NNest: Early-Stage Design Space Exploration Tool for Neural
Network Inference Accelerators

Liu Ke, Xin He, Xuan Zhang

Washington University in St. Louis

ABSTRACT

Deep neural network (DNN) has achieved spectacular success in
recent years. In response to DNN’s enormous computation demand
and memory footprint, numerous inference accelerators have been
proposed. However, the diverse nature of DNNS, both at the algo-
rithm level and the parallelization level, makes it hard to arrive at an
“one-size-fits-all” hardware design. In this paper, we develop NNest,
an early-stage design space exploration tool that can speedily and
accurately estimate the area/performance/energy of DNN inference
accelerators based on high-level network topology and architec-
ture traits, without the need for low-level RTL codes. Equipped
with a generalized spatial architecture framework, NNest is able to
perform fast high-dimensional design space exploration across a
wide spectrum of architectural/micro-architectural parameters. Our
proposed novel date movement strategies and multi-layer fitting
schemes allow NNest to more effectively exploit parallelism inher-
ent in DNN. Results generated by NNest demonstrate: 1) previously-
undiscovered accelerator design points that can outperform state-
of-the-art implementation by 39.3% in energy efficiency; 2) Pareto
frontier curves that comprehensively and quantitatively reveal the
multi-objective tradeoffs in custom DNN accelerators; 3) holistic
design exploration of different level of quantization techniques
including recently-proposed binary neural network (BNN).

CCS CONCEPTS

« Hardware — Modeling and parameter extraction;

KEYWORDS
Deep neural networks, Design space exploration, Accelerators

1 INTRODUCTION
Since the groundbreaking performance of AlexNet [1] in 2012 Ima-

geNet competition, a class of machine learning methods, deep neu-
ral networks (DNNs), has achieved spectacular success, like applica-
tions in computer vision, natural language processing, and machine
translation. These hierarchical network models typically employ
tens or even hundreds of connected neural network layers and
incur enormous computational demands and memory footprints,
rendering their execution on conventional CPU-based computing
platforms quite inefficient. Despite the complexity, DNN exhibit
vast amount of inherent parallelism in its computational model,
which can be exploited to accelerate DNN computation. Exten-
sive toolchain and framework have been built on general-purpose

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISLPED ’18, July 23-25, 2018, Seattle, WA, USA

© 2018 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-5704-3/18/07...$15.00
https://doi.org/10.1145/3218603.3218647

graphics processing units (GPGPU) to leverage its superior paral-
lel processing capability for DNN tasks [1]; field-programmable
gate array (FPGA) based systems [5] have attracted much atten-
tions thanks to their programmable fabrics that can accommodate
flexible parallel processing primitives and adapt to rapidly evolv-
ing algorithms; finally custom DNN accelerators such as Google’s
tensor processing unit (TPU) have also been making great strides,
pushing the envelop of theoretical computation throughput to the
range of tens of tera floating point operation per second (TFLOPs).

However, computational speed/throughput is not the only met-
ric that matters. Power and cost are among the top concerns for
DNN hardware accelerators, especially when designed for neural
network inference tasks to be deployed in mobile or embedded edge
devices [2]. Compared with cloud-centric platforms, edge devices
have much more stringent power budget and sensitive cost con-
sideration, making application-specific integrated circuits (ASIC)
based solution a more appealing choice [8]. Numerous NN inference
accelerators have been proposed [13, 14], but the diverse nature
of DNNs, both at the network level and the micro-architetcure
(uArch) level, makes it hard to arrive at an “one-size-fits-all” im-
plementation. The complex and high-dimensional design space of
DNN accelerators calls for an early-stage exploration tool that can
speedily and accurately traverse the available design points and
estimate their performance. Such a tool could benefit a multitude
of use cases. For example, architects of DNN accelerator can be
better informed of the tradeoffs between different performance
metrics under distinctive pArch designs; circuit designers and de-
vice engineers can get an early glimpse of how device/circuit level
innovation can affect the overall system; algorithm developers can
more deeply understand the potential advantages/penalties of their
model parameters and algorithmic techniques for custom ASIC
accelerators without being limited by the specific implementation.

