility functions

# Notation

C1 ∀x ∈ X, y ∈ Y , a ∈ A, c ∈ Z (A) ,

US
x (w, c) = UR

y (x, w, a, c) = 0.

C2 ∀x ∈ X, y ∈ Y, c ∈ Z (A) ,

UR
y (x, p, g, c) = 0.

C3 ∀y ∈ Y, c ∈ Z (A) ,

UR
y (d, p, t, c) < 0 < UR

y (l, p, t, c).

C4 ∀x ∈ X, c ∈ Z (A) ,

UR
k (x, p, f, c) = UR

o (x, p, f, c) = −∞.

C5 ∀c ∈ Z (A) ,

UR
v (l, p, f, c) < 0 < UR

v (d, p, f, c).

5 For strong and active receivers, δy (b | d, p) > δy (b | l, p) , y ∈ {o, v}. That is, these
receivers are more likely to observe suspicious evidence if they are interacting with
a malicious sender than if they are interacting with a legitimate sender. Mathe-
matically, δk(b | d, p) = δk(b | l, p) signifies that type k receivers do not implement a
detector.
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4.3 Modeling the Physical Impact of PDoS Attacks

The quantities ct, cg, and cf denote, respectively, the number of devices that
trust, lock down, and use active defense. Define the function Z : Z(A) → R such
that Z(c) denotes the load shock that malicious S cause based on the count c.
Z(c) is clearly non-decreasing in ct, because each device that trusts the malicious
sender becomes infected and can impose some load shock to the power grid.

(0,0)

Power 
Impact ( )

Load Shock Size ∝
Automa c 
Frequency 

Control

Demand-side 
control of 

flexible loads Automa c 
load 

shedding

Demand-side 
control of less 
flexible loads

Instability 
and blackout

Fig. 4. Conceptual relationship between load shock size and damage to the power
grid. Small shocks are mitigated through automatic frequency control or demand-side
control of flexible loads. Large shocks can force load shedding or blackouts. (Color
figure online)

The red (solid) curve in Fig. 4 conceptually represents the mapping from load
shock size to damage caused to the power grid based on the mechanisms avail-
able for regulation. Small disturbances are regulated using automatic frequency
control. Larger disturbances can significantly decrease frequency and should be
mitigated. Grid operators have recently offered customers load control switches,
which automatically deactivate appliances in response to a threshold frequency
decrease [10]. But the size of this voluntary demand-side control is limited. Even-
tually, operators impose involuntary load shedding (i.e., rolling blackouts). This
causes higher inconvenience. In the worst case, transient instability leads to cas-
cading failures and blackout [9].

The yellow and orange dashed curves in Fig. 4 provide two approximations
to Z(c). The yellow curve, Z̃lin(c), is linear in ct. We have Z̃lin(c) = ωt

d ct, where
ωt

d is a positive real number. The orange curve, Z̃step(c), varies according to a
step function, i.e., Z(c) = Ωt

d1{ct>τt}, where Ωt
d is a positive real number and

1{•} is the indicator function. In this paper, we derive solutions for the linear
approximation. Under this approximation, the utility of malicious S is given by

US
d (m, c) = Z̃lin(c) +

g
ω
d

cg +
f
ω
d

cf =
t
ω
d

ct +
g
ω
d

cg +
f
ω
d

cf .

where ωg
d < 0 and ωf

d < 0 represent the utility to malicious S for each device
that locks down or uses active defense, respectively.
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Using Z̃lin(c), the decomposition property of the Poisson r.v. simplifies
ŪS

x (σS
x , σR). We show in AppendixA that the sender’s expected utility depends

on the expected values of each of the Poisson r.v. that represent the number of
receivers who choose each action ca, a ∈ A. The result is that

ŪS
x (σS

x , σR) = λσS
x (p)

∑

y∈Y

∑

e∈E

∑

a∈A

qR (y) δy (e |x, p) σR
y (a | p, e)

a
ω
x

. (7)

Next, assume that the utility of each receiver does not depend directly on
the actions of the other receivers. (In fact, the receivers are still endogenously
coupled through the action of S.) Abusing notation slightly, we drop c (the count
of receiver actions) in UR

y (x,m, a, c) and σR (the strategies of the other receivers)
in ŪR

y (θ, σR |m, e, μR
y ). Equation (2) is now

ŪR
y

(
θ |m, e, μR

y

)
=

∑

x∈X

∑

a∈{t,f}
μR

y (x |m, e) θ (a |m, e) UR
y (x,m, a) .

