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Abstract—The intrinsic error tolerance of neural network (NN)
presents opportunities for approximate computing techniques to
improve the energy efficiency of NN inference. Conventional
approximate computing focuses on exploiting the efficiency-
accuracy trade-off in existing pre-trained networks, which can
lead to suboptimal solutions. In this paper, we first present
AxTrain, a hardware-oriented training framework to facilitate
approximate computing for NN inference. Specifically, AxTrain
leverages the synergy between two orthogonal methods—one
actively searches for a network parameters distribution with
high error tolerance, and the other passively learns resilient
weights by numerically incorporating the noise distributions
of the approximate hardware in the forward pass during the
training phase. Then we incorporate AxTrain framework in
an accuracy-scalable NN accelerator designed for high energy
efficiency. Experimental results from various datasets with dif-
ferent approximation strategies demonstrate AxTrain’s ability
to obtain resilient neural network parameters for approximate
computing and to improve system energy efficiency. And with
AxTrain-guided NN models our proposed accuracy-scalable NN
accelerator could achieve significantly higher energy efficiency
with limited accuracy degradation under joint approximation
techniques.

Index Terms—Approximate computing, Neural network accel-
erator, Hardware-oriented training, Sensitivity analysis, Energy
efficient architecture, Near threshold voltage, approximate mul-
tiplier.

I. INTRODUCTION

A
N Artificial Neural Network (ANN) is a biologically

inspired machine learning model that has been practi-

cally demonstrated to deliver superior performance in many

recognition, mining, and synthesis (RMS) applications [1]. The

success of ANN can be attributed to innovations across the

computing system stack: To achieve higher accuracy, deeper

and more complex networks are created along with more

advanced training algorithm. To speed up network training

and deployment, powerful specialized parallel computing en-

gines (e.g., GPUs) are designed to accelerate computationally

intensive mathematical operations. Despite the improved per-

formance, energy efficiency remains a limiting factor when
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deploying advanced ANNs in IoT devices with stringent power

budgets. For example, a typical wearable health monitoring

device has a maximum power envelop around 180mW [2].

A growing body of research has been proposed to tackle

energy efficiency from diverse perspectives. Algorithmically,

the focus is to simplify neural network (NN) by either propos-

ing concise network models (e.g. ResNet for ImageNet [3],

and binary neural networks [4]); or pruning and compressing

existing models [5]. From the hardware perspective, efficiency-

driven optimizations have been conducted at the architecture,

circuit, and device levels. Customized NN accelerators aim

at higher energy efficiency[6]; approximate circuits trade ac-

curacy for energy efficiency; and emerging technologies (e.g.

RRAM crossbar) provide low-power NN computing substrates

[7] [8]. In this paper, we investigate an auxiliary approach with

a focus on network training that can be generally applied to

facilitate diverse approximate computing techniques, and stud-

ies the efficacy of applying the training approach to achieve

accuracy-scalable computing. The approach is orthogonally

compatible with techniques to improve energy efficiency from

other domains .

Existing approximate computing techniques are confined to

exploiting pre-trained NNs, which can result in suboptimal

solutions. Without knowledge of the underlying hardware, NN

algorithms optimize only for accuracy under the assumption

of ideal hardware implementation, yet they do not consider

error tolerance due to hardware nonidealities. Therefore, small

noises from approximate hardware may lead to severe network

accuracy degradation. Compromises often have to be made to

maintain the accuracy target, leading to conservative approxi-

mation and failure to exploit all the opportunities for efficiency

improvement.

The key question is how to train a robust neural network

that not only achieves high accuracy given ideal hardware as-

sumptions, but is also resilient to noise and errors, so that more

aggressive approximation could be applied without severely

compromising accuracy. As Fig.1 illustrates, a conventional

training algorithm is dedicated to searching for a “global”

minimum which has the smallest loss across the weight

space, ignoring higher loss in the vicinity of the minimum.

Thus perturbations by approximate computing could easily

result in significant loss, as indicated by “Local minimum

1”. Instead of minimizing loss at a single minimum point,

our proposed approximate computing oriented training seeks

a “near optimal” minimum where a “flat” and “good enough”
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Fig. 1. Different types of minimums in NN weight space.

loss surface is preferred and the globally smallest error is not

mandatory, as “Local minimum 2” depicts. Thanks to the flat

error surface, the NN now exhibits a higher degree of tolerance

for approximate computing induced noise.

In this paper, we first propose AxTrain, a hardware-oriented

NN training framework for approximate computing. AxTrain

explores two different paths towards high resilience: 1) an

active method (AxTrain-act) that explicitly biases the training

process to a noise insensitive minimum, and 2) a passive

method (AxTrain-pas) that exposes the model of low-level

hardware imperfection to the high-level training algorithm for

noise tolerance. AxTrain then leverages the synergy between

active and passive methods to facilitate approximate comput-

ing.

In the AxTrain-act method, the innovation is to guide the

training algorithm to improve both network loss and noise

resilience directly. During training, noise sensitivity is also

back propagated along with network loss to the network

parameters, and those parameters get updated in order to

minimize loss and noise sensitivity. This solution can be seen

as an artificial regularization term to bias the training algorithm

towards a high resilience (flat) and accurate (near optimal)

minimum, similar to the L2 norm regularization for the over-

fitting problem.

For the AxTrain-pas method, the error tolerance property of

the NN is leveraged to reduce side effect from approximate

computing. Rather than training with ideal hardware models,

numerical functional models of the approximate hardware are

incorporated along the forward pass in the training step, so that

the training algorithm can learn the noise distribution of the

approximate hardware on its own and descend to a minimum

which is robust to approximate computing. Because with

knowledge of the approximate hardware being employed in the

computing system, the training process experiences different

train sets with slightly modified statistical distributions in each

epoch, and arrives at a robust model that yields high accuracy

with approximate computing.