In this paper, we present NNest'—an early-stage tool that is
designed to facilitate systematic design space exploration for ASIC-

based DNN inference accelerators. Our main contributions include:
e We propose a spatial accelerator architecture template that

can be generalized to cover a variety of DNN accelerator
implementations, capturing design tradeoffs before RTL.

e We develop parameterized data movement strategies and
multi-layer fitting schemes that can efficiently express the
inherent parallelism in DNN models.

o Results generated by NNest not only enable quantitative in-
vestigation of impact from memory hierarchy, data reuse, and
energy/area breakdown, but also reveal previously-unknown
design point with 39.3% higher energy efficiency.

o NNest facilitate holistic evaluation and comparison of DNN
models and algorithmic techniques with software/hardware
codesign consideration. Examples on AlexNet vs VGG and
binarized quantization demonstrate such capability.

! https://github.com/xz-group/NNest-1.0

ISLPED ’18, July 23-25, 2018, Seattle, WA, USA

2 BACKGROUND AND RELATED WORK

2.1 Preliminary on DNN

DNN models typically consists of cascading of different layers,
including convolution, activation function, normalization, pooling,
and fully-connected. Since Conv and FC layers tend to dominate
computation and memory access, NNest focuses on exploring those
two kinds of layers. DNN models usually employ distinctive layer
shapes and sizes, defined by NN structure parameters (nnsPMs) in
NNest, leading it hard to find a fixed hardware configuration that
is optimized for all layers and NN models.

2.1.1 Fully-connected (FC) layer. The computational pattern of
FC layer employs three nnsPMs dimensions: input batch size (N),
the number of input neurons (I), and the number of output neurons
(O). Each output neuron has connections to all the neurons in the
input layer. It takes multiple input vectors (N x I) and multiplies
them with a weight matrix (I x O) to get the output vectors (N x O).
Computation of each output involves I element-wise multiplication
and accumulation of all the products to reduce to one activation of
the output vector. There exist three types of data reuse opportunities
in a FC layer (Fig. 1). 1) Input Reuse: the same input vector is reused
for different columns in the weight matrix to calculate one output
vector. 2) Weight Reuse: the same column of weight matrix is reused
for several input vectors to calculate different output. 3) Partial Sum
Reuse: the old partial sum (PSum) is reused to get the updated PSum
by accumulating with the new element-wise products.

0
PR BN T/ 1
i S M)
1 i ==
(a) input reuse (b) weight reuse (c)Psum reuse

Figure 1: Data reuse patterns in FC layers.
U.5-U.U cs

LA Rl

1 . => {lsw,sw,)
; E

IXN+N-Y;

ofmaps — [M, E, F]

W =5-U+UF (with padding) M
ifmaps - [C, H, W, U] filters—[M, C, R, S]
Figure 2: Data reuse patterns in Conv layers.

2.1.2 Convolutional (Conv) layer. To extract features from input
feature maps (ifmaps), each output neuron in output feature maps
(ofmaps) is only connected to a local region of ifmaps, known as the
local connectivity property of convolution, and the weight matrix
has the same size as the local ifmap region is called a filter. The size
of ifmaps, ofmaps and filters is defined by Conv’s nnsPMs. Conv
layer’s computational pattern can be regarded as a C X R X S sliding
window (SW) (Fig. 2) shifting on ifmaps. The ifmap data in one SW
is element-wise multiplied with a C X R X S filter before accumula-
tion. Each SW shifting on ifmaps (from SW; to SW») generates the
next output value. As SW moves, data overlapped between the con-
secutive windows (e.g. SW; and SW5) is of the shape (S— U)X RXC.
U is stride. Therefore, only U X R X C new input data are needed to
get a new output. In total, one SW shifts F steps vertically and E
steps horizontally to get E X F output values. The number of 3D
filters (M) corresponds to the number of channels in ofmaps.

Contrasted with FC layers, Conv is weight-shared due to local
connectivity, because the all-to-all connectivity (C X H X W) is re-
duced to a local region (C X RXS). One channel of output activations

Liu Ke, Xin He, Xuan Zhang

(E X F) also share the same 3D filter. Hence, there is additional reuse
opportunity in Conv layer, referred as sliding window reuse in this
paper. It takes two forms: 1) the same 3D filter is reused over E X F
SWs; 2) the overlap between two SWs can be reused, only the new
stride (U x R x C) needs loading.