5 Equilibrium Analysis

In this section, we obtain the equilibrium results by parameter region. In order
to simplify analysis, without loss of generality, let the utility functions be the
same for all receiver types (except when a = f), i.e., ∀x ∈ X, UR

k (x, p, t) =
UR

o (x, p, t) = UR
v (x, p, t). Also without loss of generality, let the quality of the

detectors for types y ∈ {o, v} be the same: ∀e ∈ E, x ∈ X, δo(e |x, p) =
δv(e |x, p).
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<

<
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GAME
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≥
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Failure→ =
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=
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=
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ACTIVE DEFENSE
AGAINST ATTACKER

Fig. 5. Model of a PSG under Lemma 1. Only one of many R is depicted. After the
types x and y, of S and R, respectively, are drawn, S chooses whether to persist beyond
τL attempts. Then R chooses to trust, lockout, or use active defense against S based on
whether S is successful. Lemma 1 determines all equilibrium strategies except σS∗

d (•) ,
σR∗
o (• | p, b) , and σR∗

v (• | p, b) , marked by the blue and red items. (Color figure online)
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5.1 PSG Parameter Regime

We now obtain equilibria for a natural regime of the PSG parameters. First,
assume that legitimate senders always persist: σS

l (p) = 1. This is natural for
our application, because IoT HVAC users will always attempt to login. Second,
assume that R of all types trust login attempts which appear to be legitimate
(i.e., give evidence e = n). This is satisfied for

qS (d) <
UR

k (l, p, t)
UR

k (l, p, t) − UR
k (d, p, t)

. (8)

Third, we consider the likely behavior of R of type o when a login attempt is
suspicious. Assume that she will lock down rather than trust the login. This
occurs under the parameter regime

qS (d) >
ŨR

o (l, p, t)
ŨR

o (l, p, t) − ŨR
o (d, p, t)

, (9)

using the shorthand notation

ŨR
o (l, p, t) = UR

o (l, p, t) δ0 (b | l, p) , ŨR
o (d, p, t) = UR

o (d, p, t) δ0 (b | d, p) .

The fourth assumption addresses the action of R of type v when a login
attempt is suspicious. The optimal action depends on her belief μR

o (d | p, b) that
S is malicious. The belief, in turn, depends on the mixed-strategy probability
with which malicious S persist. We assume that there is some σS

d (p) for which R
should lock down (a = g). This is satisfied if there exists a real number φ ∈ [0, 1]
such that, given6 σS

d (p) = φ,

ŪR
v (t | p, b, μR

v ) > 0, ŪR
v (f | p, b, μR

v ) > 0. (10)

This simplifies analysis, but can be removed if necessary.
Lemma 1 summarizes the equilibrium results under these assumptions. Legit-

imate S persist, and R of type o lock down under suspicious login attempts. All
receiver types trust login attempts which appear legitimate. R of type k, since
she cannot differentiate between login attempts, trusts all of them. The proof
follows from the optimality conditions in Eqs. (4−6) and the assumptions in
Eqs. (8−10).

Lemma 1 (Constant PBNE Strategies). If σS
d (p) = 1 and Eqs. (8−10) hold,

then the following equilibrium strategies are implied:

σS∗
l (p) = 1, σR∗

o (g | p, b) = 1, σR∗
k (t | p, b) = 1,

σR∗
o (t | p, n) = σR∗

v (t | p, n) = σR∗
k (t | p, n) = 1.

Figure 5 depicts the results of Lemma 1. The remaining equilibrium strategies
to be obtained are denoted by the red items for S and the blue items for R. These
strategies are σR∗

o (• | p, b), σR∗
v (• | p, b), and σS∗

d (p). Intuitively, σS∗
d (p) depends

on whether R of type o and type v will lock down and/or use active defense to
oppose suspicious login attempts.
6 We abuse notation slightly to write ŪR

v (a | m, e, μR
y ) for the expected utility that R

of type v obtains by playing action a.
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5.2 Equilibrium Strategies

The remaining equilibrium strategies fall into four parameter regions. In order
to delineate these regions, we define two quantities.

Let TDR
v (UR

v , δv) denote a threshold which determines the optimal action of
R of type v if σS

d (p) = 1. If qS(d) > TDR
v (UR

v , δv), then the receiver uses active
defense with some probability. Equation (3) can be used to show that

TDR
v

(
UR

v , δv

)
=

ŨR
v (l, p, f)

ŨR
v (l, p, f) − ŨR

v (d, p, f)
,

where we have used the shorthand notation:

ŨR
v (l, p, f) := UR

v (l, p, f) δv (b | l, p) , ŨR
v (d, p, f) := UR

v (d, p, f) δv (b | d, p) .

Next, let BPS
d

(
ωd, q

R, δ
)

denote the benefit which S of type d receives for
choosing m = p, i.e., for persisting. We have

BPS
d

(
ωd, q

R, δ
)

:=
∑

y∈Y

∑

e∈E

∑

a∈A

qR (y) δy (e | d, p) σR
y (a | p, e) ωa

d .

