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Abstract. Due to the sophisticated nature of current computer sys-
tems, traditional defense measures, such as firewalls, malware scanners,
and intrusion detection/prevention systems, have been found inadequate.
These technological systems suffer from the fact that a sophisticated
attacker can study them, identify their weaknesses and thus get an advan-
tage over the defender. To prevent this from happening a proactive cyber
defense is a new defense mechanism in which we strategically engage the
attacker by using cyber deception techniques, and we influence his actions
by creating and reinforcing his view of the computer system. We apply
the cyber deception techniques in the field of network security and study
the impact of the deception on attacker’s beliefs using the quantitative
framework of the game theory. We account for the sequential nature of
an attack and investigate how attacker’s belief evolves and influences his
actions. We show how the defender should manipulate this belief to pre-
vent the attacker from achieving his goals and thus minimize the damage
inflicted to the network. To design a successful defense based on cyber
deception, it is crucial to employ strategic thinking and account explic-
itly for attacker’s belief that he is being exposed to deceptive attempts.
By doing so, we can make the deception more believable from the per-
spective of the attacker.

1 Introduction

As computer systems and devices are becoming increasingly connected and com-
plex in their functionalities, traditional cyber defense technologies (e.g. firewalls,
malware scanners, and intrusion detection/prevention systems) have been found
inadequate to defend critical cyber infrastructures [23]. Moreover, sophisticated
adversaries such as the advanced persistent threats (APTs), can use a combi-
nation of social engineering and software exploits to infiltrate the network and
inflict cyber and/or physical damages of the defended systems. Therefore, to
defend against a sophisticated adversary, we have to accept that the adversary
c© Springer International Publishing AG 2017
S. Rass et al. (Eds.): GameSec 2017, LNCS 10575, pp. 273–294, 2017.
DOI: 10.1007/978-3-319-68711-7_15



274 K. Horák et al.

can study and evade technology-based defenses [20,25]. To move away from the
defense paradigm where the attacker has the advantage to the one of defender’s
advantage, proactive cyber defense is a new defense mechanism in which systems
strategically engage the attacker and learn and influence his behaviors.

Cyber deception is a key component of the proactive cyber defense that
can create and reinforce attacker’s view of the network by revealing or con-
cealing artifacts to the attacker. The attacker needs to pay attention to iden-
tifying deceptive artifacts in order to devise the right attack sequence. This
becomes challenging in an adversarial environment and the attacker’s progress
thus becomes slower and less effective. Deception mechanisms, such as honey-
pots [22,32], honeytokens [3,17], camouflaging [21,28] and moving target defense
[12,13,29] are methods that have been used to manipulate the attacker’s belief
on system parameters and increase their cost of information acquisition.

Understanding deception in a quantitative framework is pivotal to provide
rigor, predictability, and design principles. To this end, we analyze deception
through a game-theoretic framework [2,16,19,30]. This framework allows making
quantitative, credible predictions, and enables the study of situations involving
free choice (the option to deceive or not to deceive) and well-defined incentives.
Specifically, the class of dynamic games of incomplete information allows mod-
eling the multi-round interactions between an attacker and a defender as well as
the information asymmetry that forms the essential part of deception.

In this work, we focus on the applications of cyber deception techniques in the
field of network security. Strong proactive incident response strategies can only
be devised if we understand the impact of deceptive operations on the attacker’s
beliefs. To this end, we employ the framework of competitive Markov models with
imperfect information, or partially observable stochastic games [10,11], to reason
about the uncertainties of the two sides of the cyber warfare—the defender of the
network and the attacker—and understand how this uncertainty influences their
behavior. This framework provides a mathematical formalism of the attacker’s
belief state to capture his level of engagement and allows the defender to take
defensive actions based upon attacker’s state of mind.

When the presence of the attacker in the network environment is detected by
the sensing systems, the defender can attempt to engage the attacker and start
actively deceiving him by taking proactive deceptive (and defensive) actions aimed
to combat the upcoming attack scenario. He can use the sensing systems to track
attacker’s further progress and often, by inspecting the log records and/or analyz-
ing the past communication with attacker’s command and control servers [5,9], he
can also reconstruct a significant part of the history of the attack – thus getting a
near-perfect information about the attacker’s point of view. We assume that the
defender can reconstruct this view perfectly which allows us to apply the framework
of one-sided partially observable stochastic games [11].

To make the deception effective in the long run, we need to make it difficult
for the attacker to identify that the deception is employed. An attacker will try
to reason about and recognize our deceptive attempts and will adapt his attack
plan accordingly—and thus mitigate the impact of the deception. We provide a
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model which explicitly reasons about attacker’s belief about the deception state
and we show how important it is for the defender to carefully manipulate this
belief to maximize the defensive impact of the cyber deception. We conduct a
case study to illustrate the consequences of strategic deception on the security
level of the network. Namely, we make the following important observations
about cyber deception. First, we observe that the standard incident-response
approach which relies on excluding the attacker from the network immediately
is inefficient from the perspective of the deception. In fact, it may render the
network more vulnerable as it does not take attacker’s beliefs into account (we
term this phenomenon as the curse of exclusion). Second, we observe that it is
easier to deceive the attacker when he had already dedicated significant effort to
accomplish his goals as he is more greedy about realizing his intents (we term
this phenomenon as the demise of the greedy).