2.2 Existing NN Accelerators

A recent tutorial have extensively surveyed prior work on NN in-
ference accelerators and categorized them based on dataflow [19]:
1) No Local Reuse (NLR) represents designs which do not allocate
local storage in the form of register files or registers to each MAC
unit [3, 15, 20]. Hence, all MACs share a global buffer (GB) to load
inputs and weights and store intermediate PSums. 2) Weight Sta-
tionary (WS) refers to designs that employ local storage for weight
reuse to minimize the energy consumption of frequent weight fetch-
ing for different ifmaps (8, 12, 17, 18]. The input and PSums remain
stored in GB. 3) Output Stationary (OS) stores PSums locally [13, 24],
rather than weights. Similarly, the goal is to minimize the energy
for fetching old PSums and saving back the updated one. 4) Row
Stationary (RS) is proposed to locally store weight, input and PSum
to increase data reuse opportunities [21]. Our framework encom-
passes all these previously-proposed architectures.

2.3 NN Design Automation

A number of design automation tools have been introduced [4, 6, 23]
that focus on NN acceleration on FPGAs. These tools takes specific
DNN models as input and automatically generate implementation
for compatible FPGAs. Since they are designed for a fixed hard-
ware platform, the optimization emphasizes maximum utility of
on-chip resources and highest throughput for a given FPGA plat-
form. Prior work has proposed design space exploration to study
FPGA-based DNN accelerator [10]. However, it does not explicitly
address FC layers and multi-level memory hierarchy, and provides
no exploration results for die area and power consumption.

In the custom ASIC space, tools have been developed to explore
acceleration for general computational kernels [22] that can be
applied to limited NN design space [2]. Method to roughly estimate
DNN energy consumption has been proposed to guide architecture

selection [16] without providing comprehensive area/power/performance

tradeoffs or a generalized architecture framework to systematically
evaluate different parallelization/reuse strategies. Finally, a design
tool has been introduced specifically for binarized neural network
(BNN) [9] to perform estimation and analysis, but it does not readily
apply to investigate the much broader design space of general NN
accelerator with different quantization schemes.

3 METHODOLOGY

3.1 Generalized Architecture Template
In order to conduct effective and thorough design space exploration,

we first propose a spatial NN accelerator architecture template
(Fig. 3) that can be generalized to produce numerous design points.
It has drawn inspirations from many existing accelerator prototypes
and is able to encompass previously-explored architectures with
different dataflow schemes including NLR, WS, OS, and RS.

In our accelerator framework, the on-chip components include
various partitioned global buffer (GB), local buffer (LB), communi-
cation network in the form of 1-to-n and 1-to-1 broadcast buses
(BBus), and a 2D array of arithmetic units (ALU). A large-sized
on-chip memory modeled as SRAM, GB stores input and weight
data fetched from external DRAM, holds the intermediate PSums

NNest: Early-Stage Design Space Exploration Tool for Neural Network Inference Acceleratd8d.PED *18, July 23-25, 2018, Seattle, WA, USA

during computation, and writes the final output activations back to
DRAM. LB represents the smaller-sized memory located in between
GB and the ALU array that can be accessed by the ALU faster and
more efficiently. Depending on the data movement strategies (de-
scribed in Section 3.2), LB stores certain stationary data locally for
later reuse without accessing GB. More specifically, I-LB and W-LB
broadcast input (I) and weight (W) data to the ALU array to reuse
inputs and weights. Each ALU unit receives the broadcast I/W data
and performs element-wise multiplies and one accumulation with
the PSum; loaded from P-LB to get the updated PSum; 1 and store
back to P-LB. In this way, PSums in P-LB can be reused without
being stored back to GB until all the computation for the same
activation is complete. Our architecture allows the LBs to be set to
zero (in case of NLR) or partially bypassed (in case of WS and OS).