If this benefit is negative, then S will not persist. Let BPS
d

(
ωd, q

R, δ | ak, ao, av

)

denote the benefit of persisting when receivers use the pure strategies:

σR
k (ak | p, b) = σR

o (ao | p, b) = σR
v (av | p, b) = 1.

We now have Theorem 1, which predicts the risk of malware infection in the
remaining parameter regions. The proof is in AppendixB.

Theorem 1 (PBNE within Regions). If σS
d (p) = 1 and Eqs. (8−10) hold,

then σR∗
o (• | p, b), σR∗

v (• | p, b), and σS∗
d (p) vary within the four regions listed

in Table 3.

In the status quo equilibrium, strong and active receivers lock down under
suspicious login attempts. But this is not enough to deter malicious senders from
persisting. We call this the status quo because it represents current scenarios in
which botnets infect vulnerable devices but incur little damage from being locked
out of secure devices. This is a poor equilibrium, because σS∗

d (p) = 1.
In the active deterrence equilibrium, lockouts are not sufficient to deter mali-

cious S from fully persisting. But since qS(d) > TDR
v , R of type v use active

defense. This is enough to deter malicious S : σS∗
d (p) < 1. In this equilibrium,

R of type o always locks down: σR∗
o (g | p, b) = 1. R of type v uses active defense

with probability

σR∗
v (f | p, b) =

ωt
d qR (k) + ωg

d

(
qR (o) + qR (v)

)
(
ωg

d −ωf
d

)
qR (v) δv (v | d, p)

, (11)
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and otherwise locks down: σR∗
v (g | p, b) = 1 − σR∗

v (f | p, b) . Deceptive S persist
with reduced probability

σS∗
d (p) =

1
qS (d)

(
ŨR

v (l, p, f)
ŨR

v (l, p, f) − ŨR
v (d, p, f)

)

. (12)

In the resistant attacker equilibrium, qS(d) > TDR
v . Therefore, R of type v

use active defense. But BPS
d (• | t, g, f) > 0, which means that the active defense

is not enough to deter malicious senders. This is a “hopeless” situation for defend-
ers, since all available means are not able to deter malicious senders. We still
have σS∗

d (p) = 1.
In the vulnerable attacker equilibrium, there is no active defense. But R of

type o and type v lock down under suspicious login attempts, and this is enough
to deter malicious S, because BPS

d (• | t, g, g) < 0. R of types o and v lock down
with probability

σR∗
o (g | p, b) = σR∗

v (g | p, b) =
ωt

d

(qR (0) + qR (v)) δo (b | d, p) (ωt
d −ωg

d)
, (13)

and trust with probability σR∗
o (t | p, b) = σR∗

v (t | p, b) = 1−σR∗
o (g | p, b) . Decep-

tive S persist with reduced probability

σS∗
d (p) =

1
qS (d)

(
ŨR

o (l, p, t)
ŨR

o (l, p, t) − ŨR
o (d, p, t)

)

. (14)

The status quo and resistant attacker equilibria are poor results because
infection of devices is not deterred at all. The focus of Sect. 6 will be to shift the
PBNE to the other equilibrium regions, in which infection of devices is deterred
to some degree.

Table 3. Equilibrium regions of the PSG for PDoS
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6 Mechanism Design

The equilibrium results are delineated by the quantities qS , TDR
v (UR

v , δv) and
BPS

d (ωd, q
R, δ). These quantities are functions of the parameters qS , qR, δo, δv,

ωd, and UR
v . Mechanism design manipulates these parameters in order to obtain

a desired equilibrium. We discuss two possible mechanisms.

6.1 Legislating Basic Security

Malware which infects IoT devices is successful because many IoT devices are
poorly secured. Therefore, one mechanism design idea is to legally require better
authentication methods, in order to decrease qR(k) and increase qR(o).

The left-hand sides of Figs. 6, 7 and 8 depict the results. Figure 6(a) shows
that decreasing qR(k) and increasing qR(o) moves the game from the status quo
equilibrium to the vulnerable attacker equilibrium. But Fig. 7(a) shows that this
only causes a fixed decrease in σS∗

d (p), regardless of the amount of decrease
in qR(k). The reason, as shown in Fig. 8(a), is that as qR(o) increases, it is
incentive-compatible for receivers to lock down with progressively lower prob-
ability σR∗

y (g | p, b), y ∈ {o, v}. Rather than forcing malicious S to not persist,
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increasing qR(o) only decreases the incentive for receivers to lock down under
suspicious login attempts.