The rest of the paper is organized as follows. In Sect. 2, we introduce related
work on cyber deception and introduce the game-theoretic framework we use.
In Sect. 3, we provide a generic approach for reasoning about the deception
which accounts for the necessary aspects of the deception, i.e. the informational
asymmetry, sequential nature of deception problems and which accounts for
the strategic nature of the deception. In Sect. 4, we state the problem from the
perspective of cyber deception in network security. Next, we provide a case study
illustrating the impact of cyber deception on attacker’s beliefs and his ability to
inflict damage in Sect. 5. Finally, in Sect. 6 we summarize our main results.

2 Related Work

Typical attacks conducted by advanced attackers consist of multiple stages [24]
that can be broadly summarized as reconnaissance and realization of attacker’s
primary goals, e.g. data exfiltration. Underbrink [26] classifies deception tech-
niques into two broad categories – passive and active deception. The pas-
sive deception is targeted against attacker’s reconnaissance efforts and relies
on a proactively deployed static infrastructure of decoy systems, e.g. honey-
pots [14,22] or fake documents [4]. Unlike the legitimate users, the attacker does
not know about their deceptive nature and may thus reveal his presence by
inadvertently interacting with them. The active deception, on the other hand,
attempts to interactively engage the attacker who has been already detected by
the sensing systems. The defender attempts to anticipate probable future actions
of the attacker and takes proactive countermeasures against them to prevent the
attacker from achieving his goals.

A lot of work has been dedicated to understanding both technological [1,27]
and strategical [6,18,31,32] aspects of passive deception techniques and decoy
infrastructures. Considerably less attention has been, however, paid to the active
deception. To the best of our knowledge, very few works have focused on the strate-
gical aspects of active deception. [26] has introduced the concept of active deception
and the Legerdemain approach to active deception was described. The Legerde-
main approach secretlymanipulates critical assets in the network (such as data files
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or access credentials) to confuse the attacker andprevent him fromgetting access to
critical resources. A dynamic game model, based on two coupled Markov decision
processes, is used to assist the defender in designing the actively deceptive strategy.
The model, however, assumes that the attacker will never realize that mechanisms
of active deception are applied against him – which simplifies solving the game but
makes the model not realistic. In fact, we show that accounting for attacker’s belief
about the deception is critical for designing strong deceptive strategies.

Our approach reasons explicitly about the belief the attacker has and thus
avoids the drawback of the Legerdemain approach. To this end, we use the frame-
work of one-sided partially observable stochastic games (one-sided POSGs) [11].
In this class of games, one of the players is assumed to be perfectly informed
about the course of the game, which is not the case for the other player. This
game-theoretic model has been originally devised to reason about robust defen-
sive strategies by assuming that attacker is able to get a perfect picture of the
game. In this work, we provide a novel application of this model to reason about
the active deception by assuming that the defender (or deceiver) has already
detected the attacker (and thus is able to track his progress) while the attacker
(or deceivee) lacks some information about the game (and thus is vulnerable to
defender’s deceptive attempts). We discuss the way we use this class of games
to reason about deception in Sects. 3 and 4 in greater detail.

3 Deception Game Framework

The asymmetry of information plays a major role in many conflicts seen in the
real world, starting from the warfare and ending with conflicts as innocent as
card games. The success in these operations typically depends on the way we
handle the information and in particular on the way we protect our informational
advantage. Deception has even evolved to be vital for the survival of many wild-
life species, such as chameleons, and has been adopted by armies worldwide.

We cannot, however, expect that a simple presence and näıve use of the
deceptive techniques is sufficient to guarantee success – the way we employ them
is important to explore. As an example, consider that we have two colored balls,
red and blue, and we do not want others to know which one of them we are
carrying. To this end, it may seem reasonable to paint each of these balls to the
opposite color beforehand and pretend that the red one is, in fact, blue (and
vice versa). In such a case, however, other actors will soon discover the principle
we use to manipulate the truth and realize that the ball we are carrying is in
fact of the opposite color – and hence our attempt to disguise others becomes
unsuccessful.

When deciding on the use of deceptive techniques we have to think in a
strategic way. We need to understand what impact our deception strategy σD

has on the beliefs of other actors as they will learn and eventually understand
the way we misrepresent the truth. The deceived players will derive a counter-
deception strategy σA with the aim to understand the signals they receive and
reconstruct the truth (or at least reconstruct how likely each possibility is to be



Manipulating Adversary’s Belief: Deception in Network Security 277

true). Both of these strategies have to account for the beliefs of the players and
are thus essentially functions of these beliefs.

We focus on the deception problems where there are two sides of the conflict
(or two players). We assume that one side of the conflict, the deceiver, knows
the truth (i.e. state s of the system), while the other side, the deceivee, aims to
recognize that. This type of knowledge is often seen in reality. For example, in
security problems, the defender usually knows the parameters of the system he
is about to defend, e.g., he knows the plans of the facility or the topology of
the computer network, and he knows where the important assets are located. In
addition, he is equipped with monitoring facilities which allow him to monitor
attacker’s actions (or, at least, allow him to analyze these actions retrospec-
tively). On the other hand, the attacker is uninformed about the true system
parameters and he has to recognize these parameters to plan his activities prop-
erly. This setting underlies the need for reasoning about the information and
beliefs of the uninformed player as the information is the only advantage we
have.

3.1 Deception in a Sequential Setting

We study the deception in a sequential setting, where both the players take
sequences of actions to either deceive the adversary, or attempt to recognize the
truth, respectively. In each step t ≥ 1, both the deceiver and the deceivee take an
action (aD and aA). As a matter of result, the deceivee gets an observation about
the true state of the system (e.g. that the ball is painted red) and the state of the
system may change (which is then known only to the deceiver again). Moreover
the deceiver has to pay a cost associated with his deceptive action and possibly
other costs associated with the choice of actions aD and aA, denoted l(t). We
characterize these costs using a loss function LD.

