This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2845396, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS, VOL. XX, NO. X, DECEMBER 2017 1

Joint Design of Training and Hardware Towards
Efficient and Accuracy-Scalable Neural Network
Inference

Xin He, Member, IEEE, Wenyan Lu, Student member, IEEE, Guihai Yan, Member, IEEE,
and Xuan Zhang, Member, IEEE

Abstract—The intrinsic error tolerance of neural network (NN)
presents opportunities for approximate computing techniques to
improve the energy efficiency of NN inference. Conventional
approximate computing focuses on exploiting the efficiency-
accuracy trade-off in existing pre-trained networks, which can
lead to suboptimal solutions. In this paper, we first present
AxTrain, a hardware-oriented training framework to facilitate
approximate computing for NN inference. Specifically, AxTrain
leverages the synergy between two orthogonal methods—one
actively searches for a network parameters distribution with
high error tolerance, and the other passively learns resilient
weights by numerically incorporating the noise distributions
of the approximate hardware in the forward pass during the
training phase. Then we incorporate AxTrain framework in
an accuracy-scalable NN accelerator designed for high energy
efficiency. Experimental results from various datasets with dif-
ferent approximation strategies demonstrate AxTrain’s ability
to obtain resilient neural network parameters for approximate
computing and to improve system energy efficiency. And with
AxTrain-guided NN models our proposed accuracy-scalable NN
accelerator could achieve significantly higher energy efficiency
with limited accuracy degradation under joint approximation
techniques.

Index Terms—Approximate computing, Neural network accel-
erator, Hardware-oriented training, Sensitivity analysis, Energy
efficient architecture, Near threshold voltage, approximate mul-
tiplier.

I. INTRODUCTION

N Artificial Neural Network (ANN) is a biologically

inspired machine learning model that has been practi-
cally demonstrated to deliver superior performance in many
recognition, mining, and synthesis (RMS) applications [1]. The
success of ANN can be attributed to innovations across the
computing system stack: To achieve higher accuracy, deeper
and more complex networks are created along with more
advanced training algorithm. To speed up network training
and deployment, powerful specialized parallel computing en-
gines (e.g., GPUs) are designed to accelerate computationally
intensive mathematical operations. Despite the improved per-
formance, energy efficiency remains a limiting factor when

X. He and X. Zhang are with the Department of Electrical and Systems
Engineering, Washington University in St. Louis, St. Louis, MO, 63130 USA
e-mail: ({xin.he, xuan.zhang} @wustl.edu).

W. Lu and G. Yan are with the State Key Laboratory of Computer Archi-
tecture, Institute of Computing Technology, Chinese Academy of Sciences.
W. Lu is also with the University of Chinese Academy of Sciences, Beijing,
China e-mail: ({luwenyan, yan})@ict.ac.cn

Manuscript received Dec 15, 2017.

deploying advanced ANNSs in IoT devices with stringent power
budgets. For example, a typical wearable health monitoring
device has a maximum power envelop around 180mW [2].

A growing body of research has been proposed to tackle
energy efficiency from diverse perspectives. Algorithmically,
the focus is to simplify neural network (NN) by either propos-
ing concise network models (e.g. ResNet for ImageNet [3],
and binary neural networks [4]); or pruning and compressing
existing models [5]. From the hardware perspective, efficiency-
driven optimizations have been conducted at the architecture,
circuit, and device levels. Customized NN accelerators aim
at higher energy efficiency[6]; approximate circuits trade ac-
curacy for energy efficiency; and emerging technologies (e.g.
RRAM crossbar) provide low-power NN computing substrates
[7] [8]. In this paper, we investigate an auxiliary approach with
a focus on network training that can be generally applied to
facilitate diverse approximate computing techniques, and stud-
ies the efficacy of applying the training approach to achieve
accuracy-scalable computing. The approach is orthogonally
compatible with techniques to improve energy efficiency from
other domains .

Existing approximate computing techniques are confined to
exploiting pre-trained NNs, which can result in suboptimal
solutions. Without knowledge of the underlying hardware, NN
algorithms optimize only for accuracy under the assumption
of ideal hardware implementation, yet they do not consider
error tolerance due to hardware nonidealities. Therefore, small
noises from approximate hardware may lead to severe network
accuracy degradation. Compromises often have to be made to
maintain the accuracy target, leading to conservative approxi-
mation and failure to exploit all the opportunities for efficiency
improvement.

The key question is how to train a robust neural network
that not only achieves high accuracy given ideal hardware as-
sumptions, but is also resilient to noise and errors, so that more
aggressive approximation could be applied without severely
compromising accuracy. As Fig.l illustrates, a conventional
training algorithm is dedicated to searching for a “global”
minimum which has the smallest loss across the weight
space, ignoring higher loss in the vicinity of the minimum.
Thus perturbations by approximate computing could easily
result in significant loss, as indicated by “Local minimum
1”. Instead of minimizing loss at a single minimum point,
our proposed approximate computing oriented training seeks
a “near optimal” minimum where a “flat” and “good enough”

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2845396, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS, VOL. XX, NO. X, DECEMBER 2017 2

=
!

| |:I:I:I: Flat vally %Sharp vally ‘

Network loss

Error
Constraint

Loca 4
minimum 2 Weights (‘i\f)
»

Fig. 1. Different types of minimums in NN weight space.

loss surface is preferred and the globally smallest error is not
mandatory, as “Local minimum 2” depicts. Thanks to the flat
error surface, the NN now exhibits a higher degree of tolerance
for approximate computing induced noise.

In this paper, we first propose AxTrain, a hardware-oriented
NN training framework for approximate computing. AxTrain
explores two different paths towards high resilience: 1) an
active method (AxTrain-act) that explicitly biases the training
process to a noise insensitive minimum, and 2) a passive
method (AxTrain-pas) that exposes the model of low-level
hardware imperfection to the high-level training algorithm for
noise tolerance. AxTrain then leverages the synergy between
active and passive methods to facilitate approximate comput-
ing.

In the AxTrain-act method, the innovation is to guide the
training algorithm to improve both network loss and noise
resilience directly. During training, noise sensitivity is also
back propagated along with network loss to the network
parameters, and those parameters get updated in order to
minimize loss and noise sensitivity. This solution can be seen
as an artificial regularization term to bias the training algorithm
towards a high resilience (flat) and accurate (near optimal)
minimum, similar to the L2 norm regularization for the over-
fitting problem.

For the AxTrain-pas method, the error tolerance property of
the NN is leveraged to reduce side effect from approximate
computing. Rather than training with ideal hardware models,
numerical functional models of the approximate hardware are
incorporated along the forward pass in the training step, so that
the training algorithm can learn the noise distribution of the
approximate hardware on its own and descend to a minimum
which is robust to approximate computing. Because with
knowledge of the approximate hardware being employed in the
computing system, the training process experiences different
train sets with slightly modified statistical distributions in each
epoch, and arrives at a robust model that yields high accuracy
with approximate computing.

Since the proposed AxTrain framework can be used to find
a robust NN which facilitates approximate computing, this
advantage motivates the design of an accuracy-scalable NN ac-
celerator which can support various accuracy modes. Under a
relaxed accuracy constraint, the NN accelerator with AxTrain-
guided model can be expected to achieve higher energy
efficiency from approximate computing. We employ variable-
latency approximate multipliers and lower-than-nominal volt-
age (including near-threshold voltage cases) supplied SRAM
storage into an existing accelerator architecture to implement

an accuracy-scalable NN accelerator. For low voltage SRAM
storage, we trade the increased noise probability for reduced
power consumption by leveraging lower than nominal supply
voltage, while for the approximate multipliers the multiplica-
tion accuracy can be reduced for higher energy efficiency by
raising their operating frequency. In this way, the proposed
accuracy-scalable accelerator can be considered as perform-
ing “dynamic (SRAM) voltage and (multiplier) frequency”
(DVES) scaling to adapt to an appropriate accuracy mode and
maximize energy efficiency according to the given accuracy
requirement.