Since the proposed AxTrain framework can be used to find

a robust NN which facilitates approximate computing, this

advantage motivates the design of an accuracy-scalable NN ac-

celerator which can support various accuracy modes. Under a

relaxed accuracy constraint, the NN accelerator with AxTrain-

guided model can be expected to achieve higher energy

efficiency from approximate computing. We employ variable-

latency approximate multipliers and lower-than-nominal volt-

age (including near-threshold voltage cases) supplied SRAM

storage into an existing accelerator architecture to implement

an accuracy-scalable NN accelerator. For low voltage SRAM

storage, we trade the increased noise probability for reduced

power consumption by leveraging lower than nominal supply

voltage, while for the approximate multipliers the multiplica-

tion accuracy can be reduced for higher energy efficiency by

raising their operating frequency. In this way, the proposed

accuracy-scalable accelerator can be considered as perform-

ing “dynamic (SRAM) voltage and (multiplier) frequency”

(DVFS) scaling to adapt to an appropriate accuracy mode and

maximize energy efficiency according to the given accuracy

requirement.

II. RELATED WORK AND BACKGROUND

A. Related Work

Approximate computing is a promising technique for effi-

ciency optimization [9][10][11][12]. Due to the intrinsic noise

tolerant capability of the NN, diverse techniques have been

explored in prior work that apply approximate computing

approaches to improve NN energy efficiency:

As an example that uses circuit-level techniques to handle

memory bit upsets from error-prone but low power SRAM

storage in NN accelerators, Minerva employs Razor sampling

circuits for fault detection and equips the weight fetch stage

with bit masking and word masking for flipped weights to

mitigate bit-flip errors caused by Near threshold voltage (NTV)

based weight storage [13].

Several prior work follows another direction by fully lever-

aging NN’s self-healing property and demonstrates the benefit

of combining NNs with approximate computing: Olivier shows

NN accelerators can tolerate transistor-level faults by itera-

tively retraining a NN and choose the NN which meets certain

accuracy requirement under those faulty transistors [14]; Zi-

dong et al. perform an exhaustive design space exploration

of an approximate accelerator in which all multipliers are

accuracy-configurable and can be configured individually.

Although it is not cost-efficient to design and deploy an

approximate accelerator which support arbitrary configuration,

Zidong’s work nonetheless sheds light on exploiting NN’s

error tolerant characteristics for approximate computing [15].

Recent research proposes more explicit training techniques

to exploit NN’s intrinsic error tolerance and flexibility to

improve efficiency. For example, both AxNN and Approx-

Ann take neuron criticality into consideration and perform

periodical retraining to heal the noise from approximate

computing[16][17]. AxNN proposes the characterization of

neuron criticality first, then replace those non-critical neurons

with their approximate counterparts. To ensure targeted accu-

racy, iterative retraining with the functionality of approximate

multipliers is carried out for error recovery. Inspired by AxNN,

ApproxAnn proposes a more reliable way to quantify neuron

criticality and adopts iterative heuristics to determine optimal

combinations of approximate configurations (precision of the

multipliers, choice of skipping memory load, bitwidth of

datapath) for approximate computing so that energy efficiency

can be maximized.

Although both AxNN and ApproxAnn strive to take the

advantage of NN’s pliable training process to improve energy
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Fig. 2. A typical neural network topology.

efficiency, certain limitations in their techniques persist: 1)

They require highly configurable hardware where modes of

multipliers can be individually configured to different modes;

2) For large-scale networks with time-multiplexed multipliers

due to area and power constraints, periodic runtime multi-

plier reconfiguration will inevitably degrade accelerator per-

formance. 3) Approximation is performed on a pre-trained

network with hardware-agnostic training, which does not

optimize for error tolerance, so the target accuracies in their

designs are met with relatively conservative approximations.

All these limitations motivate our AxTrain framework.

B. Neural Network Preliminary

Neural network is a network made of artificial neurons.

Inspired by real brain, neural network is expected to roughly

approximate certain functionality with simplified layer struc-

tures. With enough neurons, neural network could act as a

universal approximator to represent any functions.

At the architecture level, ANN can be seen as a parallel

computing engine which consists of a large number of basic

hardware elements, such as multipliers, accumulators, and

nonlinear transformation units. A typical neural network as

shown in Fig.2 consists of an input layer, multiple hidden

layers, and an output layer. During the forward pass, the

input layer retrieves inputs, ain, of a task sample and directly

passes them to the next layer. To generate activations, ai,

for each neuron i in a hidden layer, the hidden layer first

performs multiplication and accumulation,
∑n

j=1 aj × wij ,

using activations aj from the previous layer and network

parameters W (including weights and biases), then feeds the

intermediate results to a nonlinear transformation h, such as

Sigmoid ( 1
1+exp−x ) for the output layer, ReLu (max(x, 0)) for

hidden layers. This process is repeated layer by layer until the

output layer is reached, and the final activations (outputs) from

the output layer are generated for regression and classification.

NN training aims at exploring network parameters which

minimize the error between network outputs and targets. To

reduce the error, backpropagation (BP) is used to propagate

output error backward from the output layer to the previous

layers consecutively and to quantify error contributions from

network parameters by taking derivatives of the output error

with respect to these parameters. Then the parameters are

updated in a backward pass using stochastic gradient descent

to the derivatives to reduce output error. The mathematical

equations for training can be briefly summarized as:

AxTrain-active AxTrain-passive

Offline hardware-oriented training Online Inference

Network
Topology NN

Approximate

Accelerator

NN

Approximate

Accelerator

Pretrained

NN

Sensitivity-aware 
gradient descend 

Approx-hardware 
specification

Fig. 3. Proposed AxTrain framework: 1)First AxTrain-active approach
generates a pretrained NN model, 2) then AxTrain-passive approach works
on the pretrained NN to directly learn hardware characteristics. 3)Finally the
obtained NN model can be used for offline approximate inference in NN
accelerator.

The derivative of the output error with respect to ith neuron

in layer l is

∂E

∂xl
i

= (

Nl+1
∑

j=1

∂E

∂xl+1
j

× wl+1
ji )× h′(xl

i) (1)

The weights’ gradient and updating method are derived as

∂E

∂wl
ji

=
∂E

∂xl
j

× al−1
i (2)

wl
ji = wl

ji − η∆wl
ji (3)

where η is the learning rate.