The goal of the deceiver is to keep the losses l(t) as low as possible – or
at least mitigate them by delaying them in time. This is characterized by the
discounted-sum objective when the aggregated loss of the deceiver is

L =
∞∑

t=1

γt−1 · l(t), (1)

where 0 < γ < 1 is a constant termed the discount factor. In our case, the
deceiver is the defender of the system and we aim to devise robust deceptive
strategies that account for the worst case scenario, hence we assume that the
goal of the deceivee is to maximize the loss L. We also term such games as
zero-sum.

We aim to understand the value of deception V and the value of counter-
deception V – and the strategies that induce these values. We define V as the
expected loss of the deceiver when he is forced to commit himself to a deception
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strategy σD which is then observed by the deceivee who tries to identify the
weaknesses of σD, i.e.

V = inf
σD

sup
σA

L(σD, σA) (2)

where L(σD, σA) stands for the expected discounted loss when strategies σD

and σA are followed by the players. Similarly, we define the value of counter-
deception V as the value where the deceivee is forced to commit himself first to
a counter-deceptive strategy σA he uses to combat the deception and then the
deceiver decides what deceptive techniques he uses, i.e.

V = sup
σA

inf
σD

L(σD, σA). (3)

Note that the deceiver can guarantee that the loss will be no higher than V ,
while V is the minimum loss the deceivee can enforce.

3.2 Game-Theoretic Model

We propose to formulate deception as a partially observable stochastic game
with one-sided information (one-sided POSG) [11]. This model has been orig-
inally devised to reason about robust strategies of the defender by assuming
that the adversary is perfectly informed. The asymmetric nature of the infor-
mation present in the model, however, makes it convenient to reason about the
deception. A deception game based on the model of one-sided POSGs is a tuple〈
S,AA,AD,T ,LD,OA, b0

〉
, where

– S is a finite set of states of the system (recall that the true state of the system
is known to the deceiver, while the deceivee does not know it). A state may
for example represent where both the players have deployed their units in a
warfare.

– AD is a finite set of actions the deceiver can use to deceive the adversary.
– AA is a finite set of actions the adversary, the deceivee, can use to learn more

about the system, or potentially in security problems to inflict damage.
– T : (S×AA ×AD) → Δ(O×S) is a transition function representing possible

changes to the system (e.g. movements of the units) and observations the
deceivee can receive in a probabilistic way.

– LD : (S×AA ×AD) → R is defender’s loss function and describes how much
the defender loses in each step of the deception game.

– OA is a finite set of observations the attacker can get about the state of the
system.

– b0 ∈ Δ(S) (where Δ(S) is a probability distribution over S) is the initial belief
of the deceivee, where b0(s) denotes the probability that the initial state of the
deception game is s. As an example, the deceivee may know where his units
are located, but he may lack the information about the position of deceiver’s
units. Thus he forms a belief over possible positions of the deceiver in the
form of a probability distribution over states that match the current (known)
position of units of the deceivee.
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A play in the deception game proceeds as follows. First, an initial state of the
game s0 is drawn from b0. Then, in each step t, players decide simultaneously
their actions (at

D, at
A) ∈ AD × AA. Based on their choice, the deceiver loses

l(t) = LD(st−1, at
A, at

D). Then the deceivee receives an observation ot and the
game state changes to st with probability T (st−1, at

A, at
D)(ot, st).

Deceiver observes the course of the deception game perfectly, hence he knows
what the past states, actions and observations were. He can use all this informa-
tion to make an informed decision about his next action. He makes this decision
based on his deception strategy σD : (SADAAOA)∗S → Δ(A), where σD(ω, aD)
denotes the probability that the deceiver chooses an action aD ∈ AD when the
current history is ω.

The deceivee only observes the observations ot and remembers the actions at
A

he made. He cannot thus make use of the complete information available to the
deceiver. The attacker thus proceeds according to a counter-deception strategy
σA : (AAO)∗ → Δ(AA), when σA(ω, aA) stands for the probability that the
deceivee uses action aA given that ω ∈ (AAO)∗ are the actions and observations
he has used and seen previously.

The results in [11] show that the players need not remember the histories
of the play to make decisions. Instead, they can just keep track of the belief
b ∈ Δ(S) over the states S of the deception game and play according to one-step
strategies π

(b)
D : S → Δ(AD) and π

(b)
A ∈ Δ(AA) which are directly functions

of beliefs. This emphasizes the fact that the deceivee forms a belief which then
directly drives his decisions. The players keep track of the belief using a Bayesian
update rule characterized by the following equation:

τ(b, aA, o, πD)(s′) =
1
K

∑

saD∈SAD

b(s) · πD(s, aD) · T (s, aA, aD, o, s′) (4)

where τ(b, aA, o, πD) stands for the updated belief of the deceivee given that
the previous belief was b, he played action aA and received observation o, and
the deceiver followed a deception strategy πD. K stands for the normalization
constant.

In the case of zero-sum deception game, the value of deception V and the
value of counter-deception V have been shown to be equal [11], i.e.

inf
σD

sup
σ′
A

L(σ′
A, σD) = sup

σA

inf
σ′
D

L(σA, σ′
D). (5)

We represent the values of deception (or counter-deception) using a convex
value function v∗ : Δ(S) → R which maps beliefs over the system states to
the expected value of deception for that belief. This value function satisfies the
following fixpoint equation

v∗(b) = min
πD:S→Δ(AD)

max
πA∈Δ(AA)

[ ∑

saAaD

b(s) · πA(aA) · πD(s, aD) · LD(s, aA, aD)

+ γ
∑

aAo

Pr[aAo | b, πA, πD] · v∗(τ(b, aA, o, πD))
]
. (6)
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One of the ways to reason about the value of the deception and the associated
optimal strategies of the players is to approximate the value function v∗ using an
approximate value iteration algorithm presented in [11]. We can then derive the
optimal strategy for the deceiver by considering the maximizing πD of Eq. (6) in
each step of the interaction.