II. RELATED WORK AND BACKGROUND
A. Related Work

Approximate computing is a promising technique for effi-
ciency optimization [9][10][1 1][12]. Due to the intrinsic noise
tolerant capability of the NN, diverse techniques have been
explored in prior work that apply approximate computing
approaches to improve NN energy efficiency:

As an example that uses circuit-level techniques to handle
memory bit upsets from error-prone but low power SRAM
storage in NN accelerators, Minerva employs Razor sampling
circuits for fault detection and equips the weight fetch stage
with bit masking and word masking for flipped weights to
mitigate bit-flip errors caused by Near threshold voltage (NTV)
based weight storage [13].

Several prior work follows another direction by fully lever-
aging NN’s self-healing property and demonstrates the benefit
of combining NNs with approximate computing: Olivier shows
NN accelerators can tolerate transistor-level faults by itera-
tively retraining a NN and choose the NN which meets certain
accuracy requirement under those faulty transistors [14]; Zi-
dong et al. perform an exhaustive design space exploration
of an approximate accelerator in which all multipliers are
accuracy-configurable and can be configured individually.
Although it is not cost-efficient to design and deploy an
approximate accelerator which support arbitrary configuration,
Zidong’s work nonetheless sheds light on exploiting NN’s
error tolerant characteristics for approximate computing [15].
Recent research proposes more explicit training techniques
to exploit NN’s intrinsic error tolerance and flexibility to
improve efficiency. For example, both AXNN and Approx-
Ann take neuron criticality into consideration and perform
periodical retraining to heal the noise from approximate
computing[16][17]. AXxNN proposes the characterization of
neuron criticality first, then replace those non-critical neurons
with their approximate counterparts. To ensure targeted accu-
racy, iterative retraining with the functionality of approximate
multipliers is carried out for error recovery. Inspired by AxNN,
ApproxAnn proposes a more reliable way to quantify neuron
criticality and adopts iterative heuristics to determine optimal
combinations of approximate configurations (precision of the
multipliers, choice of skipping memory load, bitwidth of
datapath) for approximate computing so that energy efficiency
can be maximized.

Although both AXNN and ApproxAnn strive to take the
advantage of NN’s pliable training process to improve energy

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2845396, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS, VOL. XX, NO. X, DECEMBER 2017 3

Inputlayer N, Hidden layer N, Hidden layer N, Output layer N, Target

Activation function: hl

Fig. 2. A typical neural network topology.

efficiency, certain limitations in their techniques persist: 1)
They require highly configurable hardware where modes of
multipliers can be individually configured to different modes;
2) For large-scale networks with time-multiplexed multipliers
due to area and power constraints, periodic runtime multi-
plier reconfiguration will inevitably degrade accelerator per-
formance. 3) Approximation is performed on a pre-trained
network with hardware-agnostic training, which does not
optimize for error tolerance, so the target accuracies in their
designs are met with relatively conservative approximations.
All these limitations motivate our AxTrain framework.

B. Neural Network Preliminary

Neural network is a network made of artificial neurons.
Inspired by real brain, neural network is expected to roughly
approximate certain functionality with simplified layer struc-
tures. With enough neurons, neural network could act as a
universal approximator to represent any functions.

At the architecture level, ANN can be seen as a parallel
computing engine which consists of a large number of basic
hardware elements, such as multipliers, accumulators, and
nonlinear transformation units. A typical neural network as
shown in Fig.2 consists of an input layer, multiple hidden
layers, and an output layer. During the forward pass, the
input layer retrieves inputs, a;,, of a task sample and directly
passes them to the next layer. To generate activations, a;,
for each neuron ¢ in a hidden layer, the hidden layer first
performs multiplication and accumulation, Z?:I aj X w;j,
using activations a; from the previous layer and network
parameters W (including weights and biases), then feeds the
intermediate results to a nonlinear transformation A, such as
Sigmoid (H#p_w) for the output layer, ReLu (max(z, 0)) for
hidden layers. This process is repeated layer by layer until the
output layer is reached, and the final activations (outputs) from
the output layer are generated for regression and classification.

NN training aims at exploring network parameters which
minimize the error between network outputs and targets. To
reduce the error, backpropagation (BP) is used to propagate
output error backward from the output layer to the previous
layers consecutively and to quantify error contributions from
network parameters by taking derivatives of the output error
with respect to these parameters. Then the parameters are
updated in a backward pass using stochastic gradient descent
to the derivatives to reduce output error. The mathematical
equations for training can be briefly summarized as:

Offline hardware-oriented training Online Inference

|
|
|
|
|
Pretrained |
|

AxTrain-active —"» AxTrain-passive —> o

Network
Topology

Approximate
Accelerator

E—
Approx-hardware
pecification

Fig. 3. Proposed AxTrain framework: 1)First AxTrain-active approach
generates a pretrained NN model, 2) then AxTrain-passive approach works
on the pretrained NN to directly learn hardware characteristics. 3)Finally the
obtained NN model can be used for offline approximate inference in NN
accelerator.

The derivative of the output error with respect to ¢th neuron
in layer [is

oE PN

ozt (Z

7 j=1

OF
améﬁ-l

x whth) < W (a}) (1)

The weights’ gradient and updating method are derived as

8E 8E 1—1

gE _ 98 2

8w§i 8xé- " @
Ll — Al 3

Wi = Wi — NAW; (3)

where 7 is the learning rate.

ITI. AXTRAIN FRAMEWORK FOR ACCURACY-SCALABLE
COMPUTING

In this section, we present the proposed hardware-oriented
AxTrain framework that searches for a “near optimal” and
resilient minimum to facilitate approximate computing and
achieve a better trade-off between inference accuracy and
energy efficiency. Specifically, AxTrain exploits two different
methods: AxTrain-act explicitly regularizes the NN to de-
scend to parameter distributions that are insensitive to noise;
and AxTrain-pas intentionally models approximate computing-
induced noise in the forward-pass of the training and inter-
nalizes the noise distribution in its learned weights. Finally
AxTrain leverages the synergy between the active and passive
methods by first training with AxTrain-act to reduce overall
sensitivity and then with AxTrain-pas to learn hardware-
specific noise. The workflow of AxTrain is illustrated in Fig.3.

A. AxTrain-active Method

1) Define network sensitivity-oriented regularization:
AxTrain-act introduces robustness as an additional regulariza-
tion term to an NN’s cost function to drive NN training. In ma-
chine learning, regularization is a process that can introduces
prior knowledge to the training process to express preference
in the solution. For example, an L2 regularization term reduces
the magnitudes of NN weights and limits NN capacity to
prevent over-fitting. Similarly, AxTrain-act defines robustness
and incorporates it into the cost function for training, as
illustrated below.

Etot = E+)\S(’U}) (4)

where F is the original NN output error. S(w) represents the
network sensitivity, and a lower sensitivity suggests higher

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2845396, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS, VOL. XX, NO. X, DECEMBER 2017 4

resilience and more robustness to noise. We use A as a
preference factor for sensitivity. Based on Eq.4, AxTrain-act
minimizes not only network error but also noise sensitivity.
To reduce the output error, F, training algorithm employs

: : oOF
backpropagation to evaluate the gradient Bul, and update

network weights as described in Section 2.