III. AXTRAIN FRAMEWORK FOR ACCURACY-SCALABLE

COMPUTING

In this section, we present the proposed hardware-oriented

AxTrain framework that searches for a “near optimal” and

resilient minimum to facilitate approximate computing and

achieve a better trade-off between inference accuracy and

energy efficiency. Specifically, AxTrain exploits two different

methods: AxTrain-act explicitly regularizes the NN to de-

scend to parameter distributions that are insensitive to noise;

and AxTrain-pas intentionally models approximate computing-

induced noise in the forward-pass of the training and inter-

nalizes the noise distribution in its learned weights. Finally

AxTrain leverages the synergy between the active and passive

methods by first training with AxTrain-act to reduce overall

sensitivity and then with AxTrain-pas to learn hardware-

specific noise. The workflow of AxTrain is illustrated in Fig.3.

A. AxTrain-active Method

1) Define network sensitivity-oriented regularization:

AxTrain-act introduces robustness as an additional regulariza-

tion term to an NN’s cost function to drive NN training. In ma-

chine learning, regularization is a process that can introduces

prior knowledge to the training process to express preference

in the solution. For example, an L2 regularization term reduces

the magnitudes of NN weights and limits NN capacity to

prevent over-fitting. Similarly, AxTrain-act defines robustness

and incorporates it into the cost function for training, as

illustrated below.

Etot = E + λ · S(w) (4)

where E is the original NN output error. S(w) represents the

network sensitivity, and a lower sensitivity suggests higher
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resilience and more robustness to noise. We use λ as a

preference factor for sensitivity. Based on Eq.4, AxTrain-act

minimizes not only network error but also noise sensitivity.

To reduce the output error, E, training algorithm employs

backpropagation to evaluate the gradient ∂E
∂wl

ij

and update

network weights as described in Section 2.

Since the magnitude of S(w) should reflect how output

deviations are affected by noisy weights, we define a NN’s

sensitivity as

S(w) =
∑

k

(
∑

∀l,ij

|wl
ij ||

∂Ok

∂wl
ij

|) (5)

This definition satisfies four important aspects: 1) We employ

absolute values to guarantee that the training process works

on worst-case sensitivity reduction, and noises from those

sensitive weights cannot cancel out each other to arrive at

a smaller S(w). 2) ∂Ok

∂wl
ij

is the derivative of an output k to

a weight ij in layer l, which is used to measure the outputs’

response with respect to weights perturbation. 3) |w| is also

incorporated. The induced noise from approximate hardware

(low voltage storage in this case) is related to the maximum

values of stored data, i.e., larger weights requires more integer

bits to represent so that bit-flips in the high order bits can

result in larger weight deviations. 4) To minimize heuristic

intervention in the optimization process, we capture the total

sensitivity by summing across all weights, instead of ranking

or partitioning individual weight contribution [16]. Based on

this definition, we can infer that a network with small S(w)
would behave similarly with and without noise, and hence

exhibit better resilience against approximation. The challenge

now is how to reduce network sensitivity S(w) in training.

2) Estimate gradients:

Inspired by BP and SGD, we propose to calculate the gradients

that measure how the sensitivity changes with respect to the

weights and then update the weights accordingly to reduce

sensitivity, similar to the conventional BP weight updates for

minimizing loss.

Taking a specific weight ij as an example, to minimize

the sensitivity we should make the update along its negative

gradient
∂S(w)
∂wij

, which can be derived as

∂S(w)

∂wij

=
∂
∑

k(
∑

ab |wab||
∂Ok

∂wab
|)

∂wij

=
∑

k

(sign(wij)|
∂Ok

∂wij

|

+
∑

ab

(|wab|sign(
∂Ok

∂wab

) · (
∂2Ok

∂wab∂wij

))

(6)

The first term, sign(wij)|
∂Ok

∂wij
|, is evaluated in conventional

BP.

Evaluation of the second term for all w is complicated

because of the second order derivative (Hessian matrix).

Directly calculating the Hessian is a time-consuming process,

hence we adopt Pearlmutter’s algorithm [18] to speed up the

computation, since Pearlmutter’s algorithm can compute NN’s

“Hessian (H) vector (V) product” in O(n) time simply by

another round of forward-backward propagation. In our

case, |w| · sign(∂O
∂w

) could be denoted as vector V , while
∂2O

∂wab∂wij
as the Hessian matrix H for all parameters. Pearl-

mutter’s algorithm proposes the R operator which facilitates

calculation as

RV {f(w)} =
∂f(w + rV )

∂r

∣

∣

∣

∣

r=0

(7)

And based on the definition of R, the basic rules for R can be

derived:

RV {f(w) + h(w)} = RV {f(w)}+RV {h(w)}

RV {f(w) · h(w)} = f(w)RV {h(w)}+ h(w)RV {f(w)}

RV {f(h(w))} = f ′(h(w)) +RV {h(w)}
(8)

Hence the second term V × H of Eq.6 is transformed into

RV {
∂Ok

∂wl
ij

}. After applying R operator to Eq.2, we have:

RV {
∂Ok

∂wl+1
ij

} = RV {
∂Ok

∂xl+1
i

· alj}

= RV {
∂Ok

∂xl+1
i

}alj +RV {a
l
j}

∂Ok

∂xl+1
i

(9)

To compute this equation, we can obtain RV { ∂Ok

∂x
l+1
i

} and

RV {al
j} with a second round propagation as follows:

a) For the forward pass, the R operator is applied to get

RV {aj}:

RV {x
l+1
j } = RV {

n
∑

i=0

ali · w
l+1
ji }

=
∑

i

V l+1
ji · ali +

∑

i

wl+1
ji ·RV {a

l
i}

(10)

RV {a
l+1
j } = RV {h

l+1(xl+1
j )}

= h(l+1)′(xl+1
j ) ·RV {x

l+1
j }

(11)