{ 3 PSumy,q
I-LB

I |I-LB|

On-Chip

¥ |ALU

D;[1:w] -+ D,[1:w]

[W-1B | [W-LB | [W-LB | 1-ton BBus
)))
[1-6B | W-GB | P-GB | ppiwj=r—
t 1 t D[1] ... D[]
‘ Off-Chip DRAM ‘ 1-to-1 bus

Figure 3: generalized accelerator template

Intuitively, it is ideal to hold all data in GBs to avoid multiple
energy-expensive DRAM access for the same data, if there is no
area constraint. However, the amount of I/W/P data can be quite
large even for a single layer, and varies over a wide range across
different NN layers. Considering the cost of large on-chip memory,
the size of GB is limited in practical systems by holding only a
tile of data at a time. It is clear that GB size also effects data reuse
efficiencies in LBs and ALU array. Therefore, we must determine
optimal strategies to move and replace data between and across
the partitioned GBs and LBs to minimize external/on-chip memory
access and achieve highest degree of data reuse, discussed next.
3.2 Data Movement Strategy (DMS)
It is increasingly the case in advanced technology node that data
movement incurs considerably higher cost in latency and energy
as compared to computation [14]. Since DNN models are memory
intensive, to achieve higher performance and energy efficiency, it
is imperative to carefully formulate the data movement strategies
(DMS) to optimally exploit data reuse opportunities existed in the
parallel processing of DNN accelerators. Maximal data reuse is
highly desirable and is achieved by 1) broadcasting input/weight
data to multiple ALUs for parallel processing and 2) keeping data
stationary in on-chip storage without energy-expensive memory
access for next computation cycle. In this section, we derive the
piArch parameters (LAPMs) used in NNest to define memory and
computation engines and express different data movement strate-
gies. In this way, we are able to effectively traverse the broad NN
accelerator design space by sweeping these pArch parameters val-
ues listed in Table 1. comp pAPMs define the size of ALU array
representing the computational speed of the NN accelerator. mem
1 APMs and nnsPMs define the storage capacity of GBs and LBs.

Table 1: List of NNest zArch Parameters
Parameter Name

FC Layer | Conv Layer

comp pAPMs | tti, tto ttm, tte, ttc, ttr, tts

mem pAPMs | Ty, Ti, To | Tin, Te, tm, te, te

3.2.1 Dataflow in FC layers. Due to the large amount of weights
(I X O) in FC layers, hold them all in GB is impractical. Instead, we
assume only a tile, T; X T, (mem pAPMs in Table. 1), of weight is
stored on-chip, determining W-GB size. The tiled batch size T, is
used to represent the number of inputs being processed concur-
rently, allowing for weight reuse in a broadcasting manner. For FC
DMS, we regard a SW shifting without overlap on the weight ma-
trix to fetch data. However, the different SW shift orders effect GBs
implementation a lot. We study two effective strategies (Fig. 4(a)(c))
among the sea of shift order combination, which consume reason-
able memory access and employ high data reuse rate. For each
strategy, DMS at both GBs and LBs are described in details.

GB-cycle 1 E GB-cycle 2 -GB-cycIe 1,2
Input Weight

=i
TSZ‘::>
2
| ——

(c) PR I/ data movement
I-GB W GB P-GB

(1 \ ttol
& L

(d) PR I/W/P GBs

_|

I-LB W-1g [P1iB
i [0 [t T..
Figure 4: Illustration of different DMS in FC layers

Input Reuse (IR): At DRAM-to-GB level, SW is shifted in or-
der {O,I}. SW is shifted in O-dimension first on weight matrix
(Fig. 4(a)), fetching T; X T, weight data to W-GB. While T;, X Tj; in-
puts are kept stationary in I-GB to reuse it. The sub-index denotes
the range of fetched data, Tjx = [T; X (x —1) + 1 : T; X x|, same
rule applied in the following content. After fetching all O columns
of weight matrix with T;; rows, T,, X O PSums are generated. Then
the second step is that both inputs and weights are shifted in I-
dimension, T, X (Tj1 — Ti2) (input) , Tj1 X Tox — Tiz X Tp1 (weight,
x = 0/T,), to update PSums. To avoid frequent DRAM access, P-GB
is sized to T, X O (Fig. 4(b)) to hold all intermediate PSums and
I/W-GB are sized to T; X Ty, T; X Tp. At GB-to-LB level, SW is shifted
in order {To, Ti}. GB-to-LB DMS is same as DRAM-to-GB DMS
patterns by replacing corresponding pAPMs. Shown in Fig. 4(b)(e),
to satisfy the processing speed of ALU array, I/W/P-LBs are defined
by comp uAPMs (tti, tto). W-LB is replaced in T,-dimension first.
Ty X ttiy input data are kept stationary in I-LB. After T, /tto cycles,
I/W-LBs are then replaced in T;-dimension to update PSums.