Since the magnitude of S(w) should reflect how output
deviations are affected by noisy weights, we define a NN’s

sensitivity as
00
=20 il 5)

k Vlij

This definition satisfies four important aspects: 1) We employ
absolute values to guarantee that the training process works
on worst-case sensitivity reduction, and noises from those
sensitive weights cannot cancel out each other to arrive at

a smaller S(w). 2) 80{“_ is the derivative of an output k to

a weight ¢j in layer [, which is used to measure the outputs’
response with respect to weights perturbation. 3) |w| is also
incorporated. The induced noise from approximate hardware
(low voltage storage in this case) is related to the maximum
values of stored data, i.e., larger weights requires more integer
bits to represent so that bit-flips in the high order bits can
result in larger weight deviations. 4) To minimize heuristic
intervention in the optimization process, we capture the total
sensitivity by summing across all weights, instead of ranking
or partitioning individual weight contribution [16]. Based on
this definition, we can infer that a network with small S(w)
would behave similarly with and without noise, and hence
exhibit better resilience against approximation. The challenge
now is how to reduce network sensitivity S(w) in training.

2) Estimate gradients:
Inspired by BP and SGD, we propose to calculate the gradients
that measure how the sensitivity changes with respect to the
weights and then update the weights accordingly to reduce
sensitivity, similar to the conventional BP weight updates for
minimizing loss.

Taking a specific weight ¢j as an example, to minimize
the sensitivity we should make the update along its negative

gradient = 85(“’) , which can be derived as
0S(w) DO |wab”ngi|)
8wij o 8wij
) 90y,
= Zk:(s’g”(w”’)'aTij' 6)
, 00y, 920y,
+ 2 (walsign(5,1) - (Gu—e-

ab

The first term, sign(w;;)| awk |, is evaluated in conventional
BP.

Evaluation of the second term for all w is complicated
because of the second order derivative (Hessian matrix).
Directly calculating the Hessian is a time-consuming process,
hence we adopt Pearlmutter’s algorithm [18] to speed up the
computation, since Pearlmutter’s algorithm can compute NN’s
“Hessian (H) vector (V) product” in O(n) time simply by

another round of forward-backward propagation. In our

case, |w| - sign(22) could be denoted as vector V, while
% as the Hessian matrix H for all parameters. Pearl-
Wb OW

mutter’s algorithm proposes the R operator which facilitates
calculation as

Ry{f(w)} =

And based on the definition of R, the basic rules for R can be
derived:

of (w+rV)
or —0

(7

Ry{f(w) + h(w)} = Rv{f(w)} + Ry {h(w)}
Ry{f(w) - h(w)} = f(w)Ry {h(w)} + h(w)Rv{f(w)}
Ry {f(h(w))} = f'(h(w)) + Ry {h(w)}

®)

Hence the second term V' x H of Eq.6 is transformed into
Ry { a%k. }. After applying R operator to Eq.2, we have:

ou
00y, 90,
Ry{—7} =Rv{_—7 o}
B +1) {+1 J
w ij Z‘Z (9)

aOk 1 1 aOk

To compute this equation, we can obtain RV{%} and
s

RV{a;} with a second round propagation as follows:

a) For the forward pass, the R operator is applied to get
Ry {a;}:

Rv{lerl} _ RV{ZG/ wl+1

Z Vl+1 a + Z lerl RV{ai}

(10)

Rv{aéﬂ} = Rv{hl+1(x§-+1)}

= RO) Ry {1

For the input layer, Rv{ag.o)} = 0. After forward propagation,
we can get Ry {a}};

(1)

b)For the backward pass in the hidden layers to get
80y,
Ry {5z}

Niq1
90 00 i
Rv{@}zRv{(; st) B (zh))
Ny
P 00
=h' (z)Ry{zl} () E cwih)
j=1 9%;
(12)
s 90
DY S V)
j=1
Ny

Z RV{@ l+1} l+1)

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2845396, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS, VOL. XX, NO. X, DECEMBER 2017 5

c)For the backward pass in the output layer:

o b (e}

ao o (oo, PO

= h<") (27) Ry {z7}

RAGe) =

RV{O}h "(x7)

(13)

From the equations above, we can derive Ry{a;} and

Ry {BO’“ }, then these two terms can be substituted into Eq.8,

and then' into Eq.6 so that the influence of network weights
85’ (w)

on sensitivity, , can be computed.

3) Update the preference factor adaptively:

As defined in Eq.4, AxTrain-act aims at reducing both the net-
work error and sensitivity. And to control the balance between
network error and sensitivity, AxTrain-act uses a preference
factor A to manipulate the magnitude of the sensitivity-related
parameter updating. Choosing an appropriate A is non-trivial,
because a large A will hinder final network accuracy while a
small one prevents the full reduction of sensitivity. To choose
A wisely, we leverage an adaptive update policy based on
[19] to fully reduce the sensitivity and maintain required
accuracy. Instead of using a fixed A, this policy updates A
based on training history and on a per epoch basis, as detailed
in Algorithm 1.Before training, a few hyperparameters are
defined as: a initial value of)\ is set empirically as one tenth
of the learning rate, the adjusting number AX as one tenth
or one fifth of A, a targeted error threshold Ey,.s, a decay
factor o (e.g., 0.5) for penalizing A and a weight factor v (e.g.,
0.9) for summation of errors E, in the training history. At the
end of each training epoch, a A\ will be added to A to put
more focus on reducing sensitivity (Line 5), if the error E; in
the current epoch is smaller than F;_; in the previous epoch
or E; is smaller than the target accuracy threshold Ejyj es
(Line 4). Otherwise, \ gets reduced for accuracy (Line 6).
Specifically, if F; is still smaller than the weighted summation
E, in the previous epochs (Line 7), A is reduced by merely a
AM (Line 8), or A is decayed by the decay factor o (Line
12). When X is reduced, A should be kept to be a non-
negative value (Line 10). Finally, E, is updated to keep track
of the output error history (Line 13). The balance between
network sensitivity-related optimization and network output
error is maintained dynamically by the proposed preference
factor updating algorithm. When current error E; is smaller
than previous error F;_;, the algorithm tends to increase
the proportion of sensitivity-related loss in the cost function
because a conservative value cannot fully exploit the error
tolerance. It is worth noting that the magnitude of the updating
step A\ (in line 5) is set to a small value (one-tenth or one-
twentieth of the initial) so that the output error will not
fluctuate much. In case of sudden error drop, the A is decayed
by o (0.5 in our experiments) for error recovery. With the
dynamical adaptation capability, AxTrain-act ensures both the
overall output quality and the noise tolerance.