For the input layer, RV {a
(0)
j } = 0. After forward propagation,

we can get RV {a
l
j};

b)For the backward pass in the hidden layers to get

RV {∂Ok

∂xi

}:

RV {
∂O

∂xl
i

} = RV {(

Nl+1
∑

j=1

∂O

∂xl+1
j

· wl+1
ji ) · h′(xl

i)}

= h
′′

(xl
i)RV {x

l
i}(

Nl+1
∑

j=1

∂O

∂xl+1
j

· wl+1
ji )

+ h′(xl
i)(

Nl+1
∑

j=1

∂O

∂xl+1
j

· V l+1
ji )

+ h′(xl
i)(

Nl+1
∑

j=1

RV {
∂O

∂xl+1
j

} · wl+1
ji )

(12)
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c)For the backward pass in the output layer:

RV {
∂O

∂xo
i

} = RV {
∂O

∂Oi

· h(o)′(xo
i )}

=
∂O

∂Oi

h(o)′′(xo
i )RV {x

o
i }+

∂2O

∂O2
i

RV {Oi}h
(o)′(xo

i )

= h(o)′′(xo
i )RV {x

o
i }

(13)

From the equations above, we can derive RV {aj} and

RV {∂Ok

∂xi

}, then these two terms can be substituted into Eq.8,

and then into Eq.6 so that the influence of network weights

on sensitivity,
∂S(w)
∂wij

, can be computed.

3) Update the preference factor adaptively:

As defined in Eq.4, AxTrain-act aims at reducing both the net-

work error and sensitivity. And to control the balance between

network error and sensitivity, AxTrain-act uses a preference

factor λ to manipulate the magnitude of the sensitivity-related

parameter updating. Choosing an appropriate λ is non-trivial,

because a large λ will hinder final network accuracy while a

small one prevents the full reduction of sensitivity. To choose

λ wisely, we leverage an adaptive update policy based on

[19] to fully reduce the sensitivity and maintain required

accuracy. Instead of using a fixed λ, this policy updates λ

based on training history and on a per epoch basis, as detailed

in Algorithm 1.Before training, a few hyperparameters are

defined as: a initial value of λ is set empirically as one tenth

of the learning rate, the adjusting number ∆λ as one tenth

or one fifth of λ, a targeted error threshold Ethres, a decay

factor σ (e.g., 0.5) for penalizing λ and a weight factor γ (e.g.,

0.9) for summation of errors Ea in the training history. At the

end of each training epoch, a ∆λ will be added to λ to put

more focus on reducing sensitivity (Line 5), if the error Ei in

the current epoch is smaller than Ei−1 in the previous epoch

or Ei is smaller than the target accuracy threshold Ethres

(Line 4). Otherwise, λ gets reduced for accuracy (Line 6).

Specifically, if Ei is still smaller than the weighted summation

Ea in the previous epochs (Line 7), λ is reduced by merely a

∆λ (Line 8), or λ is decayed by the decay factor σ (Line

12). When λ is reduced, λ should be kept to be a non-

negative value (Line 10). Finally, Ea is updated to keep track

of the output error history (Line 13). The balance between

network sensitivity-related optimization and network output

error is maintained dynamically by the proposed preference

factor updating algorithm. When current error Ei is smaller

than previous error Ei−1, the algorithm tends to increase

the proportion of sensitivity-related loss in the cost function

because a conservative value cannot fully exploit the error

tolerance. It is worth noting that the magnitude of the updating

step ∆λ (in line 5) is set to a small value (one-tenth or one-

twentieth of the initial ) so that the output error will not

fluctuate much. In case of sudden error drop, the λ is decayed

by σ (0.5 in our experiments) for error recovery. With the

dynamical adaptation capability, AxTrain-act ensures both the

overall output quality and the noise tolerance.

Algorithm 1 Preference factor λ updating policy

Parameters: Initial λ, ∆λ, Output error threshold Ethres,

Decay factor σ for λ, Weight factor γ for error accumulation

1: Accumulated error Ea = 0
2: while Etot does not convergence do

3: Output Error Ei = AxTrain-act() in ith epoch

4: if Ei < Ethres or Ei < Ei−1 then

5: λ = λ +∆λ //Biasing training to put more focus

on sensitivity reduction

6: else

7: if Ei <= Ea then

8: λ = λ − ∆λ //Biasing training to put more

focus on output error reduction

9: if λ < 0 then

10: λ = 0 // Ensuring a non-negative λ

11: else

12: λ = σ · λ //Decaying λ to regain network

quality

13: Ea = Ei + (1− γ) · Ea

B. AxTrain-passive Method

Different from AxTrain-act, which explicitly optimizes for

robustness, AxTrain-pas exposes the nonideality of approx-

imate hardware to the training algorithm by numerically

mimicking its inexact operations in the forward propagation.

Because of the incorporated hardware knowledge, AxTrain-

pas can learn the noise distribution from approximate hardware

and implicitly exploit the noise insensitive minimum. AxTrain-

pas is a hardware-oriented approach which can be generally

applied to most approximate techniques in NN accelerators:

approximate arithmetic operations [15] for neuron calculation

and fuzzy memorization [11] for parameter storage.

In neuron calculation, the most computational intensive

operations consist of weight activation multiplications and

later additions. Multipliers usually consume higher power and

contribute more delays to the critical path than the adders

used for accumulations, while the precision of multiplications

is relatively less critical than that of additions for NN output

accuracy [20]. All these considerations make multipliers better

candidates for approximation, as shown in Fig.4, where an

approximate multiplier is used in a neuron processing element.

Every time a neuron forward calculation,
∑n

j=1 aj · wij , is

performed, the original accurate multiplications are replaced

by their approximate counterparts.

Power consumption for parameter storage also plays a

significant role in NN accelerators, since NNs often consist of

thousands of weight parameters. Fuzzy storage is thus lever-

aged to trade decreased weight precision for power reduction.