PSum Reuse (PR): The derivation of dataflow in PR can be done
in a similar manner as illustrated in Fig. 4(c)-(e), with reverse SW
shifting order compared with IR, {I, O} at DRAM-to-GB level and
{Ti, To} at GB-to-LB level. Here, at DRAM-to-GB level, PSums are

(e) I/W/P-LBs

ISLPED ’18, July 23-25, 2018, Seattle, WA, USA

kept stationary in P-GB, and both inputs and weights are replaced
in I-dimension, T, X (Tj; — Tj2) (input), Tp1 X (Tj1 — Tiz) (weight).
After processing I rows of input data and weight matrix with Ty;
columns, Tj, X Ty1 PSums in P-GB are finalized and send to external
DRAM. Then weights are replaced in O-dimension, Tjx X To1 —
Ti1 X Top (weight, x = I/T;) to compute the next T, X To2 output,
and all the input data are fetched again from T,, X (Tj; — Tix).
Similar DMS patterns are employed at GB-to-LB level.

DMS also determines the BBus configuration based on the broad-
casting requirements of GB-to-LB (mem pAPMs) and LB-to-ALU
(comp L APMs). For example, ttox(tti) weights in W-LB and Tj, X (¢t1)
inputs in I-LB broadcast to Tp,-by-tto ALU array. BBus is 1-to-Tj,
from W-LB to ALU, and 1-to-tto from I-LB to ALU.

3.2.2 Dataflow in Conv layers. Similar with FC DMS, SW shift-
ing order influences Conv GBs design. Comparing various shifting
orders, the following two DMS, IWR and PR, achieve energy effi-
cient and high data reuse, which are conceptual similar with the IR
and PR in FC layer with additional reuse possibilities from sliding
window reuse. GB-to-LB level DMS in both are briefly described
below. Similar pattern exists in other memory levels.

I-GB (Th, tc. W) I-GB (Th, C, W)
t £ @ |I-LB(te,tc/R,S) |ALU
¢ R \U- —> t ()
T S B | fom
G -l VAL exttc
(— Uxt: xttrxtts] tte,
_GB (Tm, G, R, S) Lu] tte,

W-LB(tm,tc,R|S) |ttr,

@ —p(LG 5| tts)
i Wi ek
@ tm-Tm [R 1

E RxS ttrxtfs
o UUAGTE P-GB (tm, te, F RS] 118 (o 1) g
@ t) — t — |
T @ t [tmxte] t [ttmxtte]
(a) IWR I/W/P-GB (b) PR 1/W/P-GB (c) LBs & ALU

Figure 5: Illustration of different DMS in Conv

Input/Weight Reuse (IWR): At GB-to-LB level, SW is shifted
in order {W, Ty, Tp,;, C}, and IWR aims at maximizing input and
weight reuse. In the first-order (W) (Fig. 5(a)) SW first shifts along
the W-dimension to reuse the SW overlap data. And then in the
second order (T3), SW moves to the next t; input rows and shifts
along W-dimension. After processing all Tj, input rows in I-GB, t,, X
T, X F PSums are generated with the ¢, 3D filters kept stationary
in W-LB. The third-order (Ty,) step replaces W-LB with the next
tm weights and SW is shifted along the entire T, rows of input
data again. After processing all T,,, 3D filters in W-GB, T;;, X T, X F
PSums are generated. Then in the last order (C), both inputs and
filters are replaced to the next t. channels, and the intermediate
PSums would be updated to their finalized values. To increase the
I/W reuse rate, the parameters (Ty, Tj;,) that define the number of
SWs should be large. Due to limited GB size, only . I/W channels
are held in GB, and t. is usually small to accommodate large Ty, Tp,.
Therefore P-GB holds large amount of PSum data (T, X T, X F) and
accounts for the majority of GBs size. IWR described here is similar
to the row stationary introduced in Eyeriss, where 80% ~ 90% GB
are used for PSums. Input SW size is defined by t. and t., and
determines I-LB size as t, X t X R X S. The corresponding filter is
defined as t;;, X t. X R X S. ALU array size (Fig. 5(c)) is defined by