Algorithm 1 Preference factor A updating policy

Parameters: Initial A, A\, Output error threshold Eppes,
Decay factor o for A, Weight factor « for error accumulation

1: Accumulated error £, = 0

2: while E},; does not convergence do

3: Output Error E; = AxTrain-act() in ith epoch

4 if £; < Eypres or E; < E;_1 then

5 A = A+ A //Biasing training to put more focus
on sensitivity reduction

6: else

7: if £, <= FE, then

8: A = A — A\ //Biasing training to put more
focus on output error reduction

9: if A < 0 then

10: A = 0 // Ensuring a non-negative A

11: else

12: A = o0 - A\ //Decaying A\ to regain network

quality
13: E,=E;+(1—-7~)-E,

B. AxTrain-passive Method

Different from AxTrain-act, which explicitly optimizes for
robustness, AxTrain-pas exposes the nonideality of approx-
imate hardware to the training algorithm by numerically
mimicking its inexact operations in the forward propagation.
Because of the incorporated hardware knowledge, AxTrain-
pas can learn the noise distribution from approximate hardware
and implicitly exploit the noise insensitive minimum. AxTrain-
pas is a hardware-oriented approach which can be generally
applied to most approximate techniques in NN accelerators:
approximate arithmetic operations [5] for neuron calculation
and fuzzy memorization [1] for parameter storage.

In neuron calculation, the most computational intensive
operations consist of weight activation multiplications and
later additions. Multipliers usually consume higher power and
contribute more delays to the critical path than the adders
used for accumulations, while the precision of multiplications
is relatively less critical than that of additions for NN output
accuracy [20]. All these considerations make multipliers better
candidates for approximation, as shown in Fig.4, where an
approximate multiplier is used in a neuron processing element.
Every time a neuron forward calculation, 2?21 aj - Wy, 18
performed, the original accurate multiplications are replaced
by their approximate counterparts.

Power consumption for parameter storage also plays a
significant role in NN accelerators, since NNs often consist of
thousands of weight parameters. Fuzzy storage is thus lever-
aged to trade decreased weight precision for power reduction.
Fig.4 also shows fuzzy storage for local and global weights.
To model the effect of approximate computing in the training
algorithm, AxTrain-pas models the noise induced to network
weights by fuzzy memorization whenever the weights are
retrieved in the forward propagation. Taking less-than-nominal
voltage supplied fuzzy storage (detailed later) as an example,
low supply voltage causes random bit flips, since it renders
SRAM cells less reliable. During training, AxTrain-pas models

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2845396, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS, VOL. XX, NO. X, DECEMBER 2017 6

AxTrain-act

eee Fuzzy global
weight storage
<

Fuzzy weight buffer
E L YKo
(S Input buffer
o — 5
82 i Inexac
£ 2 multiplie
< o + REG

Output buffer

Fig. 4. Approximate computing in neural network accelerators.

——Breast_acts

— Segmentation_acts
losp_acts

— Satimage_acts

~——MNIST _acts
Breast_Ws

= = Segmentation_Ws | 1

- = losp_Ws .l

= = Satimage_Ws
MNIST_Ws

Probability

0 0.2 0.4 0.6 0.8 1 12 1.4 16 1.8 2
Magnitude

Fig. 5. Cumulative distribution function (CDF) of the magnitudes of NN’s
weights and activations

the induced flips as stochastic noise [21] and injects the noise
by randomly flipping the bits in network weights at a certain
probability (based on voltage level and technology). Note
that AxTrain-pas applies approximation statically throughout
the network. This policy reduces the complexity of hardware
implementation, such as the support for runtime multiplier
reconfiguration and memory mode switching.

When applying approximate computing in NN, we should
first minimize noise from the approximate hardware itself.
Taking low voltage supplied storage as an example, the upper
bound of noise in network weights is determined by the
binary format used to represent network weights, e.g., the
noise magnitude for a sign-bit flip in a fixed-point number
corresponds to the maximum value that the fixed point format
can represent. Hence unnecessary high order bits that do not
affect accuracy should be eliminated to confine the effect
of the noise. Most network weights can be optimized to
reside in a range of 1072 ~ 27!, so the integer bits are
not necessary to represent the weights. Fig.5 illustrates the
cumulative distribution function (CDF) of the magnitudes
of NN’s weights and activations in five applications. The
dotted lines shows the statistical results for NN’s weights. On
average, above 90% percent of weights are smaller than 0.5.

We also notice the network’s activations are almost two
orders of magnitude larger than the weights statistically, which
suggests activations and weights should be represented in
different fixed-point formats. Hence, dynamic fixed point

Convention BP
o

AxTrain-pas 5
40
30
20
10
0

Fig. 6. Comparison of sensitivity maps between conventional BP, AxTrain-
act, and AxTrain-pas.

representation is used in NN accelerators to maintain network
functionality and confine noise [22][23].

Calculate gradients by straight-through estimator. After
augmenting the forward propagation pass with numerical
models of approximate computing, a natural question arises:
How are the gradients backpropagated through approximate
hardware? Given the nonlinear or stochastic nature of approx-
imate hardware, it is hard to analytically compute the precise
derivatives across the entire input range for approximate op-
erations. Inspired by Hinton’s lecture (12b) [24] and Bengio’s
work [25], we adopt the “straight-through estimator” technique
in AxTrain-act as below:

(14)

grad_in = grad_out - 1 ||gmd_out\<1

This BP method directly passes gradients from the outputs
of an approximate operator to its inputs, while preventing
noise-induced large gradients from disturbing the training
algorithm’s convergence. Base on our experimental evaluation,
this BP method is effective for AxTrain-pas training.

We examine the efficacy of AxTrain-act and AxTrain-pas by
comparing their weight sensitivity (flatness) with conventional
BP. Fig.6 shows the relative sensitivities of weights from
NN’s last (most critical) layer for the MNIST digit recognition
datasets, where the deeper blue range indicate less sensitive
weights. AxTrain-pas is trained with approximate multipliers
in the most aggressive mode. Fig. 6 demonstrates the AxTrain-
act significantly reduces the sensitivities across all the network
weights, while AxTrain-pas implicitly learns noise distribution
and selectively reduces the sensitivity for those weights which
suffer larger noise from the approximate multiplier.

IV. ACCURACY-SCALABLE NN ARCHITECTURE

So far we have discussed AxTrain as a training framework
towards generating robust NN models to mitigate accuracy
degradation due to the noises from approximate computing.
The superior robustness from AxTrain motivates us to explore
the accuracy-scalable capability for NN hardware acceleration,
i.e., the NN accelerator has the capability to adapt to different
accuracy modes of approximate computing. With traditional
back-propagation (BP) trained network model, the accelerator
rarely operates at approximate modes since noises with small
magnitude can even significantly degrade the inference accu-
racy. By leveraging the robust NN models from AxTrain, the
accuracy-scalable accelerator could achieve higher efficiency
improvement by operating at an less accurate but efficient
mode more often under a slightly relaxed accuracy constraint
(e.g., 2% allowed degradation).

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2845396, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS, VOL. XX, NO. X, DECEMBER 2017 7

Hence, to further exploit the advantage of AxTrain, we
propose an accuracy-scalable NN accelerator architecture in
which both the SRAM weight storage and the multipliers
can flexibly switch between the accurate and approximate
modes. Specifically, we build the accuracy-scalable NN ac-
celerator based on an existing flexible data-driven NN accel-
erator named “FlexFlow” [26], as shown in Fig.7. Originally,
FlexFlow employs a weight buffer and a neuron buffer for
storage, a group of processing engines (PE) for computation,
and an instruction decoder for controlling. To perform neuron
calculation, each PE consists of a multiplier, an adder, a neuron
local memory, a weight local memory, and a controller.