Remark 1. The convexity of the value function v∗ supports our intuition that
the deceivee never gets satisfied with being deceived. The value of his counter-
deception would never get lower, had he got additional information. For example,
assume that the deceivee recognized the true state of the system before he is
about to act (i.e. his belief changes from b to bs, where bs is a belief where the
attacker knows the true state). Then, since b =

∑
s∈S b(s) · bs and due to the

convexity of v∗, we get

∑

s∈S
b(s) · v∗(bs) ≥ v∗

(
∑

s∈S
b(s) · bs

)
, (7)

i.e. if the attacker recognizes the true state (i.e. with probability b(s) he recog-
nizes that the true state is s) and plays accordingly, the loss he is able to cause
is greater or equal than in the situation where he has to reason about the state
he is in (i.e. his belief is b).

4 Game-Theoretic Approach to Cyber Deception

The ideas we have presented so far are general enough to be applied to reason
about the deception in a wide range of scenarios. We are going, however, to
focus on the use of the deception in the context of computer networks to improve
the security of networked systems. The deception over the networks possesses
certain features which allow us to make the model of deception game more
specific. Namely, the attacker who is going to be deceived does not know two
key properties of the networked system. First, he does not know the topology of
the network which he needs to understand to target his attack properly. Second,
he does not know whether the defender, the deceiver, already knows about his
presence in the network. Understanding both of these aspect is critical from
attacker’s perspective – and concealing this information from attacker’s view is
important for the defender to devise strong defensive strategies.

In this section, we describe a general idea how we can use one-sided partially
observable stochastic games to reason about active deception in network security,
where the defender interactively decides about the actions to mislead the attacker
in the course of an attack and mitigate the possible damage to the network. Our
model accounts for the uncertainties of the attacker about the topology of the
network, whether he has been detected and about defender’s actions – both
past and upcoming ones. To this end, we represent the states of the game as
S = N × XA × XD × D where

– N is a set of possible network topologies the defender can choose from based
on a fixed distribution ξ ∈ Δ(N)
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– XA is a set of possible attack vectors representing the state of an attack (e.g.
privileges the attacker has already acquired); ∅ ∈ XA denotes that the attack
has not started yet

– XD is a set of possible defense vectors representing the state of defense
resources (e.g. dynamic decoy systems deployed in the network); ∅ ∈ XD

denotes that the defender has not deployed any dynamic resources yet
– D is a set of possible detection states; we assume D = {true, false} denoting

whether the attacker has been detected or not by the sensing systems

We denote a state of the game as (n, xA, xD, d).
The defender initially chooses a network topology he is going to defend

according to a probability distribution ξ ∈ Δ(N). We then derive the initial
belief of the underlying one-sided POSG b0 ∈ Δ(S) as b(n, ∅, ∅, false) = ξ(n)
and b0(·) = 0 otherwise. This means that we draw the initial network topology
from ξ(n) and make both the attack and defense vectors empty, and the attacker
is initially undetected.

Once the attacker gets detected by the sensing systems (i.e. d = true), the
defender may start taking actively actions aD ∈ AD to combat the attacker’s
presence in the network. His actions may manipulate the defense vector (e.g.
by deploying new defense resources), interfere with actions of the attacker, or
they may restrict attacker’s access to the network (defense action block ∈ AD).
We assume that in such case, the attacker is able to change his identity and
attack the network again (therefore xA is set to ∅ and d to false as we lost
track of the attacker when he changed his identity, and the game continues). If
the attacker has not been detected yet, however, the defender cannot take any
active counteraction (i.e. active deception techniques are not available to him)
and he is forced to use action aD = noop. The fact that the defender cannot
use any action other than noop when the attacker has not been detected yet
allows us to assume a perfect information of the defender, i.e. make the defender
be the perfectly informed player in the one-sided partially observable stochastic
game. The defender cannot leverage the extra information about the attacker
(he would not have in reality) up to the point when the attacker gets detected.

The attacker can choose from attempting to acquire new privileges (and thus
manipulating the attack vector xA), changing his identity (i.e. making xA = ∅
and d = false) and leveraging his current privileges to cause damage — or
combination of any of these. Each action of the attacker is associated with the
risk of alerting the defender, we denote the probability of triggering an alert
when using action aA in network n by ptrig(n, aa).

The transition function T respects the actions the players have taken, i.e.
describes possible changes to vectors xA, xD and the detection state d in a
probabilistic way. Furthermore the attacker receives an observation (x′

A, o) ∈ OA.
The attacker is always aware of his current attack vector, i.e. for any x′

A �= x′′
A

the following holds

T ((n, xA, xD, d), aA, aD)((x′
A, o), (n, x′′

A, x′
D, d′)) = 0. (8)
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Moreover, once the network topology is chosen it never be changes, i.e. for any
n �= n′

T ((n, xA, xD, d), aA, aD)((x′
A, o), (n′, x′

A, x′
D, d′)) = 0. (9)

The detection probabilities (i.e. the probability of transitioning from d = false
to d′ = true) are independent of action effects, i.e.