Liu Ke, Xin He, Xuan Zhang

Conv’s comp pAPMs (ttm X tte), and the parallel MAC operations
in each ALU is ttc X ttr X tts.

PSum Reuse (PR): At GB-to-LB level, SW is shifted in order
{W,C, Ty, Ty}, and PR aims at maximizing PSum reuse. Similar
with IWR, in the first-order (W), SW (Fig. 5(b)) first shifts along the
W-dimension, and t,;; X t, X F PSums are generated. Then in the
second-order (C), SW moves to the next t. I/W channels and shifts
along W-dimension to update the intermediate PSums computed
in the last F shifting steps until those PSums are finalized and then
stored back to DRAM, setting P-GB size as te X t, X F. To keep the
same DRAM access with IWR, all data in C-dimension of inputs
(T, X C x W) and weights (T, X C X R X S) are held in GBs. The
third-order (T},) step shifts to the next tj rows of input data. The
final order (T;;,) processes all T, 3D filters in W-GB. So, in PR,
P-GB size could be small to store a limited number of PSums, but
I/W-GB should have sufficient space to store C channels of inputs
and weights. And PR’s LBs and ALU is same defined as IWR.

3.3 Multi-Layer Fitting

Methods detailed in Section 3.2 can be used to design custom accel-
erators tailored for a specific NN layer. However, most DNN models
consist of multiple layers with diverse shapes and thus require effi-
cient schemes to fit them on a single hardware. To determine the
optimal architecture configuration that can fit multiple layer, we
resort to finding the consistency between layer types and shapes.
Recall that Conv and FC layer types are related is we consider Conv
as local-connected and weight-shared FC layers. Assuming the size
of Conv filter (R X S) is expanded to cover the entire infmaps (i.e.
H = R, W = §), the Conv layer is effectively converted to a FC.
Hence, there exists a relationship between FC and Conv nnsPMs as
I=CXRxS=CxHxW,0=M.

input weight psum
e |Ran] [Son
Racc Rocel ™ 1Sacc
. 1ofe}.
<{ * Rnn
accumullate
W ® @ among nighannels
(a) case 1: Rnn > Racc :l
Snn
Rnn11 Racc*
i(il Rnn = @
@c "Snn ®

Sacc (b) case 2: Rnn < Racc
Figure 6: Two example cases based on different fitting methods

To fit various Conv layers on a single accelerator, the fitting
method focuses on GBs and LBs partially defined by nnsPMs. While
ALU is fully defined by APMs, and fits for different nnsPMs values.

At GB level, GBs storage capacity and bandwidth are fixed, for
example, PR’s I-GB is fixed, then Tj,1 X C; X Wy = T2 X Co X
Ws. Different nnsPMs leads to different value of mem pAPMs. As
introduced in sec. 3.2, higher mem pAPMs value could apply higher
data reuse rate in GBs. At LB level, I-LBs consist of te X Rg¢c shifters
and each shifter stores te X Sqce data. Rgee, Sqcc is fixed and defines
the accelerator, but Ry, and S, can take different values for each
layer in a network. So, there would be two cases: R, > Rgec and
Run < Rgee. In the first case (Fig. 6(a)), based on the computation
pattern of Conv, a large sized filter could be separated to several
n smaller sized filters, n = [Rgcc/Rnn] X [Sacce/Snn]. Those n
filters are convolved with input data. Then n channels of PSums
are generated. PSums are accumulated among the n channels to get