To augment the accelerator with accuracy-scalable capabil-
ity, SRAM voltage scaling technique and approximate multi-
plication technique are adopted [11][21]. As shown in Fig.7,
global and local SRAM weight storages reside in an individual
voltage island and their supply voltage can be dynamically
scaled to different levels (accuracy/power modes) [27]. And
a variable-latency approximate multiplier is employed in each
PE, and the accuracy of those multipliers is controlled by scal-
ing its operating frequency. The proposed fixed point variable-
latency multiplier for approximate computing is shown in
Fig.8. The entire multiplication has three accuracy modes.
1) In order to perform an inaccurate but fast multiplication,
we truncate the four high-order bits (significant bits) in the
operands, A, B and sent them to a four-bit multiplier, then
the intermediate multiplication result is left-shifted to generate
Out?2 for use. 2) To compensate for accuracy, four high-order
bits of an operand A are multiplied with six low order bit of
another operand B, then this multiplications results are shifted
and added to the former results Out2 from four bits multiplier
to produce Outl. 3) To get the accurate output, the residual
multiplications are performed and added up with those former
results, then accurate results Out0Q is attained. Clearly, with
higher accuracy demand, the latency of the multiplier will be
larger, so its frequency will be smaller. From the simulation
results, the critical path latencies of the variable-latency mul-
tiplier in three working modes (M2, M1 and MO) are 0.34ns,
0.41ns and 0.60ns respectfully with increasing accuracy. The
accurate results of multiplications can be guaranteed by run-
ning at low frequency while the approximate results can be
obtained by running at higher frequencies. To sum it up, we
refer these supported approximations as “Dynamic (SRAM)
Voltage (Multiplier) Frequency Scaling (DVFS)” for the NN
accelerator. Note that the bitwidth of accelerator’s datapath is
set to ten while dynamic fixed point format is used to correlate
data representation to the magnitude of network parameters.
Specifically, for NN’s inputs and activations, three bits are
used for the integer part while seven bits for the fractional
part. For NN’s weights, all ten bits are used for the fractional
bits since most weights have very small magnitudes. And when
the multiplier is set to the conservative approximation mode,
M1, during inference, operand A and B should be clarified.
In this accelerator, the activation works as operand A while
the weight as operand B for high inference accuracy since the
magnitudes of activations are larger and the activations are
reused repeatedly for different weights in a layer.

The overall workflow of the accuracy-scalable NN ac-

e —
| Neuron Buffer 1 “ Nominal
= L,,bl,,,,llz,,,,bg,,,,lﬂ,,) Voltage
| | Input| Neuron|Lines
.-
! I
|) ~P(1,2) « +P(1,3) ~P(1,4 ‘mm
| } o1+ B2 ®(,3) ®(,) + } \‘
} g} t 1 ¥ ¥ - L |
15 I
| o Leendlreadlree]|reo G f?
| | ® ® ® ® 2E gl
| ‘ ' i i i 538 !
I g} =5 THZ
! ! go M5
| 17 FRGD o RG,2) < [RG,8) «| B3, < CE } 5
} oy t i 3 i 5.8 @
} = I
L 'P\ :5 } NS
_ u&)@.l).- R@2) o 4%4:3)4- B - 5 | }
! ! ! 4 —g
Scalable Contrgl Signgl Lines | }
Voltage Decoder o

Fig. 7. The proposed accuracy-scalable NN accelerator architecture.

A[9:6]
B[9:6]

4X4

Input operands

A[9] B[9 MUL
’—LL Add
OutZ 3 Qutput
Oyt _[19:0]
outq =
4X6 Adder-|
M U L selection
A[5:0]
B5:0]] 6X6
A[0] B[0] MUL

Fig. 8. The 10-bit variable-latency approximate multiplier.

celerator consists of two main phases. Before deployment,
AxTrain-guided training finds robust models for approximate
computing at different approximation strategies, i.e., AxTrain-
act approach first strives to reduce network sensitivity to
noise, then AxTrain-pas approach builds NN models for
different approximate computing configurations. Meanwhile
the corresponding statistical results on accuracy could also
be reported. During deployment, based on collected accuracy
information, the configurations for approximate hardwares in
NN accelerator is determined according to the given target
accuracy. For the multipliers, the operating frequency and
datapath selection signal are set. For SRAM weight storage,
its supply voltage is specified and the corresponding voltage
regulator can be configured.

V. EXPERIMENTAL METHODOLOGY

Case studies of approximate hardwares for approximate
inference. 1) Two kinds of approximate multipliers. We use
two different kinds of approximate multipliers in the experi-
ments to demonstrate the generality of AxTrain framework to
different kinds of designs. First, without loss of generality,
to assess the implications of approximate multiplications in
NN accelerator, we adopt an existing approximate multiplier
for weight-activation multiplication [28]. This design explores
the tradeoff between precision and computing efficiency which
is similar to changing the effective width k£ for computation,
i.e., with a smaller k& configuration, the approximate multi-

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2845396, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS, VOL. XX, NO. X, DECEMBER 2017 8

plier gains higher energy efficiency at a cost of increased
noise. Second, to build and evaluate the accuracy-scalable
NN accelerator, we leverage a variable-latency approximate
multiplier design as the building blocks for the accelerator.
The structure of the variable-latency multiplier is detailed in
Section IV. The multiplier has three accuracy modes, i.e.,
accurate mode MO, conservative mode M1, aggressive mode
M2. 2) Lower-than-nominal voltage storage. For fuzzy
storage, we leverage lower-than-nominal supply voltage for
SRAM weight storage. Conventionally, SRAM works as a
reliable storage at nominal voltage (e.g., 1.1V). To improve
energy efficiency, the SRAM supply voltage can be reduced
to the low voltage regime at the risk of bit flipping [21]. In
this case, the supply voltage can be treated as a knob to tune
approximate computing and determine the noise probability.
In the experiment, we use three voltage levels: one slightly
lowered voltage level and two NTV voltage levels. We select
two representative knobs (flip rate@voltage: 10% @400mV,
1% @660mV, 0.1%@850mV [21]) for each applications, as
Table I depicts.

Power and performance evaluation flow. To evaluate
the power and performance improvement from approximate
multiplier, we first implement approximate accelerator with
imprecise multipliers using Verilog and then synthesize the
design using the Synopsys Design Compiler with TSMC
65nm library. The power results are gathered using Synopsys
PrimeTime; For near threshold voltage based storage, We
evaluate the low voltage (including NTV) supplied storage by
CACTI-P[29].

Training tool and Dataset. To evaluate the accuracy
of NN, we implement the training algorithm and inference
simulator using the PyTorch deep learning framework. The
datasets we used are detailed in Table . Breast cancer, Image
segmentation, lonosphere, and Satimage are obtained from the
UCI Machine Learning Repository [30], and MNIST is a well
known dataset for digit classification [31]. For each dataset,
80% of samples are used for training, while the remaining
20% are used for accuracy testing. In the off-line training,
the networks are first trained with AxTrain-act until both the
network error and sensitivity cost converge, then a few more
epochs (e.g., ten) are trained with AxTrain-pas.

VI. EXPERIMENTAL RESULTS

In the experiment, we first examine the effectiveness of
proposed AxTrain algorithm with approximate multiplier and
low voltage storage separately. We conduct experiments for
five representative applications with four approximate multi-
plier configurations (K1, K2, K3, K4) and two low voltage
levels, which include an aggressive (Agg) lower voltage and
a conservative (Con) higher voltage, as as Table I illustrates.
Then we evaluate the accuracy-scalable NN architecture with
AxTrain-guided models first by using the variable latency
multipliers which have three accuracy modes (MO,M1,M2),
then by incorporating both the variable latency multipliers and
low voltage powered SRAM weight storage.