Fig.4 also shows fuzzy storage for local and global weights.

To model the effect of approximate computing in the training

algorithm, AxTrain-pas models the noise induced to network

weights by fuzzy memorization whenever the weights are

retrieved in the forward propagation. Taking less-than-nominal

voltage supplied fuzzy storage (detailed later) as an example,

low supply voltage causes random bit flips, since it renders

SRAM cells less reliable. During training, AxTrain-pas models
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the induced flips as stochastic noise [21] and injects the noise

by randomly flipping the bits in network weights at a certain

probability (based on voltage level and technology). Note

that AxTrain-pas applies approximation statically throughout

the network. This policy reduces the complexity of hardware

implementation, such as the support for runtime multiplier

reconfiguration and memory mode switching.

When applying approximate computing in NN, we should

first minimize noise from the approximate hardware itself.

Taking low voltage supplied storage as an example, the upper

bound of noise in network weights is determined by the

binary format used to represent network weights, e.g., the

noise magnitude for a sign-bit flip in a fixed-point number

corresponds to the maximum value that the fixed point format

can represent. Hence unnecessary high order bits that do not

affect accuracy should be eliminated to confine the effect

of the noise. Most network weights can be optimized to

reside in a range of 10−3 ∼ 2−1, so the integer bits are

not necessary to represent the weights. Fig.5 illustrates the

cumulative distribution function (CDF) of the magnitudes

of NN’s weights and activations in five applications. The

dotted lines shows the statistical results for NN’s weights. On

average, above 90% percent of weights are smaller than 0.5.

We also notice the network’s activations are almost two

orders of magnitude larger than the weights statistically, which

suggests activations and weights should be represented in

different fixed-point formats. Hence, dynamic fixed point

AxTrain-actConvention BP AxTrain-pas

0
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30

40

50

Fig. 6. Comparison of sensitivity maps between conventional BP, AxTrain-
act, and AxTrain-pas.

representation is used in NN accelerators to maintain network

functionality and confine noise [22][23].

Calculate gradients by straight-through estimator. After

augmenting the forward propagation pass with numerical

models of approximate computing, a natural question arises:

How are the gradients backpropagated through approximate

hardware? Given the nonlinear or stochastic nature of approx-

imate hardware, it is hard to analytically compute the precise

derivatives across the entire input range for approximate op-

erations. Inspired by Hinton’s lecture (12b) [24] and Bengio’s

work [25], we adopt the “straight-through estimator” technique

in AxTrain-act as below:

grad in = grad out · 1 ||grad out|<1 (14)

This BP method directly passes gradients from the outputs

of an approximate operator to its inputs, while preventing

noise-induced large gradients from disturbing the training

algorithm’s convergence. Base on our experimental evaluation,

this BP method is effective for AxTrain-pas training.

We examine the efficacy of AxTrain-act and AxTrain-pas by

comparing their weight sensitivity (flatness) with conventional

BP. Fig.6 shows the relative sensitivities of weights from

NN’s last (most critical) layer for the MNIST digit recognition

datasets, where the deeper blue range indicate less sensitive

weights. AxTrain-pas is trained with approximate multipliers

in the most aggressive mode. Fig. 6 demonstrates the AxTrain-

act significantly reduces the sensitivities across all the network

weights, while AxTrain-pas implicitly learns noise distribution

and selectively reduces the sensitivity for those weights which

suffer larger noise from the approximate multiplier.

IV. ACCURACY-SCALABLE NN ARCHITECTURE

So far we have discussed AxTrain as a training framework

towards generating robust NN models to mitigate accuracy

degradation due to the noises from approximate computing.

The superior robustness from AxTrain motivates us to explore

the accuracy-scalable capability for NN hardware acceleration,

i.e., the NN accelerator has the capability to adapt to different

accuracy modes of approximate computing. With traditional

back-propagation (BP) trained network model, the accelerator

rarely operates at approximate modes since noises with small

magnitude can even significantly degrade the inference accu-

racy. By leveraging the robust NN models from AxTrain, the

accuracy-scalable accelerator could achieve higher efficiency

improvement by operating at an less accurate but efficient

mode more often under a slightly relaxed accuracy constraint

(e.g., 2% allowed degradation).
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Hence, to further exploit the advantage of AxTrain, we

propose an accuracy-scalable NN accelerator architecture in

which both the SRAM weight storage and the multipliers

can flexibly switch between the accurate and approximate

modes. Specifically, we build the accuracy-scalable NN ac-

celerator based on an existing flexible data-driven NN accel-

erator named “FlexFlow” [26], as shown in Fig.7. Originally,

FlexFlow employs a weight buffer and a neuron buffer for

storage, a group of processing engines (PE) for computation,

and an instruction decoder for controlling. To perform neuron

calculation, each PE consists of a multiplier, an adder, a neuron

local memory, a weight local memory, and a controller.

To augment the accelerator with accuracy-scalable capabil-

ity, SRAM voltage scaling technique and approximate multi-

plication technique are adopted [11][21]. As shown in Fig.7,

global and local SRAM weight storages reside in an individual

voltage island and their supply voltage can be dynamically

scaled to different levels (accuracy/power modes) [27]. And

a variable-latency approximate multiplier is employed in each

PE, and the accuracy of those multipliers is controlled by scal-

ing its operating frequency. The proposed fixed point variable-

latency multiplier for approximate computing is shown in

Fig.8. The entire multiplication has three accuracy modes.