NNest: Early-Stage Design Space Exploration Tool for Neural Network Inference Acceleratd8d.PED *18, July 23-25, 2018, Seattle, WA, USA

the same PSums value as the original convolution. By applying this
fitting trick, in case-1, the larger Ry, Sun Conv could execute on
the fixed accelerator. In the second case (Fig. 6(b)), the Ry, X Sun
sized SW is shifted on input data. Extra rows of input could be
held in I-LB to get multiple PSums. However, due to the access
bandwidth of I-GB, only U X S, sized data could be fetched each
cycle. Each shifter in I-LB would not be fully utilized. In W-LB,
Run X Snn sized of memory is utilized to store the weight data.

3.4 Area/Performance/Energy Modeling
To accurately model the design tradeoffs of NN accelerators, we
need actual area/performance/energy data for each on-chip compo-
nents (GB, LB, BBus, and ALU) characterized in a parameterized
manner. As illustrated in Fig. 7, these characterization data is ob-
tained through NNest interfaces with other simulator tools, such
as Cacti [11] for SRAM, memory compiler for register file, Synop-
sys Design Compiler (DC) for arithmetic logic. To account for the
area/latency/power of ALU array, we synthesize the basic multi-
pliers and adder trees in datapath circuit using DC with a 40nm
standard cell library, similar to the method used in Aladdin [22].
Although 40nm is used in our experiment due to limited access to
process technology, the same block-level characterization can be
easily ported for a new technology. NNest also accounts for nnsPMs,
such as from TensorFlow, and user-specified area/timing/energy
constraints. DMS and multi-layer fitting schemes allow NNest to
efficiently explore the design space defined by pAPMs (Table 1).
This architectural-level exploration has already taken MAC for-loop
unrolling (parallelization) and hierarchical memory optimization
into consideration by sweeping pAPMs values.

Interface

NNest Results
I_Ilemory Memory Access| Mem area/ energy
s'.m""ﬂ:‘g:,y Exploration)
Compiler DMS I/W/P GB access time Area
User Input .
Energy, Area, Timing Pipeline |Freq
Constraints Balancing Timing
NN Structure - *
[M,E.F.CR, 8] Loop Unrolling [ALG fatency <
(Tensorflow) Exploration 2 Energy
o
Datapath Circuit ALU
DC areallatency/ ety
enargy library Parallelization [~aiGareai energy

Figure 7: NNest’s area/performance/energy modeling framework
critical path delay,

II/W/P« Ioad” ALU computing |

Pea store‘ (a) initial pipeline

| ALU -S1 H ALU -S2 | ‘ store ‘
(c) separate ALU stage

l load || ALU H store | | load

(b) shorten ALU stage latency
Figure 8: NNest pipeline stage

At the circuit level, the execution of NN accelerator based on
spatial architecture could initially be broken down into 3 stages
(Fig. 8(a)) —loading I/W/P data, computing for one cycle, and storing
updated PSums. The critical paths of each stage are simulated by
stacking the latency of each single blocks from memory simulator
and device library. Due to the different pAPMs values, the initial 3-
stage pipeline may not be balanced. Based on simulation results, we
found ALU computing consumes the longest delay among the three
stages. The solution is to shorten the ALU stage’s latency (Fig. 8(b))
or separate one cycle computing to multiple stages (Fig. 8(c)). NNest
first searches through arithmetic device library to find shorter la-
tency multipliers or adders to reduce the computing delay, but

shorter latency leads to higher area and energy consumption re-
sulting area/energy constraints unsatisfied. If failed, NNest would
break the ALU stage into multiple and iterate through the balancing
step, until a reasonable pipeline solution is arrived. Finally, the last
resort is to reduce the parallelism of ALU to sequentially process
the computation in several cycles.