To examine the AxTrain, first we compare the output error
of NN under different approximate multiplier configurations

with networks trained by conventional BP, the proposed two
methods, AxTrain-act and AxTrain-pas separately, and the
combining scheme AxTrain. The results are shown in Fig.9.
In the figure, the errors under different approximate con-
figurations are normalized to original network results with
accurate multipliers for each application.Fig.9 shows that the
network outputs suffer larger error with more aggressive
approximation configurations. Compared with conventional
BP scheme, AxTrain-act exhibits higher noise tolerance by
reducing the error by 40.55%, 23.60% and 24.41% on average
for K1, K2 and K3, respectively, while AxTrain-pas reduces
the error to 59.93.%, 45.38%, 26.03%. When combining the
active and passive method together, AxTrain further reduces
the errors to 71.95%, 51.90%, 35.26%, respectively. We no-
tice that in a few rare cases (like K4 in MNIST), when
using multipliers with conservative approximation, AxTrain-
act performs slightly better than AxTrain. Due to the intrinsic
error tolerance of the NN, the accuracy degradation caused by
conservative approximate multipliers is quite small, thus the
improvement headroom is limited.

For low voltage supplied SRAM weight storage, we show
the results from fifty runs, since the induced bit-flipping is a
probabilistic event. Fig.10 demonstrates the average accuracies
and the deviations. The output accuracies for both aggressive
and conservative low voltage levels increase by 30.03% and
8.57% on average, compared with conventional BP. This figure
also indicates AxTrain reduces the side effects of bit flip in
aggressive mode and restores the output quality to a higher
level, equals to conventional BP attains in conservative mode.
Note that accuracy is used as the comparison metric instead of
network error, because error magnitude for conventional BP
in the MNIST-Agg case is too large to be properly shown.

For a thorough evaluation of AxTrain, we also compare
the results with two recent approaches, ApproxANN [17] and
AxNN [16]. For ApproxAnn, its optimization can be used
compatibly with AxTrain-act, thanks to the orthogonality of
our training-based approach in supplementing efficient tech-
niques from other domains. Originally, ApproxAnn accepts
a pre-trained BP network as inputs, and ranks the network
neurons based on their criticality. To incorporate approximate
computing, ApproxAnn then conducts the multiplication oper-
ations for the less critical neurons on the approximate multipli-
ers. To mitigate the newly-introduced output error, ApproxAnn
retrains the network. Then neurons ranking is performed again
and more less-critical ones are identified if there are still
accuracy headroom for approximate computing. As the re-
training step progresses, more and more multiplications can
be carried out by approximate multipliers while maintaining
the targeted accuracy (2% maximum allowed degradation
in this case). Unlike AxTrain, which uses one approximate
configuration throughout the inference and proposes to reduce
the corresponding accuracy loss, ApproxAnn tries to employ
as many approximate multiplications as possible to replace the
expensive accurate multipliers without exceeding the accuracy
requirement. So to make a fair comparison, we compare the
number of approximate multipliers ApproxAnn could use with
pre-trained networks using conventional BP and AxTrain-act,
and we show the results for aggressive approximation (K1, K2)

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2845396, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS, VOL. XX, NO. X, DECEMBER 2017 9

TABLE I
DATASETS AND PARAMETERS.

| Dataset Description #In#Hiddens,#Out | Agg/Con volt | #Samples | Accuracy ||
Breast cancer Diagnose cancer 30,64,64,2 400mV,660mV | 569 99.12%
Image segmentation | Classify outdoor image 19,64,64,7 660mV,850mV | 2100 95.71%
Ionosphere Identify radar target 34,50,50,2 660mV,850mV | 350 87.14%
Satimage Classify satellite image 36,64,64,7 660mV,850mV | 6434 86.71%
MNIST Recognize hand written digit | 784,128,128,10 660mV,850mV | 60000 97.95%
20 -

M Conventional bp
M AxTrain-act

w

8 15 AxTrain-pas
°© AxTrain

0}

N0+~

©

E

s} L

= 9

K4 K3 K2 K1 K4 K3 K2 Ki K4 K3 K2 Ki K4 K3 K2 K1 K4 K3 K2 K1
Breast cancer Image seg lonosphere Satimage MNIST

Fig. 9. Output loss under different approximate multipliers.

50 80

N
S

=
S

IS

S

N
=]

Storage power (mW)
w
3

Computational power (mW)

=)

[Conventional BP Il AxTrain || ApproxANN
[N N

I
K4K1 K8K3 K4K1 K4K2 K3K1
Breast Image seg losphere Satimage MNIST

0 I Conventional 8P Il AxTrain

LN O O N O g
Breast Image seg iosphere Satimage

O
MNIST

Fig. 12. Power consumption under approximate multiplication and low

B Conventional BP voltage supplied storage.
MATain__

AggCon ~ AggCon AggCon AggCon AggCon
Breast Image seg lonosphere Satimage I%IST

Approximate inference accuracy (%)

Fig. 10. Accuracy comparison between BP and AxTrain under different low i Fig.11. As expected, NN under less aggressive K2 could
voltage levels. . 1.
always employ a larger number of multipliers than under more
aggressive K1. ApproxAnn with an AxTrain-trained network
could use 20.03% more approximate multipliers on average
in the K2 mode and 20.34% more in the K1 mode than
ApproxAnn-BP, which means AxTrain helps ApproxAnn to
better exploit the power saving opportunity. For AxXNN, it
measures error contributions of different neurons and statically
select neurons for approximate multiplications, then retrains
the network for error recovery. AXNN reports the energy
improvement over its accurate counterpart under different
accuracy constraints (e.g., maximum 2.5% accuracy loss and
7.5% accuracy loss). Specifically, AXNN achieves 1.58X and
1.75X improvement in application energy for the 2.5% and
Ml ApproxAnn-AxTrain 7.5% quality constraints on average, correspondingly. In this
K2K1 K2K1 K2K1 K2K1 K2Ki1 experiment, we evaluate AxTrain in the same way, and the
Breast Image seg lonosphere Satimage MNIST . . C g .
results are listed in Table II. Both the multiplier configurations
and the corresponding energy reductions are given under two
accuracy constraints. Under the 2.5% and 7.5% constraint,

—_

o
©

o
©

e
3

o
[}

I
3

o
~

Normalized amount of approximate multipliers

Fig. 11. Number of approximate multipliers used for ApproxAnn-BP and
ApproxAnn-AxTrain.

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2845396, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS, VOL. XX, NO. X, DECEMBER 2017 10

TABLE II
ENERGY IMPROVEMENT OF AXTRAIN AND AXNN UNDER DIFFERENT
ACCURACY CONSTRAINTS

TABLE III
POWER, PERFORMANCE AND ACCURACY OF ACCELERATOR INFERENCE
WITH THE VARIABLE-LATENCY MULTIPLIERS W/ AND W/O AXTRAIN

| Applications | <2.5% | <7.5% || | Applications | Mode 0 | Mode 1 | Mode 2 |

Breast Reduction 1.91X 1.91X Acc w/ (%) 99.12 98.24 95.61

MUL Mode K1 K1 Breast Acc w/o (%) | 97.36 77.19 78.07

Image Reduction 1.74X 1.82X Power (mW) | 103.80 95.47 92.40

MUL Mode K3 K2 Pert (GOPS) | 196.92 | 288.1801 | 347.51

Tosp Reduction 1.87X 1.87X Acc w/ 95.24 95.71 79.76

MUL Mode K1 K1 Image Acc w/o 95.47 30.71 27.86

. Reduction 1.85X 1.89X Power 105.43 96.97 93.85

Satimage I reT Vode | K2 K Perf 2000 | 29268 | 35294
Reduction 2.06X 2.06X Acc w/ 94.28 94.25 91.42