1) In order to perform an inaccurate but fast multiplication,

we truncate the four high-order bits (significant bits) in the

operands, A,B and sent them to a four-bit multiplier, then

the intermediate multiplication result is left-shifted to generate

Out2 for use. 2) To compensate for accuracy, four high-order

bits of an operand A are multiplied with six low order bit of

another operand B, then this multiplications results are shifted

and added to the former results Out2 from four bits multiplier

to produce Out1. 3) To get the accurate output, the residual

multiplications are performed and added up with those former

results, then accurate results Out0 is attained. Clearly, with

higher accuracy demand, the latency of the multiplier will be

larger, so its frequency will be smaller. From the simulation

results, the critical path latencies of the variable-latency mul-

tiplier in three working modes (M2, M1 and M0) are 0.34ns,

0.41ns and 0.60ns respectfully with increasing accuracy. The

accurate results of multiplications can be guaranteed by run-

ning at low frequency while the approximate results can be

obtained by running at higher frequencies. To sum it up, we

refer these supported approximations as “Dynamic (SRAM)

Voltage (Multiplier) Frequency Scaling (DVFS)” for the NN

accelerator. Note that the bitwidth of accelerator’s datapath is

set to ten while dynamic fixed point format is used to correlate

data representation to the magnitude of network parameters.

Specifically, for NN’s inputs and activations, three bits are

used for the integer part while seven bits for the fractional

part. For NN’s weights, all ten bits are used for the fractional

bits since most weights have very small magnitudes. And when

the multiplier is set to the conservative approximation mode,

M1, during inference, operand A and B should be clarified.

In this accelerator, the activation works as operand A while

the weight as operand B for high inference accuracy since the

magnitudes of activations are larger and the activations are

reused repeatedly for different weights in a layer.

The overall workflow of the accuracy-scalable NN ac-

Fig. 7. The proposed accuracy-scalable NN accelerator architecture.
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celerator consists of two main phases. Before deployment,

AxTrain-guided training finds robust models for approximate

computing at different approximation strategies, i.e., AxTrain-

act approach first strives to reduce network sensitivity to

noise, then AxTrain-pas approach builds NN models for

different approximate computing configurations. Meanwhile

the corresponding statistical results on accuracy could also

be reported. During deployment, based on collected accuracy

information, the configurations for approximate hardwares in

NN accelerator is determined according to the given target

accuracy. For the multipliers, the operating frequency and

datapath selection signal are set. For SRAM weight storage,

its supply voltage is specified and the corresponding voltage

regulator can be configured.

V. EXPERIMENTAL METHODOLOGY

Case studies of approximate hardwares for approximate

inference. 1) Two kinds of approximate multipliers. We use

two different kinds of approximate multipliers in the experi-

ments to demonstrate the generality of AxTrain framework to

different kinds of designs. First, without loss of generality,

to assess the implications of approximate multiplications in

NN accelerator, we adopt an existing approximate multiplier

for weight-activation multiplication [28]. This design explores

the tradeoff between precision and computing efficiency which

is similar to changing the effective width k for computation,

i.e., with a smaller k configuration, the approximate multi-
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plier gains higher energy efficiency at a cost of increased

noise. Second, to build and evaluate the accuracy-scalable

NN accelerator, we leverage a variable-latency approximate

multiplier design as the building blocks for the accelerator.

The structure of the variable-latency multiplier is detailed in

Section IV. The multiplier has three accuracy modes, i.e.,

accurate mode M0, conservative mode M1, aggressive mode

M2. 2) Lower-than-nominal voltage storage. For fuzzy

storage, we leverage lower-than-nominal supply voltage for

SRAM weight storage. Conventionally, SRAM works as a

reliable storage at nominal voltage (e.g., 1.1V). To improve

energy efficiency, the SRAM supply voltage can be reduced

to the low voltage regime at the risk of bit flipping [21]. In

this case, the supply voltage can be treated as a knob to tune

approximate computing and determine the noise probability.

In the experiment, we use three voltage levels: one slightly

lowered voltage level and two NTV voltage levels. We select

two representative knobs (flip rate@voltage: 10%@400mV,

1%@660mV, 0.1%@850mV [21]) for each applications, as

Table I depicts.

Power and performance evaluation flow. To evaluate

the power and performance improvement from approximate

multiplier, we first implement approximate accelerator with

imprecise multipliers using Verilog and then synthesize the

design using the Synopsys Design Compiler with TSMC

65nm library. The power results are gathered using Synopsys

PrimeTime; For near threshold voltage based storage, We

evaluate the low voltage (including NTV) supplied storage by

CACTI-P[29].

Training tool and Dataset. To evaluate the accuracy

of NN, we implement the training algorithm and inference

simulator using the PyTorch deep learning framework. The

datasets we used are detailed in Table I. Breast cancer, Image

segmentation, Ionosphere, and Satimage are obtained from the

UCI Machine Learning Repository [30], and MNIST is a well

known dataset for digit classification [31]. For each dataset,

80% of samples are used for training, while the remaining

20% are used for accuracy testing. In the off-line training,

the networks are first trained with AxTrain-act until both the

network error and sensitivity cost converge, then a few more

epochs (e.g., ten) are trained with AxTrain-pas.

VI. EXPERIMENTAL RESULTS

In the experiment, we first examine the effectiveness of

proposed AxTrain algorithm with approximate multiplier and

low voltage storage separately. We conduct experiments for

five representative applications with four approximate multi-

plier configurations (K1, K2, K3, K4) and two low voltage

levels, which include an aggressive (Agg) lower voltage and

a conservative (Con) higher voltage, as as Table I illustrates.

Then we evaluate the accuracy-scalable NN architecture with

AxTrain-guided models first by using the variable latency

multipliers which have three accuracy modes (M0,M1,M2),

then by incorporating both the variable latency multipliers and

low voltage powered SRAM weight storage.

To examine the AxTrain, first we compare the output error

of NN under different approximate multiplier configurations

with networks trained by conventional BP, the proposed two

methods, AxTrain-act and AxTrain-pas separately, and the

combining scheme AxTrain. The results are shown in Fig.9.

In the figure, the errors under different approximate con-

figurations are normalized to original network results with

accurate multipliers for each application.Fig.9 shows that the

network outputs suffer larger error with more aggressive

approximation configurations. Compared with conventional

BP scheme, AxTrain-act exhibits higher noise tolerance by

reducing the error by 40.55%, 23.60% and 24.41% on average

for K1, K2 and K3, respectively, while AxTrain-pas reduces

the error to 59.93.%, 45.38%, 26.03%. When combining the

active and passive method together, AxTrain further reduces

the errors to 71.95%, 51.90%, 35.26%, respectively. We no-

tice that in a few rare cases (like K4 in MNIST), when

using multipliers with conservative approximation, AxTrain-

act performs slightly better than AxTrain. Due to the intrinsic

error tolerance of the NN, the accuracy degradation caused by

conservative approximate multipliers is quite small, thus the

improvement headroom is limited.