∑
(x′

A,o) T ((n, xA, ∅, false), aA, noop)((x′
A, o), (n, x′

A, ∅, true)) = ptrig(n, aA)
(10)

The losses LD for individual transitions can be set arbitrarily to match
the costs (and eventually possible gains if we succeed in exploiting attacker’s
actions) in the real network and the costs of the deception. We only require
that LD((n, xA, ∅, false), aA, aD) = M for every aD �= noop where M is a large
constant to ensure that the defender does not use active deception techniques
when the attacker has not yet been detected.

5 Manipulating Attacker’s Belief Using Active Deception

The use of the active deception can significantly improve the security level of
the network. In this section, we provide a case study based on a simple game
with sets N and XD containing only one element (i.e., N = {n} and XD = {∅})
to illustrate the concept of active deception. In the case of this game, we use
the deception only to manipulate attacker’s belief over being detected (i.e. the
D part of the state) and we try to make him uncertain about the progress of the
attack and eventually take a wrong action. We show that we cannot, however,
rely solely on the deceptive actions if we want to maximize the effectiveness of
the deceptive operation. The deception is the most effective if it is stealthy and
the attacker remains unaware that we are trying to deceive him, or, at least, if
we make him uncertain about the state of deception.

As soon as the attacker realizes that we are trying to deceive him, his behavior
changes significantly. He will attempt to take evasive actions in attempt to lose
defender’s attention (e.g. by changing his network identity), or, as a matter of
last resort, he may opt to inflict severe damage based only on the information
he collected so far. These decisions of the attacker make the defender’s attempts
to contain the attack substantially harder and should be averted (if possible).

To preserve the stealthy nature of the deception, it is crucial that the attacker
thinks that the signals he receives are not too good to be true. The defender has
to manipulate attacker’s belief about the deception state carefully if he wants to
make the attacker believe that no deceptive operation is taking place and keep
him engaged in the network.

5.1 Network Topology and the Anatomy of an Attack

We illustrate the concept of active deception using a network topology n ∈ N
depicted in Fig. 1. We use it as an abstraction of a multilayer network which
is commonly adopted in critical network operations, such as power plants or
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production facilities [15]. Our example network consists of three layers. The
outermost layer of the network (Layer 1) is directly exposed to the Internet via
demilitarized zones (DMZs) and provides less sensitive services that are used to
communicate with the customers and business partners, such as web or email
servers.

outside
of the network

less valuable assets more valuable assets

WWW, EMAIL DATABASE ACTUATORS

& SENSORS

Layer 1 Layer 2 Layer 3

Fig. 1. Network topology (attacker starts outside of the network and attempts to gain
access to the most valuable assets in the network)

More critical assets are located in the deeper layers of the network. In our
case, the second layer consists of data stores containing confidential data the loss
of which may have a severe impact on the company. The third layer is the most
critical one since it provides an access to physical devices, such as actuators and
sensors, the integrity of which is absolutely essential for the secure operation of
the facility. Breach of assets in the Layer 3 of the network may even pose a risk
of physical damage, such as in the case of the Stuxnet attack [7,8].

Attack Options. We assume that an attack is initiated from a computer out-
side of the network (xA = ∅). In this section we describe attacker’s actions (set of
actions AA) which he can use to acquire new privileges and penetrate deep into
the network and to cause damage to it. The attacker attempts to take control of a
system in Layer 1 (xA = layer1) and then escalates his privileges to take control
of the computers located deeper in the network (i.e. acquiring xA = layeri) by
compromising them (hence we refer to this action of the attacker as compromise).
At any point, the attacker can either wait or leverage the current access. Apart
from attempting to compromise a host in the next layer, he has two options:

The first option is to cause significant immediate damage, such as eliminating
a physical device in Layer 3 (having the attacker had access to it) – we refer
to this action as takedown. Such an action surely attracts the attention of the
defender and will lead to the detection of the attacker’s presence. Therefore, the
attacker is forced to quit the network and possibly repeat his attack later (hence
xA = ∅ and d = false as a result).

The second option is to cause smaller amount of damage while attempting
not to attract defender’s attention. The actions the attacker can use to this
purpose include, e.g., a stealthy exfiltration of data or a manipulation of the
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records in the database – for simplicity we refer to them collectively using the
exfiltrate action. Nevertheless, even these careful options run into a small risk
of being detected. Moreover these options run into the risk that the defender will
avert the damage resulting from them by means of active deception and possibly
even use the fact that the attacker uses the exfiltrate action for his benefit
(e.g., to collect evidence; see discussion in Sect. 5.2). This makes it critical for
the attacker to understand whether he is deceived or not.

Detection System. An intrusion detection system (IDS) is deployed in the
network and can identify malicious actions of the attacker. This detection is not
reliable. We assume that the attacker’s presence is detected with probability
ptrig(n, compromise) = 0.2, if he escalates his privileges and penetrates deeper
in the network using the compromise action. If the attacker performs stealthy
exfiltration of the data (exfiltrate action), we detect him with probability
ptrig(n, exfiltrate) = 0.1. We have chosen these probabilities based on a dis-
cussion with an expert, however, the model is general enough to account for any
choice of these parameters.