MNIST MUL Mode K1 K1 Tosp Acc w/o 87.14 35.71 3541
AxTrain AVG | Reduction 1.89X 1.91X Power 83.77 77.10 74.65

AXxNN AVG | Reduction | 1.58X | 1.75X Perf 157.51 | 230.50 | 277.96

Acc w/ 86.32 85.85 76.77

Satimage Acc w/o 88.96 67.52 40.64

])] Power 106.99 98.37 95.19

AxTrain achieves 1.89X and 1.91X energy improvement and Perf 20381 59826 359.66
outperf.orms AxNN by.0.31X apd 0.16X more reduction, Ace w/ 9821 9820 98 1
respectively. Notfz that in AxTrain the energy for the.7.5% Acc Wio 98.0 3894 7789

accuracy constraint over the 2.5% case improves slightly, MNIST Power 118.68 10971 106.41

this is because in Breast cancer, losp, MNIST datasets under Porf 511.95 310,18 374.04

the 2.5% case, AxTrain already enables the most aggressive
approximation mode (K1).

Then, to demonstrate the benefit of AxTrain at the system
level, we compare the FlexFlow accelerator’s lowest power
consumption that approximate computing could attain using
AxTrain and conventional BP, while keeping a target accuracy
(maximum 2% degradation to accurate implementation), as
depicted in Fig.12. On the X axis in this figure, we also
show the approximation mode that AxTrain and BP apply. This
figure shows that AxTrain’s higher noise resilience could result
in more aggressive approximation, which leads to lower power
consumption than conventional BP. To be specific, computa-
tional power and storage power are reduced by 38.78% and
30.81% on average, correspondingly. Notably in the Satimage
dataset the in low voltage storage case, a conservative voltage
of 0.85V is enforced to maintain tight accuracy constraint.
By relaxing the allowed degradation to 6%, a 27.01% power
reduction was be achieved under 0.66V voltage. We also com-
pare the computational power consumption under approximate
multiplier between AxTrain and ApproxANN, and AxTrain
requires 22.91% less power consumption than ApproxANN
on average.

Finally, in order to evaluate the efficacy of the proposed
hardware/software co-design for the accuracy-scalable NN
accelerator, we measure the accuracy, power and performance
of the accelerator. Specifically, we simulate the accelerator
with the variable-latency approximate multipliers working in
different accuracy modes with and without AxTrain-guided
NN models at the nominal voltage level, as shown in Table
III. From the performance and accuracy results, we observe
that along with increased approximation level, the perfor-
mance of NN accelerator improves significantly by 46.34%
and 76.47% on average since the multiplication operations

works at higher frequencies. Besides, the energy efficiency
also improves by 58.97% and 97.95% on average. For the
accuracy part, AxTrain helps to raise the inference accuracy
by 34.44% and 36.36% on average in two approximate modes
compared with the BP-trained NN models. To further evaluate
the potential of the proposed co-design, we evaluate the
design incorporating both the approximate multipliers and
lower-than-nominal voltage based SRAM weight storage. The
accuracy and power results for four different approximation
combinations (two low voltage levels with two approximate
modes for multipliers) are listed in Table IV. We observe that
further with incorporating low voltage based approximation,
the inference accuracy degrades only by 2.47% and 1.448%
on average for approximate multipliers in M1 and M2 modes,
correspondingly. These results prove that proposed AxTrain
could help to tolerate the exacerbated noise from the com-
bined noise source. And This observation also indicates with
a further relaxed accuracy constraint (2=3% more allowed
degradation), the NN accelerator could achieve lower power
consumption with more aggressive approximation, in this case
the NN accelerator with the combined approximations con-
sumes 66.85% less power on average than the accelerator with
approximate multipliers only. Concluded from this experiment,
the accuracy-scalable accelerator with AxTrain could achieve
a better trade-off between energy efficiency and inference
accuracy, and AxTrain could also be applied to the exacerbated
noise scenarios which have a combined noise source.

VII. CONCLUSION

Approximate computing leverages the intrinsic error tol-
erance of a neural network for improved energy efficiency.

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2845396, IEEE Journal

on Emerging and Selected Topics in Circuits and Systems

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS, VOL. XX, NO. X, DECEMBER 2017 11

TABLE IV
POWER AND ACCURACY OF ACCELERATOR INFERENCE COMBINING BOTH
THE VARIABLE-LATENCY MULTIPLIERS AND LOW VOLTAGE SRAM
STORAGE WITH AXTRAIN-GUIDED MODELS

M1 M1 M2 M2

Applications Con Agg Con Agg

Acc mean 97.81 96.00 96.35 95.21
Breast Acc std 0.7571 2.256 | 0.3248 2.332

Power 55.4857 | 50.59 52.41 47.52

Acc mean 96.09 94.08 79.71 77.44
Image Acc std 0.5875 | 0.8451 | 0.3377 | 1.4023

Power 67.157 56.37 64.04 | 53.2468

Acc mean 91.11 88.71 90.43 90.86
Iosp Acc std 1.268 2.602 1.010 2.101

Power 53.52 44.94 51.06 42.48

Acc mean 84.40 81.57 77.09 73.47
Satimage Acc std 0.7000 | 0.8221 | 0.3856 | 0.9340

Power 68.00 57.02 64.82 53.84

Acc mean 97.22 92.81 97.53 90.75
MNIST Acc std 0.0882 | 0.1666 | 0.0608 | 0.2133

Power 78.15 66.74 | T74.85 63.43

The most critical challenge of this technique is to how to
effectively maintain “good enough” accuracy while at the same
time exploiting aggressive approximation. In order to tackle
this problem, NN training process should be aware of the
functionality of inference hardware instead of just conducting
hardware-agnostic training that is solely driven by maximizing
accuracy under ideal hardware conditions. In this paper, we
propose the AxTrain framework, which trains networks for
both accuracy and noise resilience. With active training for
sensitivity reduction and passive learning the characteristics of
underly approximate hardwares, AxTrain reduces NN’s noise
sensitivity and improves its resilience against approximation.
Moreover, the advantages from AxTrain motivate the design
of an accuracy-scalable neural network accelerator which has
the flexibility to reconfigure to different accuracy modes.
Hence based on the given scalable accuracy requirement,
the neural network accelerator can adapt to a certain mode
which maximizes energy efficiency. Experimental results for
five applications with near threshold voltage SRAM and ap-
proximate multiplier based approximate computing techniques
demonstrate that our proposed AxTrain framework could lead
to more robust networks than conventional hardware-agnostic
training frameworks and can be generally applied to diverse
approximation techniques. Leveraging this proven AxTrain-
guided model, our proposed accuracy-scalable accelerator can
achieve better trade-off between inference accuracy and energy
efficiency, as supported by our system-level performance,
power, and accuracy simulation results.

ACKNOWLEDGMENT

This work was supported in part by Natural Science Foun-
dation Award #1657562 and National Natural Science Foun-
dation of China under Grant No. 61572470.

REFERENCES

[1] P. Dubey, “Recognition, mining and synthesis moves computers to the
era of tera,” Technology@ Intel Magazine, vol. 9, no. 2, pp. 1-10, 2005.