For low voltage supplied SRAM weight storage, we show

the results from fifty runs, since the induced bit-flipping is a

probabilistic event. Fig.10 demonstrates the average accuracies

and the deviations. The output accuracies for both aggressive

and conservative low voltage levels increase by 30.03% and

8.57% on average, compared with conventional BP. This figure

also indicates AxTrain reduces the side effects of bit flip in

aggressive mode and restores the output quality to a higher

level, equals to conventional BP attains in conservative mode.

Note that accuracy is used as the comparison metric instead of

network error, because error magnitude for conventional BP

in the MNIST-Agg case is too large to be properly shown.

For a thorough evaluation of AxTrain, we also compare

the results with two recent approaches, ApproxANN [17] and

AxNN [16]. For ApproxAnn, its optimization can be used

compatibly with AxTrain-act, thanks to the orthogonality of

our training-based approach in supplementing efficient tech-

niques from other domains. Originally, ApproxAnn accepts

a pre-trained BP network as inputs, and ranks the network

neurons based on their criticality. To incorporate approximate

computing, ApproxAnn then conducts the multiplication oper-

ations for the less critical neurons on the approximate multipli-

ers. To mitigate the newly-introduced output error, ApproxAnn

retrains the network. Then neurons ranking is performed again

and more less-critical ones are identified if there are still

accuracy headroom for approximate computing. As the re-

training step progresses, more and more multiplications can

be carried out by approximate multipliers while maintaining

the targeted accuracy (2% maximum allowed degradation

in this case). Unlike AxTrain, which uses one approximate

configuration throughout the inference and proposes to reduce

the corresponding accuracy loss, ApproxAnn tries to employ

as many approximate multiplications as possible to replace the

expensive accurate multipliers without exceeding the accuracy

requirement. So to make a fair comparison, we compare the

number of approximate multipliers ApproxAnn could use with

pre-trained networks using conventional BP and AxTrain-act,

and we show the results for aggressive approximation (K1, K2)
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TABLE I
DATASETS AND PARAMETERS.

Dataset Description #In,#Hiddens,#Out Agg/Con volt #Samples Accuracy

Breast cancer Diagnose cancer 30,64,64,2 400mV,660mV 569 99.12%

Image segmentation Classify outdoor image 19,64,64,7 660mV,850mV 2100 95.71%

Ionosphere Identify radar target 34,50,50,2 660mV,850mV 350 87.14%

Satimage Classify satellite image 36,64,64,7 660mV,850mV 6434 86.71%

MNIST Recognize hand written digit 784,128,128,10 660mV,850mV 60000 97.95%
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Fig. 9. Output loss under different approximate multipliers.
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in Fig.11. As expected, NN under less aggressive K2 could

always employ a larger number of multipliers than under more

aggressive K1. ApproxAnn with an AxTrain-trained network

could use 20.03% more approximate multipliers on average

in the K2 mode and 20.34% more in the K1 mode than

ApproxAnn-BP, which means AxTrain helps ApproxAnn to

better exploit the power saving opportunity. For AxNN, it

measures error contributions of different neurons and statically

select neurons for approximate multiplications, then retrains

the network for error recovery. AxNN reports the energy

improvement over its accurate counterpart under different

accuracy constraints (e.g., maximum 2.5% accuracy loss and

7.5% accuracy loss). Specifically, AxNN achieves 1.58X and

1.75X improvement in application energy for the 2.5% and

7.5% quality constraints on average, correspondingly. In this

experiment, we evaluate AxTrain in the same way, and the

results are listed in Table II. Both the multiplier configurations

and the corresponding energy reductions are given under two

accuracy constraints. Under the 2.5% and 7.5% constraint,
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TABLE II
ENERGY IMPROVEMENT OF AXTRAIN AND AXNN UNDER DIFFERENT

ACCURACY CONSTRAINTS

Applications < 2.5% < 7.5%

Breast
Reduction 1.91X 1.91X

MUL Mode K1 K1

Image
Reduction 1.74X 1.82X

MUL Mode K3 K2

Iosp
Reduction 1.87X 1.87X

MUL Mode K1 K1

Satimage
Reduction 1.85X 1.89X

MUL Mode K2 K1

MNIST
Reduction 2.06X 2.06X

MUL Mode K1 K1

AxTrain AVG Reduction 1.89X 1.91X

AxNN AVG Reduction 1.58X 1.75X

AxTrain achieves 1.89X and 1.91X energy improvement and

outperforms AxNN by 0.31X and 0.16X more reduction,

respectively. Note that in AxTrain the energy for the 7.5%

accuracy constraint over the 2.5% case improves slightly,

this is because in Breast cancer, Iosp, MNIST datasets under

the 2.5% case, AxTrain already enables the most aggressive

approximation mode (K1).

Then, to demonstrate the benefit of AxTrain at the system

level, we compare the FlexFlow accelerator’s lowest power

consumption that approximate computing could attain using

AxTrain and conventional BP, while keeping a target accuracy

(maximum 2% degradation to accurate implementation), as

depicted in Fig.12. On the X axis in this figure, we also

show the approximation mode that AxTrain and BP apply. This

figure shows that AxTrain’s higher noise resilience could result

in more aggressive approximation, which leads to lower power

consumption than conventional BP. To be specific, computa-

tional power and storage power are reduced by 38.78% and

30.81% on average, correspondingly. Notably in the Satimage

dataset the in low voltage storage case, a conservative voltage

of 0.85V is enforced to maintain tight accuracy constraint.