Active Deception. We assume that the passive defensive systems, such as
IDS and honeypots, are already in place and we focus on the way the defender
can actively deceive the attacker when his presence has been detected. We take
an abstracted view on defender’s actions (set AD) to focus on the main idea
of deception, however, our model is general and these actions can be refined to
account for any actions the defender can use. In our example, he can either use a
stealthy deceptive action and attempt to engage the attacker in the network, or
he can attempt to exclude the attacker from the network (non-deceptive block
action). We assume that the block action really achieves its goal and all the
privileges of the attacker get revoked, and the attacker thus has to start his
attack from scratch (i.e. xA becomes ∅, and d = false). If it were not the case
and the block action was less powerful, blocking the attacker would have been
less tempting and hence the use of deception we are advocating would have
been even more desirable. By engaging the attacker we attempt to anticipate
the action of the attacker and minimize (or even eliminate) the damage caused
by his stealthy damaging action of exfiltrate. We cannot, however, contain
the more damaging takedown action by engaging the attacker – the only way to
prevent that kind of damage is to block the attacker in time. Note that both
of these actions of the defender can only be used once the attacker got detected
– otherwise, the defender has to rely on the infrastructure of passive defensive
systems (i.e., use noop action) as the attacker has to be detected first.

5.2 Game Model

We analyze the active deception in the context of the network presented in
Sect. 5.1 using a game-theoretic model of one-sided partially observable stochas-
tic games (see Sect. 3) and we capture the interaction between the defender and
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the attacker using a transition system depicted in Fig. 2. The state space is
divided into two parts. In the upper half, the presence of the attacker in the net-
work has not yet been revealed by the IDS (d = false), therefore, the defender
cannot take active countermeasures yet. Triggering an IDS alert switches the
game states into the bottom part (d = true) and thus gives the defender an
opportunity to decide between engage and block actions.
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Fig. 2. Transition system of a partially observable stochastic game representing attack
on the network from Fig. 1. The attacker can use the takedown action in every layer.
The wait action of the attacker has been omitted for clarity and is always applicable.

The arrows in the diagram represent individual transitions in the game (i.e.
represent the transition function T ). We assume that the transitions in the game
are deterministic, except for the transitions between d = false and d = true
that are defined using ptrig. The attacker never receives an observation that
would reveal him some information about the detection state d (i.e. he only gets
to know the new attack vector xA).

If the attacker uses compromise action, he penetrates deeper in the network.
If he opts for exfiltrate, he stays in the current layer of the network while
possibly gaining access to confidential information. And finally, he can decide to
do the immediate damage by the takedown action at any time. In such a case he
gets detected and thus returns to the initial state, outside of the network. The
defender can stop all this from happening by taking the block action (had he
detected the attacker) when the defender is pushed out of the network as well.

The attacker knows his current attack vector xA and can identify the layer he
has penetrated (i.e. he knows the “column” of the transition system where he is
located), but he does not know whether he has been detected or not (i.e. whether
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the game is in the upper or lower half). The defender also does not have perfect
information about the state of the attack in reality – namely, he does not know
anything about the attacker until the IDS generates an alert. After the alert is
generated, however, we assume that he can get a close to perfect information
about the attacker by studying the traces he has created in the system. Since the
defender cannot make use of the information about the attacker in states where
d = false (he cannot take any active countermeasures), we can safely assume
that the defender has a perfect information in the whole game, which results in
a type of information asymmetry we discussed in Sect. 3.

Game Utilities. We associate a loss (or cost) of the defender to each action
the attacker performs (i.e. each transition in Fig. 2). Since the attacker takes
his actions sequentially, a sequence of costs l(1), l(2), . . . is generated, and we use
discounting to obtain the aggregated loss of the defender using the formula

L =
∞∑

t=1

γt−1 · l(t). (11)

The use of discounting (in our case, we use γ = 0.95) reflects the attacker’s
impatience during an attack as he does not want to wait forever to achieve his
goals as the value of information he can steal diminishes.

Each of the costs l(t) depends on the current state of the attack (what layer
the attacker has penetrated and whether he has been detected), the action the
attacker performs and the counteraction of the defender (if applicable). Note
that in our case, we have just one network n and one defense vector xD so we do
not account for these explicitly. This utility model is general enough to capture
any kind of preferences of the defender. The costs we use in our case study are
based on a discussion with an expert and are summarized in Table 1. Recall that
the players take their action simultaneously and the costs thus depend on their
joint action.

The compromise action does not cause any immediate harm to the defender
and only leaks information to the defender (e.g. about an exploit used) so the
loss of the defender is negative (L1 = L7 = −2). Note that a negative loss is in
fact a gain. Moreover, if the defender is already aware of attacker’s presence and
engages him in the network, he can better understand the techniques used by
the attacker and thus his loss is (L4 = −4).

The exfiltrate action is already harmful to the defender. If the defender
does not take any active countermeasures, the attacker accesses confidential data
which implies a significant damage to the defender. Since the assets located
deeper in the network are more valuable, we account for this by defining the
cost for the defender of Li

2 = 15i for losing data located in the i-th layer.
If the defender realizes that he is dealing with a malicious user, he can min-

imize or eliminate the risk of losing sensitive data, e.g. by presenting (partly)
falsified data to the attacker, using the engage action. The attacker then receives
useless data and only provides the defender with time to collect the forensic evi-
dence. The loss of the defender is, therefore, negative (L5 = −2) if the attacker
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Table 1. Game costs for the game represented in Fig. 2. In each time step, the players
take their actions simultaneously and the loss of the defender in the current time step
is determined according to their joint action.

State (st−1) Action Defender’s loss

Attacker’s
position (xA)

Detected (d) Attacker (at
A) Defender (at

D) LD(st−1, at
A, at

D)

any no compromise — −2 (= L1)

layeri no exfiltrate — 15i (= Li
2)

layeri no takedown — 25i (= Li
3)

any yes compromise engage −4 (= L4)

layeri yes exfiltrate engage −2 (= L5)

layeri yes takedown engage 25i (= Li
6)

any yes compromise block −2 (= L7)

any yes exfiltrate block 0 (= L8)

any yes takedown block 0 (= L9)

exfiltrates data while being engaged. The defender can also prevent the data
exfiltration by restricting attacker’s access to the network (action block), how-
ever, by doing so, he loses the option to collect the evidence and hence the reward
is L8 = 0.