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

[2] M. Magno, L. Benini, C. Spagnol, and E. Popovici, “Wearable low
power dry surface wireless sensor node for healthcare monitoring
application,” in IEEE 9th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), 2013,
pp. 189-195.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in computer vision and pattern recognition (CVPR), 2016,
pp. 770-778.

[4] 1. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks,” in Advances in Neural Information Processing
Systems (NIPS), 2016.

[5] S. Han, H. Mao, and W. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in International Conference on Learning Representations (ICLR), 2016.

[6] Y. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in International
Symposium on Computer Architecture (ISCA), 2016.

[7]1 L. Chen and et al, “Accelerator-friendly neural-network training: Learn-
ing variations and defects in rram crossbar,” in Design, Automation and
Test in Europe Conference Exhibition (DATE), 2017, pp. 19-24.

[8] L. Xia, T. Tang, W. Huangfu, M. Cheng, X. Yin, B. Li, Y. Wang, and
H. Yang, “Switched by input: Power efficient structure for rram-based
convolutional neural network,” in Design Automation Conference (DAC),
2016, p. 125.

[9] J. Miao, K. He, A. Gerstlauer, and M. Orshansky, “Modeling and syn-
thesis of quality-energy optimal approximate adders,” in International
Conference on Computer-Aided Design (ICCAD), 2012, pp. 728-735.

[10] V. Vassiliadis, J. Riehme, J. Deussen, K. Parasyris, C. D. Antonopoulos,
N. Bellas, S. Lalis, and U. Naumann, “Towards automatic significance
analysis for approximate computing,” in Code Generation and Optimiza-
tion (CGO), 2016, pp. 182-193.

[11] Y. Han, Y. Wang, H. Li, and X. Li, “Enabling near-threshold voltage
(ntv) operation in multi-vdd cache for power reduction,” in International
Symposium on Circuits and Systems (ISCAS), 2013, pp. 337-340.

[12] A. Raha and V. Raghunathan, “qlut: Input-aware quantized table lookup
for energy-efficient approximate accelerators,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 16, no. 5s, p. 130, 2017.

[13] B. Reagen, P. Whatmough, Robert, and et al, “Minerva: Enabling low-
power, highly-accurate deep neural network accelerators,” in Interna-
tional Symposium on Computer Architecture (ISCA), 2016, pp. 267-278.

[14] O. Temam, “A defect-tolerant accelerator for emerging high-performance
applications,” in International Symposium on Computer Architecture
(ISCA), 2012.

[15] Z. Du, A. Lingamneni, Y. Chen, K. Palem, O. Temam, and C. Wu,
“Leveraging the error resilience of machine-learning applications for
designing highly energy efficient accelerators,” in ASP-DAC, 2014, pp.
201-206.

[16] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan, “Axnn:
Energy-efficient neuromorphic systems using approximate computing,”
in international symposium on Low power electronics and design
(ISLPED), 2014, pp. 27-32.

[17] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu, “Approxann: an
approximate computing framework for artificial neural network,” in
Design, Automation and Test in Europe Conference Exhibition (DATE),
2015, pp. 701-706.

[18] B. Pearlmutter, “Fast exact multiplication by the hessian,” Neural
Computation, vol. 6, no. 1, pp. 147-160, 1994.

[19] A. Weigend, D. Rumelhart, and B. Huberman, “Generalization by
weight-elimination with application to forecasting,” in Advances in
Neural Information Processing Systems (NIPS), 1991, pp. 875-882.

[20] Z. Du, A. Lingamneni, Y. Chen, K. Palem, O. Temam, and C. Wu,
“Leveraging the error resilience of neural networks for designing highly
energy efficient accelerators,” in IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), vol. 34, no. 8, 2015,
pp. 1223-1235.

[21] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and
T. Mudge, “Near-threshold computing: Reclaiming moore’s law through
energy efficient integrated circuits,” Proceedings of the IEEE, vol. 98,
no. 2, pp. 253-266, 2010.

[22] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
“Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory,” in International Symposium
on Computer Architecture (ISCA), 2016, pp. 27-39.

[23] J. D. M Courbariaux, Y Bengio, “Training deep neural networks with
low precision multiplications,” in International Conference on Learning
Representations workshop (ICRL), 2015.

[24] G. Hinton, “Neural networks for machine learning.” Coursera, 2012.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JETCAS.2018.2845396, IEEE Journal
on Emerging and Selected Topics in Circuits and Systems

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS, VOL. XX, NO. X, DECEMBER 2017 12

[25]

Y. Bengio, N. Lonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,” in
arXiv preprint, 2013.

Xuan Zhang (S08, M15) is an Assistant Professor
in the Preston M. Green Department of Electrical
and Systems Engineering at Washington Univer-

[26] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A flexible sity in St. Louis. She received her B. Eng. degree
dataflow accelerator architecture for convolutional neural networks,” in in Electrical Engineering in 2006 from Tsinghua
HPCA, 2017, pp. 553-564. University in China, and her MS and PhD degree

[27] Y. Wang, Y. Han, H. Li, and X. Li, “Vanuca: Enabling near-threshold in Electrical and Computer Engineering from
voltage operation in large-capacity cache,” IEEE Transactions on Very Cornell University in 2009 and 2012 respectively.
Large Scale Integration (VLSI) Systems, vol. 24, no. 3, pp. 858-870, She works across the fields of VLSI, computer
2016. architecture, and cyber physical systems and her

[28] S.R. S Hashemi, R Bahar, “Drum: A dynamic range unbiased multiplier research interests include adaptive learning hard-
for approximate applications,” in International Conference on Computer- ~ ware for autonomous systems, hardware/software co-design of efficient
Aided Design (ICCAD), 2015, pp. 418-425. power delivery and distribution, and ubiquitous self-powered IoT devices.

[29] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi,

“Cacti-p: Architecture-level modeling for sram-based structures with
advanced leakage reduction techniques,” in International Conference on
Computer-Aided Design (ICCAD), 2011, pp. 694-701.

[30] M. Lichman, “UCI machine learning repository,” 2013.

[31]

Y. Lecun and C. Cortes, “The mnist database of handwritten digits,”
1998.

Xin He received the BEng degree in software
engineering from Sichuan University, Chengdu,
China, in 2011, and the PhD degree in computer
science from the Institute of Computing Technol-
ogy (ICT), Chinese Academy of Sciences (CAS),
Beijing, China, in 2017. He is currently a postdoc-
toral research associate in Washington University
in St. Louis. His research interests include com-
puter architecture especially on application spe-
cific acceleration, deep learning, neural network
accelerator, and approximate computing. He is a

member of the IEEE.

Wenyan Lu received the B.Eng. degree in Elec-
trical and Information Engineering from China
Agricultural University, in 2012, and the M.
Eng. degree in Electronics and Communication
Engineering from Beijing Institute of Technology,
in 2014. He is currently a Ph.D. Candidate at
the State Key Lab. of Computer Architecture,
Institute of Computing Technology (ICT), Chi-
nese Academy of Science (CAS). His research
interests include heterogeneous computing and
deep learning accelerator. He is a student member

of IEEE/CCF.

Guihai Yan received the BSc degree in elec-
tronics and software engineering (dual-degree)
from Peking University, Beijing, China, in 2005,
and the PhD degree in computer science from
the Institute of Computing Technology (ICT),
Chinese Academy of Sciences (CAS), Beijing,
China, in 2011. He is currently an associate
professor with the ICT, CAS. His research in-
terests include computer architecture, heteroge-
neous computing, domain-specific micro-systems,
and computational finance. He is a member of

the IEEE and ACM.

2156-3357 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