6.2 Incentivizing Active Defense

One reason for the proliferation of IoT malware is that most devices which are
secure (i.e., R of type y = o) do not take any actions against malicious login
attempts except to lock down (i.e., to play a = g). But there is almost no cost
to malware scanners for making a large number of login attempts under which
devices simply lock down. There is a lack of economic pressure which would force
σS∗

d (p) < 1, unless qR(0) ≈ 1.
This is the motivation for using active defense such as reporting the activity

to an ISP or recording the attempts in order to gather information about the
attacker. The right hand sides of Figs. 6, 7 and 8 show the effects of providing
an incentive UR

v (d, p, f) for active defense. This incentive moves the game from
the status quo equilibrium to either the resistant attacker equilibrium or the
vulnerable attacker equilibrium, depending on whether BPS

d (• | t, g, f) is posi-
tive (Fig. 6(b)). In the vulnerable attacker equilibrium, the persistence rate of
malicious S is decreased (Fig. 7(b)). Finally, Fig. 8(b) shows that only a small
amount of active defense σR∗

v (f | p, b) is necessary, particularly for high values
of7 ωf

d .

7 Discussion of Results

The first result is that the defender can bound the activity level of the bot-
net. Recall that the vulnerable attacker and active deterrence equilibria force
σS∗

d (p) < 1. That is, they decrease the persistence rate of the malware scan-
ner. But another interpretation is possible. In Eqs. (14) and (12), the product
σS∗

d (p) qS (d) is bounded. This product can be understood as the total activity
of botnet scanners: a combination of prior probability of malicious senders and

7 In Fig. 8(b), σR∗
v (f | p, b) = 1 for ωf

d = −12.
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the effort that malicious senders exert8. Bensoussan et al. note that the opera-
tors of the Confiker botnet of 2008–2009 were forced to limit its activity [5,13].
High activity levels would have attracted too much attention. The authors of [5]
confirm this result analytically, using a dynamic game based on an SIS infection
model. Interestingly, our result agrees with [5], but using a different framework.

Secondly, we compare the effects of legal and economic mechanisms to deter
recruitment for PDoS. Figures 6(a)–8(a) showed that σS∗

d (p) can only be reduced
by a fixed factor by mandating security for more and more devices. In this
example, we found that strategic behavior worked against legal requirements.
By comparison, Figs. 6(b)−8(b) showed that σS∗

d (p) can be driven arbitrarily
low by providing an economic incentive UR

v (d, p, f) to use active defense.
Future work can evaluate technical aspects of mechanism design such as

improving malware detection quality. This would involve a non-trivial trade-off
between a high true-positive rate and a low false-positive rate. Note that the
model of Poisson signaling games is not restricted PDoS attacks. PSG apply
to any scenario in which one sender communicates a possibly malicious or mis-
leading message to an unknown number of receivers. In the IoT, the model
could capture the communication of a roadside location-based service to a set
of autonomous vehicles, or spoofing of a GPS signal used by multiple ships with
automatic navigation control, for example. Online, the model could apply to
deceptive opinion spam in product reviews. In interpersonal interactions, PSG
could apply to advertising or political messaging.

A Simplification of Sender Expected Utility

Each each component of c is distributed according to a Poisson r.v. The com-
ponents are independent, so P{c |σR, x,m} =

∏

a∈A

P{ca |σR, x,m}. Recall that S

receives zero utility when he plays m = w. So we can choose m = p:

ŪS
x (σS

x , σR) = σS
x (p)

∑

c∈Z(A)

∏

a∈A

P
{
ca |σR, x, p

}
(

t
ω
x

ct +
g
ω
x

cg +
f
ω
x

cf

)
.

Some of the probability terms can be summed over their support. We are left
with

ŪS
x (σS

x , σR) = σS
x (p)

∑

a∈A

a
ω
x

∑

ca∈Z+

caP
{
ca |σR, x, p

}
. (15)

The last summation is the expected value of ca, which is λa. This yields Eq. (7).

8 A natural interpretation in an evolutionary game framework would be that σS∗
d (p) =

1, and qS(d) decreases when the total activity is bounded. In other words, malicious
senders continue recruiting, but some malicious senders drop out since not all of
them are supported in equilibrium.
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B Proof of Theorem 1

The proofs for the status quo and resistant attacker equilibria are similar to the
proof for Lemma 1. The vulnerable attacker equilibrium is a partially-separating
PBNE. Strategies σR∗

o (g | p, b) and σR∗
v (g | p, b) which satisfy Eq. (13) make mali-

cious senders exactly indifferent between m = p and m = w. Thus, they can play
the mixed-strategy in Eq. (14), which makes strong and active receivers exactly
indifferent between a = g and a = t. The proof of the vulnerable attacker equi-
librium follows a similar logic.
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