If the attacker decides to cause significant immediate damage by the
takedown action, the only option of the defender to prevent this from happening
is to block the attacker (if applicable) when the loss is L9 = 0. Otherwise, the
cost for the defender is Li

3 = Li
6 = 25i (when i represents the layer the attacker

is in).

5.3 Optimal Defense Strategy

Once the defender succeeds in detecting the presence of the attacker, he can
investigate log records to analyze past attacker’s actions and estimate his belief
about being detected. The defender can make use of this belief to reason about
the defensive measures he should apply and to design an optimal defense strategy.
We are aware that in real world deployments, accurate tracking of attacker’s
belief need not be possible and we discuss this in Sect. 5.5.

The optimal defense strategy incurs expected long-term discounted loss of the
defender of 282.154. This is a significant improvement over the common practice
nowadays of attempting to block the attacker immediately after he is detected.
The always-block strategy where the defender is restricted to play only block
action once he detects the attacker leads to an expected loss of 429.375. It is
also, however, not good to keep the attacker engaged in the network forever (and
try to deceive him by never blocking him, and always use the engage action –
we refer to this strategy as always-engage). Such an approach would not make
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the deception believable, and the attacker would rather cause the damage and
forfeit his current attack attempt, than battle the deception.

We represent the optimal defensive strategy as a mapping from the current
position of the attacker (i.e. the layer of the network he penetrated) and his belief
about being detected (and thus being deceived). Since the defender has only two
actions available, we express the probability of playing the engage action only
(had he succeeded in detecting the attacker), σD(i, b), where i ∈ {1, 2, 3} is the
current layer and b ∈ [0, 1] is the attacker’s belief about the detection state.
Note that σD(i, b) corresponds to πD((n, layeri, xD, true), engage), where πD

is the minimax solution of Eq. (6) evaluated for v∗(b̂), b̂(n, layeri, xD, true) = b,
b̂(n, layeri, xD, false) = 1 − b. The optimal defense strategy σD(i, b) for each
of the layers is depicted in Fig. 3.

Fig. 3. Optimal defense strategy σD for the network from Fig. 1. The optimal strategy
of the defender is randomized and depends on the current position of the attacker (the
layer he penetrated) and his belief about the detection state.

The optimal defense strategy prescribes the defender to always keep the
attacker in the network when the attacker is highly confident that he has not been
detected yet. In such a situation, the attacker will opt for data exfiltration, which
we can prevent, e.g. by providing him with fake data. At a certain point, however,
the attacker starts being worried about being detected and starts considering to
cause immediate damage, incur a high loss to the defender and leave the network
(i.e. use the takedown action). The defender has to react to this development
and think about blocking the attacker by decreasing the probability of keeping
the attacker in the network.

Remark 2 (Demise of the greedy). We can observe that the closer the attacker
is to his primary goals (or at least the closer he thinks to be), the less concerned
he is about the fact that he might be detected and the more greedy he is about
realizing his intents. It is thus easier for the defender to deceive the attacker in
such a situation. This is caused by the fact that the attacker must have put more
effort to get into deeper layers of the network and the damage he can possibly
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cause now is more significant—thus he is willing to take a greater risk of being
detected. This in turn allows the defender to deceive him more efficiently. While
in the Layer 1, the attacker starts considering the takedown action when he
thinks that he is detected with probability 0.298 (and the defender has to react
accordingly), in the Layer 3 he delays this decision up to the point when his belief
about the detection state is 0.442. We conjecture that this type of behavior of
the deceivee can be seen in a wide range of deception problems and the deceiver
can capitalize on that.

To better understand the implications of the optimal defense strategy and the
need for precise randomization between engage and block actions, we simulate
an attack on the network and depict attacker’s belief about being detected when
applying the optimal, always-block and always-engage strategies.

After performing an action and getting feedback from the network, the
attacker updates his belief about the detection state from b to b′. Assume that
the attacker was in Layer i and he used action aA ∈ {compromise, exfiltrate}
in the last step and he didn’t get blocked. In order to be detected at the cur-
rent time step, the attacker could have either triggered an alert using his last
action (which happens with probability (1 − b)ptrig(n, aA)), or he must have
been already detected and the defender must have decided not to block the
attacker (the probability of which is bσ(i, b)). The probability of not getting
blocked equals to 1 − b(1 − σ(i, b)). We can thus derive a belief update formula
(see Eq. (4)) specifically for this game when the updated belief of the attacker
b′ is the probability of being detected in the next time step:

b′ =
(1 − b)ptrig(n, aA) + bσ(i, b)

1 − b · [1 − σ(i, b)]
. (12)

We assume that the attacker conducts an attack that consists of penetrating
to the deepest layer of the network using three consecutive compromise actions
and then the attacker exfiltrates data forever. The comparison of the evolution
of attacker’s belief while the defender uses the optimal strategy with the always-
block and always-engage strategies is shown in Fig. 4.

First of all, we explain why the current best practice in incident response rep-
resented by the always-block strategy is inferior. Whenever the attacker realizes
that he has not been blocked and his access to the network has not been restricted
(or limited), he knows that he cannot have been detected in the previous time
step (since otherwise, the defender would have blocked him according to his
always-block strategy). His belief about being detected thus depends solely on the
detection rate of IDS – which in our experiments is ptrig(n, compromise) = 0.2
when the attacker uses compromise action to penetrate deeper into the net-
work (first 3 steps) and ptrig(n, exfiltrate) = 0.1 afterward. Since the attacker
remains highly confident that he is not detected at each time step, he can cause
a lot of harm by a long-term data exfiltration.