4 EXPERIMENT RESULTS
All the experiments are performed using 40nm CMOS technology.

4.1 Layer-Level Exploration
First, specific single-layer accelerators design spaces are explored
in NNest. It costs 3.61959 seconds (3.61911 sec on Cacti) exploring
one design point on Intel-i7 2.70GHz cpu with 8GB RAM platform.
AlexNet Conv-3

AlexNet FC-1
500 A o 50
S A0 APR ® IR-MH
' A IWR AIR-NLR
00T A A NLR 208 ® PR-MH
: ZA -mﬂr g 3 PR - NLR
S 2 ==IWR-| IR-MH - FT
% 300 A M - [Qe NLR-FT £ IR-NLR - FT
- Eyeriss 5 300 = =PR-MH - FT
2 H A\ ==PR-NLR - FT
5200 a

200

100‘ '-.‘_ 2

1 2 3 A 10 15 20 75~ 30

e Exe Time (ms) =~ s, d Exe Ti:me (ms)
a .

. .

1.Energy Breakdown

Elnergy Breakdown 1Area Breakdown Al’e?l Breakdown

>
208 308 & g
S 2 <
0.6 S06 & s
g s P Horam &
£ 0.4 Ji™0RAM g & Hes 508
g s go [&) = Mes
5 [5 s £ Hs W
= 0.2 | igpus | £0.2 [BBus 5 [TlBBuUS "BBus
[IALY | IALY =z [AL AL
0 0 — 0 —
IWR PR (b) IWR PR IR PR IR PR R PR

Figure 9: (a) Conv-3 design space, (b) Conv-3 energy/area break-
down, (c) FC-1 design space, (d) FC-1 energy/area breakdown

AlexNet’s Conv-3 and FC-1 layers are used as examples. Results
are shown in Fig 9, where the all the design points are scatter-
plotted and the Pareto frontiers consisting of the optimal design
points are identified. In AlexNet Conv-3 design space, we observe
the general trend that NLR dataflow consumes power than PR and
IWR where multi-level memory hierarchy is employed for local
data reuse. The Pareto frontiers of IWR and PR lie closely together.
We choose one design point on IWR and PR frontier each with
similar performance and analyze their energy and area breakdown.
PR’s total energy is about 93.4% of IWR due to energy saving from
GB access, which comes with extra area overhead. The reason is
that: 1) in IWR, inputs and weights consume less memory space, but
PSums need to be fetched from a large-sized P-GB every cycle and
this frequent PSums load/store increases GB access energy; 2) in PR,
I/W-GB is area-consuming to store the entire C channels of input
and weight rows, but I/W data could be held and reused in LBs to
reduce GBs access. We also mark the design points based on the
dataflow strategies introduced in previous work (Eyeriss [21] and
ASP-DAC [10]). Both designs are located away from the frontier
identified by NNest, where more energy-efficient design points can
be found (improvement of 28.5% compared to ASP-DAC [10] and
39.3% compared to Eyeriss [21]).

In AlexNet FC-1 design space, IR represent more optimal designs
than PR with less area overhead. The reason PR performs poorly is

ISLPED ’18, July 23-25, 2018, Seattle, WA, USA

due to its GB. PR holds all input data N X I in I-GB, whereas IR holds
all PSums N X O in P-GB. In AlexNet FC-1, I = 43264, O = 4096,
I > O, making the PR’s GB area and energy cost grow. So, in FC
layer, if I is much larger than O in FC layer, IR outperforms PR.
Comparing NLR and MH frontiers reveal that data reuse in LB can
save energy consumption around 9% with only 0.3% extra area. FC
layer consumes much more energy on DRAM+GB memory access
than Conv layer (more that 98% of total energy for both PR and IR
frontier in FC vs 70% ~ 80% in Conv). This stems from Conv layer’s
local connectivity and weight sharing properties.

4.2 Network-Level Exploration

Next, we apply the multi-layer fitting scheme described in sec 3.3
to explore the design space for a complete neural network.

Liu Ke, Xin He, Xuan Zhang

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Preliminary on DNN
	2.2 Existing NN Accelerators
	2.3 NN Design Automation

	3 Methodology
	3.1 Generalized Architecture Template
	3.2 Data Movement Strategy (DMS)
	3.3 Multi-Layer Fitting
	3.4 Area/Performance/Energy Modeling

	4 Experiment Results
	4.1 Layer-Level Exploration
	4.2 Network-Level Exploration
	4.3 Quantization Technique Exploration

	5 Conclusion and Future Works
	Acknowledgments
	References