By relaxing the allowed degradation to 6%, a 27.01% power

reduction was be achieved under 0.66V voltage. We also com-

pare the computational power consumption under approximate

multiplier between AxTrain and ApproxANN, and AxTrain

requires 22.91% less power consumption than ApproxANN

on average.

Finally, in order to evaluate the efficacy of the proposed

hardware/software co-design for the accuracy-scalable NN

accelerator, we measure the accuracy, power and performance

of the accelerator. Specifically, we simulate the accelerator

with the variable-latency approximate multipliers working in

different accuracy modes with and without AxTrain-guided

NN models at the nominal voltage level, as shown in Table

III. From the performance and accuracy results, we observe

that along with increased approximation level, the perfor-

mance of NN accelerator improves significantly by 46.34%

and 76.47% on average since the multiplication operations

TABLE III
POWER, PERFORMANCE AND ACCURACY OF ACCELERATOR INFERENCE

WITH THE VARIABLE-LATENCY MULTIPLIERS W/ AND W/O AXTRAIN

Applications Mode 0 Mode 1 Mode 2

Breast

Acc w/ (%) 99.12 98.24 95.61

Acc w/o (%) 97.36 77.19 78.07

Power (mW) 103.80 95.47 92.40

Perf (GOPS) 196.92 288.1801 347.51

Image

Acc w/ 95.24 95.71 79.76

Acc w/o 95.47 30.71 27.86

Power 105.43 96.97 93.85

Perf 200.0 292.68 352.94

Iosp

Acc w/ 94.28 94.25 91.42

Acc w/o 87.14 35.71 35.41

Power 83.77 77.10 74.65

Perf 157.51 230.50 277.96

Satimage

Acc w/ 86.32 85.85 76.77

Acc w/o 88.96 67.52 40.64

Power 106.99 98.37 95.19

Perf 203.81 298.26 359.66

MNIST

Acc w/ 98.21 98.20 98.1

Acc w/o 98.0 88.94 77.89

Power 118.68 109.71 106.41

Perf 211.95 310.18 374.04

works at higher frequencies. Besides, the energy efficiency

also improves by 58.97% and 97.95% on average. For the

accuracy part, AxTrain helps to raise the inference accuracy

by 34.44% and 36.36% on average in two approximate modes

compared with the BP-trained NN models. To further evaluate

the potential of the proposed co-design, we evaluate the

design incorporating both the approximate multipliers and

lower-than-nominal voltage based SRAM weight storage. The

accuracy and power results for four different approximation

combinations (two low voltage levels with two approximate

modes for multipliers) are listed in Table IV. We observe that

further with incorporating low voltage based approximation,

the inference accuracy degrades only by 2.47% and 1.448%

on average for approximate multipliers in M1 and M2 modes,

correspondingly. These results prove that proposed AxTrain

could help to tolerate the exacerbated noise from the com-

bined noise source. And This observation also indicates with

a further relaxed accuracy constraint (2≈3% more allowed

degradation), the NN accelerator could achieve lower power

consumption with more aggressive approximation, in this case

the NN accelerator with the combined approximations con-

sumes 66.85% less power on average than the accelerator with

approximate multipliers only. Concluded from this experiment,

the accuracy-scalable accelerator with AxTrain could achieve

a better trade-off between energy efficiency and inference

accuracy, and AxTrain could also be applied to the exacerbated

noise scenarios which have a combined noise source.

VII. CONCLUSION

Approximate computing leverages the intrinsic error tol-

erance of a neural network for improved energy efficiency.
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TABLE IV
POWER AND ACCURACY OF ACCELERATOR INFERENCE COMBINING BOTH

THE VARIABLE-LATENCY MULTIPLIERS AND LOW VOLTAGE SRAM
STORAGE WITH AXTRAIN-GUIDED MODELS

Applications
M1 M1 M2 M2
Con Agg Con Agg

Breast
Acc mean 97.81 96.00 96.35 95.21
Acc std 0.7571 2.256 0.3248 2.332
Power 55.4857 50.59 52.41 47.52

Image
Acc mean 96.09 94.08 79.71 77.44

Acc std 0.5875 0.8451 0.3377 1.4023
Power 67.157 56.37 64.04 53.2468

Iosp
Acc mean 91.11 88.71 90.43 90.86

Acc std 1.268 2.602 1.010 2.101
Power 53.52 44.94 51.06 42.48

Satimage
Acc mean 84.40 81.57 77.09 73.47

Acc std 0.7000 0.8221 0.3856 0.9340
Power 68.00 57.02 64.82 53.84

MNIST
Acc mean 97.22 92.81 97.53 90.75

Acc std 0.0882 0.1666 0.0608 0.2133
Power 78.15 66.74 74.85 63.43

The most critical challenge of this technique is to how to

effectively maintain “good enough” accuracy while at the same

time exploiting aggressive approximation. In order to tackle

this problem, NN training process should be aware of the

functionality of inference hardware instead of just conducting

hardware-agnostic training that is solely driven by maximizing

accuracy under ideal hardware conditions. In this paper, we

propose the AxTrain framework, which trains networks for

both accuracy and noise resilience. With active training for

sensitivity reduction and passive learning the characteristics of

underly approximate hardwares, AxTrain reduces NN’s noise

sensitivity and improves its resilience against approximation.

Moreover, the advantages from AxTrain motivate the design

of an accuracy-scalable neural network accelerator which has

the flexibility to reconfigure to different accuracy modes.

Hence based on the given scalable accuracy requirement,

the neural network accelerator can adapt to a certain mode

which maximizes energy efficiency. Experimental results for

five applications with near threshold voltage SRAM and ap-

proximate multiplier based approximate computing techniques

demonstrate that our proposed AxTrain framework could lead

to more robust networks than conventional hardware-agnostic

training frameworks and can be generally applied to diverse

approximation techniques. Leveraging this proven AxTrain-

guided model, our proposed accuracy-scalable accelerator can

achieve better trade-off between inference accuracy and energy

efficiency, as supported by our system-level performance,

power, and accuracy simulation results.
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