The always-engage strategy suffers from playing engage action even at times
when the attacker becomes highly confident that he has been detected and thus
realizes that the data he exfiltrates may be useless. At that point, the attacker
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Fig. 4. Evolution of attacker’s belief over time. If we block the attacker immediately
after detection, he remains highly confident that we cannot employ deceptive actions
which allows him to perform long-term data exfiltration. If we always attempt to deceive
the attacker by engaging him, he realizes that he likely faces a deception and decides to
cause immediate damage – which cannot be prevented by the deceptive engage action.

deviates from the assumed attack plan and opts for causing immediate damage
and leaving the network temporarily (before launching a new attack).

The optimal defense strategy, on the other hand, stabilizes attacker’s belief
about being detected at the value of b = 0.4968. This is the right belief where
the attacker still thinks that it is worth attempting to cause a long term damage
by data exfiltration, despite being vulnerable to defender’s deceptive attempts.

Remark 3 (Curse of exclusion). This result draws one important conclusion
about the use of deception to manipulate attacker’s belief. The decision to
exclude the attacker from the network (or even more importantly the decision
not to block him) leaks a valuable piece of information to the attacker. If we
do not think about blocking the attacker in a strategic way, the attacker can
capitalize on getting this information to devise a powerful attack plan. We have
to weigh the use of stealthy and non-stealthy defensive actions carefully not to
alert the attacker to the use of deception. The optimal defensive strategy (unlike
the always-block and always-engage strategies) achieves a belief point where no
further information leaks to the attacker and the malicious effects of attacker’s
actions are minimized.

5.4 Engaging the Attacker

In Sect. 5.3 we have shown that the common practice in incident response deploy-
ments of blocking the attacker immediately after detection is susceptible to severe
drawbacks. We proposed an alternative strategy, based on a game-theoretic
model, that postpones the decision to block the attacker to minimize the long-
term damage to the network. The key motivation for using this strategy is that by
anticipating malicious actions of the attacker, we can minimize negative impacts
of his actions and delay his progress. On the other hand, excluding the attacker
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from the network is only temporary. The attacker is potentially able to reenter
the network and cause significant damage before we manage to detect him again.

Our strategy has, however, one more significant advantage since it can be
leveraged to decrease false positive rates of the IDS. False detections can have
a considerable negative impact on the network operations. By engaging a sus-
picious user in the network, we can make use of the extra time given by our
deceptive strategy to identify the user, infer their objectives and take proper
defense actions to reduce the impact of the network defense system on legiti-
mate users. To this end, we can use various types of deceptive signals that do
not influence legitimate users considerably, but make the progress of an attacker
difficult. These signals are not explicitly captured in our example, but the model
is general enough to account for them.

We conducted an experimental evaluation of our game-theoretic strategy to
determine the average time between the first IDS alert and the time we decide
to block the user. We evaluated our strategy against an advanced attacker who
plays a best response to strategy σD and we considered only the attacks where
the attacker does not decide to quit the network himself. We found out that
the average time between detection and the time we decide to restrict attacker’s
access is in our case 4.577 time steps. In this time window, the defender gets
additional alerts from the IDS which may help him to decide about the credibility
of the alert better and thus assure that he is about to block a malicious user.

5.5 Robustness of the Model

In real world setups, it need not be possible for the defender to keep track
of attacker’s belief accurately as a result of failing to reconstruct the exact
history of the attacker and/or deficiencies in the model of the network. In
this section, we focus on the impact of not knowing the exact IDS detection

Fig. 5. Expected loss of the defender when using a strategy originating from
an inaccurate model. Strategy is computed while assuming detection probability
p′
trig(n, exfiltrate) and this strategy is evaluated in a network with the detection

probability of ptrig(n, exfiltrate) = 0.1.
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probabilities. We compute the optimal strategy of the defender based on a model
where p′

trig(n, exfiltrate) does not match the detection probability in the real
network. We then evaluate the resulting strategy in the network where the detec-
tion probability is ptrig(n, exfiltrate) = 0.1. Since the model is no longer accu-
rate, the resulting strategies need not be optimal. The experimental evaluation of
these strategies is shown in Fig. 5. The experimental results show that our strat-
egy provides significant room for the error in the design of the model, especially
if we are pessimistic about the detection rates.

6 Conclusions

We have provided a principled analysis of cyber deception in network security
based on game-theoretic foundations. First, we have introduced a generic game-
theoretic model for strategic reasoning about deception, then we applied this
model to the network security, and we illustrated the impact of active deception
on the security level of the network in a case study. Our results have shown that
the use of cyber deception techniques can reduce the risks associated with net-
work operations and minimize the damage a sophisticated attacker can inflict to
the network. The deceptive operation, however, achieves the maximum efficiency
if the attacker is unaware of being deceived. While this result is not surprising,
our analysis provides theory supporting this result.

Our work serves as a proof of concept to motivate the interest in thinking
about active cyber deception in a strategic way. We used a simplified exam-
ple to introduce main ideas and discuss the need for reasoning about the belief
and adaptation process of the adversary. In the future work, however, we plan
to address computational challenges introduced by large networks by leveraging
the structure and symmetries found in the problem. An interesting, and also nat-
ural, continuation of our work is to relax the assumption that the defender can
reconstruct the view of the attacker perfectly. In general, the two-sided imper-
fect information presents significant theoretical and computational challenges,
however, we believe that it is possible to identify significant subclasses relevant
for the network security that allow for efficient solution techniques.
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